AR116848A1 - Detección de enfermedades de las plantas mediante aprendizaje profundo de etapas múltiples y escalas múltiples - Google Patents
Detección de enfermedades de las plantas mediante aprendizaje profundo de etapas múltiples y escalas múltiplesInfo
- Publication number
- AR116848A1 AR116848A1 ARP190103077A ARP190103077A AR116848A1 AR 116848 A1 AR116848 A1 AR 116848A1 AR P190103077 A ARP190103077 A AR P190103077A AR P190103077 A ARP190103077 A AR P190103077A AR 116848 A1 AR116848 A1 AR 116848A1
- Authority
- AR
- Argentina
- Prior art keywords
- programmed
- images
- digital model
- diseases
- symptoms
- Prior art date
Links
- 201000010099 disease Diseases 0.000 title abstract 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title abstract 7
- 238000013135 deep learning Methods 0.000 title abstract 2
- 238000001514 detection method Methods 0.000 title 1
- 208000024891 symptom Diseases 0.000 abstract 3
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B79/00—Methods for working soil
- A01B79/005—Precision agriculture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
- G06F18/2148—Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the process organisation or structure, e.g. boosting cascade
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24317—Piecewise classification, i.e. whereby each classification requires several discriminant rules
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24323—Tree-organised classifiers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/254—Fusion techniques of classification results, e.g. of results related to same input data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/01—Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/188—Vegetation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/68—Food, e.g. fruit or vegetables
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20016—Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Medical Informatics (AREA)
- Mathematical Physics (AREA)
- Databases & Information Systems (AREA)
- Computational Linguistics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Environmental Sciences (AREA)
- Soil Sciences (AREA)
- Mechanical Engineering (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Image Analysis (AREA)
Abstract
En algunas realizaciones, el sistema está programado para crear múltiples modelos digitales a partir de múltiples sets de formación, cada modelo reconoce enfermedades de las plantas con síntomas de dimensiones similares. Cada modelo digital se puede implementar con arquitectura de aprendizaje profundo, que clasifica una imagen en una de varias clases. Para cada set de formación, el sistema está programado para recopilar imágenes que muestran síntomas de una o más enfermedades de las plantas con dimensiones similares. Luego, estas imágenes se asignan a múltiples clases de enfermedades. Para uno de los primeros sets de formación utilizados para crear el primer modelo digital, el sistema también está programado para incluir imágenes de una condición sana e imágenes de síntomas con otras dimensiones. Luego, estas imágenes se asignan a una clase sin enfermedades y a una clase genérica. Dada una imagen nueva de un usuario, el sistema está programado, primero, para aplicar el primer modelo digital. Para las partes de la imagen nueva que se clasifican en la clase genérica, el sistema está programado para aplicar otro modelo digital. El sistema está programado para, finalmente, transmitir información sobre la clasificación al usuario indicando cómo se clasifica cada parte de la imagen nueva en enfermedades de las plantas o plantas sin enfermedades.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862750143P | 2018-10-24 | 2018-10-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
AR116848A1 true AR116848A1 (es) | 2021-06-16 |
Family
ID=70327287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ARP190103077A AR116848A1 (es) | 2018-10-24 | 2019-10-24 | Detección de enfermedades de las plantas mediante aprendizaje profundo de etapas múltiples y escalas múltiples |
Country Status (9)
Country | Link |
---|---|
US (4) | US10713542B2 (es) |
EP (1) | EP3871149A4 (es) |
JP (1) | JP7357675B2 (es) |
CN (1) | CN113228047B (es) |
AR (1) | AR116848A1 (es) |
AU (1) | AU2019364434B2 (es) |
BR (1) | BR112021007682A8 (es) |
CA (1) | CA3117337A1 (es) |
WO (1) | WO2020086818A2 (es) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3820268A4 (en) | 2018-07-11 | 2022-04-27 | Raven Industries, INC. | DETECTION OF A ROW ASSOCIATED WITH A CROP FROM AN IMAGE |
US11818982B2 (en) | 2018-09-18 | 2023-11-21 | Deere & Company | Grain quality control system and method |
US11197417B2 (en) * | 2018-09-18 | 2021-12-14 | Deere & Company | Grain quality control system and method |
US10713542B2 (en) * | 2018-10-24 | 2020-07-14 | The Climate Corporation | Detection of plant diseases with multi-stage, multi-scale deep learning |
US11120552B2 (en) * | 2019-02-27 | 2021-09-14 | International Business Machines Corporation | Crop grading via deep learning |
WO2021007554A1 (en) | 2019-07-11 | 2021-01-14 | Sneyders Yuri | Determining image feature height disparity |
CN111767849A (zh) * | 2020-06-29 | 2020-10-13 | 京东数字科技控股有限公司 | 农作物病虫害识别方法、设备及存储介质 |
CN112001370A (zh) * | 2020-09-29 | 2020-11-27 | 中国农业科学院农业信息研究所 | 一种农作物病虫害识别方法及系统 |
CN112200846A (zh) * | 2020-10-23 | 2021-01-08 | 东北林业大学 | 融合无人机影像与地基雷达点云的林分因子提取方法 |
KR20220057405A (ko) * | 2020-10-29 | 2022-05-09 | 주식회사 에스아이에이 | 수질 관리를 위한 조류 정량화 방법 |
US11783576B2 (en) * | 2020-10-29 | 2023-10-10 | Deere & Company | Method and system for optical yield measurement of a standing crop in a field |
WO2022106302A1 (en) | 2020-11-20 | 2022-05-27 | Bayer Aktiengesellschaft | Representation learning |
CN112562074B (zh) * | 2021-02-25 | 2021-05-04 | 中国建筑西南设计研究院有限公司 | 一种智慧绿地的健康判定方法及养护管理方法 |
CN113052251A (zh) * | 2021-03-31 | 2021-06-29 | 青岛农业大学 | 一种基于深度学习的红掌生长指标获取方法 |
US20220375239A1 (en) * | 2021-05-20 | 2022-11-24 | Vishnu Agarwal | System and methods to optimize yield in indoor farming |
CN113469248B (zh) * | 2021-06-30 | 2024-09-17 | 平安科技(深圳)有限公司 | 基于神经网络的农业培育控制方法、装置、系统及介质 |
US20230072664A1 (en) * | 2021-09-03 | 2023-03-09 | Cnh Industrial America Llc | Active loss monitor for a harvester |
WO2023105030A1 (en) * | 2021-12-10 | 2023-06-15 | Basf Agro Trademarks Gmbh | Method and system for predicting a crop disease in agriculture |
CN113989509B (zh) * | 2021-12-27 | 2022-03-04 | 衡水学院 | 基于图像识别的农作物虫害检测方法、检测系统及设备 |
CN114898327B (zh) * | 2022-03-15 | 2024-04-26 | 武汉理工大学 | 一种基于轻量化深度学习网络的车辆检测方法 |
CN114819756B (zh) * | 2022-06-24 | 2022-09-27 | 深圳众城卓越科技有限公司 | 基于分类模型的风电机组智能选址方法、装置及设备 |
CN116385814B (zh) * | 2023-03-07 | 2023-12-05 | 广州市妇女儿童医疗中心 | 一种检测目标的超声筛查方法、系统、装置及介质 |
US11925133B1 (en) * | 2023-06-01 | 2024-03-12 | Kuval Pedarla | Corn leaf disease detection |
CN117115640A (zh) * | 2023-07-04 | 2023-11-24 | 北京市农林科学院 | 一种基于改进YOLOv8的病虫害目标检测方法、装置及设备 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2397423B (en) * | 2001-09-17 | 2005-06-01 | Ca Minister Agriculture & Food | A method and apparatus for identifying and quantifying characteristics of seeds and other small objects |
BRPI0806559B1 (pt) | 2007-01-08 | 2018-04-10 | Precision Planting, Inc. | Sistema de monitor para semeadeira de sementes agrícolas |
WO2009149396A1 (en) | 2008-06-06 | 2009-12-10 | Monsanto Technology Llc | Generating agricultural information products using remote sensing |
US8477295B2 (en) | 2009-05-07 | 2013-07-02 | Solum, Inc. | Automated soil measurement device |
TWI435234B (zh) * | 2011-11-24 | 2014-04-21 | Inst Information Industry | Plant disease identification method, system and record media |
EP3967121A1 (en) | 2012-07-25 | 2022-03-16 | Precision Planting LLC | System for multi-row agricultural implement control and monitoring |
CN103514459A (zh) * | 2013-10-11 | 2014-01-15 | 中国科学院合肥物质科学研究院 | 一种基于Android手机平台的识别农作物病虫害的方法及系统 |
CN107148633B (zh) | 2014-08-22 | 2020-12-01 | 克莱米特公司 | 用于使用无人机系统进行农艺和农业监测的方法 |
US20170161560A1 (en) * | 2014-11-24 | 2017-06-08 | Prospera Technologies, Ltd. | System and method for harvest yield prediction |
EP3295225B1 (en) | 2015-04-29 | 2020-09-30 | The Climate Corporation | System for monitoring weather conditions |
AU2016287397B2 (en) * | 2015-06-30 | 2021-05-20 | Climate Llc | Systems and methods for image capture and analysis of agricultural fields |
US20170046613A1 (en) * | 2015-08-10 | 2017-02-16 | Facebook, Inc. | Systems and methods for content classification and detection using convolutional neural networks |
US10043239B2 (en) * | 2016-05-05 | 2018-08-07 | The Climate Corporation | Using digital images of a first type and a feature set dictionary to generate digital images of a second type |
CN106446942A (zh) * | 2016-09-18 | 2017-02-22 | 兰州交通大学 | 基于增量学习的农作物病害识别方法 |
KR101933657B1 (ko) | 2016-11-11 | 2019-04-05 | 전북대학교산학협력단 | 딥 러닝을 이용한 작물 병충해 검출 및 진단 방법 및 장치 |
US10255670B1 (en) * | 2017-01-08 | 2019-04-09 | Dolly Y. Wu PLLC | Image sensor and module for agricultural crop improvement |
US10296816B2 (en) * | 2017-01-11 | 2019-05-21 | Ford Global Technologies, Llc | Generating training data for automatic vehicle leak detection |
EP3675621B1 (en) * | 2017-05-09 | 2024-08-07 | Blue River Technology Inc. | Automated plant detection using image data |
CN107392091B (zh) * | 2017-06-09 | 2020-10-16 | 河北威远生物化工有限公司 | 一种农业人工智能作物检测方法、移动终端和计算机可读介质 |
US10438302B2 (en) * | 2017-08-28 | 2019-10-08 | The Climate Corporation | Crop disease recognition and yield estimation |
US10423850B2 (en) * | 2017-10-05 | 2019-09-24 | The Climate Corporation | Disease recognition from images having a large field of view |
CN107742290A (zh) * | 2017-10-18 | 2018-02-27 | 成都东谷利农农业科技有限公司 | 植物病害识别预警方法及装置 |
US10747999B2 (en) * | 2017-10-18 | 2020-08-18 | The Trustees Of Columbia University In The City Of New York | Methods and systems for pattern characteristic detection |
CN108038517A (zh) * | 2018-01-02 | 2018-05-15 | 东北农业大学 | 基于改进卷积神经网络模型Cifar10的玉米叶片病害识别方法 |
CN108304812A (zh) * | 2018-02-07 | 2018-07-20 | 郑州大学西亚斯国际学院 | 一种基于卷积神经网络和多视频图像的作物病害识别方法 |
EP3783533A1 (en) * | 2018-04-17 | 2021-02-24 | BGI Shenzhen | Artificial intelligence-based ophthalmic disease diagnostic modeling method, apparatus, and system |
US10958828B2 (en) * | 2018-10-10 | 2021-03-23 | International Business Machines Corporation | Advising image acquisition based on existing training sets |
CN113228055B (zh) * | 2018-10-19 | 2024-04-12 | 克莱米特有限责任公司 | 配置和利用卷积神经网络以识别植物病害的方法和介质 |
JP6833790B2 (ja) | 2018-10-19 | 2021-02-24 | 本田技研工業株式会社 | 表示装置、表示制御方法、およびプログラム |
US10713542B2 (en) * | 2018-10-24 | 2020-07-14 | The Climate Corporation | Detection of plant diseases with multi-stage, multi-scale deep learning |
-
2019
- 2019-10-23 US US16/662,017 patent/US10713542B2/en active Active
- 2019-10-24 JP JP2021522397A patent/JP7357675B2/ja active Active
- 2019-10-24 CN CN201980085791.3A patent/CN113228047B/zh active Active
- 2019-10-24 CA CA3117337A patent/CA3117337A1/en active Pending
- 2019-10-24 AR ARP190103077A patent/AR116848A1/es active IP Right Grant
- 2019-10-24 AU AU2019364434A patent/AU2019364434B2/en active Active
- 2019-10-24 BR BR112021007682A patent/BR112021007682A8/pt unknown
- 2019-10-24 EP EP19875386.5A patent/EP3871149A4/en active Pending
- 2019-10-24 WO PCT/US2019/057819 patent/WO2020086818A2/en unknown
-
2020
- 2020-07-14 US US16/928,857 patent/US11216702B2/en active Active
-
2022
- 2022-01-03 US US17/567,635 patent/US11615276B2/en active Active
-
2023
- 2023-03-27 US US18/190,358 patent/US11856881B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20230225239A1 (en) | 2023-07-20 |
BR112021007682A8 (pt) | 2022-11-08 |
BR112021007682A2 (pt) | 2021-07-27 |
CN113228047A (zh) | 2021-08-06 |
AU2019364434A1 (en) | 2021-05-20 |
US11216702B2 (en) | 2022-01-04 |
US20200134392A1 (en) | 2020-04-30 |
JP2022505742A (ja) | 2022-01-14 |
WO2020086818A2 (en) | 2020-04-30 |
US11615276B2 (en) | 2023-03-28 |
US11856881B2 (en) | 2024-01-02 |
CA3117337A1 (en) | 2020-04-30 |
WO2020086818A3 (en) | 2020-07-30 |
EP3871149A2 (en) | 2021-09-01 |
AU2019364434B2 (en) | 2024-07-18 |
US20220121887A1 (en) | 2022-04-21 |
CN113228047B (zh) | 2024-09-10 |
JP7357675B2 (ja) | 2023-10-06 |
US20200342273A1 (en) | 2020-10-29 |
EP3871149A4 (en) | 2022-07-06 |
US10713542B2 (en) | 2020-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AR116848A1 (es) | Detección de enfermedades de las plantas mediante aprendizaje profundo de etapas múltiples y escalas múltiples | |
AR113283A1 (es) | Reconocimiento de enfermedades a partir de imágenes que tienen un campo de visión amplio | |
CL2018002126A1 (es) | Dispositivo y método para registrar y controlar la salud y el desarrollo en peces vivos. | |
BR112018013550A2 (pt) | identificação de entidades utilizando um modelo de aprendizado profundo | |
CL2017003461A1 (es) | Sistema y método para la identificación de animales individuales a base de imágenes del dorso. | |
AR100290A1 (es) | Método y dispositivo para la toma de imagen y orientación de semillas | |
BR112018073172A8 (pt) | Método para a identificação de um tipo de erva daninha, sistema de identificação e produto de programa de computador | |
MY194097A (en) | Method for determining user behaviour preference, and method and device for presenting recommendation information | |
AR126228A2 (es) | Representacion de precipitaciones por computadora | |
WO2015083091A3 (en) | Classifying human crowd noise data | |
BR112016015452A2 (pt) | Método e sistema para atualizar automaticamente uma base de dados de informações de relacionamento identificando uma existência de relações comerciais diáticas ou de várias contrapartes entre partes pela utilização de processo recursivo multidimensional | |
Sakalli | New trends in name-giving in Turkey | |
AR117141A1 (es) | Método para reconocer con precisión el tipo de multitud incluida en una imagen y la información de estructura que describe la estructura de la multitud, y aparato de procesamiento | |
Yarar | Yabancıların Türkiye’de taşınmaz mal edinmeleri | |
Ataseven et al. | Investigation of the thesis on learning styles in Turkey | |
Bodzer | Public Service Interpreting from a Gender Perspective. Approximation to the Case of Interpreting for Female Non-Spanish-Speaking Victims of Gender Violence. | |
Sameer et al. | Epidemiological study of foot and mouth disease and evaluation of vaccination method for controlling disease in Waset province | |
BR112019007899A2 (pt) | método de análise de movimento para um dispositivo de malabarismo | |
RU2015106179A (ru) | Способ автоматической классификации информации | |
Weili | An Early Start | |
Cheng | Links between Beliefs about Reading and Achievement of English Proficiency among High-Achieving Readers in Taiwan | |
TH187405S (th) | เพลาข้อเหวี่ยง | |
Powell et al. | 1) Overview of Implementation Science | |
Huang | Going down to the Sea: Chinese Sex Workers Abroad by Chin, KL | |
Truong et al. | Landslide susceptibility mapping using random forest model in Lao Cai Province, Vietnam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG | Grant, registration |