WO2023021622A1 - バイパス装置、レーザ装置、及び電子デバイスの製造方法 - Google Patents

バイパス装置、レーザ装置、及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2023021622A1
WO2023021622A1 PCT/JP2021/030232 JP2021030232W WO2023021622A1 WO 2023021622 A1 WO2023021622 A1 WO 2023021622A1 JP 2021030232 W JP2021030232 W JP 2021030232W WO 2023021622 A1 WO2023021622 A1 WO 2023021622A1
Authority
WO
WIPO (PCT)
Prior art keywords
bypass
pulsed laser
optical path
pulse width
laser beam
Prior art date
Application number
PCT/JP2021/030232
Other languages
English (en)
French (fr)
Inventor
慎一 松本
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to JP2023542100A priority Critical patent/JPWO2023021622A1/ja
Priority to CN202180099481.4A priority patent/CN117501561A/zh
Priority to PCT/JP2021/030232 priority patent/WO2023021622A1/ja
Publication of WO2023021622A1 publication Critical patent/WO2023021622A1/ja
Priority to US18/399,011 priority patent/US20240128702A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA

Definitions

  • the present disclosure relates to a bypass device, a laser device, and a method of manufacturing an electronic device.
  • a KrF excimer laser device that outputs laser light with a wavelength of about 248 nm and an ArF excimer laser device that outputs laser light with a wavelength of about 193 nm are used.
  • the spectral line width of the spontaneous oscillation light of the KrF excimer laser device and the ArF excimer laser device is as wide as 350-400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet light, such as KrF and ArF laser light, chromatic aberration may occur. As a result, resolution can be reduced. Therefore, it is necessary to narrow the spectral line width of the laser light output from the gas laser device to such an extent that the chromatic aberration can be ignored. Therefore, in the laser resonator of the gas laser device, a line narrowing module (LNM) including a band narrowing element (etalon, grating, etc.) is provided in order to narrow the spectral line width.
  • LNM line narrowing module
  • a gas laser device whose spectral line width is narrowed will be referred to as a band-narrowed gas laser device.
  • a bypass device is attachable to and detachable from a laser device that outputs pulsed laser light.
  • a bypass device for forming a bypass optical path that forms a bypass optical path comprising: a plurality of optical elements forming the bypass optical path;
  • the first high-reflectance mirror reflects the pulsed laser beam to the outside of the pulse width stretching device and guides it to the bypass optical path, and the first high-reflectance mirror reflects the pulsed laser beam that enters through the bypass optical path. and a second highly reflective mirror returning the light to the output path of the pulse width stretcher.
  • a laser device includes a laser oscillator that outputs pulsed laser light and a pulse width stretching device that stretches the pulse width of the incident pulsed laser light, and a bypass optical path that bypasses the pulse width stretching device.
  • a method for manufacturing an electronic device includes a laser oscillator that outputs pulsed laser light and a pulse width stretcher that stretches the pulse width of the incident pulsed laser light, bypassing the pulse width stretcher.
  • a pulsed laser beam output from a laser device having a detachably attached bypass device that forms a bypass optical path is output to an exposure device, and a pulsed laser beam is applied to a photosensitive substrate in the exposure device to manufacture an electronic device.
  • a method for manufacturing an electronic device including exposing, wherein the bypass device includes a plurality of optical elements forming a bypass optical path, and a housing housing the plurality of optical elements, wherein the plurality of optical elements include: By reflecting the pulsed laser light incident on the pulse width stretching device toward the outside of the pulse width stretching device, the pulsed laser light is reflected by the first high-reflection mirror that guides the pulsed laser light to the bypass optical path, and by the first high-reflection mirror. a second highly reflective mirror for reflecting the pulsed laser light incident through the optical path, thereby returning the pulsed laser light to the exit optical path of the pulse width stretcher.
  • FIG. 1 is a front view schematically showing the configuration of a laser device according to a comparative example.
  • FIG. 2 is a front view schematically showing a configuration example of the laser device according to the first embodiment.
  • FIG. 3 is a front view showing a state in which a bypass device is attached to the laser device according to the first embodiment;
  • FIG. 4 is a top view schematically showing the configuration of the laser device according to the second embodiment.
  • FIG. 5 is a front view schematically showing the configuration of the laser device according to the second embodiment.
  • FIG. 6 is a top view showing a state in which a bypass device is attached to the laser device according to the second embodiment.
  • FIG. 7 is a front view showing a state in which a bypass device is attached to the laser device according to the second embodiment.
  • FIG. 8 is a perspective view showing a state in which the bypass device is removed from the laser device according to the second embodiment.
  • FIG. 9 is a perspective view showing a state in which a bypass device is attached to the laser device according to the second embodiment.
  • FIG. 10 is a top view schematically showing the configuration of the laser device according to the third embodiment.
  • FIG. 11 is a front view schematically showing the configuration of the laser device according to the third embodiment.
  • FIG. 12 is a top view showing a state in which a bypass device is attached to the laser device according to the third embodiment.
  • FIG. 13 is a front view showing a state in which a bypass device is attached to the laser device according to the third embodiment.
  • FIG. 14 is a perspective view showing a state where the bypass device is removed from the laser device according to the third embodiment.
  • FIG. 15 is a perspective view showing a state in which a bypass device is attached to the laser device according to the third embodiment.
  • FIG. 16 is a diagram schematically showing the configuration of a bypass device according to a first modification of the first embodiment;
  • FIG. 17 is a diagram schematically showing the configuration of a bypass device according to a second modification of the first embodiment;
  • FIG. 18 is a diagram schematically showing a configuration example of an exposure apparatus.
  • FIG. 1 schematically shows a configuration example of a laser device 2 according to a comparative example.
  • the comparative examples of the present disclosure are forms known by the applicant to be known only by the applicant, and not known examples to which the applicant admits.
  • the height direction of the laser device 2 is the V-axis direction
  • the length direction is the Z-axis direction
  • the depth direction is the H-axis direction.
  • the V-axis direction may be parallel to the direction of gravity, and the direction opposite to the direction of gravity is defined as the "+V-axis direction.”
  • the emission direction of the pulsed laser light emitted from the laser device 2A is defined as "+Z-axis direction”.
  • the direction toward the front of the paper surface of FIG. 1 is defined as the “+H axis direction”.
  • the laser device 2 includes a master oscillator (MO) 10, an MO beam steering unit 20, a power oscillator (PO) 30, a PO beam steering unit 40, and an optical pulse stretcher (OPS). ) 50.
  • MO master oscillator
  • PO power oscillator
  • OPS optical pulse stretcher
  • the master oscillator 10 includes a band narrowing module (LNM) 11, a chamber 14, and an Output Coupler (OC) 17.
  • LNM band narrowing module
  • OC Output Coupler
  • the LNM 11 includes a prism beam expander 12 for narrowing the spectral linewidth and a grating 13.
  • the prism beam expander 12 and the grating 13 are Littrow arranged so that the incident angle and the diffraction angle are the same.
  • the output coupling mirror 17 is a reflecting mirror with a reflectance within the range of 40% to 60%.
  • the output coupling mirror 17 and LNM 11 are arranged to form an optical resonator.
  • a chamber 14 is placed on the optical path of the optical resonator.
  • the chamber 14 includes a pair of discharge electrodes 15a, 15b and two windows 16a, 16b through which the pulsed laser light is transmitted.
  • the chamber 14 accommodates excimer laser gas therein.
  • the excimer laser gas may contain, for example, Ar gas or Kr gas as a rare gas, F2 gas as a halogen gas, and Ne gas as a buffer gas.
  • the MO beam steering unit 20 includes a highly reflective mirror 21a and a highly reflective mirror 21b.
  • the high reflection mirror 21 a and the high reflection mirror 21 b are arranged so that the pulsed laser light output from the master oscillator 10 is incident on the power oscillator 30 .
  • a high-reflection mirror in the present disclosure is, for example, a plane mirror having a high-reflection film formed on the surface of a substrate made of synthetic quartz or calcium fluoride (CaF 2 ).
  • a highly reflective film is a dielectric multilayer film, for example, a film containing fluoride.
  • the power oscillator 30 includes a rear mirror 31, a chamber 32, and an output coupling mirror 35.
  • the rear mirror 31 and the output coupling mirror 35 are arranged to form an optical resonator.
  • the chamber 32 is arranged on the optical path of the optical resonator.
  • Chamber 32 may be of similar construction to chamber 14 of master oscillator 10 . That is, the chamber 32 includes a pair of discharge electrodes 33a, 33b and two windows 34a, 34b through which the pulsed laser light is transmitted.
  • the chamber 32 accommodates excimer laser gas therein.
  • the rear mirror 31 is a reflecting mirror with a reflectance within the range of 50% to 90%.
  • the output coupling mirror 35 is a reflective mirror with a reflectance in the range of 10% to 30%.
  • the PO beam steering unit 40 includes a high reflection mirror 40a and a high reflection mirror 40b.
  • the high reflection mirror 40 a and the high reflection mirror 40 b are arranged so that the pulsed laser light output from the power oscillator 30 is incident on the OPS 50 .
  • the OPS 50 includes a beam splitter 52 and four concave mirrors 54a-54d.
  • the beam splitter 52 is arranged on the optical path of the pulsed laser light output from the PO beam steering unit 40 .
  • the beam splitter 52 is a reflecting mirror that transmits a part of the pulsed laser light and reflects the rest of the pulsed laser light.
  • the reflectance of beam splitter 52 is preferably in the range of 40% to 70%, more preferably about 60%.
  • the beam splitter 52 causes the laser device 2 to output the pulsed laser light that has passed through the beam splitter 52 .
  • the four concave mirrors 54 a to 54 d constitute a delay optical path 56 for the pulsed laser light reflected by the first surface of the beam splitter 52 .
  • the pulsed laser beam reflected by the first surface of the beam splitter 52 is reflected by the four concave mirrors 54 a to 54 d, and is arranged so that the beam is imaged on the beam splitter 52 again.
  • the four concave mirrors 54a to 54d may be concave mirrors having substantially the same focal length.
  • the focal length f of each of the concave mirrors 54a-54d may correspond, for example, to the distance from the beam splitter 52 to the concave mirror 54a.
  • the concave mirror 54a and the concave mirror 54b are arranged so that the pulsed laser beam reflected by the first surface of the beam splitter 52 is reflected by the concave mirror 54a and made incident on the concave mirror 54b.
  • the concave mirror 54a and the concave mirror 54b convert the pulsed laser light reflected by the first surface of the beam splitter 52 into a first image at the same magnification (1:1) as the image on the first surface of the beam splitter 52. is arranged so as to be imaged as
  • the concave mirror 54c and the concave mirror 54d are arranged so that the pulse laser beam reflected by the concave mirror 54b is reflected by the concave mirror 54c and made incident on the concave mirror 54d. Furthermore, the concave mirror 54d is arranged so that the pulsed laser beam reflected by the concave mirror 54d is incident on the second surface of the beam splitter 52 opposite to the first surface. The concave mirror 54c and the concave mirror 54d are arranged so as to form the first image on the second surface of the beam splitter 52 at a ratio of 1:1 as the second image.
  • the OPS 50 may include a beam splitter and two or more high-reflection mirrors.
  • a discharge occurs in the chamber 32 in synchronization with the timing at which the seed light transmitted through the rear mirror 31 is incident.
  • the laser gas is excited, the seed light is amplified by the Fabry-Perot optical resonator composed of the output coupling mirror 35 and the rear mirror 31, and the amplified pulsed laser light is output from the output coupling mirror 35.
  • the pulsed laser light output from the output coupling mirror 35 passes through the PO beam steering unit 40 and enters the OPS 50 .
  • a portion of the pulsed laser beam that has entered the OPS 50 is transmitted through the beam splitter 52 and output, and a portion thereof is reflected by the beam splitter 52 .
  • the pulsed laser beam reflected by the beam splitter 52 goes around a delay optical path 56 composed of first to fourth concave mirrors 54a to 54d and enters the beam splitter 52 again.
  • a portion of the pulsed laser light incident on the beam splitter 52 is reflected and output from the OPS 50 .
  • the pulsed laser light that has passed through the beam splitter 52 circulates through the delay optical path 56 again.
  • the pulsed laser light repeatedly circulates in the delay optical path 56, and the OPS 50 outputs pulsed laser light of 0-circulation light, 1-circulation light, 2-circulation light, 3-circulation light, and so on.
  • the light intensity of the pulsed laser light output from the OPS 50 decreases as the number of turns of the delay optical path 56 increases.
  • the pulsed laser light after the 1st round of light is delayed by an integral multiple of the delay time determined by the optical path length of the delay optical path 56 with respect to the pulsed laser light of the 0th round of light, and then synthesized and output. That is, the pulse waveforms of the pulsed laser beams of the 1st and subsequent rounds are superimposed on the pulsed laser beam of the 0th round of light while being delayed by the delay time.
  • the OPS 50 extends the pulse width of the pulsed laser beam.
  • Speckle is light and dark spots caused by interference when laser light is scattered in a random medium.
  • the laser device 2 according to the comparative example may have an abnormality in laser performance due to a defect or the like.
  • Abnormalities in laser performance include, for example, a decrease in the power of pulsed laser light, a decrease in beam characteristics of pulsed laser light, and the like.
  • a decrease in beam characteristics is, for example, an increase in beam divergence.
  • the cause may be a drop in the output of the laser oscillator or a drop in the optical transmittance of the OPS 50 . If the laser performance does not improve even after removing the OPS 50, it can be determined that the cause lies in the laser oscillator. Conversely, if the laser performance improves by removing the OPS 50, the cause lies in the OPS 50. can be judged.
  • the work of detaching the OPS 50 from the laser device 2 and reattaching it to the laser device 2 may take, for example, half a day or longer, during which the production line of the factory may have to be stopped.
  • the optical axis adjusted before removal may not be reproduced. In this case, the optical axis needs to be adjusted again, which may require more time.
  • FIG. 2 schematically shows a configuration example of a laser device 2A according to a first embodiment of the present disclosure.
  • the laser device 2A shown in FIG. 2 differences from the configuration of the laser device 2 according to the comparative example shown in FIG. 1 will be described.
  • a laser device 2A according to the first embodiment differs from the configuration of the laser device 2 according to the comparative example in that the bypass device 60 is detachably configured.
  • the laser device 2A includes a master oscillator 10, an MO beam steering unit 20, a power oscillator 30, a PO beam steering unit 40, and an OPS 50. These elements may be similar to the configuration of the laser device 2 shown in FIG.
  • the master oscillator 10 or the combination of the master oscillator 10 and the power oscillator 30 is an example of the "laser oscillator” in the present disclosure.
  • OPS 50 is an example of a “pulse width stretcher” in this disclosure.
  • the PO beam steering unit 40 is an example of a "beam steering device" in this disclosure.
  • the bypass device 60 forms a bypass optical path that bypasses the delay optical path 56 included in the OPS 50 .
  • Bypass device 60 includes four highly reflective mirrors 61-64.
  • the high reflection mirrors 61-64 are an example of "a plurality of optical elements" in the present disclosure.
  • the high reflection mirror 61 is an example of the "first high reflection mirror” in the present disclosure.
  • the high reflection mirror 64 is an example of a "second high reflection mirror” in the present disclosure.
  • the high reflection mirrors 61 to 64 are housed in a housing 65 and held at predetermined positions within the housing 65 . High reflection mirrors 61 - 64 form a bypass optical path that bypasses OPS 50 .
  • a space into which a part of the bypass device 60 can be inserted is secured on the light incident side and the light emitting side of the OPS 50 in the laser device 2A.
  • a housing 65 of the bypass device 60 is configured to be detachable from the laser device 2A.
  • the broken line indicates the position where the bypass device 60 is attached to the laser device 2A.
  • the housing 65 is positioned and fixed with respect to the OPS 50 when attached to the laser device 2A.
  • the solid line indicates the state where the bypass device 60 is removed from the laser device 2A.
  • FIG. 3 shows a state in which the bypass device 60 is attached to the laser device 2A.
  • the high reflection mirror 61 is arranged so as to reflect the pulsed laser beam emitted from the PO beam steering unit 40 to enter the high reflection mirror 62 when the bypass device 60 is attached to the laser device 2A.
  • the high reflection mirror 61 is arranged to form an angle of 45° with respect to the incident optical axis of the OPS 50 and reflect the pulsed laser beam traveling along the incident optical axis at a reflection angle of 45°.
  • the high reflection mirror 62 and the high reflection mirror 63 are arranged so as to guide the pulsed laser beam reflected by the high reflection mirror 61 to the high reflection mirror 64 .
  • the high reflection mirror 62 is arranged so as to reflect the pulsed laser beam incident from the high reflection mirror 61 at a reflection angle of 45° so as to enter the high reflection mirror 63 .
  • the high reflection mirror 63 is arranged so as to reflect the pulsed laser beam incident from the high reflection mirror 62 at a reflection angle of 45° and make it enter the high reflection mirror 64 .
  • the high reflection mirror 64 forms an angle of 45° with respect to the output optical axis of the OPS 50 so as to reflect the pulse laser light incident from the high reflection mirror 63 at a reflection angle of 45° and return it to the output optical path of the OPS 50 . placed. That is, the high-reflecting mirror 64 is arranged so as to emit the pulsed laser light traveling through the bypass optical path on the optical path of the pulsed laser light emitted from the OPS 50 when the bypass device 60 is not attached to the laser device 2A. .
  • the high reflection mirrors 61 to 64 are arranged so that the angle formed by the incident light and the reflected light is 90°.
  • a housing 65 of the bypass device 60 is formed with a light entrance window (not shown) for allowing the pulsed laser beam emitted from the PO beam steering unit 40 to enter the highly reflective mirror 61 . Further, the housing 65 is formed with a light emission window (not shown) for emitting the pulsed laser beam reflected by the high reflection mirror 64 to the outside of the housing 65 .
  • the high-reflection mirrors 61 to 64 may be arranged so that the angle formed by the incident light and the reflected light is an angle other than 90°.
  • the high-reflection mirror 61 as the first high-reflection mirror may be arranged so as to reflect the pulsed laser light incident on the OPS 50 toward the outside of the OPS 50, thereby guiding the pulsed laser light to the bypass optical path.
  • a high-reflection mirror 64 as a second high-reflection mirror reflects the pulsed laser light that is reflected by the high-reflection mirror 61 and enters via the bypass optical path, thereby returning the pulsed laser light to the output optical path of the OPS 50 .
  • the pulsed laser light emitted from the power oscillator 30 enters the OPS 50 via the PO beam steering unit 40.
  • FIG. The pulsed laser light that has entered the OPS 50 is emitted from the laser device 2A after the pulse width is extended by the delay optical path 56 .
  • the bypass device 60 is attached to the laser device 2A during investigation work to identify the cause when an abnormality occurs in the laser performance of the pulsed laser light emitted from the laser device 2A.
  • the pulsed laser light emitted from the PO beam steering unit 40 and traveling along the incident optical axis of the OPS 50 enters the bypass device 60 and bypasses the OPS 50. After traveling along the optical path, it is output along the output optical axis of the OPS 50 .
  • the bypass device 60 by attaching the bypass device 60 to the laser device 2A, the OPS 50 is bypassed without removing the OPS 50 from the laser device 2A, and the pulsed laser beam is emitted. can be output. Therefore, when an abnormality occurs in the laser performance of the laser device 2A, by attaching and detaching the bypass device 60, the cause can be easily identified and investigated.
  • the angle of the mirrors such as the OPS 50 arranged in the optical path does not change, and by removing the bypass device 60, the optical path returns to its original state, so there is no need to adjust the optical axis. . Therefore, it is possible to reduce the overall work time for identifying the cause.
  • the pulse width of the pulse laser light can be switched by attaching and detaching the bypass device 60 . Further, since the output of the pulsed laser light is reduced by passing through the OPS 50, when the bypass device 60 is attached to the laser device 2A, the pulse width of the pulsed laser light is shortened while the output is increased. Therefore, by attaching or detaching the bypass device 60, it becomes possible to select which of the pulse width and the output of the pulsed laser light has priority, and the practical performance of the laser device 2A can be expanded.
  • FIG. 4 is a top view schematically showing the configuration of a laser device 2B according to the second embodiment.
  • FIG. 5 is a front view schematically showing the configuration of the laser device 2B.
  • the “front” of the laser device 2B refers to the side of the outer peripheral surface of the laser device 2B on which an exterior cover panel (not shown) opens wide for maintenance of the laser device 2B.
  • the "front” is the side from which the arrangement structure inside the device as shown in FIG. 5 can be seen when the exterior cover panel of the laser device 2B is opened.
  • the laser device 2B includes a master oscillator 10, an MO beam steering unit 20, a power oscillator 30, and an OPS 50. These elements may be similar to the configuration of the laser device 2 shown in FIG.
  • the laser device 2B includes a long optical pulse stretcher 100 (hereinafter referred to as "L-OPS 100") for generating a long-distance optical path difference that stretches the pulse width.
  • L-OPS 100 is arranged behind the laser device 2B.
  • the “back surface” is the back side when viewed from the front of the laser device 2B, and is the surface opposite to the front.
  • L-OPS 100 is an example of a “pulse width stretcher” in this disclosure.
  • the laser device 2B includes a PO beam steering unit 42 instead of the PO beam steering unit 40 shown in FIG.
  • PO beam steering unit 42 includes high reflective mirror 44 a , high reflective mirror 44 b , and high reflective mirror 44 c for optical communication with L-OPS 100 .
  • the high-reflection mirror 44a is arranged so as to reflect the pulsed laser light output from the power oscillator 30 and make it enter the high-reflection mirror 44b.
  • the high reflection mirror 44b is arranged to reflect the pulsed laser beam reflected by the high reflection mirror 44a so as to enter the L-OPS 100.
  • FIG. The high-reflection mirror 44c is arranged to reflect the pulsed laser beam output from the L-OPS 100 and make it enter the OPS 50.
  • the L-OPS 100 is composed of multiple concave mirrors, multiple high reflection mirrors, and multiple beam splitters.
  • FIG. 4 shows only a plurality of concave mirrors 102 and one beam splitter 104 among the components of L-OPS 100.
  • the beam splitter 104 is arranged at a position where the pulsed laser beam reflected by the high reflection mirror 44b of the PO beam steering unit 42 is incident.
  • a delay optical path 106 is configured by the above components. That is, the laser device 2B according to the second embodiment includes two pulse width expansion devices, the OPS 50 and the L-OPS 100.
  • FIG. Each of OPS 50 and L-OPS 100 may include a beam splitter and two or more highly reflective mirrors.
  • the laser device 2B is configured such that the bypass device 70 is detachable.
  • Bypass device 70 includes two highly reflective mirrors 72 and 74 .
  • the high reflective mirrors 72 and 74 are examples of "a plurality of optical elements" in the present disclosure.
  • the high reflection mirror 72 is an example of the "first high reflection mirror” in the present disclosure.
  • the high reflection mirror 74 is an example of a "second high reflection mirror” in the present disclosure.
  • the high-reflection mirrors 72 and 74 are housed in a housing 76 and held at predetermined positions within the housing 76 .
  • Highly reflective mirrors 72 and 74 form a bypass optical path that bypasses L-OPS 100 .
  • a space into which the bypass device 70 can be inserted is secured between the L-OPS 100 and the PO beam steering unit 42 in the laser device 2B.
  • a housing 76 of the bypass device 70 is configured to be detachable from the laser device 2B.
  • the position where the bypass device 70 is attached to the laser device 2B is indicated by broken lines.
  • the housing 76 is positioned and fixed with respect to the PO beam steering unit 42 when attached to the laser device 2B.
  • solid lines indicate the state where the bypass device 70 is removed from the laser device 2B.
  • the high reflection mirror 72 is arranged so as to reflect the pulsed laser light emitted from the PO beam steering unit 42 to enter the high reflection mirror 74 when the bypass device 70 is attached to the laser device 2B.
  • the highly reflective mirror 72 is arranged to form an angle of 45° with respect to the incident optical axis of the L-OPS 100 and reflect the pulsed laser beam traveling along the incident optical axis with a reflection angle of 45°. .
  • the high reflection mirror 74 is arranged so as to reflect the pulsed laser light incident from the high reflection mirror 72 and make it enter the high reflection mirror 44 c of the PO beam steering unit 42 .
  • the high-reflection mirror 74 forms an angle of 45° with respect to the output optical axis of the L-OPS 100, and reflects the pulsed laser light incident from the high-reflection mirror 72 at a reflection angle of 45° to output the L-OPS 100. Arranged back into the path of incidence. That is, the high-reflecting mirror 74 is arranged so as to emit the pulsed laser beam traveling through the bypass optical path on the optical path of the pulsed laser beam emitted from the L-OPS 100 when the bypass device 70 is not attached to the laser device 2B. be done.
  • the high reflection mirrors 72 and 74 are arranged so that the angle between the incident light and the reflected light is 90°.
  • FIG. 8 and 9 are perspective views schematically showing the configuration of the bypass device 70.
  • FIG. FIG. 8 shows a state in which the bypass device 70 is removed from the laser device 2B.
  • FIG. 9 shows a state in which the bypass device 70 is attached to the laser device 2B.
  • a housing 76 of the bypass device 70 is formed with a light entrance window 78A for allowing the pulsed laser beam emitted from the PO beam steering unit 42 to enter the highly reflective mirror 72 . Further, the housing 76 is formed with a light emission window 78B for emitting the pulsed laser beam reflected by the high reflection mirror 74 to the outside of the housing 76 .
  • the high-reflection mirrors 72 and 74 may be arranged so that the angle formed by the incident light and the reflected light is an angle other than 90°.
  • the high-reflection mirror 72 as the first high-reflection mirror should be arranged so as to reflect the pulsed laser light incident on the L-OPS 100 toward the outside of the L-OPS 100, thereby guiding the pulsed laser light to the bypass optical path. good.
  • a high-reflection mirror 74 as a second high-reflection mirror reflects the pulsed laser beam that is reflected by the high-reflection mirror 72 and enters through the bypass optical path, thereby transmitting the pulsed laser beam to the output optical path of the L-OPS 100. It should be arranged so as to return to
  • the pulsed laser light incident on the L-OPS 100 returns to the PO beam steering unit 42 after the pulse width is extended by the delay optical path 106 .
  • the pulsed laser beam that has returned to the PO beam steering unit 42 is incident on the OPS 50 after its traveling direction is changed by the high reflection mirror 44c.
  • the pulsed laser beam incident on the OPS 50 is further extended in pulse width by the OPS 50 and emitted from the laser device 2B.
  • the bypass device 70 is attached to the laser device 2B during investigation work to identify the cause when an abnormality occurs in the laser performance of the pulsed laser light emitted from the laser device 2B.
  • the pulsed laser light emitted from the high reflection mirror 44b of the PO beam steering unit 42 and traveling along the incident optical axis of the L-OPS 100 enters the bypass device 70.
  • the pulsed laser beam that has entered the bypass device 70 travels through the bypass optical path without passing through the L-OPS 100 and then is output along the output optical axis of the L-OPS 100 .
  • the pulsed laser light output from bypass device 70 returns to PO beam steering unit 42 .
  • the pulsed laser beam that has returned to the PO beam steering unit 42 is incident on the OPS 50 after its traveling direction is changed by the high reflection mirror 44c.
  • the pulsed laser beam incident on the OPS 50 is expanded in pulse width by the OPS 50 and emitted from the laser device 2B.
  • the L-OPS 100 can be bypassed without removing the L-OPS 100 from the laser device 2B. It becomes possible to output a pulsed laser beam by pressing the laser beam. Therefore, when an abnormality occurs in the laser performance of the laser device 2B, it is possible to easily investigate the cause by attaching and detaching the bypass device 70 .
  • the bypass device 70 By installing the bypass device 70, the mirror angle of the L-OPS 100, etc. arranged in the optical path does not change, and by removing the bypass device 70, the optical path returns to its original state, so there is no need to adjust the optical axis. is. Therefore, it is possible to reduce the overall work time for identifying the cause.
  • the bypass device 70 can be easily attached/detached to/from the laser device 2B. Therefore, by attaching/detaching the bypass device 70, it is possible to select which of the pulse width and the output of the pulsed laser beam has priority. As a result, the practical performance of the laser device 2B can be expanded.
  • FIG. 10 is a top view schematically showing the configuration of a laser device 2C according to the third embodiment.
  • FIG. 11 is a front view schematically showing the configuration of the laser device 2C.
  • the laser device 2C is configured such that a bypass device 80 can be detachably attached instead of the bypass device 70 of the second embodiment.
  • the bypass device 80 is configured to be detachable from the front of the laser device 2C, that is, from the maintenance side.
  • Other configurations of the laser device 2C are the same as those of the laser device 2B according to the second embodiment.
  • the bypass device 80 includes five highly reflective mirrors 81-85.
  • the high reflection mirrors 81-85 are an example of "a plurality of optical elements" in the present disclosure.
  • the high reflection mirror 81 is an example of the "first high reflection mirror” in the present disclosure.
  • the high reflection mirror 85 is an example of a "second high reflection mirror” in the present disclosure.
  • the high reflection mirrors 81 to 85 are housed in a housing 86 and held at predetermined positions within the housing 86 . High reflection mirrors 81 to 85 form a bypass optical path that bypasses L-OPS 100 .
  • a space is secured in the PO beam steering unit 42 in the laser device 2C so that a part of the bypass device 80 can be inserted.
  • a housing 86 of the bypass device 80 is configured to be detachable from the laser device 2C.
  • broken lines indicate the position where the bypass device 80 is attached to the laser device 2C.
  • the housing 86 is positioned and fixed with respect to the PO beam steering unit 42 when attached to the laser device 2C.
  • solid lines indicate the state where the bypass device 80 is removed from the laser device 2C.
  • the high reflection mirrors 81 to 84 are arranged at positions where the pulsed laser light reflected by the high reflection mirror 44a of the PO beam steering unit 42 is sequentially incident when the bypass device 80 is attached to the laser device 2C.
  • the high-reflection mirror 85 is arranged so as to reflect the pulsed laser light incident from the high-reflection mirror 84 to enter the OPS 50 . That is, the high reflection mirror 85 is arranged to output the pulsed laser light along the output optical axis of the PO beam steering unit 42 .
  • FIG. 14 and 15 are perspective views schematically showing the configuration of the bypass device 80.
  • FIG. FIG. 14 shows a state where the bypass device 80 is removed from the laser device 2C.
  • FIG. 15 shows a state in which the bypass device 80 is attached to the laser device 2C.
  • a housing 86 of the bypass device 80 is formed with a light entrance window 87A for allowing the pulsed laser beam reflected by the high reflection mirror 44a of the PO beam steering unit 42 to enter the high reflection mirror 81. Further, the housing 86 is formed with a light emission window 87B for emitting the pulsed laser beam reflected by the high reflection mirror 85 to the outside of the housing 86 .
  • the high reflection mirror 81 is arranged so as to reflect the pulsed laser beam, which is reflected by the high reflection mirror 44a of the PO beam steering unit 42 and travels in the -V axis direction, to travel in the +H axis direction. be done.
  • the high-reflection mirror 82 is arranged so as to reflect the pulsed laser beam traveling in the +H-axis direction to cause it to travel in the +Z-axis direction.
  • the high-reflection mirror 83 is arranged to reflect the pulsed laser beam traveling in the +Z-axis direction to cause it to travel in the -V-axis direction.
  • the high-reflecting mirror 84 is arranged to reflect the pulsed laser beam traveling in the -V-axis direction to cause it to travel in the -H-axis direction.
  • the high-reflection mirror 85 is arranged so as to reflect the pulsed laser beam traveling in the ⁇ H-axis direction and cause it to travel in the +Z-axis direction. That is, the high reflection mirrors 81 to 85 are arranged so that the angle between the incident light and the reflected light is 90°.
  • the high-reflection mirrors 81 to 85 may be arranged so that the angle formed by the incident light and the reflected light is an angle other than 90°.
  • the high-reflection mirror 81 as the first high-reflection mirror should be arranged so as to reflect the pulsed laser light incident on the L-OPS 100 toward the outside of the L-OPS 100, thereby guiding the pulsed laser light to the bypass optical path. good.
  • a high-reflection mirror 85 as a second high-reflection mirror reflects the pulsed laser beam that is reflected by the high-reflection mirror 81 and enters through the bypass optical path, thereby allowing the pulsed laser beam to pass through the output optical path of the L-OPS 100. It should be arranged so as to return to It should be noted that the output optical path of the L-OPS 100 refers to the optical path through which the pulsed laser beam emitted from the L-OPS 100 enters the OPS 50 .
  • the operation of the laser device 2C when the bypass device 80 is not attached is the same as the operation of the laser device 2B according to the second embodiment.
  • the pulsed laser beam emitted from the power oscillator 30 is changed in traveling direction by the PO beam steering unit 42 and enters the L-OPS 100 on the back of the laser device 2C.
  • the pulsed laser beam that has entered the L-OPS 100 is expanded in pulse width by the L-OPS 100 , returns to the PO beam steering unit 42 , changes its traveling direction in the PO beam steering unit 42 , and enters the OPS 50 .
  • the pulsed laser light incident on the OPS 50 is further extended in pulse width by the OPS 50 and emitted from the laser device 2C.
  • the bypass device 80 is attached to the laser device 2C during investigation work to identify the cause when an abnormality occurs in the laser performance of the pulsed laser light emitted from the laser device 2C.
  • the pulsed laser light emitted from the power oscillator 30 enters the bypass device 80 after the traveling direction is changed by the high reflection mirror 44a of the PO beam steering unit 42.
  • the pulsed laser beam that has entered the bypass device 80 travels through the bypass optical path without passing through the L-OPS 100 and then is output along the emission optical axis of the PO beam steering unit 42 .
  • the pulsed laser light output from the bypass device 80 is incident on the OPS 50, the pulse width is expanded by the OPS 50, and the pulsed laser light is output from the laser device 2C.
  • the bypass device 80 by attaching the bypass device 80 to the laser device 2C, the L-OPS 100 can be bypassed without removing the L-OPS 100 from the laser device 2C. It becomes possible to output a pulsed laser beam by pressing the laser beam.
  • the bypass device 80 according to the third embodiment can be attached and detached from the front of the laser device 2C, that is, from the maintenance side, so that the attachment work is easy.
  • the laser device 2C and the bypass device 80 according to the third embodiment have the same effects as the laser device 2B and the bypass device 70 according to the second embodiment.
  • a bypass device enables adjustment of the optical axis of the bypass optical path.
  • FIG. 16 schematically shows the configuration of a bypass device 60A according to a first modification of the first embodiment.
  • the bypass device 60A includes four high reflection mirrors 61 to 64 for forming a bypass optical path, like the bypass device 60 according to the first embodiment.
  • the high reflection mirror 62 is held by the holder 90A with the first actuator, and the high reflection mirror 63 is held by the holder 90B with the second actuator.
  • the holders 90A and 90B with the first and second actuators are accommodated in a housing 65 together with the high reflection mirrors 61-64.
  • the holders 90A and 90B with the first and second actuators are examples of the "optical axis adjustment mechanism" in the present disclosure.
  • the high reflection mirror 62 is an example of the "first optical element” in the present disclosure.
  • the high reflection mirror 63 is an example of the "second optical element" in the present disclosure.
  • the holders 90A and 90B with the first and second actuators are each composed of, for example, a holder, a PZT (lead zirconate titanate) actuator, and an automatic micrometer.
  • the holder 90A with the first actuator holds the high reflection mirror 62 and changes the posture angle of the high reflection mirror 62 with respect to two orthogonal axes. For example, the holder with the first actuator 90A rotates the high reflection mirror 62 around the H axis and around the axis parallel to the surface of the high reflection mirror 62 and orthogonal to the H axis.
  • the holder 90B with the second actuator holds the high reflection mirror 63 and changes the posture angle of the high reflection mirror 63 with respect to two orthogonal axes.
  • the holder 90B with the second actuator rotates the high reflection mirror 63 around the H axis and around the axis parallel to the surface of the high reflection mirror 63 and orthogonal to the H axis.
  • the first and second actuator holders 90A and 90B are controlled by a controller (not shown).
  • the optical axis of the bypass optical path can be adjusted. Specifically, it is possible to adjust the traveling direction and position of the pulsed laser beam traveling through the bypass optical path.
  • the bypass device 60A When the bypass device 60A is attached to the laser device 2A according to the first embodiment, there is a possibility that the output optical axis of the OPS 50 and the output optical axis of the bypass device 60A are deviated. Even if such a deviation occurs, the output optical axis of the bypass device 60A can be aligned with the output optical axis of the OPS 50 by controlling the first and second actuator holders 90A and 90B. .
  • any two of the high-reflection mirrors 61 to 64 may be held by the holders 90A and 90B with the first and second actuators, without being limited to the example shown in FIG.
  • FIG. 17 schematically shows the configuration of a bypass device 60B according to a second modification of the first embodiment.
  • the bypass device 60B includes four highly reflective mirrors 61 to 64 and a translucent parallel plate substrate 66.
  • the parallel plate substrate 66 is made of synthetic quartz or calcium fluoride (CaF 2 ), for example.
  • the high reflection mirrors 61 to 64 and the parallel plate substrate 66 are examples of the "plurality of optical elements" in the present disclosure.
  • the high reflection mirror 62 is held by the holder 90C with the first actuator.
  • the first actuator-equipped holder 90C has the same configuration as the first actuator-equipped holder 90A described in the first modified example, holds the high reflection mirror 62, and adjusts the posture angle of the high reflection mirror 62 with respect to two orthogonal axes. change.
  • the holders 90C and 90D with the first and second actuators are accommodated in the housing 65 together with the high reflection mirrors 61 to 64 and the parallel plate substrate 66. As shown in FIG.
  • the holders 90C and 90D with the first and second actuators are examples of the "optical axis adjustment mechanism" in the present disclosure.
  • the high reflection mirror 62 is an example of the "first optical element" in the present disclosure.
  • the parallel plate substrate 66 is arranged in an inclined state on the optical path along which the pulsed laser beam reflected by the high reflection mirror 62 travels toward the high reflection mirror 63 .
  • the parallel plate substrate 66 transmits the pulsed laser beam incident from the high reflection mirror 62 and makes it enter the high reflection mirror 63 .
  • the parallel plate substrate 66 is an example of the "second optical element" in the present disclosure.
  • the parallel plate substrate 66 is held by a holder 90D with a second actuator.
  • the second holder with actuators 90D has the same configuration as the first holder with actuators 90A described in the first modified example, holds the parallel plate substrate 66, and adjusts the posture angle of the parallel plate substrate 66 with respect to two orthogonal axes. change.
  • the holder 90D with the second actuator rotates the parallel plate substrate 66 around the H axis and around the axis parallel to the surface of the parallel plate substrate 66 and orthogonal to the H axis.
  • the first and second actuator holders 90C and 90D are controlled by a controller (not shown).
  • the optical axis of the bypass optical path can be adjusted by changing the attitude angles of the high reflection mirror 62 and the parallel plate substrate 66 with respect to the two axes. Specifically, by changing the attitude angle of the high reflection mirror 62, it is possible to adjust the traveling direction of the pulsed laser beam traveling through the bypass optical path.
  • the position of the pulsed laser beam can be adjusted.
  • the amount of change in position due to the pulsed laser beam passing through the parallel plate substrate 66 depends on the incident angle to the parallel plate substrate 66 , the thickness of the parallel plate substrate 66 , and the refractive index of the parallel plate substrate 66 .
  • the attitude angle of the parallel flat plate substrate 66 By changing the attitude angle of the parallel flat plate substrate 66, the position of the pulse laser light changes as the angle of incidence of the pulse laser light on the parallel flat plate substrate 66 changes.
  • the high reflection mirror 62 is held by the holder 90C with the first actuator as the optical axis adjusting mechanism. can be held with
  • a parallel plate substrate 66 is arranged between the high reflection mirror 62 and the high reflection mirror 63 .
  • the parallel plate substrate 66 may be arranged between the high reflection mirrors 61 and 62 or between the high reflection mirrors 63 and 64 .
  • the parallel plate substrate 66 may be arranged on the light incident side of the high reflection mirror 61 or on the light exit side of the high reflection mirror 64 .
  • Each of the high reflection mirrors 72 and 74 included in the bypass device 70 according to the second embodiment may be provided with a holder with an actuator as an optical axis adjustment mechanism.
  • a holder with an actuator may be provided on one of the high-reflection mirrors 72 and 74
  • a parallel plate substrate held by the holder with an actuator may be arranged between the high-reflection mirrors 72 and 74 .
  • a parallel plate substrate held by a holder with an actuator may be arranged on the light incident side of the high reflection mirror 72 or on the light exit side of the high reflection mirror 74 .
  • the light entrance window 78A and the light exit window 78B are not essential and may simply be apertures through which light passes.
  • any two high-reflection mirrors selected from the high-reflection mirrors 81 to 85 included in the bypass device 80 according to the third embodiment may be provided with a holder with an actuator.
  • a holder with an actuator is provided for one high-reflection mirror selected from the high-reflection mirrors 81 to 85, and the holder with the actuator is held between two high-reflection mirrors selected from the high-reflection mirrors 81-85.
  • a parallel plate substrate may be arranged.
  • a parallel plate substrate held by a holder with an actuator may be arranged on the light incident side of the high reflection mirror 81 or on the light exit side of the high reflection mirror 85 .
  • the light entrance window 78A and the light exit window 78B are not essential and may simply be apertures through which light passes.
  • the holder with actuator as the optical axis adjustment mechanism may be provided for three or more optical elements among the plurality of optical elements forming the bypass optical path.
  • Two or more optical elements among the plurality of optical elements forming the bypass optical path may be parallel plate substrates, and each of the parallel plate substrates may be provided with a holder with an actuator.
  • FIG. 18 schematically shows a configuration example of an exposure apparatus 200 .
  • Exposure apparatus 200 includes illumination optical system 204 and projection optical system 206 .
  • the illumination optical system 204 illuminates a reticle pattern of a reticle (not shown) arranged on the reticle stage RT with pulsed laser light incident from the laser device 2A according to the first embodiment, for example.
  • the projection optical system 206 reduces and projects the pulsed laser beam transmitted through the reticle to form an image on a workpiece (not shown) placed on the workpiece table WT.
  • the workpiece is a photosensitive substrate, such as a semiconductor wafer, coated with photoresist.
  • the exposure apparatus 200 synchronously translates the reticle stage RT and the workpiece table WT, thereby exposing the workpiece to pulsed laser light reflecting the reticle pattern.
  • a semiconductor device can be manufactured through a plurality of processes.
  • a semiconductor device is an example of an "electronic device" in this disclosure.
  • bypass device 60 may be attached to the laser device 2A that causes the pulsed laser beam to enter the exposure device 200, or the bypass device 60 may be removed.
  • the bypass device 60 may be attached to the laser device 2A that causes the pulsed laser beam to enter the exposure device 200, or the bypass device 60 may be removed.
  • the laser device 2B or the laser device 2C described above may be used instead of the laser device 2A.

Abstract

本開示の一観点に係るバイパス装置は、パルスレーザ光を出力するレーザ装置に着脱可能であり、レーザ装置内に設けられ、入射したパルスレーザ光のパルス幅を伸長するパルス幅伸長装置をバイパスするバイパス光路を形成するバイパス装置であって、バイパス光路を形成する複数の光学素子と、複数の光学素子を収容する筐体とを備え、複数の光学素子には、パルス幅伸長装置に入射するパルスレーザ光をパルス幅伸長装置の外に向けて反射してバイパス光路へ導く第1高反射ミラーと、第1高反射ミラーにより反射され、バイパス光路を介して入射するパルスレーザ光を反射してパルス幅伸長装置の出射光路へ戻す第2高反射ミラーとが含まれる。

Description

バイパス装置、レーザ装置、及び電子デバイスの製造方法
 本開示は、バイパス装置、レーザ装置、及び電子デバイスの製造方法に関する。
 近年、半導体露光装置においては、半導体集積回路の微細化および高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。たとえば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、ならびに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
 KrFエキシマレーザ装置およびArFエキシマレーザ装置の自然発振光のスペクトル線幅は、350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過する材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロンやグレーティング等)を含む狭帯域化モジュール(Line Narrowing Module:LNM)が備えられる場合がある。以下では、スペクトル線幅が狭帯域化されるガスレーザ装置を狭帯域化ガスレーザ装置という。
特開2005-148550号公報 特開平8-015618号公報
概要
 本開示の1つの観点に係るバイパス装置は、パルスレーザ光を出力するレーザ装置に着脱可能であり、レーザ装置内に設けられ、入射したパルスレーザ光のパルス幅を伸長するパルス幅伸長装置をバイパスするバイパス光路を形成するバイパス装置であって、バイパス光路を形成する複数の光学素子と、複数の光学素子を収容する筐体と、を備え、複数の光学素子には、パルス幅伸長装置に入射するパルスレーザ光をパルス幅伸長装置の外に向けて反射してバイパス光路へ導く第1高反射ミラーと、第1高反射ミラーにより反射され、バイパス光路を介して入射するパルスレーザ光を反射してパルス幅伸長装置の出射光路へ戻す第2高反射ミラーと、が含まれる。
 本開示の1つの観点に係るレーザ装置は、パルスレーザ光を出力するレーザ発振器と、入射したパルスレーザ光のパルス幅を伸長するパルス幅伸長装置とを備え、パルス幅伸長装置をバイパスするバイパス光路を形成するバイパス装置が着脱可能に取り付けられたレーザ装置であって、バイパス装置は、バイパス光路を形成する複数の光学素子と、複数の光学素子を収容する筐体と、を備え、複数の光学素子には、パルス幅伸長装置に入射するパルスレーザ光をパルス幅伸長装置の外に向けて反射してバイパス光路へ導く第1高反射ミラーと、第1高反射ミラーにより反射され、バイパス光路を介して入射するパルスレーザ光を反射してパルス幅伸長装置の出射光路へ戻す第2高反射ミラーと、が含まれる。
 本開示の1つの観点に係る電子デバイスの製造方法は、パルスレーザ光を出力するレーザ発振器と、入射したパルスレーザ光のパルス幅を伸長するパルス幅伸長装置とを備え、パルス幅伸長装置をバイパスするバイパス光路を形成するバイパス装置が着脱可能に取り付けられたレーザ装置から出力されたパルスレーザ光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板にパルスレーザ光を露光することを含む電子デバイスの製造方法であって、バイパス装置は、バイパス光路を形成する複数の光学素子と、複数の光学素子を収容する筐体と、を備え、複数の光学素子には、パルス幅伸長装置に入射するパルスレーザ光をパルス幅伸長装置の外に向けて反射することにより、パルスレーザ光をバイパス光路へ導く第1高反射ミラーと、第1高反射ミラーにより反射され、バイパス光路を介して入射するパルスレーザ光を反射することにより、パルスレーザ光をパルス幅伸長装置の出射光路へ戻す第2高反射ミラーと、が含まれる。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例に係るレーザ装置の構成を概略的に示す正面図である。 図2は、第1実施形態に係るレーザ装置の構成例を概略的に示す正面図である。 図3は、第1実施形態に係るレーザ装置にバイパス装置が取り付けられた状態を示す正面図である。 図4は、第2実施形態に係るレーザ装置の構成を概略的に示す上面図である。 図5は、第2実施形態に係るレーザ装置の構成を概略的に示す正面図である。 図6は、第2実施形態に係るレーザ装置にバイパス装置が取り付けられた状態を示す上面図である。 図7は、第2実施形態に係るレーザ装置にバイパス装置が取り付けられた状態を示す正面図である。 図8は、第2実施形態に係るレーザ装置からバイパス装置が取り外された状態を示す斜視図である。 図9は、第2実施形態に係るレーザ装置にバイパス装置が取り付けられた状態を示す斜視図である。 図10は、第3実施形態に係るレーザ装置の構成を概略的に示す上面図である。 図11は、第3実施形態に係るレーザ装置の構成を概略的に示す正面図である。 図12は、第3実施形態に係るレーザ装置にバイパス装置が取り付けられた状態を示す上面図である。 図13は、第3実施形態に係るレーザ装置にバイパス装置が取り付けられた状態を示す正面図である。 図14は、第3実施形態に係るレーザ装置からバイパス装置が取り外された状態を示す斜視図である。 図15は、第3実施形態に係るレーザ装置にバイパス装置が取り付けられた状態を示す斜視図である。 図16は、第1実施形態の第1変形例に係るバイパス装置の構成を概略的に示す図である。 図17は、第1実施形態の第2変形例に係るバイパス装置の構成を概略的に示す図である。 図18は、露光装置の構成例を概略的に示す図である。
実施形態
 <内容>
 1.比較例
  1.1 構成
  1.2 動作
  1.3 課題
 2.第1実施形態
  2.1 構成
  2.2 動作
  2.3 効果
 3.第2実施形態
  3.1 構成
  3.2 動作
  3.3 効果
 4.第3実施形態
  4.1 構成
  4.2 動作
  4.3 効果
 5.バイパス装置の変形例
  5.1 第1変形例
  5.2 第2変形例
  5.3 その他の変形例
 6.電子デバイスの製造方法
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
 1.比較例
  1.1 構成
 図1は、比較例に係るレーザ装置2の構成例を概略的に示す。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。
 図1において、レーザ装置2の高さ方向をV軸方向、長さ方向をZ軸方向、奥行き方向をH軸方向とする。V軸方向は、重力方向と平行であってよく、重力方向と逆方向を「+V軸方向」とする。また、レーザ装置2Aから出射されるパルスレーザ光の出射方向を「+Z軸方向」とする。また、図1の紙面の手前に向かう方向を「+H軸方向」とする。
 レーザ装置2は、マスターオシレータ(Master Oscillator:MO)10と、MOビームステアリングユニット20と、パワーオシレータ(Power Oscillator:PO)30と、POビームステアリングユニット40と、光学パルスストレッチャ(Optical Pulse Stretcher:OPS)50とを含む。
 マスターオシレータ10は、狭帯域化モジュール(LNM)11と、チャンバ14と、出力結合ミラー(Output Coupler:OC)17とを含む。
 LNM11は、スペクトル線幅を狭帯域化するためのプリズムビームエキスパンダ12と、グレーティング13とを含む。プリズムビームエキスパンダ12とグレーティング13とは、入射角度と回折角度とが一致するようにリトロー配置される。
 出力結合ミラー17は、反射率が40%~60%の範囲内の反射ミラーである。出力結合ミラー17とLNM11とは、光共振器を構成するように配置される。
 チャンバ14は、光共振器の光路上に配置される。チャンバ14は、1対の放電電極15a,15bと、パルスレーザ光が透過する2枚のウィンドウ16a,16bとを含む。チャンバ14は、エキシマレーザガスを内部に収容する。エキシマレーザガスは、例えば、レアガスとしてArガス又はKrガス、ハロゲンガスとしてFガス、バッファガスとしてNeガスを含んでいてもよい。
 MOビームステアリングユニット20は、高反射ミラー21aと高反射ミラー21bとを含む。高反射ミラー21aと高反射ミラー21bとは、マスターオシレータ10から出力されたパルスレーザ光がパワーオシレータ30に入射するように配置される。本開示における高反射ミラーは、例えば、合成石英又はフッ化カルシウム(CaF)により形成された基板の表面に高反射膜が形成された平面ミラーである。高反射膜は、誘電体多層膜、例えば、フッ化物を含む膜である。
 パワーオシレータ30は、リアミラー31と、チャンバ32と、出力結合ミラー35とを含む。リアミラー31と出力結合ミラー35とは光共振器を構成するように配置される。
 チャンバ32は、光共振器の光路上に配置される。チャンバ32は、マスターオシレータ10のチャンバ14と同様の構成であってよい。すなわち、チャンバ32は、1対の放電電極33a,33bと、パルスレーザ光が透過する2枚のウィンドウ34a,34bとを含む。チャンバ32は、エキシマレーザガスを内部に収容する。
 リアミラー31は、反射率が50%~90%の範囲内の反射ミラーである。出力結合ミラー35は、反射率が10%~30%の範囲内の反射ミラーである。
 POビームステアリングユニット40は、高反射ミラー40aと高反射ミラー40bとを含む。高反射ミラー40aと高反射ミラー40bとは、パワーオシレータ30から出力されたパルスレーザ光がOPS50に入射するように配置される。
 OPS50は、ビームスプリッタ52と、4枚の凹面ミラー54a~54dとを含む。ビームスプリッタ52は、POビームステアリングユニット40から出力されたパルスレーザ光の光路上に配置される。ビームスプリッタ52は、入射したパルスレーザ光のうちの一部のパルスレーザ光を透過させ、その他のパルスレーザ光を反射させる反射ミラーである。ビームスプリッタ52の反射率は、40%~70%の範囲内であることが好ましく、約60%であることがより好ましい。ビームスプリッタ52は、ビームスプリッタ52を透過したパルスレーザ光をレーザ装置2から出力させる。
 4枚の凹面ミラー54a~54dは、ビームスプリッタ52の第1の面を反射したパルスレーザ光の遅延光路56を構成する。ビームスプリッタ52の第1の面で反射されたパルスレーザ光は、4枚の凹面ミラー54a~54dで反射して、再びビームスプリッタ52でビームが結像するように配置される。
 4枚の凹面ミラー54a~54dは、それぞれの焦点距離が全て略等しい凹面ミラーであってよい。凹面ミラー54a~54dのそれぞれの焦点距離fは、例えば、ビームスプリッタ52から凹面ミラー54aまでの距離に相当してよい。
 凹面ミラー54aと凹面ミラー54bとは、ビームスプリッタ52の第1の面で反射されたパルスレーザ光を凹面ミラー54aで反射し、凹面ミラー54bに入射させるように配置される。凹面ミラー54aと凹面ミラー54bとは、ビームスプリッタ52の第1の面で反射されたパルスレーザ光が、ビームスプリッタ52の第1の面における像を等倍(1:1)で第1の像として結像させるように配置される。
 凹面ミラー54cと凹面ミラー54dとは、凹面ミラー54bで反射されたパルスレーザ光を凹面ミラー54cで反射し、凹面ミラー54dに入射させるように配置される。さらに、凹面ミラー54dは、凹面ミラー54dで反射されたパルスレーザ光がビームスプリッタ52の第1の面とは反対側の第2の面に入射するように配置される。凹面ミラー54cと凹面ミラー54dとは、第1の像をビームスプリッタ52の第2の面に1:1で第2の像として結像させるように配置される。
 なお、OPS50は、ビームスプリッタと2以上の高反射ミラーとを含むものであればよい。
  1.2 動作
 マスターオシレータ10のチャンバ14において放電が発生すると、レーザガスが励起され、出力結合ミラー17とLNM11とで構成される光共振器によって狭帯域化されたパルスレーザ光が出力結合ミラー17から出力される。このパルスレーザ光はMOビームステアリングユニット20によって、パワーオシレータ30のリアミラー31にシード光として入射する。
 リアミラー31を透過したシード光が入射するタイミングに同期して、チャンバ32において放電が発生する。その結果、レーザガスが励起され、出力結合ミラー35とリアミラー31とで構成されるファブリペロー型の光共振器によってシード光が増幅され、出力結合ミラー35から増幅されたパルスレーザ光が出力される。出力結合ミラー35から出力されたパルスレーザ光は、POビームステアリングユニット40を経由して、OPS50に入射する。
 OPS50に入射したパルスレーザ光は、一部がビームスプリッタ52を透過して出力され、一部がビームスプリッタ52により反射される。ビームスプリッタ52により反射されたパルスレーザ光は、第1~第4の凹面ミラー54a~54dにより構成される遅延光路56を周回して再びビームスプリッタ52に入射する。そして、ビームスプリッタ52に入射したパルスレーザ光の一部が反射されてOPS50から出力される。ビームスプリッタ52を透過したパルスレーザ光は、再び遅延光路56を周回する。
 このように、遅延光路56をパルスレーザ光が繰り返し周回することにより、OPS50からは、0周回光、1周回光、2周回光、3周回光・・・のパルスレーザ光が出力される。OPS50から出力されるパルスレーザ光は、遅延光路56の周回数が多くなるほど光強度が低下する。
 1周回光以降のパルスレーザ光は、0周回光のパルスレーザ光に対して、遅延光路56の光路長で決まる遅延時間の整数倍だけ遅れてそれぞれ合成されて出力される。すなわち、0周回光のパルスレーザ光のパルス波形には、1周回光以降のパルスレーザ光のパルス波形がそれぞれ遅延時間だけ遅延されながら順に重畳される。こうして、OPS50によってパルスレーザ光のパルス幅が伸長される。
 OPS50によってパルスレーザ光のパルス幅を伸張することにより、コヒーレンスが低下する。これによりスペックルの発生が抑制される。スペックルとは、レーザ光がランダムな媒質で散乱されたときに、干渉によって生じる明暗の斑点である。
  1.3 課題
 比較例に係るレーザ装置2は、不具合等によりレーザ性能に異常が生じることがある。レーザ性能の異常として、例えば、パルスレーザ光のパワーの低下、パルスレーザ光のビーム特性の低下などがある。ビーム特性の低下とは、例えばビームダイバージェンスの増大である。
 レーザ性能に異常が生じた場合には、原因を特定するためにOPS50を取り外してレーザ性能を再度確認することが考えられる。これは、原因がレーザ発振器(マスターオシレータ10又はパワーオシレータ30)にあるのか、OPS50にあるのかを特定するためである。例えば、パルスレーザ光のパワーが低下した場合には、原因として、レーザ発振器の出力の低下、又はOPS50の光透過率の低下が考えられる。OPS50を取り外してもなおレーザ性能が改善しない場合には、原因がレーザ発振器にあると判断することができ、逆に、OPS50を取り外すことによりレーザ性能が改善する場合には、原因がOPS50にあると判断できる。
 しかしながら、OPS50をレーザ装置2から取り外してレーザ装置2に再度取り付ける作業には、例えば半日以上の時間が掛かることがあり、その間、工場の製造ラインを停止せざるを得ないことがある。また、一度取り外したOPS50をレーザ装置2に再度設置する場合、取り外し前に調整済みであった光軸が再現しないことがある。この場合、再度光軸調整が必要となり、さらに時間を要することがある。
 このように、レーザ性能に異常が生じた場合に、短時間に原因を特定可能とすることが求められる。
 2.第1実施形態
  2.1 構成
 図2は、本開示の第1実施形態に係るレーザ装置2Aの構成例を概略的に示す。図2に示すレーザ装置2Aについて、図1に示す比較例に係るレーザ装置2の構成と異なる点を説明する。第1実施形態に係るレーザ装置2Aは、バイパス装置60が着脱可能に構成されている点が比較例に係るレーザ装置2の構成と異なる。
 レーザ装置2Aは、マスターオシレータ10と、MOビームステアリングユニット20と、パワーオシレータ30と、POビームステアリングユニット40と、OPS50とを備える。これらの要素は、図1に示すレーザ装置2の構成と同様であってよい。マスターオシレータ10、又はマスターオシレータ10とパワーオシレータ30との組み合わせは、本開示における「レーザ発振器」の一例である。OPS50は、本開示における「パルス幅伸長装置」の一例である。POビームステアリングユニット40は、本開示における「ビームステアリング装置」の一例である。
 バイパス装置60は、OPS50に含まれる遅延光路56をバイパスするバイパス光路を形成する。バイパス装置60は、4枚の高反射ミラー61~64を含む。高反射ミラー61~64は、本開示における「複数の光学素子」の一例である。高反射ミラー61は、本開示における「第1高反射ミラー」の一例である。高反射ミラー64は、本開示における「第2高反射ミラー」の一例である。
 高反射ミラー61~64は、筐体65に収容され、筐体65内の所定の位置に保持されている。高反射ミラー61~64は、OPS50をバイパスするバイパス光路を形成する。
 レーザ装置2Aには、OPS50の光入射側及び光出射側に、バイパス装置60の一部を挿入することが可能な空間が確保されている。バイパス装置60の筐体65は、レーザ装置2Aに対して着脱可能に構成されている。図2において、バイパス装置60がレーザ装置2Aに取り付けられる位置を破線で示している。筐体65は、レーザ装置2Aに取り付けられる際に、OPS50に対して位置決め固定される。図2において、実線は、バイパス装置60がレーザ装置2Aから取り外された状態を示している。
 図3は、レーザ装置2Aにバイパス装置60が取り付けられた状態を示す。高反射ミラー61は、バイパス装置60がレーザ装置2Aに取り付けられた場合に、POビームステアリングユニット40から出射されるパルスレーザ光を反射して高反射ミラー62に入射させるように配置される。例えば、高反射ミラー61は、OPS50の入射光軸に対して45°の角度をなし、入射光軸に沿って進行するパルスレーザ光を45°の反射角で反射するように配置される。
 高反射ミラー62及び高反射ミラー63は、高反射ミラー61により反射されたパルスレーザ光を高反射ミラー64へ導くように配置される。例えば、高反射ミラー62は、高反射ミラー61から入射するパルスレーザ光を45°の反射角で反射して高反射ミラー63に入射させるように配置される。高反射ミラー63は、高反射ミラー62から入射するパルスレーザ光を45°の反射角で反射して高反射ミラー64に入射させるように配置される。
 高反射ミラー64は、OPS50の出射光軸に対して45°の角度をなし、高反射ミラー63から入射するパルスレーザ光を45°の反射角で反射してOPS50の出射光路へ戻すように配置される。すなわち、高反射ミラー64は、バイパス装置60がレーザ装置2Aに取り付けられていない場合にOPS50から出射されるパルスレーザ光の光路に、バイパス光路を進行したパルスレーザ光を出射するように配置される。
 すなわち、高反射ミラー61~64は、それぞれ入射光と反射光のなす角が90°となるように配置される。
 バイパス装置60の筐体65には、POビームステアリングユニット40から出射されるパルスレーザ光を高反射ミラー61入射させるための光入射窓(図示せず)が形成されている。また、筐体65には、高反射ミラー64により反射されたパルスレーザ光を筐体65外に出射するための光出射窓(図示せず)が形成されている。
 高反射ミラー61~64は、それぞれ入射光と反射光のなす角が90°以外の角度となるように配置されてもよい。第1高反射ミラーとしての高反射ミラー61は、OPS50に入射するパルスレーザ光をOPS50の外に向けて反射することにより、パルスレーザ光をバイパス光路へ導くように配置されればよい。また、第2高反射ミラーとしての高反射ミラー64は、高反射ミラー61により反射され、バイパス光路を介して入射するパルスレーザ光を反射することにより、パルスレーザ光をOPS50の出射光路へ戻すように配置されればよい。
  2.2 動作
 レーザ装置2Aにバイパス装置60が取り付けられていない場合、パワーオシレータ30から出射したパルスレーザ光は、POビームステアリングユニット40を介してOPS50に入射する。OPS50に入射したパルスレーザ光は、遅延光路56によりパルス幅が伸長された後、レーザ装置2Aから出射される。
 バイパス装置60は、例えば、レーザ装置2Aから出射されるパルスレーザ光のレーザ性能に異常が生じた場合に、原因を特定する調査作業時に、レーザ装置2Aに取り付けられる。レーザ装置2Aにバイパス装置60が取り付けられた場合、POビームステアリングユニット40から出射されてOPS50の入射光軸に沿って進行するパルスレーザ光は、バイパス装置60に入射し、OPS50を通らずにバイパス光路を進行した後、OPS50の出射光軸に沿って出力される。
  2.3 効果
 第1実施形態に係るレーザ装置2A及びバイパス装置60によれば、レーザ装置2Aにバイパス装置60を取り付けることにより、OPS50をレーザ装置2Aから取り外さずにOPS50をバイパスしてパルスレーザ光を出力させることが可能となる。このため、レーザ装置2Aのレーザ性能に異常が生じた場合に、バイパス装置60の取り付け及び取り外しを行うことにより、原因の特定調査を容易に行うことができる。
 バイパス装置60の取り付けにより、光路に配置されているOPS50等のミラー角度が変化することはなく、またバイパス装置60を取り外すことにより光路が元の状態に戻るので、光軸の調整が不要である。このため、原因特定に係る全体の作業時間を短縮することができる。
 レーザ装置2Aに対してバイパス装置60が容易に着脱可能であるので、バイパス装置60の着脱によりパルスレーザ光のパルス幅を切り替えることができる。また、パルスレーザ光はOPS50を通過することにより出力が低下するので、レーザ装置2Aに対してバイパス装置60を取り付けた場合には、パルスレーザ光のパルス幅が短くなる一方、出力が上がる。したがって、バイパス装置60の着脱によりパルスレーザ光のパルス幅と出力とのいずれを優先するかが選択可能となり、レーザ装置2Aの実用的な性能を拡大することができる。
 3.第2実施形態
 次に、本開示の第2実施形態に係るレーザ装置2Bについて説明する。なお、以下では、比較例に係るレーザ装置2の構成と異なる点を説明する。
  3.1 構成
 図4は、第2実施形態に係るレーザ装置2Bの構成を概略的に示す上面図である。図5は、レーザ装置2Bの構成を概略的に示す正面図である。なお、レーザ装置2Bに関する「正面」とは、レーザ装置2Bの外周面のうち、レーザ装置2Bのメンテナンス等のために図示しない外装カバーパネルが大きく開く側の面を指す。レーザ装置2Bの外装カバーパネルを開けた際に、図5のような装置内部の配置構造が見える側の面が「正面」である。
 レーザ装置2Bは、マスターオシレータ10と、MOビームステアリングユニット20と、パワーオシレータ30と、OPS50とを備える。これらの要素は、図1に示すレーザ装置2の構成と同様であってよい。
 レーザ装置2Bは、パルス幅を伸長する長い距離の光路差を生むための長大な光学パルスストレッチャ100(以下、「L-OPS100」と表記する。)を備える。L-OPS100は、レーザ装置2Bの背面に配置される。「背面」は、レーザ装置2Bの正面から見て奥側であり、正面と反対の面である。L-OPS100は、本開示における「パルス幅伸長装置」の一例である。
 レーザ装置2Bは、図1に示されるPOビームステアリングユニット40に代えて、POビームステアリングユニット42を備える。POビームステアリングユニット42は、L-OPS100との光のやり取りのために、高反射ミラー44aと、高反射ミラー44bと、高反射ミラー44cとを含む。
 高反射ミラー44aは、パワーオシレータ30から出力されたパルスレーザ光を反射して、高反射ミラー44bに入射させるように配置される。高反射ミラー44bは、高反射ミラー44aで反射されたパルスレーザ光を反射して、L-OPS100に入射させるように配置される。高反射ミラー44cは、L-OPS100から出力されたパルスレーザ光を反射して、OPS50に入射させるように配置される。
 L-OPS100は、複数の凹面ミラーと、複数の高反射ミラーと、複数のビームスプリッタとで構成されている。図4には、L-OPS100の構成要素のうちの複数の凹面ミラー102と、1つのビームスプリッタ104のみが示されている。ビームスプリッタ104は、POビームステアリングユニット42の高反射ミラー44bで反射されたパルスレーザ光が入射する位置に配置される。L-OPS100には、上記構成要素により遅延光路106が構成されている。すなわち、第2実施形態に係るレーザ装置2Bは、OPS50とL-OPS100との2つのパルス幅伸長装置を含む。OPS50及びL-OPS100の各々は、ビームスプリッタと2以上の高反射ミラーとを含むものであればよい。
 レーザ装置2Bは、バイパス装置70が着脱可能に構成されている。バイパス装置70は、2枚の高反射ミラー72,74を含む。高反射ミラー72,74は、本開示における「複数の光学素子」の一例である。高反射ミラー72は、本開示における「第1高反射ミラー」の一例である。高反射ミラー74は、本開示における「第2高反射ミラー」の一例である。
 高反射ミラー72,74は、筐体76に収容され、筐体76内の所定の位置に保持されている。高反射ミラー72,74は、L-OPS100をバイパスするバイパス光路を形成する。
 レーザ装置2Bには、L-OPS100とPOビームステアリングユニット42との間に、バイパス装置70を挿入することが可能な空間が確保されている。バイパス装置70の筐体76は、レーザ装置2Bに対して着脱可能に構成されている。図4及び図5において、バイパス装置70がレーザ装置2Bに取り付けられる位置を破線で示している。筐体76は、レーザ装置2Bに取り付けられる際に、POビームステアリングユニット42に対して位置決め固定される。図4及び図5において、実線は、バイパス装置70がレーザ装置2Bから取り外された状態を示している。
 図6及び図7は、レーザ装置2Bにバイパス装置70が取り付けられた状態を示す。高反射ミラー72は、バイパス装置70がレーザ装置2Bに取り付けられた場合に、POビームステアリングユニット42から出射されるパルスレーザ光を反射して高反射ミラー74に入射させるように配置される。例えば、高反射ミラー72は、L-OPS100の入射光軸に対して45°の角度をなし、入射光軸に沿って進行するパルスレーザ光を45°の反射角で反射するように配置される。
 高反射ミラー74は、高反射ミラー72から入射するパルスレーザ光を反射して、POビームステアリングユニット42の高反射ミラー44cに入射させるように配置される。例えば、高反射ミラー74は、L-OPS100の出射光軸に対して45°の角度をなし、高反射ミラー72から入射するパルスレーザ光を45°の反射角で反射してL-OPS100の出射光路へ戻すように配置される。すなわち、高反射ミラー74は、バイパス装置70がレーザ装置2Bに取り付けられていない場合にL-OPS100から出射されるパルスレーザ光の光路に、バイパス光路を進行したパルスレーザ光を出射するように配置される。
 すなわち、高反射ミラー72,74は、それぞれ入射光と反射光のなす角が90°となるように配置される。
 図8及び図9は、バイパス装置70の構成を概略的に示す斜視図である。図8は、レーザ装置2Bからバイパス装置70が取り外された状態を示す。図9は、レーザ装置2Bにバイパス装置70が取り付けられた状態を示す。
 バイパス装置70の筐体76には、POビームステアリングユニット42から出射されるパルスレーザ光を高反射ミラー72に入射させるための光入射窓78Aが形成されている。また、筐体76には、高反射ミラー74により反射されたパルスレーザ光を筐体76外に出射するための光出射窓78Bが形成されている。
 高反射ミラー72,74は、それぞれ入射光と反射光のなす角が90°以外の角度となるように配置されてもよい。第1高反射ミラーとしての高反射ミラー72は、L-OPS100に入射するパルスレーザ光をL-OPS100の外に向けて反射することにより、パルスレーザ光をバイパス光路へ導くように配置されればよい。また、第2高反射ミラーとしての高反射ミラー74は、高反射ミラー72により反射され、バイパス光路を介して入射するパルスレーザ光を反射することにより、パルスレーザ光をL-OPS100の出射光路へ戻すように配置されればよい。
  3.2 動作
 レーザ装置2Bにバイパス装置70が取り付けられていない場合、パワーオシレータ30から出射したパルスレーザ光は、POビームステアリングユニット42の高反射ミラー44aと高反射ミラー44bとによって進行方向が変更される。高反射ミラー44aと高反射ミラー44bとによって進行方向が変更されたパルスレーザ光は、レーザ装置2Bの背面にあるL-OPS100に入射する。
 L-OPS100に入射したパルスレーザ光は、遅延光路106によってパルス幅が伸長された後、POビームステアリングユニット42に戻る。POビームステアリングユニット42に戻ったパルスレーザ光は、高反射ミラー44cによって進行方向が変更されてOPS50に入射する。OPS50に入射したパルスレーザ光は、OPS50によってさらにパルス幅が伸長されてレーザ装置2Bから出射する。
 バイパス装置70は、例えば、レーザ装置2Bから出射されるパルスレーザ光のレーザ性能に異常が生じた場合に、原因を特定する調査作業時に、レーザ装置2Bに取り付けられる。レーザ装置2Bにバイパス装置70が取り付けられた場合、POビームステアリングユニット42の高反射ミラー44bから出射されてL-OPS100の入射光軸に沿って進行するパルスレーザ光は、バイパス装置70に入射する。バイパス装置70に入射したパルスレーザ光は、L-OPS100を通らずにバイパス光路を進行した後、L-OPS100の出射光軸に沿って出力される。バイパス装置70から出力されたパルスレーザ光は、POビームステアリングユニット42に戻る。POビームステアリングユニット42に戻ったパルスレーザ光は、高反射ミラー44cによって進行方向が変更されてOPS50に入射する。OPS50に入射したパルスレーザ光は、OPS50によってパルス幅が伸長されてレーザ装置2Bから出射する。
  3.3 効果
 第2実施形態に係るレーザ装置2B及びバイパス装置70によれば、レーザ装置2Bにバイパス装置70を取り付けることにより、L-OPS100をレーザ装置2Bから取り外さずにL-OPS100をバイパスしてパルスレーザ光を出力させることが可能となる。このため、レーザ装置2Bのレーザ性能に異常が生じた場合に、バイパス装置70の取り付け及び取り外しを行うことにより、原因の特定調査を容易に行うことができる。
 バイパス装置70の取り付けにより、光路に配置されているL-OPS100等のミラー角度が変化することはなく、またバイパス装置70を取り外すことにより光路が元の状態に戻るので、光軸の調整が不要である。このため、原因特定に係る全体の作業時間を短縮することができる。
 第1実施形態と同様に、レーザ装置2Bに対してバイパス装置70が容易に着脱可能であるので、バイパス装置70の着脱によりパルスレーザ光のパルス幅と出力とのいずれを優先するかが選択可能となり、レーザ装置2Bの実用的な性能を拡大することができる。
 4.第3実施形態
 次に、本開示の第3実施形態に係るレーザ装置2Cについて説明する。なお、以下では、第2実施形態に係るレーザ装置2Bの構成と異なる点を説明する。
  4.1 構成
 図10は、第3実施形態に係るレーザ装置2Cの構成を概略的に示す上面図である。図11は、レーザ装置2Cの構成を概略的に示す正面図である。レーザ装置2Cは、第2実施形態のバイパス装置70に代えて、バイパス装置80が着脱可能に構成されている。バイパス装置80は、レーザ装置2Cの正面、すなわちメンテナンス面側から着脱可能に構成されている。レーザ装置2Cのその他の構成は、第2実施形態に係るレーザ装置2Bの構成と同様である。
 バイパス装置80は、5枚の高反射ミラー81~85を含む。高反射ミラー81~85は、本開示における「複数の光学素子」の一例である。高反射ミラー81は、本開示における「第1高反射ミラー」の一例である。高反射ミラー85は、本開示における「第2高反射ミラー」の一例である。
 高反射ミラー81~85は、筐体86に収容され、筐体86内の所定の位置に保持されている。高反射ミラー81~85は、L-OPS100をバイパスするバイパス光路を形成する。
 レーザ装置2Cには、POビームステアリングユニット42に、バイパス装置80の一部を挿入することが可能な空間が確保されている。バイパス装置80の筐体86は、レーザ装置2Cに対して着脱可能に構成されている。図10及び図11において、バイパス装置80がレーザ装置2Cに取り付けられる位置を破線で示している。筐体86は、レーザ装置2Cに取り付けられる際に、POビームステアリングユニット42に対して位置決め固定される。図10及び図11において、実線は、バイパス装置80がレーザ装置2Cから取り外された状態を示している。
 図12及び図13は、レーザ装置2Cにバイパス装置80が取り付けられた状態を示す。高反射ミラー81~84は、バイパス装置80がレーザ装置2Cに取り付けられた場合に、POビームステアリングユニット42の高反射ミラー44aで反射されたパルスレーザ光が順次入射する位置に配置される。
 高反射ミラー85は、高反射ミラー84から入射するパルスレーザ光を反射してOPS50に入射させるように配置される。すなわち、高反射ミラー85は、POビームステアリングユニット42の出射光軸に沿ってパルスレーザ光を出力するように配置される。
 図14及び図15は、バイパス装置80の構成を概略的に示す斜視図である。図14は、レーザ装置2Cからバイパス装置80が取り外された状態を示す。図15は、レーザ装置2Cにバイパス装置80が取り付けられた状態を示す。
 バイパス装置80の筐体86には、POビームステアリングユニット42の高反射ミラー44aで反射されたパルスレーザ光を高反射ミラー81に入射させるための光入射窓87Aが形成されている。また、筐体86には、高反射ミラー85により反射されたパルスレーザ光を筐体86外に出射するための光出射窓87Bが形成されている。
 図15に示すように、高反射ミラー81は、POビームステアリングユニット42の高反射ミラー44aで反射されて-V軸方向に進行するパルスレーザ光を反射して+H軸方向に進行させるように配置される。高反射ミラー82は、+H軸方向に進行するパルスレーザ光を反射して+Z軸方向に進行させるように配置される。高反射ミラー83は、+Z軸方向に進行するパルスレーザ光を反射して-V軸方向に進行させるように配置される。高反射ミラー84は、-V軸方向に進行するパルスレーザ光を反射して-H軸方向に進行させるように配置される。高反射ミラー85は、-H軸方向に進行するパルスレーザ光を反射して+Z軸方向に進行させるように配置される。すなわち、高反射ミラー81~85は、それぞれ入射光と反射光のなす角が90°となるように配置される。
 高反射ミラー81~85は、それぞれ入射光と反射光のなす角が90°以外の角度となるように配置されてもよい。第1高反射ミラーとしての高反射ミラー81は、L-OPS100に入射するパルスレーザ光をL-OPS100の外に向けて反射することにより、パルスレーザ光をバイパス光路へ導くように配置されればよい。また、第2高反射ミラーとしての高反射ミラー85は、高反射ミラー81により反射され、バイパス光路を介して入射するパルスレーザ光を反射することにより、パルスレーザ光をL-OPS100の出射光路へ戻すように配置されればよい。なお、L-OPS100の出射光路とは、L-OPS100から出射されるパルスレーザ光がOPS50に入射するまでの光路を指す。
  4.2 動作
 バイパス装置80が取り付けられていない場合におけるレーザ装置2Cの動作は、第2実施形態に係るレーザ装置2Bの動作と同様である。パワーオシレータ30から出射したパルスレーザ光は、POビームステアリングユニット42によって進行方向が変更されて、レーザ装置2Cの背面にあるL-OPS100に入射する。L-OPS100に入射したパルスレーザ光は、L-OPS100でパルス幅が伸長された後、POビームステアリングユニット42に戻り、POビームステアリングユニット42で進行方向が変更されてOPS50に入射する。OPS50に入射したパルスレーザ光は、OPS50によってさらにパルス幅が伸長されてレーザ装置2Cから出射する。
 バイパス装置80は、例えば、レーザ装置2Cから出射されるパルスレーザ光のレーザ性能に異常が生じた場合に、原因を特定する調査作業時に、レーザ装置2Cに取り付けられる。レーザ装置2Cにバイパス装置80が取り付けられた場合、パワーオシレータ30から出射したパルスレーザ光は、POビームステアリングユニット42の高反射ミラー44aによって進行方向が変更された後、バイパス装置80に入射する。バイパス装置80に入射したパルスレーザ光は、L-OPS100を通らずにバイパス光路を進行した後、POビームステアリングユニット42の出射光軸に沿って出力される。バイパス装置80から出力されたパルスレーザ光は、OPS50に入射し、OPS50によってパルス幅が伸長されてレーザ装置2Cから出射する。
  4.3 効果
 第3実施形態に係るレーザ装置2C及びバイパス装置80によれば、レーザ装置2Cにバイパス装置80を取り付けることにより、L-OPS100をレーザ装置2Cから取り外さずにL-OPS100をバイパスしてパルスレーザ光を出力させることが可能となる。特に、第3実施形態に係るバイパス装置80は、レーザ装置2Cの正面、すなわちメンテナンス面側から着脱可能であるので、取り付け作業が容易である。
 その他、第3実施形態に係るレーザ装置2C及びバイパス装置80は、第2実施形態に係るレーザ装置2B及びバイパス装置70と同様の効果を奏する。
 5.バイパス装置の変形例
 次に、バイパス装置の変形例を説明する。変形例に係るバイパス装置は、バイパス光路の光軸の調整を可能とする。
  5.1 第1変形例
 図16は、第1実施形態の第1変形例に係るバイパス装置60Aの構成を概略的に示す。バイパス装置60Aは、第1実施形態に係るバイパス装置60と同様に、バイパス光路を形成するための4枚の高反射ミラー61~64を含む。
 高反射ミラー61~64のうち高反射ミラー62は、第1アクチュエータ付きホルダ90Aにより保持されており、高反射ミラー63は、第2アクチュエータ付きホルダ90Bにより保持されている。第1及び第2アクチュエータ付きホルダ90A,90Bは、高反射ミラー61~64とともに筐体65に収容されている。第1及び第2アクチュエータ付きホルダ90A,90Bは、本開示における「光軸調整機構」の一例である。高反射ミラー62は、本開示における「第1光学素子」の一例である。高反射ミラー63は、本開示における「第2光学素子」の一例である。
 第1及び第2アクチュエータ付きホルダ90A,90Bは、それぞれ、例えばホルダ、PZT(チタン酸ジルコン酸鉛)アクチュエータ、及び自動マイクロメータにより構成される。
 第1アクチュエータ付きホルダ90Aは、高反射ミラー62を保持し、かつ直交する2軸に関して高反射ミラー62の姿勢角度を変化させる。例えば、第1アクチュエータ付きホルダ90Aは、高反射ミラー62を、H軸の回り、及び高反射ミラー62の表面に平行であってH軸に直交する軸の回りに高反射ミラー62を回転させる。
 同様に、第2アクチュエータ付きホルダ90Bは、高反射ミラー63を保持し、かつ直交する2軸に関して高反射ミラー63の姿勢角度を変化させる。例えば、第2アクチュエータ付きホルダ90Bは、高反射ミラー63を、H軸の回り、及び高反射ミラー63の表面に平行であってH軸に直交する軸の回りに高反射ミラー63を回転させる。第1及び第2アクチュエータ付きホルダ90A,90Bは、コントローラ(図示せず)により制御される。
 2軸に関して高反射ミラー62,63の各々の姿勢角度を変化させることによって、バイパス光路の光軸の調整を行うことができる。具体的には、バイパス光路を進行するパルスレーザ光の進行方向及び位置を調整することができる。
 第1実施形態に係るレーザ装置2Aにバイパス装置60Aを取り付けた場合に、OPS50の出射光軸とバイパス装置60Aの出射光軸とにずれが生じる可能がある。このようなずれが生じた場合であっても、第1及び第2アクチュエータ付きホルダ90A,90Bを制御することにより、バイパス装置60Aの出射光軸を、OPS50の出射光軸に一致させることができる。
 なお、図16に示す例に限らず、高反射ミラー61~64のうちいずれの2枚を第1及び第2アクチュエータ付きホルダ90A,90Bで保持してもよい。
  5.2 第2変形例
 図17は、第1実施形態の第2変形例に係るバイパス装置60Bの構成を概略的に示す。バイパス装置60Bは、4枚の高反射ミラー61~64と、透光性の平行平板基板66とを含む。平行平板基板66は、例えば、合成石英又はフッ化カルシウム(CaF)により形成される。高反射ミラー61~64及び平行平板基板66は、本開示における「複数の光学素子」の一例である。
 高反射ミラー61~64のうち、高反射ミラー62は第1アクチュエータ付きホルダ90Cにより保持されている。第1アクチュエータ付きホルダ90Cは、第1変形例で説明した第1アクチュエータ付きホルダ90Aと同様の構成であり、高反射ミラー62を保持し、かつ直交する2軸に関して高反射ミラー62の姿勢角度を変化させる。第1及び第2アクチュエータ付きホルダ90C,90Dは、高反射ミラー61~64及び平行平板基板66とともに筐体65に収容されている。第1及び第2アクチュエータ付きホルダ90C,90Dは、本開示における「光軸調整機構」の一例である。また、高反射ミラー62は、本開示における「第1光学素子」の一例である。
 平行平板基板66は、高反射ミラー62で反射されたパルスレーザ光が高反射ミラー63へ向かう光路上に傾斜した状態で配置される。平行平板基板66は、高反射ミラー62から入射したパルスレーザ光を透過させて、高反射ミラー63に入射させる。平行平板基板66は、本開示における「第2光学素子」の一例である。
 平行平板基板66は、第2アクチュエータ付きホルダ90Dにより保持されている。第2アクチュエータ付きホルダ90Dは、第1変形例で説明した第1アクチュエータ付きホルダ90Aと同様の構成であり、平行平板基板66を保持し、かつ直交する2軸に関して平行平板基板66の姿勢角度を変化させる。例えば、第2アクチュエータ付きホルダ90Dは、平行平板基板66を、H軸の回り、及び平行平板基板66の表面に平行であってH軸に直交する軸の回りに平行平板基板66を回転させる。第1及び第2アクチュエータ付きホルダ90C,90Dは、コントローラ(図示せず)により制御される。
 2軸に関して高反射ミラー62と平行平板基板66と姿勢角度を変化させることによって、バイパス光路の光軸の調整を行うことができる。具体的には、高反射ミラー62の姿勢角度を変化させることによって、バイパス光路を進行するパルスレーザ光の進行方向を調整することができる。
 また、平行平板基板66の姿勢角度を変化させることによって、パルスレーザ光の位置を調整することができる。パルスレーザ光が平行平板基板66を通過することによる位置の変化量は、平行平板基板66への入射角、平行平板基板66の厚み、及び平行平板基板66の屈折率に依存する。平行平板基板66の姿勢角度を変化させることにより、パルスレーザ光の平行平板基板66への入射角が変化することに伴い、パルスレーザ光の位置が変化する。
 なお、図17に示す例では、高反射ミラー62を、光軸調整機構としての第1アクチュエータ付きホルダ90Cで保持しているが、高反射ミラー61~64のうちいずれを第1アクチュエータ付きホルダ90Cで保持してもよい。
 また、図17に示す例では、高反射ミラー62と高反射ミラー63との間に平行平板基板66を配置している。これに代えて、高反射ミラー61と高反射ミラー62との間、又は高反射ミラー63と高反射ミラー64との間に平行平板基板66を配置してもよい。また、高反射ミラー61の光入射側、又は高反射ミラー64の光出射側に平行平板基板66を配置してもよい。
  5.3 その他の変形例
 第2実施形態に係るバイパス装置70に含まれる高反射ミラー72,74のそれぞれに光軸調整機構としてのアクチュエータ付きホルダを設けてもよい。また、高反射ミラー72,74の一方にアクチュエータ付きホルダを設け、高反射ミラー72と高反射ミラー74との間に、アクチュエータ付きホルダに保持された平行平板基板を配置してもよい。また、高反射ミラー72の光入射側、又は高反射ミラー74の光出射側に、アクチュエータ付きホルダに保持された平行平板基板を配置してもよい。さらに、光入射窓78A及び光出射窓78Bは、必須でなく、単に光が通過する開口であってもよい。
 また、第3実施形態に係るバイパス装置80に含まれる高反射ミラー81~85から選択されるいずれか2枚の高反射ミラーにアクチュエータ付きホルダを設けてもよい。また、高反射ミラー81~85から選択される1枚の高反射ミラーにアクチュエータ付きホルダを設け、高反射ミラー81~85から選択される2枚の高反射ミラーの間にアクチュエータ付きホルダに保持された平行平板基板を配置してもよい。また、高反射ミラー81の光入射側、又は高反射ミラー85の光出射側に、アクチュエータ付きホルダに保持された平行平板基板を配置してもよい。さらに、光入射窓78A及び光出射窓78Bは、必須でなく、単に光が通過する開口であってもよい。
 また、光軸調整機構としてのアクチュエータ付きホルダは、バイパス光路を形成する複数の光学素子のうちの3以上の光学素子に設けられていてもよい。また、バイパス光路を形成する複数の光学素子のうちの2以上の光学素子が平行平板基板であって、平行平板基板の各々にアクチュエータ付きホルダが設けられていてもよい。
 6.電子デバイスの製造方法
 図18は、露光装置200の構成例を概略的に示す。露光装置200は、照明光学系204と投影光学系206とを含む。照明光学系204は、例えば、第1実施形態に係るレーザ装置2Aから入射したパルスレーザ光によって、レチクルステージRT上に配置された図示しないレチクルのレチクルパターンを照明する。投影光学系206は、レチクルを透過したパルスレーザ光を、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。
 露光装置200は、レチクルステージRTとワークピーステーブルWTとを同期して平行移動させることにより、レチクルパターンを反映したパルスレーザ光をワークピースに露光する。以上のような露光工程によって半導体ウエハにレチクルパターンを転写後、複数の工程を経ることで半導体デバイスを製造できる。半導体デバイスは本開示における「電子デバイス」の一例である。
 また、露光装置200にパルスレーザ光を入射させるレーザ装置2Aには、バイパス装置60が取り付けられていてもよいし、バイパス装置60が取り外されていてもよい。ウエハの露光に際して、バイパス装置60の着脱により、パルスレーザ光のパルス幅と出力とのいずれを優先するかを選択できる。なお、レーザ装置2Aに限らず、上述のレーザ装置2B又はレーザ装置2Cなどを用いてもよい。
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の各実施形態に変更を加えることができることは、当業者には明らかであろう。
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。

Claims (10)

  1.  パルスレーザ光を出力するレーザ装置に着脱可能であり、前記レーザ装置内に設けられ、入射したパルスレーザ光のパルス幅を伸長するパルス幅伸長装置をバイパスするバイパス光路を形成するバイパス装置であって、
     前記バイパス光路を形成する複数の光学素子と、
     前記複数の光学素子を収容する筐体と、
     を備え、
     前記複数の光学素子には、
     前記パルス幅伸長装置に入射する前記パルスレーザ光を前記パルス幅伸長装置の外に向けて反射して前記バイパス光路へ導く第1高反射ミラーと、
     前記第1高反射ミラーにより反射され、前記バイパス光路を介して入射する前記パルスレーザ光を反射して前記パルス幅伸長装置の出射光路へ戻す第2高反射ミラーと、
     が含まれる
     バイパス装置。
  2.  請求項1に記載のバイパス装置であって、
     前記バイパス光路の光軸を調整する光軸調整機構をさらに備える
     バイパス装置。
  3.  請求項2に記載のバイパス装置であって、
     前記光軸調整機構は、前記複数の光学素子のうちの第1光学素子を保持して姿勢角度を変化させる第1アクチュエータ付きホルダと、第2光学素子を保持して姿勢角度を変化させる第2アクチュエータ付きホルダとを含む
     バイパス装置。
  4.  請求項3に記載のバイパス装置であって、
     前記第1光学素子及び前記第2光学素子は、高反射ミラーである
     バイパス装置。
  5.  請求項3に記載のバイパス装置であって、
     前記第1光学素子は、高反射ミラーであり、
     前記第2光学素子は、透光性の平行平板基板である
     バイパス装置。
  6.  請求項1に記載のバイパス装置であって、
     前記第1高反射ミラーは、入射したパルスレーザ光の進行方向を変更するビームステアリング装置から出力された前記パルスレーザ光を反射し、
     前記第2高反射ミラーは、前記バイパス光路を介して入射した前記パルスレーザ光を、前記パルス幅伸長装置の出射光軸に沿って出力して前記出射光路に戻す
     バイパス装置。
  7.  請求項1に記載のバイパス装置であって、
     前記第1高反射ミラーは、入射したパルスレーザ光の進行方向を変更するビームステアリング装置に含まれる1つの高反射ミラーから出力された前記パルスレーザ光を反射し、
     前記第2高反射ミラーは、前記バイパス光路を介して入射した前記パルスレーザ光を、前記パルス幅伸長装置の出射光軸に沿って出力して前記ビームステアリング装置へ戻す
     バイパス装置。
  8.  請求項1に記載のバイパス装置であって、
     前記第1高反射ミラーは、入射したパルスレーザ光の進行方向を変更するビームステアリング装置に含まれる1つの高反射ミラーから出力された前記パルスレーザ光を反射し、
     前記第2高反射ミラーは、前記バイパス光路を介して入射した前記パルスレーザ光を、前記ビームステアリング装置の出射光軸に沿って出力して前記出射光路に戻す
     バイパス装置。
  9.  パルスレーザ光を出力するレーザ発振器と、入射したパルスレーザ光のパルス幅を伸長するパルス幅伸長装置とを備え、前記パルス幅伸長装置をバイパスするバイパス光路を形成するバイパス装置が着脱可能に取り付けられたレーザ装置であって、
     前記バイパス装置は、
     前記バイパス光路を形成する複数の光学素子と、
     前記複数の光学素子を収容する筐体と、
     を備え、
     前記複数の光学素子には、
     前記パルス幅伸長装置に入射する前記パルスレーザ光を前記パルス幅伸長装置の外に向けて反射して前記バイパス光路へ導く第1高反射ミラーと、
     前記第1高反射ミラーにより反射され、前記バイパス光路を介して入射する前記パルスレーザ光を反射して前記パルス幅伸長装置の出射光路へ戻す第2高反射ミラーと、
     が含まれる
     レーザ装置。
  10.  パルスレーザ光を出力するレーザ発振器と、入射したパルスレーザ光のパルス幅を伸長するパルス幅伸長装置とを備え、前記パルス幅伸長装置をバイパスするバイパス光路を形成するバイパス装置が着脱可能に取り付けられたレーザ装置から出力された前記パルスレーザ光を露光装置に出力し、
     電子デバイスを製造するために、前記露光装置内で感光基板に前記パルスレーザ光を露光することを含む電子デバイスの製造方法であって、
     前記バイパス装置は、
     前記バイパス光路を形成する複数の光学素子と、
     前記複数の光学素子を収容する筐体と、
     を備え、
     前記複数の光学素子には、
     前記パルス幅伸長装置に入射する前記パルスレーザ光を前記パルス幅伸長装置の外に向けて反射して前記バイパス光路へ導く第1高反射ミラーと、
     前記第1高反射ミラーにより反射され、前記バイパス光路を介して入射する前記パルスレーザ光を反射して前記パルス幅伸長装置の出射光路へ戻す第2高反射ミラーと、
     が含まれる
     電子デバイスの製造方法。
PCT/JP2021/030232 2021-08-18 2021-08-18 バイパス装置、レーザ装置、及び電子デバイスの製造方法 WO2023021622A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023542100A JPWO2023021622A1 (ja) 2021-08-18 2021-08-18
CN202180099481.4A CN117501561A (zh) 2021-08-18 2021-08-18 旁路装置、激光装置和电子器件的制造方法
PCT/JP2021/030232 WO2023021622A1 (ja) 2021-08-18 2021-08-18 バイパス装置、レーザ装置、及び電子デバイスの製造方法
US18/399,011 US20240128702A1 (en) 2021-08-18 2023-12-28 Bypass apparatus, laser apparatus, and electronic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/030232 WO2023021622A1 (ja) 2021-08-18 2021-08-18 バイパス装置、レーザ装置、及び電子デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/399,011 Continuation US20240128702A1 (en) 2021-08-18 2023-12-28 Bypass apparatus, laser apparatus, and electronic device manufacturing method

Publications (1)

Publication Number Publication Date
WO2023021622A1 true WO2023021622A1 (ja) 2023-02-23

Family

ID=85240319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030232 WO2023021622A1 (ja) 2021-08-18 2021-08-18 バイパス装置、レーザ装置、及び電子デバイスの製造方法

Country Status (4)

Country Link
US (1) US20240128702A1 (ja)
JP (1) JPWO2023021622A1 (ja)
CN (1) CN117501561A (ja)
WO (1) WO2023021622A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596388A (ja) * 1991-10-04 1993-04-20 Mitsubishi Electric Corp レーザ加工装置
US20040202220A1 (en) * 2002-11-05 2004-10-14 Gongxue Hua Master oscillator-power amplifier excimer laser system
JP2009188128A (ja) * 2008-02-05 2009-08-20 Jasco Corp レーザー照射装置
WO2015092855A1 (ja) * 2013-12-16 2015-06-25 ギガフォトン株式会社 レーザ装置
JP2019516127A (ja) * 2016-05-04 2019-06-13 エーエスエムエル ネザーランズ ビー.ブイ. 照明放射を発生するための方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596388A (ja) * 1991-10-04 1993-04-20 Mitsubishi Electric Corp レーザ加工装置
US20040202220A1 (en) * 2002-11-05 2004-10-14 Gongxue Hua Master oscillator-power amplifier excimer laser system
JP2009188128A (ja) * 2008-02-05 2009-08-20 Jasco Corp レーザー照射装置
WO2015092855A1 (ja) * 2013-12-16 2015-06-25 ギガフォトン株式会社 レーザ装置
JP2019516127A (ja) * 2016-05-04 2019-06-13 エーエスエムエル ネザーランズ ビー.ブイ. 照明放射を発生するための方法及び装置

Also Published As

Publication number Publication date
CN117501561A (zh) 2024-02-02
JPWO2023021622A1 (ja) 2023-02-23
US20240128702A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
KR101302244B1 (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법, 및 시스템
US6101211A (en) Narrow-band laser apparatus
US11467502B2 (en) Wavelength control method of laser apparatus and electronic device manufacturing method
US9071036B2 (en) Laser apparatus
US20220350120A1 (en) Pulse width expansion apparatus and electronic device manufacturing method
WO2023021622A1 (ja) バイパス装置、レーザ装置、及び電子デバイスの製造方法
JP2007142052A (ja) 露光装置、レーザ光源、露光方法、及びデバイス製造方法
US11837839B2 (en) Optical pulse stretcher, laser device, and electronic device manufacturing method
WO2022085146A1 (ja) レーザ装置、及び電子デバイスの製造方法
WO2022180698A1 (ja) レーザ装置、及び電子デバイスの製造方法
WO2021186741A1 (ja) 露光方法、露光システム、及び電子デバイスの製造方法
US20220385027A1 (en) Line narrowing device, electronic device manufacturing method
US20220385028A1 (en) Line narrowing device and electronic device manufacturing method
WO2023152805A1 (ja) レーザ装置、光路調整方法、及び電子デバイスの製造方法
WO2023026501A1 (ja) ガスレーザ装置、及び電子デバイスの製造方法
CN115023656A (zh) 光传输单元、激光装置和电子器件的制造方法
US20230061530A1 (en) Pulse width extension device, laser device, and electronic device manufacturing method
WO2024047867A1 (ja) レーザ装置及び電子デバイスの製造方法
US20240079844A1 (en) Laser device, laser oscillation method, and electronic device manufacturing method
US20220385022A1 (en) Line narrowing gas laser device, control method thereof, and electronic device manufacturing method
WO2023166583A1 (ja) レーザ装置、スペクトル線幅の計測方法、及び電子デバイスの製造方法
JP7475433B2 (ja) レーザ装置及び電子デバイスの製造方法
US11870209B2 (en) Laser system and electronic device manufacturing method
WO2023089673A1 (ja) レーザ装置、及び電子デバイスの製造方法
US20220385029A1 (en) Line narrowed gas laser apparatus, control method therefor, electronic device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542100

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE