WO2022270545A1 - Ionomer resin composition, resin sheet, and laminated glass - Google Patents

Ionomer resin composition, resin sheet, and laminated glass Download PDF

Info

Publication number
WO2022270545A1
WO2022270545A1 PCT/JP2022/024906 JP2022024906W WO2022270545A1 WO 2022270545 A1 WO2022270545 A1 WO 2022270545A1 JP 2022024906 W JP2022024906 W JP 2022024906W WO 2022270545 A1 WO2022270545 A1 WO 2022270545A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionomer resin
meth
units
acrylic acid
resin composition
Prior art date
Application number
PCT/JP2022/024906
Other languages
French (fr)
Japanese (ja)
Inventor
卓郎 新村
憲太 竹本
芳聡 淺沼
淳裕 中原
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2023530096A priority Critical patent/JPWO2022270545A1/ja
Publication of WO2022270545A1 publication Critical patent/WO2022270545A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to an ionomer resin composition, a resin sheet comprising one or more layers containing the ionomer resin composition, a laminated glass intermediate film comprising the resin sheet, and a laminated glass having the laminated glass intermediate film.
  • Ionomers which are neutralized ethylene/unsaturated carboxylic acid copolymers, are used in interlayer films for laminated glass because of their excellent transparency and adhesion to glass (for example, Patent Document 1).
  • Patent Document 1 the performance required for laminated glass has increased, and ionomer resins must maintain high transparency regardless of the manufacturing conditions of laminated glass, maintain high elastic modulus even at high temperatures, and reduce the strength of laminated glass.
  • a film that does not discolor has an excellent appearance with little coloration, and has excellent adhesiveness to glass and is less likely to separate from glass.
  • Patent Document 2 discloses copolymerization units of ethylene, copolymerization units of a first ⁇ , ⁇ -unsaturated carboxylic acid having 3 to 10 carbon atoms, and a second ⁇ having 3 to 10 carbon atoms. , and copolymerized units of derivatives of ⁇ -unsaturated carboxylic acids.
  • Patent Document 3 describes a resin composition containing a homogeneous mixture of an ionomer resin and a dialkoxysilane compound as an adhesion promoter.
  • Patent Document 2 describes that the ionomer described in the same document exhibits improved optical properties (haze) compared to conventional ionomers.
  • ionomers such as those described in Patent Document 2 are likely to be thermally decomposed during molding, and that the resulting intermediate film is likely to have defects such as black foreign matter. rice field.
  • Patent Document 3 describes that the resin composition described therein has improved adhesion to glass in a wet state.
  • the resin composition described in Patent Document 3 may have defects such as black foreign matter in the interlayer film that is easily thermally decomposed during molding.
  • a crosslinked gel may be generated due to a crosslinking reaction with the dialkoxysilane compound during molding, and further improvement is necessary to obtain an intermediate film with good appearance.
  • an object of the present invention is to provide an ionomer resin composition that is excellent in transparency, thermal decomposition resistance, and adhesion to substrates such as glass in a wet state.
  • the present inventors arrived at the present invention as a result of intensive studies to solve the above problems. That is, the present invention provides the following preferred aspects.
  • An ionomer resin composition containing an ionomer resin and a silane coupling agent contains (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B) and ethylene units (C), and the total content of the units (A) and the units (B) The amount is 6 to 10 mol% based on the total monomer units constituting the ionomer resin, and the content of the salt composed of a strong acid and a strong base in the ionomer resin is 1 to 400 mg/kg,
  • the ionomer resin further includes (meth)acrylic acid ester units (D), and the total content of the units (A), the units (B) and the units (D) constitutes the ionomer resin.
  • the ionomer resin composition according to [1] or [2], wherein the salt composed of a strong acid and a strong base is a metal salt of alkali metal and/or alkaline earth metal.
  • the salt composed of a strong acid and a strong base includes at least one cation selected from the group consisting of sodium ions and potassium ions and at least one selected from the group consisting of halogen ions, nitrate ions and sulfate ions.
  • the silane coupling agent is at least one silane coupling agent selected from the group consisting of amino-based compounds, glycidoxy-based compounds, sulfide-based compounds, mercapto-based compounds, vinyl-based compounds, nitro-based compounds and chloro-based compounds.
  • the silane coupling agent is at least one silane coupling agent selected from the group consisting of N- ⁇ -(aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane.
  • a resin sheet comprising one or more layers containing the ionomer resin composition according to any one of [1] to [6].
  • a laminated glass intermediate film comprising the resin sheet according to [7].
  • a laminated glass comprising two glass plates and the laminated glass interlayer of [8] disposed between the two glass plates.
  • an ionomer resin composition that is excellent in transparency, thermal decomposition resistance, and adhesion to substrates such as glass in a wet state.
  • the ionomer resin composition of the present invention comprises an ionomer resin containing 1 to 400 mg/kg of a salt composed of a strong acid and a strong base, and 0.005 to 0.5 parts by mass of silane coupling with respect to 100 parts by mass of the ionomer resin. agent, wherein the ionomer resin comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B) and ethylene units (C), wherein the units (A) and the units (B ) is 6 to 10 mol % based on the total monomer units constituting the ionomer resin.
  • the inventors of the present invention have investigated an ionomer resin composition, and found that an ionomer resin containing a specific unit in a specific amount and containing 1 to 400 mg / kg of a salt composed of a strong acid and a strong base, and 100 mass of the ionomer resin When combined with 0.005 to 0.5 parts by weight of a silane coupling agent per part, surprisingly, an ionomer having excellent transparency, thermal decomposition resistance, and adhesion to substrates such as glass in a wet state It has been found that a resin composition can be obtained.
  • unit means a "derived structural unit", for example, a (meth)acrylic acid unit refers to a structural unit derived from (meth)acrylic acid, (meth)acrylic acid
  • the acid-neutralized unit indicates a structural unit derived from a (meth)acrylic acid-neutralized product
  • the ethylene unit indicates a structural unit derived from ethylene.
  • (meth)acrylic acid indicates methacrylic acid or acrylic acid.
  • the ionomer resin of the present invention comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), wherein the units (A) and the units (B) is 6 to 10 mol % based on the total monomer units constituting the ionomer resin.
  • the total content is within the above range, it is possible to improve transparency and adhesiveness to a substrate such as glass.
  • the total content exceeds the above upper limit, it is difficult to suppress an increase in melt viscosity during molding of the ionomer resin composition, and as a result, moldability of the ionomer resin composition tends to decrease. Furthermore, when the total content is less than the above lower limit, the transparency of the ionomer resin composition, particularly the transparency when the crystallization of the ionomer resin composition is promoted by slow cooling (hereinafter referred to as the transparency during slow cooling (also called transparency) tends to decrease.
  • the total content is 6 mol% or more, preferably 6.5 mol%, from the viewpoint of easily improving the transparency of the ionomer resin composition (especially the transparency during slow cooling) and the adhesion to substrates such as glass.
  • 7.0 mol% or more more preferably 7.5 mol% or more, and from the viewpoint of easily improving moldability, 10 mol% or less, preferably 9.9 mol% or less, More preferably, it is 9.5 mol % or less.
  • the total content of the units (A) and the units (B) can be adjusted according to the method for producing the ionomer resin. More specifically, when an ionomer resin is produced from an ethylene-(meth)acrylic acid ester copolymer as a raw material by a method including a saponification reaction step of the copolymer, ethylene-(meth)acrylic acid ester Each reaction for converting the (meth)acrylic acid ester unit in the copolymer into the (meth)acrylic acid unit (A) and the (meth)acrylic acid neutralized product unit (B) by the saponification reaction and the demetallization reaction can be adjusted by the reactivity (conversion ratio) of
  • Examples of monomers constituting the (meth)acrylic acid unit (A) include acrylic acid and methacrylic acid, and methacrylic acid is preferred from the viewpoint of heat resistance and adhesion to substrates. These (meth)acrylic acid units may be used alone or in combination of two.
  • the content of the (meth)acrylic acid unit (A) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is 6 to 6 based on the total monomer units constituting the ionomer resin. There is no particular limitation as long as it is within the range of 10 mol %.
  • the content of (meth)acrylic acid units (A) in the ionomer resin is preferably 4.5 mol% or more, based on the total monomer units constituting the ionomer resin, and more Preferably 5.0 mol% or more, more preferably 5.5 mol% or more, particularly preferably 5.8 mol% or more, and preferably 9.0 mol% or less, more preferably 8.5 mol% Below, more preferably 8.0 mol % or less, particularly preferably 7.5 mol % or less.
  • the content of the unit (A) is at least the above lower limit, the transparency of the ionomer resin composition and the adhesion to a substrate are likely to be improved. Further, when the content is equal to or less than the above upper limit, it is easy to improve moldability.
  • the neutralized (meth)acrylic acid unit (B) is preferably the neutralized (meth)acrylic acid unit (A).
  • the neutralized (meth)acrylic acid is obtained by replacing hydrogen ions of (meth)acrylic acid with metal ions.
  • the metal ions include monovalent metal ions such as lithium, sodium and potassium, and polyvalent metal ions such as magnesium, calcium, zinc, aluminum and titanium. Such metal ions may be used singly or in combination of two or more. For example, it may be a combination of one or more monovalent metal ions and one or more divalent metal ions.
  • the content of the (meth)acrylic acid neutralized unit (B) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is the total monomer units constituting the ionomer resin. As a standard, it is not particularly limited as long as it is within the range of 6 to 10 mol %. In one embodiment of the present invention, the content of (meth)acrylic acid neutralized units (B) is preferably 0.65 mol % or more, more preferably 0.65 mol % or more, based on the total monomer units constituting the ionomer resin.
  • the transparency and elastic modulus are likely to be improved, and when it is at most the above upper limit, it is easy to suppress an increase in melt viscosity during molding.
  • Each content of the unit (A) and the unit (B) is obtained by using an ethylene-(meth)acrylic acid ester copolymer as a raw material, and ionomer by a method including a saponification reaction step and a demetallization reaction step of the copolymer.
  • the (meth)acrylic acid ester units in the ethylene-(meth)acrylic acid ester copolymer are converted into (meth)acrylic acid units (A) and (meth)acrylic acid units (A) and (meth) It can be adjusted by the reactivity in each reaction for converting to the neutralized acrylic acid unit (B).
  • the content of the ethylene unit (C) is preferably 80 mol% or more, more preferably 85 mol, based on the total monomer units constituting the ionomer resin, from the viewpoint of easily increasing the impact resistance of the ionomer resin composition. % or more, more preferably 88 mol % or more, and preferably 94 mol % or less, more preferably 91 mol %, from the viewpoint of easily increasing the transparency of the ionomer resin composition (especially the transparency during slow cooling). It is below.
  • the content of ethylene units (C) is at least the above lower limit, the mechanical strength and molding processability are likely to be improved, and when it is at most the above upper limit, transparency is likely to be improved.
  • the ionomer resin has (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C) to obtain higher transparency. From the viewpoint of ease of use, it is preferable that the (meth)acrylic acid ester unit (D) is further included.
  • the ionomer resin contains the (meth)acrylic acid ester unit (D), the total content of the unit (A), the unit (B) and the unit (D) is ), it is preferably 6 to 10 mol % based on the total monomer units constituting the ionomer resin. That is, in one preferred embodiment of the present invention, the ionomer resin comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), ethylene units (C), and (meth)acrylic Including the acid ester unit (D), the total content of the unit (A), the unit (B) and the unit (D) is 6 to 10 mol based on the total monomer units constituting the ionomer resin %.
  • the ionomer resin contains (meth)acrylic acid ester units (D), the total content of the units (A), the units (B) and the units (D) is the above upper limit or less, the ionomer resin composition It is easy to suppress the increase in the melt viscosity during the molding process of the product, thereby easily improving the moldability of the ionomer resin composition. Further, when the total content is at least the lower limit value, the transparency of the ionomer resin composition, especially during slow cooling, tends to be enhanced.
  • the total content of the units (A), the units (B) and the units (D) is From the viewpoint of easily improving transparency) and adhesion to a substrate, the content is 6 mol% or more, preferably 6.5 mol% or more, more preferably 7.0 mol% or more, and still more preferably 7.5 mol% or more. Also, from the viewpoint of moldability, it is 10 mol % or less, preferably 9.9 mol % or less, more preferably 9.5 mol % or less.
  • the total content of the units (A), the units (B) and the units (D) can be adjusted depending on the raw material of the ionomer resin. More specifically, when an ethylene-(meth)acrylic acid ester copolymer is used as a raw material and an ionomer resin is produced by a method including a saponification reaction step of the copolymer, ethylene- It can be adjusted by the (meth)acrylic acid ester modification amount of the (meth)acrylic acid ester copolymer. Further, as described in US Pat. No. 8,399,096, when ethylene and (meth)acrylic acid are used as raw materials and these are polymerized to produce an ionomer resin, ethylene and (meth)acrylic acid to be copolymerized It can be adjusted by the ratio.
  • Examples of monomers constituting the (meth)acrylate unit (D) include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and isopropyl (meth)acrylate.
  • n-butyl (meth)acrylate isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, amyl (meth)acrylate, isoamyl (meth)acrylate, ( n-hexyl meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, pentadecyl (meth)acrylate, dodecyl (meth)acrylate, isobornyl (meth)acrylate, (meth)acrylic acid Phenyl, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, glycidyl (meth)acrylate, allyl (meth)acrylate etc.
  • preferred monomers from the viewpoint of transparency or heat resistance are methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, ( meth) n-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, and more preferred monomers are methyl (meth) acrylate, ( Ethyl meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and more preferred monomers are (meth) Methyl acrylate, n-butyl (meth)acrylate and isobutyl (meth)acrylate, and a particularly preferred monomer is methyl (meth)acrylate.
  • the content of the (meth)acrylic acid ester units (D) in the ionomer resin is not particularly limited.
  • the content of (meth)acrylic acid ester units (D) in the ionomer resin is preferably greater than 0 mol %, more preferably more than 0 mol %, based on the total monomer units constituting the ionomer resin. is 0.01 mol% or more, more preferably 0.05 mol% or more, particularly preferably 0.08 mol% or more, and preferably 1.0 mol% or less, more preferably 0.7 mol% or less , more preferably 0.5 mol % or less.
  • the content of the unit (D) is at least the above lower limit and at most the above upper limit, the transparency of the ionomer resin composition is likely to be improved.
  • the ionomer resin contains the (meth)acrylic acid ester unit (D)
  • the content of the unit (D) is obtained by using an ethylene-(meth)acrylic acid ester copolymer as a raw material and saponifying the copolymer. and when producing an ionomer resin by a method including a demetallization reaction step, the (meth)acrylic acid ester unit (D) in the ethylene-(meth)acrylic acid ester copolymer is replaced with the (meth)acrylic acid unit (A) can be adjusted by the reactivity of the saponification reaction that converts to
  • the ionomer resin of the present invention comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and optionally included (meth)acrylic acid ester units ( It may contain monomeric units other than D).
  • Examples of other monomer units include a carboxylic acid unit (A1) other than the (meth)acrylic acid unit (A), and a neutralized carboxylic acid unit other than the (meth)acrylic acid neutralized unit (B) ( B1) and the like.
  • Examples of the monomer constituting the carboxylic acid unit (A1) include itaconic acid, maleic anhydride, monomethyl maleate, monoethyl maleate, etc.
  • Monomethyl maleate and monoethyl maleate are preferred.
  • Examples of the monomer constituting the neutralized carboxylic acid unit (B1) include neutralized units of the neutralized carboxylic acid unit (A1).
  • the neutralized carboxylic acid is obtained by replacing hydrogen ions of carboxylic acid with metal ions.
  • Examples of the metal ions include those similar to the metal ions in the neutralized (meth)acrylic acid unit (B) described above, and the metal ions may be used singly or in combination of two or more. These other monomer units may be used singly or in combination of two or more.
  • the total content thereof for example, the total content of (A1) and (B1), may be appropriately selected within a range that does not impair the effects of the present invention.
  • the total monomer units constituting the ionomer resin preferably 5 mol% or less, more preferably 3 mol% or less, still more preferably 1 mol% or less, and preferably 0.01 mol% or more, More preferably, it is 0.1 mol % or more.
  • (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C) in the ionomer resin, and (meth)acrylic acid ester units (D) when included, and other monomeric units (e.g., unit (A1) and unit (B1)) are determined by first identifying the monomeric units in the ionomer resin by pyrolysis gas chromatography, and then by nuclear magnetic resonance It can be determined by using spectroscopy (NMR) and elemental analysis. More specifically, it can be determined by the method described in Examples. It can also be determined by a method combining the above analysis method with IR and/or Raman analysis. Prior to these analyses, it is preferable to remove components other than the ionomer resin by a reprecipitation method or a Soxhlet extraction method.
  • NMR nuclear magnetic resonance
  • the ionomer resin contains 1 to 400 mg/kg of a salt composed of a strong acid and a strong base (hereinafter also simply referred to as "salt").
  • salt a salt composed of a strong acid and a strong base
  • the present inventors have found that when the ionomer resin contains 1 to 400 mg/kg of salt, the ionomer resin composition can maintain high transparency (especially transparency when absorbing water) and can improve thermal decomposition resistance. . Therefore, the ionomer resin composition of the present invention can achieve both high transparency and high thermal decomposition resistance.
  • the ionomer resin composition of the present invention has excellent thermal decomposition resistance by containing a salt within the above range, the interaction between the salt and the (meth)acrylic acid unit (A) in the ionomer resin , the (meth)acrylic acid unit (A) in the ionomer resin can be suppressed from desorbing due to heat.
  • the inventors of the present invention have generally found that when an ionomer resin and a silane coupling agent are combined, black foreign matter and crosslinked gel are likely to be generated during molding, and it tends to be difficult to obtain a resin sheet with a good appearance. Surprisingly, it was also found that a resin sheet with a good appearance can be easily obtained when the salt content is 1 to 400 mg/kg. Although the reason for this is not clear, it is believed that the inclusion of the salt improves the thermal decomposition resistance of the ionomer resin composition.
  • the content of the salt exceeds the above upper limit, the transparency of the ionomer resin composition tends to be reduced.
  • the ionomer resin composition tends to thermally decompose.
  • the content of the salt is 1 mg/kg or more, preferably 3 mg/kg or more, more preferably 5 mg/kg or more, from the viewpoint of easily improving the thermal decomposition resistance and the viewpoint of easily improving the appearance of the resulting resin sheet. .
  • the amount is 400 mg/kg or less, preferably 380 mg/kg or less, more preferably 350 mg/kg or less.
  • the content of the salt in the ionomer resin can be appropriately selected according to the method of incorporating the salt into the ionomer resin as described later.
  • the salt content in the ionomer resin can be measured using an ion chromatograph, for example, by the method described in Examples.
  • the salt consisting of a strong acid and a strong base is not particularly limited, and examples thereof include metal salts of alkali metals and/or alkaline earth metals consisting of a strong acid and a strong base. These salts may be used singly or in combination of two or more.
  • alkali metal salts include lithium salts, sodium salts, potassium salts, rubidium salts, cesium salts and the like.
  • Preferred alkali metal salts are lithium salts, sodium salts and potassium salts, more preferably sodium salts and potassium salts, from the viewpoints of easily increasing the thermal decomposition resistance of the ionomer resin composition and from the viewpoints of easily obtaining a resin sheet with a good appearance. , more preferably the sodium salt.
  • alkaline earth metal salts include beryllium salts, magnesium salts, calcium salts, strontium salts, barium salts and the like.
  • Preferred alkaline earth metal salts are magnesium salts and calcium salts from the viewpoint of easily increasing the thermal decomposition resistance of the ionomer resin composition.
  • a more preferable salt is at least one salt selected from the group consisting of sodium ions, potassium ions, magnesium ions and calcium ions, from the viewpoints of easily increasing the thermal decomposition resistance of the ionomer resin composition and from the viewpoint of easily obtaining a resin sheet with a good appearance.
  • Examples of specific preferred salts include sodium chloride, potassium chloride, magnesium chloride, calcium chloride, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, sodium nitrate, potassium nitrate, magnesium nitrate, calcium nitrate, p-toluenesulfonic acid. sodium, potassium p-toluenesulfonate, magnesium p-toluenesulfonate, and calcium p-toluenesulfonate.
  • More preferable salts are sodium chloride, potassium chloride, sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate, and more preferably chloride, from the viewpoint of easily improving transparency and thermal decomposition resistance and from the viewpoint of easily obtaining a resin sheet with good appearance.
  • the method of adding a salt to the ionomer resin is not particularly limited, and includes, for example, (I) a method of generating and adding a salt in the ionomer resin manufacturing process, (II) a method of separately adding a salt in the ionomer resin manufacturing process, and (III) a method of producing a salt-free ionomer resin and post-adding a salt to the resin.
  • a method of generating and adding a salt in the ionomer resin manufacturing process includes, for example, (I) a method of generating and adding a salt in the ionomer resin manufacturing process, (II) a method of separately adding a salt in the ionomer resin manufacturing process, and (III) a method of producing a salt-free ionomer resin and post-adding a salt to the resin.
  • the method of forming and containing the salt during the manufacturing process of the ionomer resin ( I) is preferred.
  • the method for adjusting the content of the salt composed of the strong acid and the strong base in the ionomer resin can be appropriately selected according to the method of containing the salt.
  • a salt when added by the above method (I), it can be adjusted by the washing degree of the obtained resin. More specifically, the salt content in the ionomer resin can be adjusted by the number of washings in the step of washing the obtained resin with a washing liquid.
  • the cleaning liquid include solvents that are good solvents for salts and poor solvents for resins, such as water, alcohols such as methanol, ketones such as acetone, and mixed solvents thereof.
  • the dispersion state of the salt composed of a strong acid and a strong base in the ionomer resin is not particularly limited. Distributed is preferred.
  • the degree of branching per 1000 carbon atoms of the ionomer resin is not particularly limited, preferably 5-30, more preferably 6-20.
  • the degree of branching is adjusted by the temperature at which the ionomer resin is polymerized, for example, the polymerization temperature at which ethylene-(meth)acrylic acid ester (X) is synthesized when the ionomer resin is synthesized by the EMMA saponification method. can.
  • the degree of branching per 1000 carbons can be measured by the DDMAS method using solid-state NMR.
  • the melting point of the ionomer resin is preferably 50° C. or higher, more preferably 60° C. or higher, and still more preferably 80° C. or higher, from the viewpoint of heat resistance and thermal decomposition resistance. is preferably 200° C. or lower, more preferably 180° C. or lower, and even more preferably 150° C. or lower, from the viewpoint that the adhesive strength with glass is likely to be exhibited when the is produced.
  • the melting point can be measured based on JIS K7121:2012.
  • DSC differential scanning calorimeter
  • the heat of fusion of the ionomer resin is preferably 0 J/g or more and 25 J/g or less.
  • the heat of fusion can be measured based on JIS K7122:2012. Specifically, using a differential scanning calorimeter (DSC), measurement was performed under the conditions of a cooling rate of ⁇ 10° C./min and a heating rate of 10° C./min, and the area of the melting peak during the second heating was calculated. can do.
  • DSC differential scanning calorimeter
  • the melt flow rate (MFR) of the ionomer resin measured under the conditions of 190° C. and 2.16 kg according to JIS K7210-1:2014 is preferably 0.1 g/10 minutes or more. , more preferably 0.3 g/10 min or more, still more preferably 0.7 g/10 min or more, still more preferably 1.0 g/10 min or more, particularly preferably 1.5 g/10 min or more, preferably It is 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, and particularly preferably 10 g/10 minutes or less.
  • the MFR is equal to or more than the lower limit and equal to or less than the upper limit, it is easy to perform molding while suppressing deterioration due to heat, and it is easy to obtain a resin sheet having excellent penetration resistance.
  • the melting point, heat of fusion and MFR of an ionomer resin are determined by the molecular weight of the ionomer resin and the ionomer resin's (meth)acrylic acid unit (A), neutralized (meth)acrylic acid unit (B), and ethylene unit (C), It can also be adjusted by the content of (meth)acrylic acid ester units (D) optionally included.
  • the method for producing the ionomer resin in the present invention is not particularly limited. Even if (II) is produced by adding a salt separately in the ionomer resin production process, (III) is produced by first producing a salt-free ionomer resin and then adding a salt to the resin. may Among these methods, a salt composed of a strong acid and a strong base can be easily dispersed uniformly in the ionomer resin, thereby easily improving the transparency and thermal decomposition resistance of the ionomer resin composition.
  • the above-described method (I), in which a salt is formed and contained in is preferred. The method (I) will be described in detail below.
  • an ethylene-(meth)acrylic acid ester copolymer (X) is used as a raw material, and all or part of the (meth)acrylic acid ester units in the copolymer are replaced with (meth)acrylic acid.
  • (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), ethylene units (C) and optionally (meth) A crude ionomer resin containing acrylic acid ester units (D) is produced (step i), a poor solvent is added to the resulting crude ionomer resin solution to precipitate a granular resin (step ii), and then the precipitated granular resin is is washed with a washing liquid (step iii).
  • Step i As a method for converting all or part of the (meth)acrylic acid ester units in the ethylene-(meth)acrylic acid ester copolymer (X) into (meth)acrylic acid units and neutralized (meth)acrylic acid units converts all or part of the (meth)acrylic acid ester units to neutralized (meth)acrylic acid units by saponifying the ethylene-(meth)acrylic acid ester copolymer (X) with a strong base.
  • the ethylene-(meth)acrylic acid neutralized copolymer or ethylene-(meth)acrylic acid ester-(meth)acrylic acid obtained by saponification in the above method (1) All of the (meth)acrylic acid neutralized units in the hydropolymer are demetallized with a strong acid, converted to (meth)acrylic acid units, and ethylene-(meth)acrylic acid copolymers or ethylene-(meth )
  • a method of obtaining an acrylic acid ester-(meth)acrylic acid copolymer and then neutralizing a part of the (meth)acrylic acid units in the obtained copolymer with metal ions hereinafter, method (2) Also called).
  • the neutralization reaction between the strong base used for the saponification reaction and the strong acid used for demetallization produces a salt composed of a strong acid and a strong base.
  • a crude ionomer resin containing salts is obtained.
  • Examples of monomers constituting the (meth)acrylate unit of the ethylene-(meth)acrylate copolymer (X) include methyl (meth)acrylate, ethyl (meth)acrylate, (meth)acrylate ) n-propyl acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, (meth) ) amyl acrylate, isoamyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, pentadecyl (meth)acrylate, dodecyl (meth)acrylate , isobornyl (meth)acrylate, phenyl (meth)acrylate,
  • preferred monomers are methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, ( meth)isobutyl acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, more preferred monomers are methyl (meth)acrylate, ethyl (meth)acrylate, n (meth)acrylate -propyl, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, more preferred monomers are methyl (meth) acrylate, n-butyl (meth) acrylate, (meth) ) isobutyl acrylate, particularly preferably methyl (meth)acrylate.
  • These (meth)acrylic acid esters may be used sing
  • ethylene-(meth)acrylic acid ester copolymer (X) examples include ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacryl Ethyl acid copolymer, ethylene-n-propyl acrylate copolymer, ethylene-n-propyl methacrylate copolymer, ethylene-isopropyl acrylate copolymer, ethylene-isopropyl methacrylate copolymer, ethylene-acrylic acid n-butyl copolymer, ethylene-n-butyl methacrylate copolymer, ethylene-sec-butyl acrylate copolymer, ethylene-sec-butyl methacrylate copolymer and the like.
  • copolymers As these copolymers, commercially available products may be used, and those synthesized by the high-temperature, high-pressure radical polymerization method described in US2013/0274424, JP-A-2006-233059, or JP-A-2007-84743 may be used.
  • Examples of the commercially available products include "Aclift” (registered trademark) WD301F and WH401F manufactured by Sumitomo Chemical Co., Ltd., and "Rexpearl” (registered trademark) A4250 manufactured by Japan Polyethylene Corporation.
  • the content of (meth)acrylate units in the ethylene-(meth)acrylate copolymer (X) is preferably 6 mol% or more, more preferably 6.5 mol% or more, and still more preferably 7 mol. % or more, particularly preferably 7.5 mol % or more, and preferably 10 mol % or less, more preferably 9.9 mol % or less, still more preferably 9.5 mol % or less.
  • the content of (meth)acrylic acid ester units in the copolymer (X) is determined by the (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units in the resulting crude ionomer resin and ionomer resin.
  • the content of (meth)acrylic acid ester units in the copolymer (X) can be adjusted by the copolymerization ratio of ethylene and (meth)acrylic acid ester.
  • the content is the (meth)acrylic acid unit (A), the (meth)acrylic acid neutralized product unit (B), and the ethylene unit (C) in the ionomer resin described above, and when included (meth) As well as the contents of acrylic acid ester units (D) and other monomeric units (e.g. units (A1) and units (B1)), pyrolysis gas chromatography, nuclear magnetic resonance spectroscopy (NMR) and It can be determined by elemental analysis.
  • acrylic acid ester units (D) and other monomeric units e.g. units (A1) and units (B1)
  • pyrolysis gas chromatography pyrolysis gas chromatography
  • NMR nuclear magnetic resonance spectroscopy
  • the melt flow rate (MFR ) is preferably 5 g/10 min or more, more preferably 10 g/10 min or more, still more preferably 50 g/10 min or more, still more preferably 100 g/10 min or more, preferably 400 g/10 min or less, more It is preferably 350 g/10 minutes or less, more preferably 300 g/10 minutes or less, and even more preferably 250 g/10 minutes or less.
  • MFR of the ethylene-(meth)acrylic acid ester copolymer (X) is at least the above lower limit and below the above upper limit, the resulting ionomer resin composition tends to be improved in moldability and strength.
  • the MFR of the ethylene-(meth)acrylic acid ester copolymer (X) can be adjusted by the degree of polymerization and the content of (meth)acrylic acid ester units.
  • the MFR can be measured, for example, by the method described in Examples.
  • the weight-average molecular weight of the ethylene-(meth)acrylic acid ester copolymer (X) is preferably 15,000 g/mol or more, more preferably 15,000 g/mol or more, from the viewpoint of easily improving the moldability and strength of the resulting ionomer resin composition. is 20,000 g/mol or more, more preferably 30,000 g/mol or more, preferably 200,000 g/mol or less, more preferably 100,000 g/mol or less.
  • the number average molecular weight of the ethylene-(meth)acrylate copolymer (X) is preferably 5,000 g/mol or more, more preferably 10,000 g/mol or more, still more preferably 15 ,000 g/mol or more, preferably 100,000 g/mol or less, more preferably 50,000 g/mol or less.
  • the weight average molecular weight and number average molecular weight can be adjusted by adjusting the amount of polymerization initiator and/or chain transfer agent during polymerization.
  • the molecular weights (weight average molecular weight and number average molecular weight) of these ethylene-(meth)acrylic acid ester copolymers (X) are determined by column (TSKgel GMH HR -H(20)HT three in series) and 1,2, Using 4-trichlorobenzene as a solvent, the measurement can be performed at a column temperature of 140° C. in terms of polystyrene.
  • the degree of branching per 1000 carbon atoms of the ethylene-(meth)acrylic acid ester copolymer (X) is not particularly limited, and is preferably 5-30, more preferably 6-20.
  • the degree of branching can be adjusted by the polymerization temperature when polymerizing the copolymer (X).
  • the degree of branching can be measured by dissolving the ethylene-(meth)acrylic acid ester copolymer (X) in deuterated ortho-dichlorobenzene and performing 13 C-NMR inverse gate decoupling method.
  • alkali used for the saponification reaction in the above methods (1) and (2) include strong bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, and the solubility in the solvent used for the saponification reaction and From the viewpoint of economy, sodium hydroxide and potassium hydroxide are preferred.
  • solvents used in the saponification reaction include ethers such as tetrahydrofuran and dioxane; halogen-containing solvents such as chloroform and dichlorobenzene; ketones having 6 or more carbon atoms such as methylbutyl ketone; mixed solvents with alcohols such as 1-propanol, 2-propanol and 1-butanol; aromatic compounds such as benzene, toluene, xylene and ethylbenzene; and mixed solvents of aromatic compounds and alcohols. These solvents may be used alone or in combination of two or more.
  • preferred solvents are mixed solvents of hydrocarbon compounds and alcohols, mixed solvents of aromatic compounds and alcohols, and more preferred solvents are toluene and the like. It is a mixed solvent of an aromatic compound and an alcohol such as methanol.
  • the ratio of the hydrocarbon compound or aromatic compound to the alcohol in the mixed solvent may be appropriately selected according to the type of each solvent used. hydrogen compounds or aromatics/alcohols) can be from 50/50 to 90/10.
  • the temperature at which the saponification reaction is performed is preferably 50° C. or higher, more preferably 60° C. or higher, from the viewpoint of reactivity and solubility of the ethylene-(meth)acrylic acid ester copolymer (X). It is preferably 70° C. or higher, particularly preferably 80° C. or higher.
  • the upper limit of the temperature is not particularly limited as long as it is lower than the temperature at which the ethylene-(meth)acrylic acid ester copolymer (X) decomposes, and is, for example, 300° C. or less.
  • the saponification reaction may be performed in the air or in an inert gas such as nitrogen gas or argon gas.
  • the saponification reaction may be carried out under normal pressure, increased pressure, or reduced pressure, preferably under increased pressure.
  • acids used for demetallization in the above methods (1) and (2) include strong acids such as hydrochloric acid, nitric acid, sulfuric acid and toluenesulfonic acid. These acids may be used singly or in combination of two or more. Inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid are preferred from the viewpoint of easy removal of salts from the ionomer resin after demetalization.
  • the solvent used for the demetallization the same solvents as those used for the saponification reaction can be selected.
  • the temperature at which the demetallization is performed is preferably 20° C. or higher, more preferably 30° C. or higher, still more preferably 40° C. or higher, and preferably 100° C. or lower, from the viewpoint of easily lowering the viscosity of the reaction solution. It is more preferably 80° C. or lower, still more preferably 60° C. or lower.
  • the above demetallization may be carried out in the air or in an inert gas such as nitrogen gas or argon gas, as in the above saponification reaction.
  • the saponification reaction may be carried out under normal pressure, increased pressure, or reduced pressure, preferably under increased pressure.
  • the neutralizing agent used for partially neutralizing the (meth)acrylic acid units and converting them into neutralized (meth)acrylic acid units is an ionic compound containing metal ions.
  • the metal ions include alkali metal ions such as lithium, potassium and sodium, alkaline earth metal ions such as magnesium and calcium, transition metal ions such as zinc, nickel, iron and titanium, and aluminum ions.
  • examples of neutralizing agents include sodium hydroxide and the like.
  • Step ii (solution of crude ionomer resin)
  • the crude ionomer resin obtained in step i comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B) and ethylene units (C), wherein said units (A) and said units ( The total content of B) is 6 to 10 mol % based on the total monomer units constituting the crude ionomer resin.
  • the crude ionomer resin preferably contains a (meth)acrylic acid ester unit (D) in addition to the units (A), (B) and (C).
  • the total content of the unit (A), the unit (B) and the unit (D) is the total monomer units constituting the crude ionomer resin. As a standard, it is preferably 6 to 10 mol %.
  • the crude ionomer resin further contains carboxylic acids other than (meth)acrylic acid units. Acid units (A1) and other monomer units such as neutralized carboxylic acid units (B1) other than neutralized (meth)acrylic acid units may be included.
  • Units (A), units (B), units (D), units (A1), and units (B1) contained in the ionomer resin of the invention include the same units as those described above, and preferred forms are the ionomers described above. Similar to resin.
  • each unit in the crude ionomer resin the total content of the unit (A) and the unit (B), and optionally the unit (A) and the unit (B) when the unit (D) is included and the total content of units (D) are the same as those described above for the ionomer resin of the present invention, including preferred forms.
  • the crude ionomer resin solution can be prepared by dissolving the crude ionomer resin obtained in step i in a solvent, and the reaction solution of the crude ionomer resin obtained in step i may be used as the crude ionomer resin solution.
  • the solvent in the solution of the crude ionomer resin is not particularly limited as long as it can dissolve the crude ionomer resin, and the same solvents as those used in the saponification reaction are exemplified.
  • a mixed solvent of an aromatic compound such as toluene and an alcohol such as methanol is preferable from the viewpoint of solubility of the crude ionomer resin.
  • the ratio of the aromatic compound to the alcohol in the mixed solvent may be appropriately selected according to the type of each solvent used.
  • the mass ratio of the aromatic compound to the alcohol (aromatic compound/alcohol) is , 50/50 to 90/10, preferably 65/35 to 85/15.
  • the concentration of the solution of the crude ionomer resin makes it easy to obtain a granular resin with a small particle size.
  • the content is preferably 30% by mass or less, more preferably 15% by mass or less, and preferably 1% by mass or more, more preferably 5% by mass or more.
  • the temperature of the solution of the crude ionomer resin makes it easy to suppress aggregation or agglutination of the precipitated granular resin, makes it easy to adjust the salt content in the ionomer resin within the range of 1 to 400 mg/kg, and increases the heat resistance of the ionomer resin composition.
  • the temperature is preferably the melting point of the ionomer resin or less, more preferably 60° C. or less, and still more preferably 50° C. or less.
  • the temperature is more preferably 25° C. or higher, more preferably 30° C. or higher.
  • the poor solvent added to the solution of the crude ionomer resin is not particularly limited as long as it is mixed with the solution of the crude ionomer resin and does not dissolve the ionomer resin.
  • examples include methanol, ethanol, 1-propanol, 2-propanol, alcohols such as 1-butanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; ethers such as dimethyl ether, diethyl ether and tetrahydrofuran; compounds and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the poor solvent is preferably methanol, 2-propanol, or the like, from the viewpoint of easy drying of the ionomer resin due to its low boiling point and easy removal of the salt in the granular resin because it can dissolve the salt.
  • the amount of the poor solvent to be added may be appropriately selected according to the concentration of the crude ionomer resin solution.
  • the amount of the poor solvent to be added is preferably 30 parts by mass or more, more preferably 60 parts by mass or more, and particularly preferably 100 parts by mass or more with respect to 100 parts by mass of the crude ionomer resin solution.
  • the upper limit of the amount of the poor solvent to be added is not particularly limited, and is usually 1000 parts by mass or less with respect to 100 parts by mass of the crude ionomer resin solution.
  • the method of adding the poor solvent to the solution of the crude ionomer resin is not particularly limited. good.
  • the particle size of the granular resin is likely to be reduced, thereby easily improving the removability of the salt in the granular resin, and as a result, from the viewpoint of easily improving the transparency of the ionomer resin composition. It is preferable to carry out in a short time, and it is more preferable to add at once.
  • the addition of the poor solvent is preferably completed within 1 hour, more preferably within 30 minutes, and even more preferably within 10 minutes.
  • the stirring speed is not particularly limited, but the faster the stirring speed, the easier it is to obtain a granular resin with a small particle size.
  • the stirring time is not particularly limited, and for example, the granular resin may be precipitated and the mixture of the crude ionomer resin solution and the poor solvent may be stirred until it becomes a slurry. Specifically, it is preferably 1 second or longer. It is 3 hours or less, more preferably 10 seconds or more and 1 hour or less, and still more preferably 1 minute or more and 30 minutes or less.
  • the peak top particle size of the granular resin precipitated by adding a poor solvent to the solution of the crude ionomer resin is increased by increasing the specific surface area of the granular resin, thereby making it easier to reduce the salt content in the granular resin.
  • the salt content is 700 ⁇ m or less, preferably 650 ⁇ m or less, more preferably 600 ⁇ m or less, and further It is preferably 550 ⁇ m or less.
  • the peak top particle size can be determined by measuring the particle size distribution of the granular resin using, for example, a laser diffraction/scattering particle size distribution analyzer.
  • the peak top particle size of the granular resin precipitated by adding a poor solvent to the crude ionomer resin solution can be adjusted by the concentration and temperature of the crude ionomer resin solution. Specifically, when the concentration and/or temperature of the crude ionomer resin solution is decreased, the peak top particle size of the precipitated granular resin can be decreased, and when the concentration and/or temperature of the crude ionomer resin solution is increased, precipitation occurs. The peak top particle size of the granular resin can be increased. The peak top particle size of the granular resin can also be adjusted by the method of adding the poor solvent and the stirring speed of the mixture of the crude ionomer resin solution and the poor solvent.
  • washing liquid The washing liquid in step iii is not particularly limited as long as it does not dissolve the ionomer resin and can dissolve the salt.
  • preferred washing liquids include alcohols such as methanol, ethanol, 1-propanol and 2-isopropanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; and ethers of These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • washing liquids alcohols, water, and mixed liquids thereof are preferable from the viewpoint of high solubility of salts and easy removal of salts contained in the granular resin. Furthermore, in addition to increasing the solubility of the salt, by making the specific gravity of the cleaning liquid smaller than that of the granular resin, the contact area between the cleaning liquid and the granular resin is increased, so that the removability of the salt can be easily improved.
  • a more preferable cleaning liquid is a mixed liquid of water and alcohols from the viewpoint of facilitating removal of impurities such as organic compounds contained in the resin and facilitating drying of the ionomer resin obtained after washing.
  • Preferred alcohols are methanol, ethanol, and more preferably methanol, since they are easy to dry and have high compatibility with water.
  • the ratio of water and alcohols (water/alcohols (% by mass)) in the mixture of water and alcohols is preferably 20/80 to 80/20, more preferably 30/70 to 70/30. .
  • An example of a method of washing the granular resin with a washing liquid is a method of filtering the granular resin from the granular resin dispersion liquid in which the granular resin is precipitated in step ii, mixing the filtered granular resin with the washing liquid, and then removing the liquid. is mentioned. More specifically, after mixing the granular resin filtered from the granular resin dispersion with a washing liquid, the granular resin is filtered from the washing liquid (hereinafter also referred to as washing step (a)), and then the filtered granular There is a method of washing by mixing the resin with a fresh washing liquid and then filtering out the granular resin from the washing liquid (hereinafter also referred to as washing step (b)).
  • the washing step (b) is preferably performed 1 to 10 times, and the washing step (b) after one washing step (a). is more preferably 1 to 6 times, more preferably 1 to 4 times.
  • the amount of the cleaning liquid used in one cleaning step may be appropriately selected according to the amount of granular resin to be cleaned.
  • the amount of the cleaning liquid used in one cleaning step is preferably 100 parts by mass to 2000 parts by mass, more preferably 200 parts by mass to 1000 parts by mass, and still more preferably 100 parts by mass of the dried granular resin. is 300 parts by mass to 700 parts by mass.
  • the ionomer resin obtained in step iii may be dried if necessary.
  • the drying temperature is preferably below the melting point of the ionomer resin, more preferably below 80°C.
  • the ionomer resin composition of the present invention contains 0.005 to 0.5 parts by mass of the silane coupling agent per 100 parts by mass of the ionomer resin.
  • the silane coupling agent within the above range, the adhesiveness to glass, particularly the adhesiveness to glass in a wet state can be improved. This is because the silane coupling agent has a reactive group that reacts with inorganic materials such as glass and a reactive group that reacts with organic materials such as resin. Alternatively, it is considered that they can be bound by an ionic bond or the like.
  • the adhesion between the ionomer resin composition and the glass can be enhanced. Therefore, even if a silane coupling agent is contained, formation of a crosslinked gel can be suppressed, and a resin sheet having a good appearance such as excellent surface smoothness can be obtained.
  • the content of the silane coupling agent is less than the above lower limit, the adhesiveness to glass in a wet state tends to decrease, so peeling from the glass tends to occur in a wet state.
  • gelation tends to proceed due to the cross-linking reaction by the silane coupling agent, and it tends to be difficult to obtain a resin sheet with good appearance.
  • the content of the silane coupling agent is 0.00 per 100 parts by mass of the ionomer resin, from the viewpoint of easily improving the adhesion to glass, particularly the adhesion to glass in a wet state.
  • 005 mass parts or more preferably 0.01 mass parts or more, more preferably 0.02 mass parts or more, still more preferably 0.05 mass parts or more, even more preferably 0.07 mass parts or more, particularly preferably 0.07 mass parts or more. 08 parts by mass or more.
  • the content is 0.5 parts by mass or less, preferably 0.5 parts by mass or less, based on 100 parts by mass of the ionomer resin, from the viewpoint of suppressing gelation of the ionomer resin composition and easily obtaining a resin sheet with a good appearance. It is 4 parts by mass or less, more preferably 0.3 parts by mass or less, still more preferably 0.2 parts by mass or less, and particularly preferably 0.18 parts by mass or less.
  • the silane coupling agent is not particularly limited, and examples thereof include amino-based compounds, glycidoxy-based compounds, sulfide-based compounds, mercapto-based compounds, vinyl-based compounds, nitro-based compounds, and chloro-based compounds. These silane coupling agents may be used singly or in combination of two or more.
  • amino compounds include N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropylmethyldiethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, N-(2-aminomethyl)-3-aminopropyltrimethoxysilane, N-(2-aminomethyl )-3-aminopropylmethyldimethoxysilane, N-(2-aminomethyl)-3-aminopropylmethyldiethoxysilane, N-(2-aminomethyl)-3-aminopropyltriethoxysilane, 3-aminopropyltri Methoxysilane, 3-aminopropyltriethoxysilane, 3-
  • Examples of glycidoxy compounds include 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane.
  • Examples include ethoxysilane and 3-glycidoxypropyltriethoxysilane.
  • sulfide compounds include bis(3-triethoxysilylpropyl)tetrasulfide, bis(2-triethoxysilylethyl)tetrasulfide, bis(3-trimethoxysilylpropyl)tetrasulfide, bis(2-trimethoxy silylethyl) tetrasulfide, bis(3-triethoxysilylpropyl) trisulfide, bis(3-trimethoxysilylpropyl) trisulfide, bis(3-triethoxysilylpropyl) disulfide, bis(3-trimethoxysilylpropyl) Disulfide, 3-trimethoxysilylpropyl-N,N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N,N-dimethylthiocarbamoyl tetrasulfide, 2-
  • Mercapto-based compounds include, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, and 2-mercaptoethyltriethoxysilane.
  • vinyl compounds include vinyltriethoxysilane, vinyltrimethoxysilane, dimethoxymethylvinylsilane, and diethoxy(methyl)vinylsilane.
  • nitro compounds include 3-nitropropyltrimethoxysilane and 3-nitropropyltriethoxysilane.
  • chloro-based compounds examples include 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 2-chloroethyltrimethoxysilane, and 2-chloroethyltriethoxysilane.
  • Other compounds include, for example, diethoxydimethylsilane, 1,3-diethoxy-1,1,3,3-tetramethyldisiloxane, dimethoxydimethylsilane, methyldiethoxysilane, diisopropyldimethoxysilane, dicyclopentyldimethoxysilane, octyltriethoxysilane, methyltriethoxysilane, methyltrimethoxysilane, hexadecyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, N,N,N-tris(3-trimethoxysilylpropyl)triisocyanurate, etc. mentioned.
  • the silane coupling agent may be either trialkoxysilane or dialkoxysilane. is preferably
  • the silane coupling agent is preferably an amino-based compound or a glycidoxy-based compound, more preferably N- ⁇ , from the viewpoint of easily improving the adhesion to glass in a wet state among the above.
  • These silane coupling agents can be used alone or in combination of two or more.
  • the resin composition of the present invention may optionally contain other additives in addition to the silane coupling agent.
  • additives include UV absorbers, anti-aging agents, antioxidants, heat deterioration inhibitors, light stabilizers, anti-sticking agents, lubricants, release agents, polymer processing aids, antistatic agents, flame retardants. , dyes and pigments, organic dyes, matting agents, phosphors, and the like.
  • UV absorbers, anti-aging agents, antioxidants, heat deterioration inhibitors, light stabilizers, anti-sticking agents, lubricants, release agents, polymer processing aids and organic dyes are preferred.
  • Additives may be used alone or in combination of two or more.
  • a UV absorber is a compound that has the ability to absorb UV rays, and is said to have the function of mainly converting light energy into heat energy.
  • UV absorbers include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic acid esters, formamidines and the like. These may be used singly or in combination of two or more.
  • Benzotriazoles are preferable as UV absorbers because they are highly effective in suppressing deterioration of optical properties such as coloration due to exposure to UV light.
  • preferred benzotriazoles include 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (manufactured by BASF; trade name: TINUVIN329), 2 -(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (manufactured by BASF; trade name: TINUVIN234), 2,2'-methylenebis[6-(2H -benzotriazol-2-yl)-4-t-octylphenol] (manufactured by ADEKA Corporation; trade name: ADEKA STAB LA-31), 2-(5-octylthio-2H-benzotriazol-2-yl)-6- tert-butyl-4-methylphenol and
  • triazine UV absorbers examples include 2,4,6-tris(2-hydroxy-4-hexyloxy-3-methylphenyl)-1,3,5-triazine (manufactured by ADEKA Corporation; trade name : Adekastab LA-F70) and its analogues, hydroxyphenyltriazine-based UV absorbers (manufactured by BASF; trade names: TINUVIN477 and TINUVIN460), 2,4-diphenyl-6-(2-hydroxy-4-hexyloxy phenyl)-1,3,5-triazine and the like. These may be used singly or in combination of two or more.
  • anti-aging agents examples include hydroquinone, hydroquinone monomethyl ether, 2,5-di-t-butylphenol, 2,6-di(t-butyl)-4-methylphenol, mono (or di, or tri ) ( ⁇ -methylbenzyl)phenol and other phenolic compounds; 2,2′-methylenebis(4-ethyl-6-t-butylphenol), 4,4′-butylidenebis(3-methyl-6-t-butylphenol), bisphenol compounds such as 4,4'-thiobis (3-methyl-6-t-butylphenol); benzimidazole compounds such as 2-mercaptobenzimidazole and 2-mercaptomethylbenzimidazole; 6-ethoxy-1,2- Amine-ketone compounds such as dihydro-2,2,4-trimethylquinoline, reaction products of diphenylamine and acetone, 2,2,4-trimethyl-1,2-dihydroquinoline polymers; N-phenyl-N
  • Antioxidants are effective by themselves to prevent oxidative deterioration of resins in the presence of oxygen.
  • Examples include phosphorus antioxidants, hindered phenol antioxidants, thioether antioxidants, and the like. These antioxidants may be used alone or in combination of two or more. Among them, from the viewpoint of the effect of preventing deterioration of optical properties due to coloring, phosphorus-based antioxidants and hindered phenol-based antioxidants are preferable, and a combination of a phosphorus-based antioxidant and a hindered phenol-based antioxidant is more preferable. .
  • the amount of phosphorus-based antioxidant used is preferably 1:5 to 2 in mass ratio. :1, more preferably 1:2 to 1:1.
  • Examples of preferred phosphorus antioxidants include 2,2-methylenebis(4,6-di-t-butylphenyl)octylphosphite (manufactured by ADEKA Corporation; trade name: ADEKA STAB HP-10), Tris (2 ,4-di-t-butylphenyl)phosphite (manufactured by BASF; trade name: IRGAFOS168), 3,9-bis(2,6-di-t-butyl-4-methylphenoxy)-2,4,8 , 10-tetraoxa-3,9-diphosphaspiro[5.5]undecane (manufactured by ADEKA Corporation; trade name: ADEKA STAB PEP-36). These may be used singly or in combination of two or more.
  • Preferred examples of hindered phenolic antioxidants include pentaerythrityl-tetrakis [3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] (manufactured by BASF; trade name: IRGANOX1010), Octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate (manufactured by BASF; trade name: IRGANOX1076) and the like. These may be used singly or in combination of two or more.
  • Thermal degradation inhibitors can prevent thermal degradation of resins by scavenging polymer radicals that are generated when exposed to high heat under virtually oxygen-free conditions.
  • preferred heat deterioration inhibitors include 2-t-butyl-6-(3′-t-butyl-5′-methyl-hydroxybenzyl)-4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd.; trade name : Sumilizer GM), 2,4-di-t-amyl-6-(3′,5′-di-t-amyl-2′-hydroxy- ⁇ -methylbenzyl)phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd.; trade name: Sumilizer GS) and the like. These may be used singly or in combination of two or more.
  • a light stabilizer is a compound that is said to have the function of scavenging radicals that are mainly generated by light oxidation.
  • preferred light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton. These may be used singly or in combination of two or more.
  • anti-adhesion agents include salts or esters of fatty acids, esters of polyhydric alcohols, inorganic salts, inorganic oxides, and particulate resins.
  • preferred anti-adhesion agents include calcium stearate, calcium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, silicon dioxide (manufactured by Evonik; trade name: Aerosil), and particulate acrylic resins. These may be used singly or in combination of two or more.
  • lubricants include stearic acid, behenic acid, stearamic acid, methylenebisstearamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, and hydrogenated oil. These may be used singly or in combination of two or more.
  • release agents include higher alcohols such as cetyl alcohol and stearyl alcohol; glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride. These may be used singly or in combination of two or more.
  • polymer particles having a particle size of 0.05 to 0.5 ⁇ m which can be produced by an emulsion polymerization method, are usually used.
  • the polymer particles may be monolayer particles composed of a polymer having a single composition ratio and a single intrinsic viscosity, or may be multilayer particles composed of two or more polymers having different composition ratios or intrinsic viscosities. good. These may be used singly or in combination of two or more.
  • particles having a two-layer structure having an inner layer of a polymer layer having a low intrinsic viscosity and an outer layer of a polymer layer having a high intrinsic viscosity of 5 dl/g or more are preferred.
  • the intrinsic viscosity of the polymeric processing aid is preferably 3-6 dl/g. If the intrinsic viscosity is too low, the effect of improving the moldability tends to be low, and if the intrinsic viscosity is too high, the molding processability of the copolymer tends to deteriorate.
  • organic dye a compound that has the function of converting ultraviolet light into visible light is preferably used.
  • the organic dyes may be used singly or in combination of two or more.
  • Examples of phosphors include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent whitening agents, and fluorescent bleaching agents. These may be used singly or in combination of two or more.
  • the content of various additives can be appropriately selected within a range that does not impair the effects of the present invention, and the total content of various additives is preferably 7% by mass or less, more preferably 7% by mass or less, more preferably It is 5% by mass or less, more preferably 4% by mass or less.
  • the ionomer resin composition of the present invention comprises an ionomer resin and a silane coupling agent, wherein the ionomer resin contains (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B) and ethylene units (C ), the total content of the units (A) and the units (B) is 6 to 10 mol% based on the total monomer units constituting the ionomer resin, and the strong acid and the strong Since the content of the salt composed of a base is 1 to 400 mg/kg, and the content of the silane coupling agent is 0.005 to 0.5 parts by mass with respect to 100 parts by mass of the ionomer resin, high transparency , it has high thermal decomposition resistance and high adhesion to glass in a wet state, and can form a resin sheet having an excellent appearance.
  • the ionomer resin contains (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B) and ethylene units (C ), the
  • the content of the ionomer resin is preferably relative to the total mass of the ionomer resin composition, from the viewpoint of easily improving transparency, thermal decomposition resistance, and particularly adhesion to glass in a wet state. is 90% by mass or more, more preferably 95% by mass or more, still more preferably 98% by mass or more, still more preferably 99% by mass or more, and preferably less than 100% by mass, more preferably 99.99% by mass It is below.
  • the ionomer resin composition of the present invention contains 1 to 400 mg/kg of salt as described above, it can have high thermal decomposition resistance.
  • the ionomer resin composition of the present invention has a 1% weight loss temperature (Td1) when heated at 10°C/min in a nitrogen atmosphere, preferably 330°C or higher, more preferably 350°C. Above, more preferably 360° C. or higher, particularly preferably 370° C. or higher, and usually 450° C. or lower.
  • the 1% weight loss temperature of the ionomer resin composition is at least the above lower limit, foaming and/or thermal decomposition during melt molding of the ionomer resin composition is likely to be reduced, and air bubbles and/or are generated by thermal decomposition of the resin. It is easy to obtain an intermediate film that does not have defects such as black foreign matter.
  • the 1% weight reduction temperature represents the temperature at which the weight reduction rate becomes 1% based on the weight at 200°C.
  • the 1% weight loss temperature can be measured according to JIS K7120:1987, for example, by the method described in Examples.
  • the storage modulus (E′) at 50° C. measured by dynamic viscoelasticity measurement of the ionomer resin composition of the present invention has good self-sustainability (i.e., high elastic modulus), In particular, from the viewpoint of self-sustainability in high-temperature environments (high elastic modulus in high-temperature environments), it is preferably 20 MPa or higher, more preferably 30 MPa or higher, even more preferably 40 MPa or higher, and particularly preferably 50 MPa or higher.
  • the storage modulus (E') upper limit is not particularly limited, and may be 1000 MPa.
  • Said storage modulus is determined by the molecular weight of the ionomer resin and (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and optionally including (meth) It can be adjusted by the content of the acrylate unit (D).
  • the ionomer resin composition of the present invention has high transparency.
  • the ionomer resin composition of the present invention preferably has a haze of 2.0% or less, more preferably 1.5% or less, even more preferably 1.0% or less. Since the transparency of the ionomer resin composition increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01% or more.
  • the haze of the ionomer resin composition is measured using a haze meter according to JIS K7136:2000.
  • the present inventors have found that the inclusion of a salt of a strong acid and a strong base in the ionomer resin tends to improve the thermal decomposition resistance of the ionomer resin composition.
  • the inventors have found that the transparency of the ionomer resin composition in a water-absorbing state (transparency at the time of water absorption) is reduced.
  • the present inventors have found that if the content of salt in the ionomer resin is 400 mg/kg or less, the transparency of the ionomer resin composition in a water-absorbed state can also be enhanced.
  • the ionomer resin composition of the present invention having a salt content of 1 to 400 mg/kg in the ionomer resin has high transparency even when absorbing water.
  • the haze (water absorption haze) of the ionomer resin composition of the present invention after absorbing water is preferably 9.0% or less, more preferably 5.0% or less, further preferably 3.0%. % or less, particularly preferably 2.5% or less.
  • the lower the water absorption haze the higher the transparency of the ionomer resin composition in a water-absorbed state.
  • the water absorption haze was measured by immersing the ionomer resin composition in ion-exchanged water at 23° C.
  • a haze meter it can be measured according to JIS K7136:2000, for example, it can be measured by the method described in Examples.
  • the ionomer resin tends to whiten easily if the crystallinity of the ionomer resin is too high, so the ionomer resin composition is slowly cooled to promote the crystallization of the ionomer resin transparency (transparency during slow cooling) tends to decrease.
  • the total content of (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units (B) in the resin is 6 mol% or more, so that it is difficult to crystallize. , and has high transparency even when slowly cooled.
  • the haze of the ionomer resin composition of the present invention in which crystallization of the ionomer resin contained in the composition is accelerated by slow cooling is preferably 5.0. % or less, more preferably 4.5% or less, still more preferably 4.0% or less, even more preferably 3.0% or less, and particularly preferably 2.5% or less. Since the transparency of the ionomer resin composition increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01% or more.
  • Slow-cooling haze is obtained by disposing a resin sheet formed from an ionomer resin composition as an intermediate film between two glass plates to prepare a laminated glass, heating the laminated glass to 140°C, and then reducing the haze from 140°C to 0.1. Obtained by measuring the haze after slowly cooling to 23°C at a rate of °C/min with a haze meter in accordance with JIS K7136:2000.
  • the ionomer resin composition of the present invention has a low degree of coloring and is preferably colorless.
  • the yellowness index (YI) of the ionomer resin composition of the present invention is preferably 2.0 or less, more preferably 1.8 or less, still more preferably 1.5 or less, and particularly preferably 1.5 or less, from the viewpoint of low coloring. 0 or less. Since the lower the yellowness index (YI), the lower the colorability of the ionomer resin composition, the lower limit is not particularly limited, and may be, for example, 0 or more.
  • the yellowness index (YI) can be measured using a colorimetric color difference meter in accordance with JIS Z8722:2009.
  • the adhesive strength of the ionomer resin composition of the present invention to glass is measured by, for example, the compression shear strength test described in WO1999-058334.
  • the compressive shear strength is preferably 15 MPa or more, more preferably 20 MPa or more, and particularly preferably 25 MPa or more, from the viewpoint of easily increasing the adhesive strength.
  • the compressive shear strength may be 50 MPa or less from the viewpoint of easily increasing the penetration resistance of the laminated glass.
  • the wet state adhesion of the ionomer resin composition of the present invention to glass is measured by a peel test performed in a wet state. It can be evaluated by force.
  • the glass adhesive strength in a wet state is preferably 0.1 N/cm or more, more preferably 0.3 N/cm or more, still more preferably 0.7 N/cm or more, still more preferably 1.0 N/cm or more, and particularly preferably is 1.2 N/cm or more.
  • the upper limit is not particularly limited, and may be 10 N/cm or less.
  • the adhesive strength can be measured by a tensile tester, for example, by the method described in the Examples.
  • the ionomer resin composition of the present invention may be in the form of pellets or the like in order to enhance convenience during storage, transportation, or molding.
  • the ionomer resin composition When the ionomer resin composition is pelletized, it can be obtained, for example, by cutting strands obtained by a melt extrusion method.
  • the temperature of the resin composition during melt extrusion is preferably 150° C. or higher, more preferably 170° C. or higher, from the viewpoint of easily stabilizing the discharge from the extruder.
  • the temperature is preferably 250° C. or lower, more preferably 230° C. or lower, from the viewpoint of suppressing thermal decomposition and deterioration of the resin.
  • the ionomer resin composition of the present invention has high thermal decomposition resistance, problems such as the generation of black foreign matter due to thermal decomposition of the ionomer resin composition are less likely to occur when the ionomer resin composition is pelletized by the melt extrusion method.
  • the method for producing the ionomer resin composition of the present invention is not particularly limited, and it can be produced, for example, by mixing an ionomer resin, a silane coupling agent and optionally other additives.
  • the method of mixing the ionomer resin and the silane coupling agent is not particularly limited.
  • the silane coupling agent may be directly added to the ionomer resin and mixed.
  • a silane coupling agent is added as part of the ionomer resin masterbatch, and the masterbatch and the ionomer resin are mixed to perform silane coupling in the ionomer resin composition.
  • the content of the agent can also be adjusted.
  • the addition of the silane coupling agent may be carried out in the step of pelletizing, or in the step of forming into sheets, films, or the like.
  • additives may be added during production of the ionomer resin, may be added to the ionomer resin after production of the ionomer resin, or may be added to the process of pelletizing, forming into sheets, films, etc. good.
  • the present invention also includes a resin sheet comprising one or more layers containing the ionomer resin composition of the present invention. Since the resin sheet of the present invention comprises a layer containing the resin composition of the present invention, it has excellent transparency and adhesion to substrates such as glass. is also good.
  • the resin sheet of the present invention includes one or more layers containing the ionomer resin composition of the present invention (hereinafter also referred to as layer (x)).
  • the resin sheet of the present invention may be composed of only the layer (x), or may be a laminate containing at least one layer (x).
  • the laminate is not particularly limited, but examples thereof include a laminate containing two or more layers (x), a laminate containing one or more layers (x) and one or more other layers, and the like. be done.
  • layer (x) or another layer is a plurality of layers, the resin or resin composition constituting each layer may be the same or different.
  • a layer containing a known resin is exemplified as the other layer.
  • the resin include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polytetrafluoroethylene, acrylic resin, polyamide, polyacetal, polycarbonate, polyethylene terephthalate among polyesters, polybutylene terephthalate, cyclic polyolefin, polyphenylene sulfide, Polytetrafluoroethylene, polysulfone, polyethersulfone, polyarylate, liquid crystal polymer, polyimide, thermoplastic elastomer and the like can be used.
  • the additives, plasticizers, pigments, dyes, heat-shielding materials for example, inorganic heat-shielding fine particles or organic heat-shielding materials having infrared absorption ability
  • the additives, plasticizers, pigments, dyes, heat-shielding materials for example, inorganic heat-shielding fine particles or organic heat-shielding materials having infrared absorption ability
  • heat-shielding materials for example, inorganic heat-shielding fine particles or organic heat-shielding materials having infrared absorption ability
  • functional It may contain one or more additives such as inorganic compounds.
  • the resin sheet of the present invention has an uneven structure on the surface thereof by a conventionally known method such as melt fracture or embossing, from the viewpoint of excellent bubble removal properties when the resin sheet and the substrate are thermocompression bonded. It is preferable to have The shape of the melt fracture and embossing may be appropriately selected from conventionally known shapes.
  • the thickness of one layer (x) in the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, and particularly preferably 0.4 mm or more, Also, it is preferably 5 mm or less, more preferably 4 mm or less, even more preferably 2 mm or less, and particularly preferably 1 mm or less.
  • the layer (x) in the resin sheet is a plurality of layers, the thickness of each of the layers (x) in the resin sheet may be the same or different.
  • the thickness of the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, even more preferably 0.4 mm or more, and particularly preferably 0.5 mm or more. More preferably 0.6 mm or more, even more preferably 0.7 mm or more, particularly preferably 0.75 mm or more, and preferably 20 mm or less, more preferably 15 mm or less, still more preferably 10 mm or less, still more preferably is 5 mm or less, particularly preferably 4 mm or less, particularly more preferably 2 mm or less, and even more preferably 1 mm or less.
  • the thickness of the resin sheet is measured using a conventionally known method, such as a contact or non-contact thickness gauge.
  • the resin sheet may be wound into a roll or may be in the form of individual sheets.
  • the resin sheet of the present invention has the weight loss temperature, haze, water absorption haze, slow cooling haze, and yellow color of the ionomer resin composition of the present invention described in the [Ionomer resin composition] section. degree, storage modulus at 50° C., adhesive strength, and adhesive strength in a wet state.
  • the resin sheet of the present invention preferably has a low water content from the viewpoint of resistance to foaming during production of laminated glass.
  • the water content of the resin sheet is preferably 1% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.02% by mass or less, and particularly preferably 0.01% by mass or less.
  • the content can be measured by a coulometric titration method.
  • the method for manufacturing the resin sheet of the present invention is not particularly limited.
  • the layer (x) can be produced by a known film-forming method such as an extrusion method, a calendar method, a press method, a solution casting method, a melt casting method, or an inflation method.
  • Layer (x) may be used alone as a resin sheet. Further, if necessary, two or more layers (x), or one or more layers (x) and one or more other layers may be laminated by press molding or the like to form a laminated resin sheet.
  • Two or more layers (x), or one or more layers (x) and one or more other layers may be co-extruded to form a laminated resin sheet.
  • the resin composition constituting each layer may be the same or different.
  • a method of producing a resin sheet using an extruder is preferably used.
  • the resin temperature during extrusion is preferably 150° C. or higher, more preferably 170° C. or higher, from the viewpoints of easily stabilizing the discharge of the resin from the extruder and easily reducing mechanical troubles.
  • the resin temperature during extrusion is preferably 250° C. or lower, more preferably 230° C. or lower, from the viewpoint of facilitating decomposition of the resin and deterioration of the resin accompanying the decomposition.
  • the resin sheet of the present invention can be suitably used as an intermediate film for laminated glass (simply referred to as an intermediate film). Therefore, the present invention includes a laminated glass interlayer made of the resin sheet of the present invention.
  • the invention also includes a laminated glass comprising two glass sheets and a laminated glass interlayer of the invention arranged between the two glass sheets. Since the laminated glass of the present invention has the laminated glass intermediate film made of the resin sheet, it can have excellent transparency.
  • Examples of the glass plate to be laminated with the interlayer film of the present invention include inorganic glass such as float plate glass, polished plate glass, figured glass, wired plate glass, and heat-absorbing plate glass, as well as conventionally known organic glasses such as polymethyl methacrylate and polycarbonate. Glass or the like can be used. They may be either colorless or colored. These may be used alone or in combination of two or more. Moreover, the thickness of one glass plate is preferably 100 mm or less, and the thickness of the two glass plates may be the same or different.
  • a laminated glass obtained by sandwiching the resin sheet of the present invention between two sheets of glass can be produced by a conventionally known method. Examples thereof include a method using a vacuum laminator, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll. Moreover, after carrying out temporary press-bonding by the said method, the method of putting into an autoclave and carrying out final adhesion is also mentioned.
  • laminated glass When using a vacuum laminator apparatus, for example, under a reduced pressure of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 1 MPa, at 60 to 200° C., especially 80 to 160° C., a glass plate, an interlayer, and any layer (for example, an adhesive resin layers, etc.), laminated glass can be produced.
  • a method using a vacuum bag or a vacuum ring is described, for example, in EP 1235683, wherein a glass plate is heated at 100-160° C. under a pressure of about 2 ⁇ 10 ⁇ 2 to 3 ⁇ 10 ⁇ 2 MPa.
  • Laminated glass can be produced by laminating the interlayer and optional layers.
  • a glass plate, an intermediate film and an arbitrary layer are laminated, degassed by rolls at a temperature below the flow start temperature of the intermediate film, and then crimped at a temperature close to the flow start temperature.
  • method of doing so Specifically, for example, after heating to 30 to 70° C. with an infrared heater or the like, degassing with rolls, further heating to 50 to 120° C., and pressing with rolls can be mentioned.
  • the operating conditions of the autoclave process are appropriately selected depending on the thickness and structure of the laminated glass. It is preferable to treat at 100 to 160° C. for 0.5 to 3 hours.
  • the laminated glass of the present invention has excellent transparency.
  • the haze of the laminated glass of the present invention is preferably 1.0% or less, more preferably 0.8% or less, still more preferably 0.5% or less. Since the transparency of the laminated glass increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01%.
  • the haze of laminated glass is measured using a haze meter according to JIS K7136:2000.
  • the laminated glass of the present invention also has excellent transparency during slow cooling.
  • the transparency during slow cooling can be evaluated by the haze during slow cooling (slow cooling haze).
  • the slow cooling haze of the laminated glass of the present invention is preferably 5.0% or less, more preferably 4.5% or less, still more preferably 4.0% or less, still more preferably 3.0% or less, and particularly preferably 2.5% or less.
  • the lower the haze, the higher the transparency of the laminated glass, so the lower limit is not particularly limited, and may be, for example, 0.01% or more.
  • the slow-cooling haze of the laminated glass is obtained by heating the laminated glass to 140°C and then slowly cooling it from 140°C to 23°C at a rate of 0.1°C/min. It can be obtained by measuring according to, for example, by the method described in Examples.
  • the laminated glass of the present invention is less colored and is preferably colorless as much as possible.
  • the yellowness index (YI) of the laminated glass of the present invention is preferably 3.0 or less, more preferably 2.0 or less, still more preferably 1.5 or less, particularly preferably 1.0 or less, and preferably 0 or more.
  • the yellowness index (YI) can be measured using a colorimetric color difference meter in accordance with JIS Z8722.
  • the adhesive strength between the glass plate and the interlayer in the laminated glass of the present invention is measured by, for example, the compression shear strength test described in WO1999-058334.
  • the compressive shear strength is preferably 15 MPa or more, more preferably 20 MPa or more, and particularly preferably 25 MPa or more, from the viewpoint of easily increasing the adhesive strength.
  • the compressive shear strength may be 50 MPa or less from the viewpoint of easily increasing the penetration resistance of the laminated glass.
  • the wet state adhesion between the glass plate and the interlayer in the laminated glass of the present invention can be evaluated by the glass adhesive strength of the interlayer measured by a peeling test performed in the wet state.
  • the glass adhesive strength in a wet state is preferably 0.1 N/cm or more, more preferably 0.3 N/cm or more, still more preferably 0.7 N/cm or more, still more preferably 1.0 N/cm or more, and particularly preferably is 1.2 N/cm or more.
  • the upper limit is not particularly limited, and may be 10 N/cm or less.
  • the adhesive strength can be measured by a tensile tester, for example, by the method described in the Examples.
  • a resin sheet comprising one or more layers containing the ionomer resin composition of the present invention is useful as an interlayer film for laminated glass.
  • the interlayer film for laminated glass is particularly preferable as an interlayer film for laminated glass for structural materials (for facades) because of its excellent adhesion to substrates such as glass, transparency, and self-supporting properties.
  • the laminated glass of the present invention is not limited to the interlayer film of laminated glass for structural materials, and can be used for automobile windshields, automobile side glasses, automobile sunroofs, automobile rear glasses, head-up display glasses, exterior walls and roofs. It can be suitably used for building materials such as laminates, panels, doors, windows, walls, roofs, sunroofs, sound insulation walls, display windows, balconies, and handrails, partition glass members for conference rooms, solar panels, and the like.
  • the ionomer resin compositions obtained in Examples and Comparative Examples were each dissolved in a mixed solvent of dehydrated toluene/dehydrated acetic acid (75/25% by mass), reacted at 100° C. for 2 hours, and then dissolved in acetone/water (80% by mass). /20% by mass) to convert the neutralized (meth)acrylic acid unit (B) into the (meth)acrylic acid unit (A).
  • the obtained resin was thoroughly washed with water and then dried, and the following (1) to (3) were performed on the dried resin.
  • the component of the monomer unit constituting the resin was analyzed by pyrolysis GC-MS.
  • the acid value of the resin was measured according to JIS K0070:1992.
  • ethylene unit (C) / (meth) acrylic acid ester unit (D) / ((meth) acrylic acid unit (A) and (meth) acrylic acid The ratio of the sum of hydrate units (B)) was calculated. Furthermore, from the information in (4) above, the ratio of ethylene units (C) / (meth)acrylic acid ester units (D) / (meth)acrylic acid units (A) / (meth)acrylic acid neutralized units (B) was calculated.
  • each monomer unit of the ethylene-(meth)acrylic acid ester copolymer (X) as a raw material was determined by dissolving it in heavy toluene or heavy THF, and performing 1 H-NMR (400 MHz, (manufactured by Co., Ltd.) and calculated.
  • Chloride ions or sulfate ions were quantified from the peak area obtained by the measurement, and the amount of the chloride ions or sulfate ions was converted to the amount of sodium salt to obtain the amount of residual inorganic salt.
  • Eluent mixed solution of sodium carbonate aqueous solution (0.6 mmol/L) and sodium hydrogencarbonate aqueous solution (12 mmol/L); Flow rate: 1.0 mL/min; Column temperature: 40°C; Column: IC-SA2 (250L ⁇ 4.0)
  • the haze of the laminated glass after slow cooling was measured using a haze meter HZ-1 (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7136:2000.
  • a float glass having a thickness of 2.7 mm was cut into a rectangle having a width of 100 mm and a length of 200 mm, and its surface was washed.
  • a thin polyester tape (25 um thick, 25 mm wide) with silicone adhesive was applied to the air side of the float glass in two parallel strips to give a uniform 25 mm wide adhesive area between the polyester tapes.
  • a resin sheet (thickness: 0.8 mm, width: 150 mm, length: 200 mm) was placed on the adhesive region, and a 12 ⁇ m fluororesin film was placed on the resin sheet.
  • the separation between the float glass surface and the ionomer resin sheet was performed at 23° C. and 50% RH at a head speed of 1 cm/min. After peeling off a sample of about 100 mm, deionized water was applied to the peeled interface between the float glass and the resin sheet so that the interface was completely immersed in liquid water. After that, the peel speed was reduced to 0.25 mm/min, and a peel test was conducted on a sample of about 100 mm to evaluate the adhesive strength to glass. Sufficient water was present to ensure that the samples remained "wet" during this test period. The average value of the wet-state glass adhesive strength obtained was used as the value.
  • MMA Methyl methacrylate
  • EA ethyl acrylate
  • X ethylene-(meth)acrylic acid ester copolymer
  • MFR ⁇ material ⁇ Methyl methacrylate (MMA) modified amount or ethyl acrylate (EA) modified amount of each ethylene-(meth)acrylic acid ester copolymer (X) used as a raw material for the ionomer resin in Examples and Comparative Examples, and MFR are shown in Table 1.
  • EMMA1 "Aclift” (registered trademark) WH401F manufactured by Sumitomo Chemical Co., Ltd. was used
  • EEA1 "Rex Pearl” (registered trademark) A4250 manufactured by Japan Polyethylene Co., Ltd. was used.
  • Silane coupling agent 1 S1: 3-glycidoxypropylmethyldiethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Silane coupling agent 2 S2): N- ⁇ -(aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Example 1 100 parts by mass of EMMA2 in Table 1 was introduced into a SUS pressure vessel, 233 parts by mass of toluene was added thereto, and the mixture was stirred at 60° C. under a pressure of 0.02 MPa to dissolve EMMA2. 96 parts by mass of a methanol solution of sodium hydroxide (20% by mass) was added to the resulting solution and stirred at 100° C. for 4 hours to saponify EMMA2 to convert part of the methyl methacrylate units into sodium methacrylate units. Converted. Next, after cooling this solution to 50° C., 83 parts by mass of hydrochloric acid (20% by mass) is added and stirred at 50° C.
  • Example 2 Ionomer resin 2 was obtained in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2 and the temperature of the diluted solution of crude ionomer resin and methanol was changed from 34°C to 37°C. 100 parts by mass of the ionomer resin 2 and 0.06 parts by mass of the silane coupling agent (S1) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 2 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 2.
  • Example 3 Ionomer resin 3 was obtained in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2, and the temperature of the diluted solution of crude ionomer resin and methanol was changed from 34°C to 40°C. 100 parts by mass of the ionomer resin 3 and 0.10 parts by mass of the silane coupling agent (S2) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 3 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 3.
  • S2 silane coupling agent
  • Example 4 An ionomer resin 4 was obtained in the same manner as in Example 3, except that 220 parts by mass of sulfuric acid (30% by mass) was added instead of hydrochloric acid. 100 parts by mass of the ionomer resin 4 and 0.25 parts by mass of the silane coupling agent (S2) are melt-kneaded at 210°C, and the melt-kneaded product is heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed under pressure for 5 minutes to obtain an ionomer resin sheet 4 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 4.
  • S2 silane coupling agent
  • Example 5 Example 1 except that EEA1 was used instead of EMMA2, the concentration of the diluted crude ionomer resin solution was changed from 10% by weight to 6% by weight, and the temperature of the diluted crude ionomer resin solution and methanol was changed from 34°C to 41°C.
  • An ionomer resin 5 was obtained in the same manner as above. 100 parts by mass of the ionomer resin 5 and 0.10 parts by mass of the silane coupling agent (S2) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed under pressure for 5 minutes to obtain an ionomer resin sheet 5 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the ionomer resin sheet 5 thus obtained.
  • Example 6 EMMA1 was used instead of EMMA2, the amount of methanol solution of sodium hydroxide (20% by mass) was changed from 96 parts by mass to 73 parts by mass, and the amount of hydrochloric acid (20% by mass) was changed from 83 parts by mass to 63 parts by mass.
  • Ionomer resin 6 was obtained in the same manner as in Example 1, except that the temperature of the dilute solution of crude ionomer resin and methanol was changed from 34°C to 37°C.
  • Example 7 After obtaining ionomer resin 3 in the same manner as in Example 3, 0.12 parts by mass of a silane coupling agent (S2) and an ultraviolet absorber [2-(2H-benzotriazole- 2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (manufactured by BASF; trade name: TINUVIN329)] 0.1 part by mass was added, melt-kneaded at 210 ° C., and melt-kneaded. The product was compression molded for 5 minutes at a pressure of 4.9 MPa (50 kgf/cm 2 ) under heating at 210° C. to obtain an ionomer resin sheet 7 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the ionomer resin sheet 7.
  • S2 silane coupling agent
  • an ultraviolet absorber [2-(2H-benzotriazole- 2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (manufactured
  • Example 8 Ionomer resin 8 was obtained in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2, and the temperature of the diluted solution containing the crude ionomer resin and methanol was changed from 34°C to 41°C. 100 parts by mass of the ionomer resin 8 and 0.11 parts by mass of the silane coupling agent (S1) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed under pressure for 5 minutes to obtain an ionomer resin sheet 8 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the ionomer resin sheet 8 thus obtained.
  • Example 9 EMMA3 was used instead of EMMA2, 147 parts by weight of sulfuric acid (30% by weight) was used instead of 83 parts by weight of hydrochloric acid (20% by weight), and the temperature of the diluted solution containing the crude ionomer resin and methanol was increased from 34°C to 41°C.
  • An ionomer resin 9 was obtained in the same manner as in Example 1, except for the change. 100 parts by mass of the ionomer resin 9 and 0.09 parts by mass of the silane coupling agent (S1) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 9 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 9.
  • Ionomer resin 10 was obtained in the same manner as in Example 1, except that the temperature of the diluted solution of crude ionomer resin and methanol was changed from 34°C to 43°C. 100 parts by mass of the ionomer resin 10 and 0.10 parts by mass of the silane coupling agent (S1) are melt-kneaded at 210°C, and the melt-kneaded product is heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 10 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the ionomer resin sheet 10 thus obtained.
  • Ionomer resin 11 was obtained in the same manner as in Example 1, except that the temperature of the diluted solution of crude ionomer resin and methanol was changed from 34°C to 46°C. 100 parts by mass of the ionomer resin 11 and 0.10 parts by mass of the silane coupling agent (S1) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 11 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 11 .
  • Ionomer resin 12 was prepared in the same manner as in Example 1, except that 220 parts by mass of sulfuric acid (30% by mass) was added instead of hydrochloric acid, and the temperature of the diluted solution of the crude ionomer resin and methanol was changed from 34°C to 50°C. Obtained. 100 parts by mass of the ionomer resin 12 and 0.10 parts by mass of the silane coupling agent (S1) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 12 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 12 .
  • EMMA3 is used in place of EMMA2, and a granular resin is obtained by reprecipitating a crude ionomer resin solution in a mixed solvent of 500 parts by mass of acetone/water (80/20% by mass) with respect to 100 parts by mass of the crude ionomer resin.
  • Ionomer resin 13 was obtained in the same manner as in Example 1, except that the resulting granular resin was washed three times with a mixed solvent of acetone/water (20/80% by mass).
  • EMMA4 was used instead of EMMA2, the amount of methanol solution of sodium hydroxide (20% by mass) was changed from 96 parts by mass to 66 parts by mass, and the amount of hydrochloric acid (20% by mass) was changed from 83 parts by mass to 57 parts by mass.
  • An ionomer resin 14 was obtained in the same manner as in Example 1, except that 100 parts by mass of the ionomer resin 14 and 0.10 parts by mass of the silane coupling agent (S2) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 14 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 14 .
  • the ionomer resin compositions obtained in Examples 1 to 9 had a high 1% weight loss temperature (Td1), low water absorption haze and slow cooling haze, and high transparency. It was confirmed that the glass adhesive strength in the state is high.
  • the resin sheets produced using the ionomer resin compositions obtained in Examples had little black foreign matter and gelled matter, and had good surface smoothness and appearance.
  • the ionomer resin compositions obtained in Comparative Examples 1 to 7 exhibited poor results in at least one of the 1% weight loss temperature, water absorption haze, slow cooling haze, and wet state glass adhesion. rice field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to an ionomer resin composition comprising an ionomer resin and a silane coupling agent, wherein: the ionomer resin includes a (meth)acrylic acid unit (A), a (meth)acrylic acid neutralized unit (B), and an ethylene unit (C); the total content of the unit (A) and the unit (B) is 6-10 mol% with respect to the total monomer units constituting the ionomer resin; the content of a salt formed by a strong acid and a strong base in the ionomer resin composition is 1-400 mg/kg; and the content of the silane coupling agent is 0.005-0.5 parts by mass with respect to 100 parts by mass of the ionomer resin.

Description

アイオノマー樹脂組成物、樹脂シートおよび合わせガラスIonomer resin composition, resin sheet and laminated glass
 本特許出願は日本国特許出願第2021-104273(出願日:2021年6月23日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、アイオノマー樹脂組成物、該アイオノマー樹脂組成物を含む層を1層以上含んでなる樹脂シート、該樹脂シートからなる合わせガラス中間膜、および該合わせガラス中間膜を有する合わせガラスに関する。
This patent application claims priority under the Paris Convention of Japanese Patent Application No. 2021-104273 (filing date: June 23, 2021), which is hereby incorporated by reference in its entirety. shall be incorporated within.
The present invention relates to an ionomer resin composition, a resin sheet comprising one or more layers containing the ionomer resin composition, a laminated glass intermediate film comprising the resin sheet, and a laminated glass having the laminated glass intermediate film.
 エチレン・不飽和カルボン酸共重合体の中和物であるアイオノマーは、透明性およびガラスとの接着性に優れるため、合わせガラスの中間膜に使用されている(例えば、特許文献1)。近年、合わせガラスに対する要求性能が高くなり、アイオノマー樹脂に対しても、合わせガラスの製作条件によらず高い透明性を保持すること、高温においても高い弾性率を維持し、合わせガラスの強度を低下させないこと、より着色が少なく外観が優れること、よりガラスとの接着性に優れ、ガラスと剥離しにくいこと等が求められるようになってきた。  Ionomers, which are neutralized ethylene/unsaturated carboxylic acid copolymers, are used in interlayer films for laminated glass because of their excellent transparency and adhesion to glass (for example, Patent Document 1). In recent years, the performance required for laminated glass has increased, and ionomer resins must maintain high transparency regardless of the manufacturing conditions of laminated glass, maintain high elastic modulus even at high temperatures, and reduce the strength of laminated glass. There is a growing demand for a film that does not discolor, has an excellent appearance with little coloration, and has excellent adhesiveness to glass and is less likely to separate from glass.
 特許文献2には、エチレンの共重合単位と、3~10個の炭素原子を有する第一α,β-不飽和カルボン酸の共重合単位と、3~10個の炭素原子を有する第二α,β-不飽和カルボン酸の誘導体の共重合単位とを含むエチレン酸コポリマーの中和生成物であるイオノマーが記載されている。 Patent Document 2 discloses copolymerization units of ethylene, copolymerization units of a first α,β-unsaturated carboxylic acid having 3 to 10 carbon atoms, and a second α having 3 to 10 carbon atoms. , and copolymerized units of derivatives of β-unsaturated carboxylic acids.
 特許文献3には、アイオノマー樹脂と接着促進剤としてジアルコキシシラン化合物との均質混合物を含有する樹脂組成物が記載されている。 Patent Document 3 describes a resin composition containing a homogeneous mixture of an ionomer resin and a dialkoxysilane compound as an adhesion promoter.
米国特許第6432522号明細書U.S. Pat. No. 6,432,522 特表2017-519083号公報Japanese Patent Publication No. 2017-519083 特表2020-529500号公報Japanese Patent Publication No. 2020-529500
 特許文献2には、同文献に記載のイオノマーは、従来のイオノマーと比較して、向上した光学特性(ヘイズ)を示すことが記載されている。しかしながら、本発明者らの検討によれば、特許文献2に記載されているようなイオノマーは、成形加工時に熱分解しやすく、得られる中間膜に黒色異物等の欠点を有しやすいことがわかった。 Patent Document 2 describes that the ionomer described in the same document exhibits improved optical properties (haze) compared to conventional ionomers. However, according to the studies of the present inventors, it has been found that ionomers such as those described in Patent Document 2 are likely to be thermally decomposed during molding, and that the resulting intermediate film is likely to have defects such as black foreign matter. rice field.
 また、合わせガラスは屋外で使用すると雨等の湿気により、特に合わせガラスの端部において、ガラスと合わせガラス中間膜との間で剥離が生じたり、白化して透明性の低下が生じたりする場合がある。そのため、湿潤状態においても透明性およびガラスとの接着性の高い合わせガラス中間膜を形成し得るアイオノマー樹脂が求められている。 In addition, when laminated glass is used outdoors, moisture such as rain may cause separation between the glass and the laminated glass interlayer, or whitening and loss of transparency, especially at the edges of the laminated glass. There is Therefore, there is a demand for an ionomer resin capable of forming a laminated glass interlayer film having high transparency and adhesion to glass even in a wet state.
 特許文献3には、同文献に記載の樹脂組成物は、湿潤状態においてガラスに対する向上した接着性を有することが記載されている。しかしながら、本発明者らの検討によれば、特許文献3に記載されているような樹脂組成物は、成形加工時に熱分解しやすく得られる中間膜に黒色異物等の欠点を有する場合があること、また、成形加工時にジアルコキシシラン化合物との架橋反応により架橋ゲルが生成する場合があり、外観が良好な中間膜を得るにはさらなる改善が必要であることがわかった。 Patent Document 3 describes that the resin composition described therein has improved adhesion to glass in a wet state. However, according to the studies of the present inventors, the resin composition described in Patent Document 3 may have defects such as black foreign matter in the interlayer film that is easily thermally decomposed during molding. In addition, it was found that a crosslinked gel may be generated due to a crosslinking reaction with the dialkoxysilane compound during molding, and further improvement is necessary to obtain an intermediate film with good appearance.
 したがって、本発明の目的は、透明性、耐熱分解性および湿潤状態におけるガラス等の基材との接着性に優れたアイオノマー樹脂組成物を提供することにある。 Accordingly, an object of the present invention is to provide an ionomer resin composition that is excellent in transparency, thermal decomposition resistance, and adhesion to substrates such as glass in a wet state.
 本発明者らは、上記課題を解決するために鋭意検討した結果、本発明に到達した。すなわち本発明は、以下の好適な態様を提供するものである。 The present inventors arrived at the present invention as a result of intensive studies to solve the above problems. That is, the present invention provides the following preferred aspects.
[1] アイオノマー樹脂およびシランカップリング剤を含むアイオノマー樹脂組成物であり、
 前記アイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)およびエチレン単位(C)を含み、前記単位(A)および前記単位(B)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であり、前記アイオノマー樹脂中の強酸および強塩基からなる塩の含有量は1~400mg/kgであり、
 前記シランカップリング剤の含有量はアイオノマー樹脂100質量部に対して0.005~0.5質量部である、アイオノマー樹脂組成物。
[2] 前記アイオノマー樹脂はさらに(メタ)アクリル酸エステル単位(D)を含み、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である、[1]に記載のアイオノマー樹脂組成物。
[3] 前記強酸および強塩基からなる塩は、アルカリ金属および/またはアルカリ土類金属の金属塩である、[1]または[2]に記載のアイオノマー樹脂組成物。
[4] 前記強酸および強塩基からなる塩は、ナトリウムイオンおよびカリウムイオンからなる群から選択される少なくとも1種のカチオンと、ハロゲンイオン、硝酸イオンおよび硫酸イオンからなる群から選択される少なくとも1種のアニオンとからなる塩である、[1]~[3]のいずれかに記載のアイオノマー樹脂組成物。
[5] 前記シランカップリング剤は、アミノ系化合物、グリシドキシ系化合物、スルフィド系化合物、メルカプト系化合物、ビニル系化合物、ニトロ系化合物およびクロロ系化合物からなる群から選択される少なくとも1つのシランカップリング剤である、[1]~[4]のいずれかに記載のアイオノマー樹脂組成物。
[6] 前記シランカップリング剤は、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシランおよび3-グリシドキシプロピルメチルジエトキシシランからなる群から選択される少なくとも1つのシランカップリング剤である、[1]~[5]のいずれかに記載のアイオノマー樹脂組成物。
[7] [1]~[6]のいずれかに記載のアイオノマー樹脂組成物を含む層を1層以上含んでなる、樹脂シート。
[8] [7]に記載の樹脂シートからなる合わせガラス中間膜。
[9] 2つのガラス板と、該2つのガラス板の間に配置された[8]に記載の合わせガラス中間膜とを有する、合わせガラス。
[1] An ionomer resin composition containing an ionomer resin and a silane coupling agent,
The ionomer resin contains (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B) and ethylene units (C), and the total content of the units (A) and the units (B) The amount is 6 to 10 mol% based on the total monomer units constituting the ionomer resin, and the content of the salt composed of a strong acid and a strong base in the ionomer resin is 1 to 400 mg/kg,
The ionomer resin composition, wherein the content of the silane coupling agent is 0.005 to 0.5 parts by mass with respect to 100 parts by mass of the ionomer resin.
[2] The ionomer resin further includes (meth)acrylic acid ester units (D), and the total content of the units (A), the units (B) and the units (D) constitutes the ionomer resin. The ionomer resin composition according to [1], which is 6 to 10 mol% based on the total monomer units.
[3] The ionomer resin composition according to [1] or [2], wherein the salt composed of a strong acid and a strong base is a metal salt of alkali metal and/or alkaline earth metal.
[4] The salt composed of a strong acid and a strong base includes at least one cation selected from the group consisting of sodium ions and potassium ions and at least one selected from the group consisting of halogen ions, nitrate ions and sulfate ions. The ionomer resin composition according to any one of [1] to [3], which is a salt consisting of the anion of
[5] The silane coupling agent is at least one silane coupling agent selected from the group consisting of amino-based compounds, glycidoxy-based compounds, sulfide-based compounds, mercapto-based compounds, vinyl-based compounds, nitro-based compounds and chloro-based compounds. The ionomer resin composition according to any one of [1] to [4], which is an agent.
[6] The silane coupling agent is at least one silane coupling agent selected from the group consisting of N-β-(aminoethyl)-γ-aminopropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane. The ionomer resin composition according to any one of [1] to [5], which is an agent.
[7] A resin sheet comprising one or more layers containing the ionomer resin composition according to any one of [1] to [6].
[8] A laminated glass intermediate film comprising the resin sheet according to [7].
[9] A laminated glass comprising two glass plates and the laminated glass interlayer of [8] disposed between the two glass plates.
 本発明によれば、透明性、耐熱分解性および湿潤状態におけるガラス等の基材との接着性に優れたアイオノマー樹脂組成物を提供できる。 According to the present invention, it is possible to provide an ionomer resin composition that is excellent in transparency, thermal decomposition resistance, and adhesion to substrates such as glass in a wet state.
[アイオノマー樹脂組成物]
 本発明のアイオノマー樹脂組成物は、強酸および強塩基からなる塩を1~400mg/kg含有するアイオノマー樹脂と、該アイオノマー樹脂100質量部に対して0.005~0.5質量部のシランカップリング剤とを含み、前記アイオノマー樹脂は(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)およびエチレン単位(C)を含み、前記単位(A)および前記単位(B)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である。
 本発明者らは、アイオノマー樹脂組成物について検討を進めたところ、特定の単位を特定量含み、かつ強酸および強塩基からなる塩を1~400mg/kg含有するアイオノマー樹脂と、該アイオノマー樹脂100質量部に対して0.005~0.5質量部のシランカップリング剤とを組み合わせると、驚くべきことに、透明性、耐熱分解性および湿潤状態におけるガラス等の基材に対する接着性に優れたアイオノマー樹脂組成物が得られることを見出した。
[Ionomer resin composition]
The ionomer resin composition of the present invention comprises an ionomer resin containing 1 to 400 mg/kg of a salt composed of a strong acid and a strong base, and 0.005 to 0.5 parts by mass of silane coupling with respect to 100 parts by mass of the ionomer resin. agent, wherein the ionomer resin comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B) and ethylene units (C), wherein the units (A) and the units (B ) is 6 to 10 mol % based on the total monomer units constituting the ionomer resin.
The inventors of the present invention have investigated an ionomer resin composition, and found that an ionomer resin containing a specific unit in a specific amount and containing 1 to 400 mg / kg of a salt composed of a strong acid and a strong base, and 100 mass of the ionomer resin When combined with 0.005 to 0.5 parts by weight of a silane coupling agent per part, surprisingly, an ionomer having excellent transparency, thermal decomposition resistance, and adhesion to substrates such as glass in a wet state It has been found that a resin composition can be obtained.
 本明細書において、「単位」とは、「由来の構成単位」を意味するものであり、例えば(メタ)アクリル酸単位とは、(メタ)アクリル酸由来の構成単位を示し、(メタ)アクリル酸中和物単位とは、(メタ)アクリル酸中和物由来の構成単位を示し、エチレン単位とはエチレン由来の構成単位を示す。また、本明細書において、「(メタ)アクリル酸」とは、メタクリル酸またはアクリル酸を示す。 In the present specification, the term "unit" means a "derived structural unit", for example, a (meth)acrylic acid unit refers to a structural unit derived from (meth)acrylic acid, (meth)acrylic acid The acid-neutralized unit indicates a structural unit derived from a (meth)acrylic acid-neutralized product, and the ethylene unit indicates a structural unit derived from ethylene. Moreover, in this specification, "(meth)acrylic acid" indicates methacrylic acid or acrylic acid.
〔アイオノマー樹脂〕
 本発明のアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)を含み、前記単位(A)および前記単位(B)の合計含有量が前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である。前記合計含有量が上記範囲内であることにより、透明性およびガラス等の基材との接着性を向上できる。
[Ionomer resin]
The ionomer resin of the present invention comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), wherein the units (A) and the units (B) is 6 to 10 mol % based on the total monomer units constituting the ionomer resin. When the total content is within the above range, it is possible to improve transparency and adhesiveness to a substrate such as glass.
 前記合計含有量が上記上限値を超えると、アイオノマー樹脂組成物の成形加工時における溶融粘度の上昇を抑制しにくく、それにより、アイオノマー樹脂組成物の成形加工性が低下しやすい。さらに、前記合計含有量が上記下限値未満であると、アイオノマー樹脂組成物の透明性、特に徐冷してアイオノマー樹脂組成物の結晶化を促進させた場合における透明性(以降、徐冷時の透明性ともいう)が低下しやすい。前記合計含有量は、アイオノマー樹脂組成物の透明性(特に徐冷時の透明性)およびガラス等の基材に対する接着性を向上しやすい観点から、6モル%以上、好ましくは6.5モル%以上、より好ましくは7.0モル%以上、さらに好ましくは7.5モル%以上であり、また、成形加工性を向上しやすい観点から、10モル%以下、好ましくは9.9モル%以下、より好ましくは9.5モル%以下である。 If the total content exceeds the above upper limit, it is difficult to suppress an increase in melt viscosity during molding of the ionomer resin composition, and as a result, moldability of the ionomer resin composition tends to decrease. Furthermore, when the total content is less than the above lower limit, the transparency of the ionomer resin composition, particularly the transparency when the crystallization of the ionomer resin composition is promoted by slow cooling (hereinafter referred to as the transparency during slow cooling (also called transparency) tends to decrease. The total content is 6 mol% or more, preferably 6.5 mol%, from the viewpoint of easily improving the transparency of the ionomer resin composition (especially the transparency during slow cooling) and the adhesion to substrates such as glass. Above, more preferably 7.0 mol% or more, more preferably 7.5 mol% or more, and from the viewpoint of easily improving moldability, 10 mol% or less, preferably 9.9 mol% or less, More preferably, it is 9.5 mol % or less.
 前記単位(A)および前記単位(B)の合計含有量は、アイオノマー樹脂の製造方法により調整できる。より具体的には、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程を含む方法によりアイオノマー樹脂を製造する場合には、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位を、前記けん化反応および脱金属反応によって、(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)に変換する各反応の反応度(変換割合)によって調整できる。 The total content of the units (A) and the units (B) can be adjusted according to the method for producing the ionomer resin. More specifically, when an ionomer resin is produced from an ethylene-(meth)acrylic acid ester copolymer as a raw material by a method including a saponification reaction step of the copolymer, ethylene-(meth)acrylic acid ester Each reaction for converting the (meth)acrylic acid ester unit in the copolymer into the (meth)acrylic acid unit (A) and the (meth)acrylic acid neutralized product unit (B) by the saponification reaction and the demetallization reaction can be adjusted by the reactivity (conversion ratio) of
 <(メタ)アクリル酸単位(A)>
 (メタ)アクリル酸単位(A)を構成する単量体の例としては、アクリル酸、メタクリル酸が挙げられ、耐熱性および基材に対する接着性の観点から、好ましくはメタクリル酸である。これら(メタ)アクリル酸単位は1種単独でも2種の組み合わせでもよい。
<(Meth) acrylic acid unit (A)>
Examples of monomers constituting the (meth)acrylic acid unit (A) include acrylic acid and methacrylic acid, and methacrylic acid is preferred from the viewpoint of heat resistance and adhesion to substrates. These (meth)acrylic acid units may be used alone or in combination of two.
 (メタ)アクリル酸単位(A)のアイオノマー樹脂中の含有量は、前記単位(A)および前記単位(B)の合計含有量が、アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%の範囲内であれば特に制限されない。本発明の一実施形態において、(メタ)アクリル酸単位(A)のアイオノマー樹脂中の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは4.5モル%以上、より好ましくは5.0モル%以上、さらに好ましくは5.5モル%以上、特に好ましくは5.8モル%以上であり、また、好ましくは9.0モル%以下、より好ましくは8.5モル%以下、さらに好ましくは8.0モル%以下、特に好ましくは7.5モル%以下である。単位(A)の前記含有量が上記下限値以上であると、アイオノマー樹脂組成物の透明性および基材に対する接着性を向上しやすい。また、上記上限値以下であると、成形加工性を向上しやすい。 The content of the (meth)acrylic acid unit (A) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is 6 to 6 based on the total monomer units constituting the ionomer resin. There is no particular limitation as long as it is within the range of 10 mol %. In one embodiment of the present invention, the content of (meth)acrylic acid units (A) in the ionomer resin is preferably 4.5 mol% or more, based on the total monomer units constituting the ionomer resin, and more Preferably 5.0 mol% or more, more preferably 5.5 mol% or more, particularly preferably 5.8 mol% or more, and preferably 9.0 mol% or less, more preferably 8.5 mol% Below, more preferably 8.0 mol % or less, particularly preferably 7.5 mol % or less. When the content of the unit (A) is at least the above lower limit, the transparency of the ionomer resin composition and the adhesion to a substrate are likely to be improved. Further, when the content is equal to or less than the above upper limit, it is easy to improve moldability.
 <(メタ)アクリル酸中和物単位(B)>
 (メタ)アクリル酸中和物単位(B)としては、前記(メタ)アクリル酸単位(A)の中和物単位が好ましい。なお、(メタ)アクリル酸中和物は、(メタ)アクリル酸の水素イオンを金属イオンで置き換えたものである。前記金属イオンの例としては、リチウム、ナトリウム、カリウム等の1価金属、マグネシウム、カルシウム、亜鉛、アルミニウム、チタン等の多価金属のイオンが挙げられる。このような金属イオンは1種単独でも2種以上の組み合わせでもよい。例えば、1種以上の1価金属イオンと1種以上の2価金属イオンとの組み合わせであってもよい。
<(Meth)acrylic acid neutralized unit (B)>
The neutralized (meth)acrylic acid unit (B) is preferably the neutralized (meth)acrylic acid unit (A). The neutralized (meth)acrylic acid is obtained by replacing hydrogen ions of (meth)acrylic acid with metal ions. Examples of the metal ions include monovalent metal ions such as lithium, sodium and potassium, and polyvalent metal ions such as magnesium, calcium, zinc, aluminum and titanium. Such metal ions may be used singly or in combination of two or more. For example, it may be a combination of one or more monovalent metal ions and one or more divalent metal ions.
 (メタ)アクリル酸中和物単位(B)のアイオノマー樹脂中の含有量は、前記単位(A)および前記単位(B)の合計含有量が、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%の範囲内であれば特に制限されない。本発明の一実施形態において、(メタ)アクリル酸中和物単位(B)の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは0.65モル%以上、より好ましくは1.0モル%以上、さらに好ましくは1.3モル%以上、さらにより好ましくは1.5モル%以上、特に好ましくは1.6モル%以上であり、また、好ましくは3.0モル%以下、より好ましくは2.7モル%以下、さらに好ましくは2.6モル%以下、特に好ましくは2.5モル%以下である。単位(B)の含有量が上記下限値以上であると、透明性および弾性率を向上しやすく、上記上限値以下であると、成形加工時の溶融粘度の上昇を抑制しやすい。 The content of the (meth)acrylic acid neutralized unit (B) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is the total monomer units constituting the ionomer resin. As a standard, it is not particularly limited as long as it is within the range of 6 to 10 mol %. In one embodiment of the present invention, the content of (meth)acrylic acid neutralized units (B) is preferably 0.65 mol % or more, more preferably 0.65 mol % or more, based on the total monomer units constituting the ionomer resin. is 1.0 mol% or more, more preferably 1.3 mol% or more, even more preferably 1.5 mol% or more, particularly preferably 1.6 mol% or more, and preferably 3.0 mol% Below, it is more preferably 2.7 mol % or less, still more preferably 2.6 mol % or less, and particularly preferably 2.5 mol % or less. When the content of the unit (B) is at least the above lower limit, the transparency and elastic modulus are likely to be improved, and when it is at most the above upper limit, it is easy to suppress an increase in melt viscosity during molding.
 前記単位(A)および前記単位(B)の各含有量は、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属反応工程を含む方法によりアイオノマー樹脂を製造する場合、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位を、前記けん化反応および脱金属反応によって、(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)に変換する各反応における反応度によって調整できる。 Each content of the unit (A) and the unit (B) is obtained by using an ethylene-(meth)acrylic acid ester copolymer as a raw material, and ionomer by a method including a saponification reaction step and a demetallization reaction step of the copolymer. When producing a resin, the (meth)acrylic acid ester units in the ethylene-(meth)acrylic acid ester copolymer are converted into (meth)acrylic acid units (A) and (meth)acrylic acid units (A) and (meth) It can be adjusted by the reactivity in each reaction for converting to the neutralized acrylic acid unit (B).
 <エチレン単位(C)>
 エチレン単位(C)の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、アイオノマー樹脂組成物の耐衝撃性を高めやすい観点から、好ましくは80モル%以上、より好ましくは85モル%以上、さらに好ましくは88モル%以上であり、また、アイオノマー樹脂組成物の透明性(特に徐冷時の透明性)を高めやすい観点から、好ましくは94モル%以下、より好ましくは91モル%以下である。エチレン単位(C)の含有量が上記下限値以上であると、機械的強度および成形加工性を向上しやすく、また、上記上限値以下であると、透明性を向上しやすい。
<Ethylene unit (C)>
The content of the ethylene unit (C) is preferably 80 mol% or more, more preferably 85 mol, based on the total monomer units constituting the ionomer resin, from the viewpoint of easily increasing the impact resistance of the ionomer resin composition. % or more, more preferably 88 mol % or more, and preferably 94 mol % or less, more preferably 91 mol %, from the viewpoint of easily increasing the transparency of the ionomer resin composition (especially the transparency during slow cooling). It is below. When the content of ethylene units (C) is at least the above lower limit, the mechanical strength and molding processability are likely to be improved, and when it is at most the above upper limit, transparency is likely to be improved.
 <(メタ)アクリル酸エステル単位(D)>
 本発明の一実施形態において、アイオノマー樹脂は(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)に加えて、より高い透明性を得やすい観点から、さらに(メタ)アクリル酸エステル単位(D)を含むことが好ましい。
<(Meth) acrylic acid ester unit (D)>
In one embodiment of the present invention, the ionomer resin has (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C) to obtain higher transparency. From the viewpoint of ease of use, it is preferable that the (meth)acrylic acid ester unit (D) is further included.
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、透明性(特に徐冷時の透明性)を向上しやすい観点から、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であることが好ましい。すなわち、本発明の好適な一実施形態において、アイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)、および(メタ)アクリル酸エステル単位(D)を含み、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量が、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であることが好ましい。アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量が上記上限値以下であると、アイオノマー樹脂組成物の成形加工時における溶融粘度の上昇を抑制しやすく、それにより、アイオノマー樹脂組成物の成形加工性を向上しやすい。また、前記合計含有量が下限値以上であると、アイオノマー樹脂組成物の透明性、特に徐冷時の透明性を高めやすい。
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合において、前記単位(A)、前記単位(B)および前記単位(D)の前記合計含有量は、透明性(特に徐冷時の透明性)および基材に対する接着性を向上しやすい観点から、6モル%以上、好ましくは6.5モル%以上、より好ましくは7.0モル%以上、さらに好ましくは7.5モル%以上であり、また、成形加工性の観点から、10モル%以下、好ましくは9.9モル%以下、より好ましくは9.5モル%以下である。
When the ionomer resin contains the (meth)acrylic acid ester unit (D), the total content of the unit (A), the unit (B) and the unit (D) is ), it is preferably 6 to 10 mol % based on the total monomer units constituting the ionomer resin. That is, in one preferred embodiment of the present invention, the ionomer resin comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), ethylene units (C), and (meth)acrylic Including the acid ester unit (D), the total content of the unit (A), the unit (B) and the unit (D) is 6 to 10 mol based on the total monomer units constituting the ionomer resin %. When the ionomer resin contains (meth)acrylic acid ester units (D), the total content of the units (A), the units (B) and the units (D) is the above upper limit or less, the ionomer resin composition It is easy to suppress the increase in the melt viscosity during the molding process of the product, thereby easily improving the moldability of the ionomer resin composition. Further, when the total content is at least the lower limit value, the transparency of the ionomer resin composition, especially during slow cooling, tends to be enhanced.
When the ionomer resin contains (meth)acrylic acid ester units (D), the total content of the units (A), the units (B) and the units (D) is From the viewpoint of easily improving transparency) and adhesion to a substrate, the content is 6 mol% or more, preferably 6.5 mol% or more, more preferably 7.0 mol% or more, and still more preferably 7.5 mol% or more. Also, from the viewpoint of moldability, it is 10 mol % or less, preferably 9.9 mol % or less, more preferably 9.5 mol % or less.
 前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、アイオノマー樹脂の原料により調整できる。より具体的には、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程を含む方法によりアイオノマー樹脂を製造する場合には、アイオノマー樹脂の原料であるエチレン-(メタ)アクリル酸エステル共重合体の(メタ)アクリル酸エステル変性量により調整できる。また、米国特許8399096号に記載されるように、エチレンおよび(メタ)アクリル酸を原料とし、これらを重合してアイオノマー樹脂を製造する場合には、共重合させるエチレンと(メタ)アクリル酸との割合により調整できる。 The total content of the units (A), the units (B) and the units (D) can be adjusted depending on the raw material of the ionomer resin. More specifically, when an ethylene-(meth)acrylic acid ester copolymer is used as a raw material and an ionomer resin is produced by a method including a saponification reaction step of the copolymer, ethylene- It can be adjusted by the (meth)acrylic acid ester modification amount of the (meth)acrylic acid ester copolymer. Further, as described in US Pat. No. 8,399,096, when ethylene and (meth)acrylic acid are used as raw materials and these are polymerized to produce an ionomer resin, ethylene and (meth)acrylic acid to be copolymerized It can be adjusted by the ratio.
 (メタ)アクリル酸エステル単位(D)を構成する単量体の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸アリル等が挙げられる。
 これらのうち、透明性または耐熱性の観点から、好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチルであり、より好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチルであり、さらに好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチルであり、特に好ましい単量体は、(メタ)アクリル酸メチルである。これら(メタ)アクリル酸エステルは1種単独でも2種以上の組み合わせでもよい。
Examples of monomers constituting the (meth)acrylate unit (D) include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and isopropyl (meth)acrylate. , n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, amyl (meth)acrylate, isoamyl (meth)acrylate, ( n-hexyl meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, pentadecyl (meth)acrylate, dodecyl (meth)acrylate, isobornyl (meth)acrylate, (meth)acrylic acid Phenyl, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, glycidyl (meth)acrylate, allyl (meth)acrylate etc.
Among these, preferred monomers from the viewpoint of transparency or heat resistance are methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, ( meth) n-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, and more preferred monomers are methyl (meth) acrylate, ( Ethyl meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and more preferred monomers are (meth) Methyl acrylate, n-butyl (meth)acrylate and isobutyl (meth)acrylate, and a particularly preferred monomer is methyl (meth)acrylate. These (meth)acrylic acid esters may be used singly or in combination of two or more.
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、(メタ)アクリル酸エステル単位(D)のアイオノマー樹脂中の含有量は特に制限されない。本発明の一実施形態において、(メタ)アクリル酸エステル単位(D)のアイオノマー樹脂中の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは0モル%超、より好ましくは0.01モル%以上、さらに好ましくは0.05モル%以上、特に好ましくは0.08モル%以上であり、また、好ましくは1.0モル%以下、より好ましくは0.7モル%以下、さらに好ましくは0.5モル%以下である。単位(D)の含有量が上記下限値以上、かつ上記上限値以下であるとアイオノマー樹脂組成物の透明性を向上しやすい。 When the ionomer resin contains (meth)acrylic acid ester units (D), the content of the (meth)acrylic acid ester units (D) in the ionomer resin is not particularly limited. In one embodiment of the present invention, the content of (meth)acrylic acid ester units (D) in the ionomer resin is preferably greater than 0 mol %, more preferably more than 0 mol %, based on the total monomer units constituting the ionomer resin. is 0.01 mol% or more, more preferably 0.05 mol% or more, particularly preferably 0.08 mol% or more, and preferably 1.0 mol% or less, more preferably 0.7 mol% or less , more preferably 0.5 mol % or less. When the content of the unit (D) is at least the above lower limit and at most the above upper limit, the transparency of the ionomer resin composition is likely to be improved.
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合の前記単位(D)の含有量は、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属反応工程を含む方法によりアイオノマー樹脂を製造する場合、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位(D)を、(メタ)アクリル酸単位(A)に変換する前記けん化反応の反応度によって調整できる。 When the ionomer resin contains the (meth)acrylic acid ester unit (D), the content of the unit (D) is obtained by using an ethylene-(meth)acrylic acid ester copolymer as a raw material and saponifying the copolymer. and when producing an ionomer resin by a method including a demetallization reaction step, the (meth)acrylic acid ester unit (D) in the ethylene-(meth)acrylic acid ester copolymer is replaced with the (meth)acrylic acid unit (A) can be adjusted by the reactivity of the saponification reaction that converts to
 <他の単量体単位>
 本発明のアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに場合により含まれる(メタ)アクリル酸エステル単位(D)以外の他の単量体単位を含んでいてもよい。他の単量体単位の例としては、(メタ)アクリル酸単位(A)以外のカルボン酸単位(A1)、(メタ)アクリル酸中和物単位(B)以外のカルボン酸中和物単位(B1)等が挙げられる。
 前記カルボン酸単位(A1)を構成する単量体の例としては、イタコン酸、無水マレイン酸、マレイン酸モノメチル、マレイン酸モノエチル等が挙げられ、好ましくはマレイン酸モノメチル、マレイン酸モノエチルである。前記カルボン酸中和物単位(B1)を構成する単量体の例としては、前記カルボン酸単位(A1)の中和物単位等が挙げられる。なお、カルボン酸中和物は、カルボン酸の水素イオンを金属イオンで置き換えたものである。前記金属イオンとしては、上述の(メタ)アクリル酸中和物単位(B)における金属イオンと同様のものが挙げられ、該金属イオンは、1種単独でも2種以上の組み合わせでもよい。
 これらの他の単量体単位は1種単独でも2種以上の組み合わせでもよい。
<Other monomer units>
The ionomer resin of the present invention comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and optionally included (meth)acrylic acid ester units ( It may contain monomeric units other than D). Examples of other monomer units include a carboxylic acid unit (A1) other than the (meth)acrylic acid unit (A), and a neutralized carboxylic acid unit other than the (meth)acrylic acid neutralized unit (B) ( B1) and the like.
Examples of the monomer constituting the carboxylic acid unit (A1) include itaconic acid, maleic anhydride, monomethyl maleate, monoethyl maleate, etc. Monomethyl maleate and monoethyl maleate are preferred. Examples of the monomer constituting the neutralized carboxylic acid unit (B1) include neutralized units of the neutralized carboxylic acid unit (A1). The neutralized carboxylic acid is obtained by replacing hydrogen ions of carboxylic acid with metal ions. Examples of the metal ions include those similar to the metal ions in the neutralized (meth)acrylic acid unit (B) described above, and the metal ions may be used singly or in combination of two or more.
These other monomer units may be used singly or in combination of two or more.
 アイオノマー樹脂が上記他の単量体単位を含む場合、その合計含有量、例えば(A1)および(B1)の合計含有量は、本発明の効果を損なわない範囲で適宜選択すればよく、例えば、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは5モル%以下、より好ましくは3モル%以下、さらに好ましくは1モル%以下であり、また、好ましくは0.01モル%以上、より好ましくは0.1モル%以上である。 When the ionomer resin contains the above-mentioned other monomer units, the total content thereof, for example, the total content of (A1) and (B1), may be appropriately selected within a range that does not impair the effects of the present invention. Based on the total monomer units constituting the ionomer resin, preferably 5 mol% or less, more preferably 3 mol% or less, still more preferably 1 mol% or less, and preferably 0.01 mol% or more, More preferably, it is 0.1 mol % or more.
 アイオノマー樹脂中の(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに含まれる場合の(メタ)アクリル酸エステル単位(D)、および他の単量体単位(例えば単位(A1)および単位(B1))の各含有量は、まず、アイオノマー樹脂中の単量体単位を熱分解ガスクロマトグラフィーで同定し、次いで、核磁気共鳴分光法(NMR)および元素分析を用いることによって、求めることができる。より具体的には実施例に記載の方法により求めることができる。また、上記の分析方法と、IRおよび/またはラマン分析とを組合せた方法で求めることもできる。これらの分析の前にアイオノマー樹脂以外の成分を、再沈殿法やソックスレー抽出法にて除去しておくことが好ましい。 (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C) in the ionomer resin, and (meth)acrylic acid ester units (D) when included, and other monomeric units (e.g., unit (A1) and unit (B1)) are determined by first identifying the monomeric units in the ionomer resin by pyrolysis gas chromatography, and then by nuclear magnetic resonance It can be determined by using spectroscopy (NMR) and elemental analysis. More specifically, it can be determined by the method described in Examples. It can also be determined by a method combining the above analysis method with IR and/or Raman analysis. Prior to these analyses, it is preferable to remove components other than the ionomer resin by a reprecipitation method or a Soxhlet extraction method.
 <強酸および強塩基からなる塩>
 アイオノマー樹脂は、強酸および強塩基からなる塩(以下、単に「塩」ともいう)を1~400mg/kg含有する。本発明者らは、アイオノマー樹脂が塩を1~400mg/kg含有する場合、アイオノマー樹脂組成物の高い透明性(特に吸水時の透明性)を維持しつつ、耐熱分解性を向上できることを見出した。そのため、本発明のアイオノマー樹脂組成物は、高い透明性および高い耐熱分解性を両立できる。上記範囲内の塩を含有することにより、本発明のアイオノマー樹脂組成物が耐熱分解性に優れる理由は明らかでないが、塩とアイオノマー樹脂中の(メタ)アクリル酸単位(A)との相互作用により、アイオノマー樹脂中の(メタ)アクリル酸単位(A)が熱によって脱離することを抑制できるためだと考えられる。
<Salts Consisting of Strong Acids and Strong Bases>
The ionomer resin contains 1 to 400 mg/kg of a salt composed of a strong acid and a strong base (hereinafter also simply referred to as "salt"). The present inventors have found that when the ionomer resin contains 1 to 400 mg/kg of salt, the ionomer resin composition can maintain high transparency (especially transparency when absorbing water) and can improve thermal decomposition resistance. . Therefore, the ionomer resin composition of the present invention can achieve both high transparency and high thermal decomposition resistance. Although it is not clear why the ionomer resin composition of the present invention has excellent thermal decomposition resistance by containing a salt within the above range, the interaction between the salt and the (meth)acrylic acid unit (A) in the ionomer resin , the (meth)acrylic acid unit (A) in the ionomer resin can be suppressed from desorbing due to heat.
 さらに本発明者らは、通常、アイオノマー樹脂とシランカップリング剤とを組み合わせると成形加工時に黒色異物や架橋ゲルが生成しやすく、外観が良好な樹脂シートを得にくい傾向にあるが、アイオノマー樹脂が塩を1~400mg/kg含有する場合、意外なことに、外観が良好な樹脂シートを得やすいことも見出した。これは、理由は定かではないが、塩を含有することによりアイオノマー樹脂組成物の耐熱分解性が向上するためであると考えられる。 Furthermore, the inventors of the present invention have generally found that when an ionomer resin and a silane coupling agent are combined, black foreign matter and crosslinked gel are likely to be generated during molding, and it tends to be difficult to obtain a resin sheet with a good appearance. Surprisingly, it was also found that a resin sheet with a good appearance can be easily obtained when the salt content is 1 to 400 mg/kg. Although the reason for this is not clear, it is believed that the inclusion of the salt improves the thermal decomposition resistance of the ionomer resin composition.
 前記塩の含有量が上記上限値を超えるとアイオノマー樹脂組成物の透明性が低下しやすくなり、また、上記下限値未満であると、耐熱分解性が低下して、例えば成形加工時等の際にアイオノマー樹脂組成物が熱分解しやすくなる。前記塩の含有量は、耐熱分解性を向上しやすい観点および得られる樹脂シートの外観を向上しやすい観点から、1mg/kg以上、好ましくは3mg/kg以上、より好ましくは5mg/kg以上である。また、透明性(特に吸水時の透明性)を向上しやすい観点および得られる樹脂シートの外観を向上しやすい観点から、400mg/kg以下、好ましくは380mg/kg以下、より好ましくは350mg/kg以下、さらに好ましくは320mg/kg以下、さらにより好ましくは300mg/kg以下、特に好ましくは200mg/kg以下である。アイオノマー樹脂中の塩の含有量は、後述のようにアイオノマー樹脂に塩を含有させる方法に応じて適宜選択できる。なお、アイオノマー樹脂中の塩の含有量は、イオンクロマトグラフを用いて測定でき、例えば、実施例に記載の方法で測定できる。 If the content of the salt exceeds the above upper limit, the transparency of the ionomer resin composition tends to be reduced. The ionomer resin composition tends to thermally decompose. The content of the salt is 1 mg/kg or more, preferably 3 mg/kg or more, more preferably 5 mg/kg or more, from the viewpoint of easily improving the thermal decomposition resistance and the viewpoint of easily improving the appearance of the resulting resin sheet. . In addition, from the viewpoint of easily improving the transparency (especially the transparency at the time of water absorption) and the viewpoint of easily improving the appearance of the resulting resin sheet, the amount is 400 mg/kg or less, preferably 380 mg/kg or less, more preferably 350 mg/kg or less. , more preferably 320 mg/kg or less, still more preferably 300 mg/kg or less, and particularly preferably 200 mg/kg or less. The content of the salt in the ionomer resin can be appropriately selected according to the method of incorporating the salt into the ionomer resin as described later. The salt content in the ionomer resin can be measured using an ion chromatograph, for example, by the method described in Examples.
 強酸および強塩基からなる塩としては、特に制限されず、例えば強酸および強塩基からなるアルカリ金属および/またはアルカリ土類金属の金属塩が挙げられる。これらの塩は1種単独でも2種以上の組み合わせでもよい。アルカリ金属塩の例としては、リチウム塩、ナトリウム塩、カリウム塩、ルビジウム塩、セシウム塩等が挙げられる。アイオノマー樹脂組成物の耐熱分解性を高めやすい観点および外観の良好な樹脂シートを得やすい観点から、好ましいアルカリ金属塩は、リチウム塩、ナトリウム塩、カリウム塩、より好ましくはナトリウム塩、カリウム塩であり、さらに好ましくはナトリウム塩である。アルカリ土類金属塩の例としては、ベリリウム塩、マグネシウム塩、カルシウム塩、ストロンチウム塩、バリウム塩等が挙げられる。アイオノマー樹脂組成物の耐熱分解性を高めやすい観点から、好ましいアルカリ土類金属塩はマグネシウム塩、カルシウム塩である。 The salt consisting of a strong acid and a strong base is not particularly limited, and examples thereof include metal salts of alkali metals and/or alkaline earth metals consisting of a strong acid and a strong base. These salts may be used singly or in combination of two or more. Examples of alkali metal salts include lithium salts, sodium salts, potassium salts, rubidium salts, cesium salts and the like. Preferred alkali metal salts are lithium salts, sodium salts and potassium salts, more preferably sodium salts and potassium salts, from the viewpoints of easily increasing the thermal decomposition resistance of the ionomer resin composition and from the viewpoints of easily obtaining a resin sheet with a good appearance. , more preferably the sodium salt. Examples of alkaline earth metal salts include beryllium salts, magnesium salts, calcium salts, strontium salts, barium salts and the like. Preferred alkaline earth metal salts are magnesium salts and calcium salts from the viewpoint of easily increasing the thermal decomposition resistance of the ionomer resin composition.
 アイオノマー樹脂組成物の耐熱分解性を高めやすい観点および外観の良好な樹脂シートを得やすい観点から、より好ましい塩は、ナトリウムイオン、カリウムイオン、マグネシウムイオンおよびカルシウムイオンからなる群から選択される少なくとも1種のカチオンと、ハロゲンイオン、硫酸イオン、硝酸イオンおよびスルホン酸イオンからなる群から選択される少なくとも1種のアニオンとからなる塩であり、さらに好ましくはナトリウムイオンおよびカリウムイオンからなる群から選択される少なくとも1種のカチオンと、ハロゲンイオン、硫酸イオンおよび硝酸イオンからなる群から選択される少なくとも1種のアニオンとからなる塩である。 A more preferable salt is at least one salt selected from the group consisting of sodium ions, potassium ions, magnesium ions and calcium ions, from the viewpoints of easily increasing the thermal decomposition resistance of the ionomer resin composition and from the viewpoint of easily obtaining a resin sheet with a good appearance. A salt consisting of a cation of a species and at least one anion selected from the group consisting of halogen ions, sulfate ions, nitrate ions and sulfonate ions, more preferably selected from the group consisting of sodium ions and potassium ions. and at least one anion selected from the group consisting of halogen ions, sulfate ions and nitrate ions.
 具体的な好ましい塩の例としては、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硝酸ナトリウム、硝酸カリウム、硝酸マグネシウム、硝酸カルシウム、p-トルエンスルホン酸ナトリウム、p-トルエンスルホン酸カリウム、p-トルエンスルホン酸マグネシウム、p-トルエンスルホン酸カルシウムが挙げられる。透明性および耐熱分解性を向上しやすい観点および外観の良好な樹脂シートを得やすい観点から、より好ましい塩は、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、硫酸カリウム、硝酸ナトリウム、硝酸カリウム、さらに好ましくは塩化ナトリウム、硫酸ナトリウム、硝酸ナトリウムである。 Examples of specific preferred salts include sodium chloride, potassium chloride, magnesium chloride, calcium chloride, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, sodium nitrate, potassium nitrate, magnesium nitrate, calcium nitrate, p-toluenesulfonic acid. sodium, potassium p-toluenesulfonate, magnesium p-toluenesulfonate, and calcium p-toluenesulfonate. More preferable salts are sodium chloride, potassium chloride, sodium sulfate, potassium sulfate, sodium nitrate, potassium nitrate, and more preferably chloride, from the viewpoint of easily improving transparency and thermal decomposition resistance and from the viewpoint of easily obtaining a resin sheet with good appearance. Sodium, sodium sulfate, sodium nitrate.
 アイオノマー樹脂に塩を含有させる方法は特に制限されず、例えば、(I)アイオノマー樹脂の製造工程において塩を生成させて含有させる方法、(II)アイオノマー樹脂の製造工程において塩を別添する方法、および(III)塩を含まないアイオノマー樹脂を製造して、該樹脂に塩を後添加する方法等が挙げられる。これらの方法のうち、塩をアイオノマー樹脂中に均一に分散しやすく、これにより透明性および耐熱分解性を向上しやすい観点から、アイオノマー樹脂の製造工程中に塩を生成させて含有させる前記方法(I)が好ましい。 The method of adding a salt to the ionomer resin is not particularly limited, and includes, for example, (I) a method of generating and adding a salt in the ionomer resin manufacturing process, (II) a method of separately adding a salt in the ionomer resin manufacturing process, and (III) a method of producing a salt-free ionomer resin and post-adding a salt to the resin. Among these methods, from the viewpoint of facilitating uniform dispersion of the salt in the ionomer resin, thereby facilitating improvement in transparency and thermal decomposition resistance, the method of forming and containing the salt during the manufacturing process of the ionomer resin ( I) is preferred.
 アイオノマー樹脂中の強酸および強塩基からなる塩の含有量の調整方法は、上記の塩の含有方法に応じて適宜選択され得る。例えば、前記方法(I)により塩を含有させる場合、得られた樹脂の洗浄度により調整できる。より具体的には、得られた樹脂を洗浄液で洗浄する工程における洗浄回数により、アイオノマー樹脂中の塩の含有量を調整できる。前記洗浄液の例としては、塩の良溶媒であり、かつ、樹脂の貧溶媒である溶媒、例えば、水、メタノール等のアルコール類、アセトン等のケトン類、およびこれらの混合溶媒等が挙げられる。前記方法(II)および(III)により塩を含有させる場合には、別添する塩の量、および後添加する塩の量により、アイオノマー樹脂中の塩の含有量をそれぞれ調整できる。 The method for adjusting the content of the salt composed of the strong acid and the strong base in the ionomer resin can be appropriately selected according to the method of containing the salt. For example, when a salt is added by the above method (I), it can be adjusted by the washing degree of the obtained resin. More specifically, the salt content in the ionomer resin can be adjusted by the number of washings in the step of washing the obtained resin with a washing liquid. Examples of the cleaning liquid include solvents that are good solvents for salts and poor solvents for resins, such as water, alcohols such as methanol, ketones such as acetone, and mixed solvents thereof. When a salt is added by the methods (II) and (III), the salt content in the ionomer resin can be adjusted by adjusting the amount of separately added salt and the amount of post-added salt.
 アイオノマー樹脂中の強酸および強塩基からなる塩の分散状態は特に制限されないが、透明性および耐熱分解性を向上しやすい観点および外観の良好な樹脂シートを得やすい観点から、アイオノマー樹脂中に均一に分散していることが好ましい。 The dispersion state of the salt composed of a strong acid and a strong base in the ionomer resin is not particularly limited. Distributed is preferred.
 本発明の一実施形態において、アイオノマー樹脂の炭素1000個当たりの分岐度は、特に制限されず、好ましくは5~30、より好ましくは6~20である。前記分岐度は、アイオノマー樹脂を重合する際の温度、例えば、アイオノマー樹脂をEMMAけん化法にて合成する場合には、エチレン-(メタ)アクリル酸エステル(X)を合成する際の重合温度により調整できる。炭素1000個当たりの分岐度は、固体NMRを用いてDDMAS法にて測定できる。 In one embodiment of the present invention, the degree of branching per 1000 carbon atoms of the ionomer resin is not particularly limited, preferably 5-30, more preferably 6-20. The degree of branching is adjusted by the temperature at which the ionomer resin is polymerized, for example, the polymerization temperature at which ethylene-(meth)acrylic acid ester (X) is synthesized when the ionomer resin is synthesized by the EMMA saponification method. can. The degree of branching per 1000 carbons can be measured by the DDMAS method using solid-state NMR.
 本発明の一実施形態において、アイオノマー樹脂の融点は、耐熱性および耐熱分解性の観点から、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは80℃以上であり、また、合わせガラスを作製する際、ガラスとの接着力が発現しやすいという観点から、好ましくは200℃以下、より好ましくは180℃以下、さらに好ましくは150℃以下である。前記融点は、JIS K7121:2012に基づき測定できる。具体的には、示差走査熱量計(DSC)を用いて、冷却速度-10℃/分、昇温速度10℃/分の条件で測定し、2回目の昇温の融解ピークのピックトップ温度から求めることができる。 In one embodiment of the present invention, the melting point of the ionomer resin is preferably 50° C. or higher, more preferably 60° C. or higher, and still more preferably 80° C. or higher, from the viewpoint of heat resistance and thermal decomposition resistance. is preferably 200° C. or lower, more preferably 180° C. or lower, and even more preferably 150° C. or lower, from the viewpoint that the adhesive strength with glass is likely to be exhibited when the is produced. The melting point can be measured based on JIS K7121:2012. Specifically, using a differential scanning calorimeter (DSC), measurement was performed under the conditions of a cooling rate of −10° C./min and a heating rate of 10° C./min, and from the pick-top temperature of the melting peak of the second heating can ask.
 本発明の一実施形態において、アイオノマー樹脂の融解熱は、好ましくは0J/g以上、25J/g以下である。前記融解熱は、JIS K7122:2012に基づき測定できる。具体的には、示差走査熱量計(DSC)を用いて、冷却速度-10℃/分、昇温速度10℃/分の条件で測定し、2回目の昇温時の融解ピークの面積から算出することができる。 In one embodiment of the present invention, the heat of fusion of the ionomer resin is preferably 0 J/g or more and 25 J/g or less. The heat of fusion can be measured based on JIS K7122:2012. Specifically, using a differential scanning calorimeter (DSC), measurement was performed under the conditions of a cooling rate of −10° C./min and a heating rate of 10° C./min, and the area of the melting peak during the second heating was calculated. can do.
 本発明の一実施形態において、JIS K7210-1:2014に準拠し、190℃、2.16Kgの条件で測定されるアイオノマー樹脂のメルトフローレート(MFR)は、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.7g/10分以上、さらにより好ましくは1.0g/10分以上、特に好ましくは1.5g/10分以上であり、好ましくは50g/10分以下、より好ましくは30g/10分以下、特に好ましくは10g/10分以下である。前記MFRが上記下限値以上かつ上限値以下であると、熱による劣化を抑えた成形加工がしやすく、耐貫通性に優れる樹脂シートを得やすい。 In one embodiment of the present invention, the melt flow rate (MFR) of the ionomer resin measured under the conditions of 190° C. and 2.16 kg according to JIS K7210-1:2014 is preferably 0.1 g/10 minutes or more. , more preferably 0.3 g/10 min or more, still more preferably 0.7 g/10 min or more, still more preferably 1.0 g/10 min or more, particularly preferably 1.5 g/10 min or more, preferably It is 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, and particularly preferably 10 g/10 minutes or less. When the MFR is equal to or more than the lower limit and equal to or less than the upper limit, it is easy to perform molding while suppressing deterioration due to heat, and it is easy to obtain a resin sheet having excellent penetration resistance.
 アイオノマー樹脂の融点、融解熱およびMFRは、アイオノマー樹脂の分子量、ならびにアイオノマー樹脂の(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに場合により含まれる(メタ)アクリル酸エステル単位(D)の含有量により調整し得る。 The melting point, heat of fusion and MFR of an ionomer resin are determined by the molecular weight of the ionomer resin and the ionomer resin's (meth)acrylic acid unit (A), neutralized (meth)acrylic acid unit (B), and ethylene unit (C), It can also be adjusted by the content of (meth)acrylic acid ester units (D) optionally included.
<アイオノマー樹脂の製造方法>
 本発明におけるアイオノマー樹脂の製造方法は特に制限されず、例えば、上述のアイオノマー樹脂に塩を含有させる方法として記載したように、(I)アイオノマー樹脂の製造工程において塩を生成させることにより製造しても、(II)アイオノマー樹脂の製造工程において塩を別添することにより製造しても、(III)まず塩を含まないアイオノマー樹脂を製造して、該樹脂に塩を後添加することにより製造してもよい。これらの方法のうち、強酸および強塩基からなる塩をアイオノマー樹脂中に均一に分散しやすく、これによりアイオノマー樹脂組成物の透明性および耐熱分解性を向上しやすい観点から、アイオノマー樹脂の製造工程中に塩を生成させて含有させる前記方法(I)が好ましい。以下、前記方法(I)について詳述する。
<Method for producing ionomer resin>
The method for producing the ionomer resin in the present invention is not particularly limited. Even if (II) is produced by adding a salt separately in the ionomer resin production process, (III) is produced by first producing a salt-free ionomer resin and then adding a salt to the resin. may Among these methods, a salt composed of a strong acid and a strong base can be easily dispersed uniformly in the ionomer resin, thereby easily improving the transparency and thermal decomposition resistance of the ionomer resin composition. The above-described method (I), in which a salt is formed and contained in is preferred. The method (I) will be described in detail below.
 前記方法(I)としては、エチレン-(メタ)アクリル酸エステル共重合体(X)を原料とし、該共重合体中の(メタ)アクリル酸エステル単位の全部または一部を(メタ)アクリル酸単位および(メタ)アクリル酸中和物単位に変換して、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)および場合により(メタ)アクリル酸エステル単位(D)を含む粗アイオノマー樹脂を製造し(工程i)、得られた粗アイオノマー樹脂の溶液に貧溶媒を添加して粒状樹脂を析出させ(工程ii)、次いで析出した粒状樹脂を洗浄液で洗浄する(工程iii)方法が挙げられる。 As the method (I), an ethylene-(meth)acrylic acid ester copolymer (X) is used as a raw material, and all or part of the (meth)acrylic acid ester units in the copolymer are replaced with (meth)acrylic acid. (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), ethylene units (C) and optionally (meth) A crude ionomer resin containing acrylic acid ester units (D) is produced (step i), a poor solvent is added to the resulting crude ionomer resin solution to precipitate a granular resin (step ii), and then the precipitated granular resin is is washed with a washing liquid (step iii).
 (工程i)
 エチレン-(メタ)アクリル酸エステル共重合体(X)中の(メタ)アクリル酸エステル単位の全部または一部を(メタ)アクリル酸単位および(メタ)アクリル酸中和物単位に変換する方法としては、エチレン-(メタ)アクリル酸エステル共重合体(X)を、強塩基によってけん化することにより、(メタ)アクリル酸エステル単位の全部または一部を(メタ)アクリル酸中和物単位に変換して、エチレン-(メタ)アクリル酸中和物共重合体またはエチレン-(メタ)アクリル酸エステル-(メタ)アクリル酸中和物共重合体を得、次いで、得られた共重合体中の(メタ)アクリル酸中和物単位の一部を強酸によって脱金属して、(メタ)アクリル酸単位に変換する方法(以下、方法(1)ともいう)が挙げられる。
 前記方法(1)以外の方法としては、上記方法(1)におけるけん化によって得られるエチレン-(メタ)アクリル酸中和物共重合体またはエチレン-(メタ)アクリル酸エステル-(メタ)アクリル酸中和物共重合体中の(メタ)アクリル酸中和物単位を全て強酸によって脱金属して、(メタ)アクリル酸単位に変換し、エチレン-(メタ)アクリル酸共重合体またはエチレン-(メタ)アクリル酸エステル-(メタ)アクリル酸共重合体を得、次いで、得られた共重合体中の(メタ)アクリル酸単位の一部を金属イオンによって中和する方法(以下、方法(2)ともいう)が挙げられる。
 なお、前記方法(1)および(2)において、けん化反応に用いる強塩基と脱金属に用いる強酸との中和反応により、強酸および強塩基からなる塩が生成して、強酸および強塩基からなる塩を含有する粗アイオノマー樹脂が得られる。
(Step i)
As a method for converting all or part of the (meth)acrylic acid ester units in the ethylene-(meth)acrylic acid ester copolymer (X) into (meth)acrylic acid units and neutralized (meth)acrylic acid units converts all or part of the (meth)acrylic acid ester units to neutralized (meth)acrylic acid units by saponifying the ethylene-(meth)acrylic acid ester copolymer (X) with a strong base. to obtain an ethylene-(meth)acrylic acid neutralized copolymer or an ethylene-(meth)acrylic acid ester-(meth)acrylic acid neutralized copolymer, and then A method of demetallizing (meth)acrylic acid neutralized units with a strong acid to convert them into (meth)acrylic acid units (hereinafter also referred to as method (1)) can be mentioned.
As a method other than the above method (1), the ethylene-(meth)acrylic acid neutralized copolymer or ethylene-(meth)acrylic acid ester-(meth)acrylic acid obtained by saponification in the above method (1) All of the (meth)acrylic acid neutralized units in the hydropolymer are demetallized with a strong acid, converted to (meth)acrylic acid units, and ethylene-(meth)acrylic acid copolymers or ethylene-(meth ) A method of obtaining an acrylic acid ester-(meth)acrylic acid copolymer and then neutralizing a part of the (meth)acrylic acid units in the obtained copolymer with metal ions (hereinafter, method (2) Also called).
In the above methods (1) and (2), the neutralization reaction between the strong base used for the saponification reaction and the strong acid used for demetallization produces a salt composed of a strong acid and a strong base. A crude ionomer resin containing salts is obtained.
 上記エチレン-(メタ)アクリル酸エステル共重合体(X)の(メタ)アクリル酸エステル単位を構成する単量体の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸アリル等が挙げられる。これらのうち、好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチル、より好ましい単量体は(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、さらに好ましい単量体は(メタ)アクリル酸メチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、特に好ましくは(メタ)アクリル酸メチルである。これら(メタ)アクリル酸エステルは1種単独であっても2種以上の組み合わせであってもよい。 Examples of monomers constituting the (meth)acrylate unit of the ethylene-(meth)acrylate copolymer (X) include methyl (meth)acrylate, ethyl (meth)acrylate, (meth)acrylate ) n-propyl acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, (meth) ) amyl acrylate, isoamyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, pentadecyl (meth)acrylate, dodecyl (meth)acrylate , isobornyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, Examples include glycidyl (meth)acrylate and allyl (meth)acrylate. Among these, preferred monomers are methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, ( meth)isobutyl acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, more preferred monomers are methyl (meth)acrylate, ethyl (meth)acrylate, n (meth)acrylate -propyl, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, more preferred monomers are methyl (meth) acrylate, n-butyl (meth) acrylate, (meth) ) isobutyl acrylate, particularly preferably methyl (meth)acrylate. These (meth)acrylic acid esters may be used singly or in combination of two or more.
 エチレン-(メタ)アクリル酸エステル共重合体(X)の具体例としては、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-アクリル酸n-プロピル共重合体、エチレン-メタクリル酸n-プロピル共重合体、エチレン-アクリル酸イソプロピル共重合体、エチレン-メタクリル酸イソプロピル共重合体、エチレン-アクリル酸n-ブチル共重合体、エチレン-メタクリル酸n-ブチル共重合体、エチレン-アクリル酸sec-ブチル共重合体、エチレン-メタクリル酸sec-ブチル共重合体等が挙げられる。
 これらの共重合体として、市販品を用いてもよく、US2013/0274424、特開2006-233059または特開2007-84743に記載の高温高圧ラジカル重合法によって合成したものを用いてもよい。前記市販品としては、例えば、住友化学(株)製「アクリフト」(登録商標)WD301F、WH401F、日本ポリエチレン(株)製「レクスパール」(登録商標)A4250等が挙げられる。
Specific examples of the ethylene-(meth)acrylic acid ester copolymer (X) include ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacryl Ethyl acid copolymer, ethylene-n-propyl acrylate copolymer, ethylene-n-propyl methacrylate copolymer, ethylene-isopropyl acrylate copolymer, ethylene-isopropyl methacrylate copolymer, ethylene-acrylic acid n-butyl copolymer, ethylene-n-butyl methacrylate copolymer, ethylene-sec-butyl acrylate copolymer, ethylene-sec-butyl methacrylate copolymer and the like.
As these copolymers, commercially available products may be used, and those synthesized by the high-temperature, high-pressure radical polymerization method described in US2013/0274424, JP-A-2006-233059, or JP-A-2007-84743 may be used. Examples of the commercially available products include "Aclift" (registered trademark) WD301F and WH401F manufactured by Sumitomo Chemical Co., Ltd., and "Rexpearl" (registered trademark) A4250 manufactured by Japan Polyethylene Corporation.
 エチレン-(メタ)アクリル酸エステル共重合体(X)中の(メタ)アクリル酸エステル単位の含有量は、好ましくは6モル%以上、より好ましくは6.5モル%以上、さらに好ましくは7モル%以上、特に好ましくは7.5モル%以上であり、また、好ましくは10モル%以下、より好ましくは9.9モル%以下、さらに好ましくは9.5モル%以下である。共重合体(X)中の(メタ)アクリル酸エステル単位の含有量は、得られる粗アイオノマー樹脂およびアイオノマー樹脂中の(メタ)アクリル酸単位(A)、および(メタ)アクリル酸中和物単位(B)、ならびに、含まれる場合の(メタ)アクリル酸エステル単位(D)の合計含有量と対応するため、共重合体(X)中の(メタ)アクリル酸エステル単位の含有量が上記下限値以上であると、得られるアイオノマー樹脂組成物の透明性、特に徐冷時の透明性を高めやすく、また、前記含有量が上記上限値以下であると、得られるアイオノマー樹脂組成物の成形加工性を向上しやすい。
 共重合体(X)中の(メタ)アクリル酸エステル単位の含有量は、エチレンと(メタ)アクリル酸エステルとの共重合比によって調整できる。なお、前記含有量は、上述のアイオノマー樹脂中の(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに含まれる場合(メタ)アクリル酸エステル単位(D)、および他の単量体単位(例えば単位(A1)および単位(B1))の各含有量と同様に、熱分解ガスクロマトグラフィー、核磁気共鳴分光法(NMR)および元素分析によって求めることができる。
The content of (meth)acrylate units in the ethylene-(meth)acrylate copolymer (X) is preferably 6 mol% or more, more preferably 6.5 mol% or more, and still more preferably 7 mol. % or more, particularly preferably 7.5 mol % or more, and preferably 10 mol % or less, more preferably 9.9 mol % or less, still more preferably 9.5 mol % or less. The content of (meth)acrylic acid ester units in the copolymer (X) is determined by the (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units in the resulting crude ionomer resin and ionomer resin. (B), and, if included, the (meth) acrylic acid ester unit (D), so that the content of the (meth) acrylic acid ester unit in the copolymer (X) corresponds to the above lower limit value or more, the transparency of the resulting ionomer resin composition, especially during slow cooling, tends to be enhanced. easy to improve.
The content of (meth)acrylic acid ester units in the copolymer (X) can be adjusted by the copolymerization ratio of ethylene and (meth)acrylic acid ester. In addition, the content is the (meth)acrylic acid unit (A), the (meth)acrylic acid neutralized product unit (B), and the ethylene unit (C) in the ionomer resin described above, and when included (meth) As well as the contents of acrylic acid ester units (D) and other monomeric units (e.g. units (A1) and units (B1)), pyrolysis gas chromatography, nuclear magnetic resonance spectroscopy (NMR) and It can be determined by elemental analysis.
 本発明の一実施形態において、JIS K7210-1:2014に準拠し、190℃、2.16Kgの条件で測定されるエチレン-(メタ)アクリル酸エステル共重合体(X)のメルトフローレート(MFR)は、好ましくは5g/10分以上、より好ましくは10g/10分以上、さらに好ましくは50g/10分以上、さらにより好ましくは100g/10分以上であり、好ましくは400g/10分以下、より好ましくは350g/10分以下、さらに好ましくは300g/10分以下、さらにより好ましくは250g/10分以下である。エチレン-(メタ)アクリル酸エステル共重合体(X)のMFRが上記下限値以上かつ上記上限値以下であると、得られるアイオノマー樹脂組成物の成形加工性および強度を向上しやすい。エチレン-(メタ)アクリル酸エステル共重合体(X)のMFRは、重合度および(メタ)アクリル酸エステル単位の含有量によって調整し得る。前記MFRは、例えば、実施例に記載の方法で測定できる。 In one embodiment of the present invention, the melt flow rate (MFR ) is preferably 5 g/10 min or more, more preferably 10 g/10 min or more, still more preferably 50 g/10 min or more, still more preferably 100 g/10 min or more, preferably 400 g/10 min or less, more It is preferably 350 g/10 minutes or less, more preferably 300 g/10 minutes or less, and even more preferably 250 g/10 minutes or less. When the MFR of the ethylene-(meth)acrylic acid ester copolymer (X) is at least the above lower limit and below the above upper limit, the resulting ionomer resin composition tends to be improved in moldability and strength. The MFR of the ethylene-(meth)acrylic acid ester copolymer (X) can be adjusted by the degree of polymerization and the content of (meth)acrylic acid ester units. The MFR can be measured, for example, by the method described in Examples.
 エチレン-(メタ)アクリル酸エステル共重合体(X)の重量平均分子量は、得られるアイオノマー樹脂組成物の成形加工性および強度を向上しやすい観点から、好ましくは15,000g/モル以上、より好ましくは20,000g/モル以上、さらに好ましくは30,000g/モル以上であり、好ましくは200,000g/モル以下、より好ましくは100,000g/モル以下である。また、同様の観点から、エチレン-(メタ)アクリル酸エステル共重合体(X)の数平均分子量は、好ましくは5,000g/モル以上、より好ましくは10,000g/モル以上、さらに好ましくは15,000g/モル以上であり、好ましくは100,000g/モル以下、より好ましくは50,000g/モル以下である。前記重量平均分子量および数平均分子量は、重合時の重合開始剤および/または連鎖移動剤の量により調整できる。これらのエチレン-(メタ)アクリル酸エステル共重合体(X)の分子量(重量平均分子量および数平均分子量)は、カラム(TSKgel GMHHR-H(20)HTの3本直列)および1,2,4-トリクロロベンゼン溶媒を用いて、カラム温度140℃の条件で、ポリスチレン換算で測定できる。 The weight-average molecular weight of the ethylene-(meth)acrylic acid ester copolymer (X) is preferably 15,000 g/mol or more, more preferably 15,000 g/mol or more, from the viewpoint of easily improving the moldability and strength of the resulting ionomer resin composition. is 20,000 g/mol or more, more preferably 30,000 g/mol or more, preferably 200,000 g/mol or less, more preferably 100,000 g/mol or less. From the same point of view, the number average molecular weight of the ethylene-(meth)acrylate copolymer (X) is preferably 5,000 g/mol or more, more preferably 10,000 g/mol or more, still more preferably 15 ,000 g/mol or more, preferably 100,000 g/mol or less, more preferably 50,000 g/mol or less. The weight average molecular weight and number average molecular weight can be adjusted by adjusting the amount of polymerization initiator and/or chain transfer agent during polymerization. The molecular weights (weight average molecular weight and number average molecular weight) of these ethylene-(meth)acrylic acid ester copolymers (X) are determined by column (TSKgel GMH HR -H(20)HT three in series) and 1,2, Using 4-trichlorobenzene as a solvent, the measurement can be performed at a column temperature of 140° C. in terms of polystyrene.
 エチレン-(メタ)アクリル酸エステル共重合体(X)の炭素1000個当たりの分岐度は、特に制限されず、好ましくは5~30、より好ましくは6~20である。前記分岐度は、前記共重合体(X)を重合する際の重合温度により調整できる。前記分岐度は、エチレン-(メタ)アクリル酸エステル共重合体(X)を重水素化オルトジクロロベンゼンに溶解させ、13C-NMRのインバースゲートデカップリング法によって測定できる。 The degree of branching per 1000 carbon atoms of the ethylene-(meth)acrylic acid ester copolymer (X) is not particularly limited, and is preferably 5-30, more preferably 6-20. The degree of branching can be adjusted by the polymerization temperature when polymerizing the copolymer (X). The degree of branching can be measured by dissolving the ethylene-(meth)acrylic acid ester copolymer (X) in deuterated ortho-dichlorobenzene and performing 13 C-NMR inverse gate decoupling method.
 上記方法(1)および(2)におけるけん化反応に用いるアルカリの例としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の強塩基が挙げられ、けん化反応に使用する溶媒への溶解性および経済性の観点から、好ましくは水酸化ナトリウム、水酸化カリウムである。 Examples of the alkali used for the saponification reaction in the above methods (1) and (2) include strong bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, and the solubility in the solvent used for the saponification reaction and From the viewpoint of economy, sodium hydroxide and potassium hydroxide are preferred.
 上記けん化反応に用いる溶媒の例としては、テトラヒドロフラン、ジオキサン等のエーテル類;クロロホルム、ジクロロベンゼン等のハロゲン含有溶媒;メチルブチルケトン等の炭素数6以上のケトン類;炭化水素化合物とメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール類との混合溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族化合物;芳香族化合物とアルコール類との混合溶媒等が挙げられる。これらの溶媒は単独で、または2以上組み合わせて使用してもよい。
 これらのうち、けん化反応前後の樹脂の溶解性の観点から、好ましい溶媒は炭化水素化合物とアルコール類との混合溶媒、芳香族化合物とアルコール類との混合溶媒であり、より好ましい溶媒はトルエン等の芳香族化合物とメタノール等のアルコール類との混合溶媒である。前記混合溶媒における炭化水素化合物または芳香族化合物とアルコール類と割合は、用いる各溶媒の種類に応じて適宜選択すればよく、例えば、炭化水素化合物または芳香族化合物とアルコール類との質量割合(炭化水素化合物または芳香族化合物/アルコール類)は、50/50~90/10であってよい。
Examples of solvents used in the saponification reaction include ethers such as tetrahydrofuran and dioxane; halogen-containing solvents such as chloroform and dichlorobenzene; ketones having 6 or more carbon atoms such as methylbutyl ketone; mixed solvents with alcohols such as 1-propanol, 2-propanol and 1-butanol; aromatic compounds such as benzene, toluene, xylene and ethylbenzene; and mixed solvents of aromatic compounds and alcohols. These solvents may be used alone or in combination of two or more.
Among these, from the viewpoint of the solubility of the resin before and after the saponification reaction, preferred solvents are mixed solvents of hydrocarbon compounds and alcohols, mixed solvents of aromatic compounds and alcohols, and more preferred solvents are toluene and the like. It is a mixed solvent of an aromatic compound and an alcohol such as methanol. The ratio of the hydrocarbon compound or aromatic compound to the alcohol in the mixed solvent may be appropriately selected according to the type of each solvent used. hydrogen compounds or aromatics/alcohols) can be from 50/50 to 90/10.
 上記けん化反応を行う際の温度としては、その反応性およびエチレン-(メタ)アクリル酸エステル共重合体(X)の溶解性の観点から、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上、特に好ましくは80℃以上である。該温度の上限は、エチレン-(メタ)アクリル酸エステル共重合体(X)が分解する温度未満であれば特に制限されず、例えば300℃以下である。 The temperature at which the saponification reaction is performed is preferably 50° C. or higher, more preferably 60° C. or higher, from the viewpoint of reactivity and solubility of the ethylene-(meth)acrylic acid ester copolymer (X). It is preferably 70° C. or higher, particularly preferably 80° C. or higher. The upper limit of the temperature is not particularly limited as long as it is lower than the temperature at which the ethylene-(meth)acrylic acid ester copolymer (X) decomposes, and is, for example, 300° C. or less.
 上記けん化反応は、空気中で行っても、窒素ガス、アルゴンガス等の不活性ガス中で行ってもよい。また、上記けん化反応は、常圧下、加圧下、または減圧下のいずれで行ってもよく、好ましくは加圧下で行われる。 The saponification reaction may be performed in the air or in an inert gas such as nitrogen gas or argon gas. The saponification reaction may be carried out under normal pressure, increased pressure, or reduced pressure, preferably under increased pressure.
 上記方法(1)および(2)における脱金属化に用いる酸の例としては、塩酸、硝酸、硫酸、トルエンスルホン酸等の強酸が挙げられる。これらの酸は1種単独で、または2種以上を組み合わせて使用してよい。脱金属化後に、アイオノマー樹脂から塩を除去しやすい観点から、好ましくは塩酸、硝酸、硫酸等の無機酸である。上記脱金属化に用いる溶媒としては、上述のけん化反応に用いる溶媒と同様の溶媒を選択できる。 Examples of acids used for demetallization in the above methods (1) and (2) include strong acids such as hydrochloric acid, nitric acid, sulfuric acid and toluenesulfonic acid. These acids may be used singly or in combination of two or more. Inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid are preferred from the viewpoint of easy removal of salts from the ionomer resin after demetalization. As the solvent used for the demetallization, the same solvents as those used for the saponification reaction can be selected.
 上記脱金属化を行う際の温度は、反応溶液の粘度を低くしやすい観点から、好ましくは20℃以上、より好ましくは30℃以上、さらに好ましくは40℃以上であり、好ましくは100℃以下、より好ましくは80℃以下、さらに好ましくは60℃以下である。 The temperature at which the demetallization is performed is preferably 20° C. or higher, more preferably 30° C. or higher, still more preferably 40° C. or higher, and preferably 100° C. or lower, from the viewpoint of easily lowering the viscosity of the reaction solution. It is more preferably 80° C. or lower, still more preferably 60° C. or lower.
 上記脱金属化は、上記けん化反応と同様に、空気中で行っても、窒素ガス、アルゴンガス等の不活性ガス中で行ってもよい。また、上記けん化反応は、常圧下、加圧下、または減圧下のいずれで行ってもよく、好ましくは加圧下で行われる。 The above demetallization may be carried out in the air or in an inert gas such as nitrogen gas or argon gas, as in the above saponification reaction. The saponification reaction may be carried out under normal pressure, increased pressure, or reduced pressure, preferably under increased pressure.
 上記方法(2)において、(メタ)アクリル酸単位の一部を中和して(メタ)アクリル酸中和物単位に変換する際に用いる中和剤は、金属イオンを含有するイオン性化合物であれば特に制限されない。前記金属イオンの例としては、リチウム、カリウム、ナトリウム等のアルカリ金属イオン、マグネシウム、カルシウム等のアルカリ土類金属イオン、亜鉛、ニッケル、鉄、チタン等の遷移金属イオン、アルミニウムイオン等が挙げられる。例えば、金属イオンがナトリウムイオンである場合、中和剤の例としては、水酸化ナトリウム等が挙げられる。 In the above method (2), the neutralizing agent used for partially neutralizing the (meth)acrylic acid units and converting them into neutralized (meth)acrylic acid units is an ionic compound containing metal ions. There is no particular limitation if any. Examples of the metal ions include alkali metal ions such as lithium, potassium and sodium, alkaline earth metal ions such as magnesium and calcium, transition metal ions such as zinc, nickel, iron and titanium, and aluminum ions. For example, when the metal ions are sodium ions, examples of neutralizing agents include sodium hydroxide and the like.
 (工程ii)
 (粗アイオノマー樹脂の溶液)
 工程iにおいて得られる粗アイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)およびエチレン単位(C)を含み、前記単位(A)および前記単位(B)の合計含有量は、前記粗アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である。また、前記粗アイオノマー樹脂は、前記単位(A)、前記単位(B)および前記単位(C)に加えて、(メタ)アクリル酸エステル単位(D)を含むことが好ましく、前記粗アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、前記粗アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であることが好ましい。さらに、前記粗アイオノマー樹脂は、前記単位(A)、前記単位(B)、および前記単位(C)、ならびに場合により前記単位(D)に加えて、さらに、(メタ)アクリル酸単位以外のカルボン酸単位(A1)、(メタ)アクリル酸中和物単位以外のカルボン酸中和物単位(B1)等の他の単量体単位を含んでいてもよい。
(Step ii)
(solution of crude ionomer resin)
The crude ionomer resin obtained in step i comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B) and ethylene units (C), wherein said units (A) and said units ( The total content of B) is 6 to 10 mol % based on the total monomer units constituting the crude ionomer resin. Further, the crude ionomer resin preferably contains a (meth)acrylic acid ester unit (D) in addition to the units (A), (B) and (C). When the (meth)acrylic acid ester unit (D) is included, the total content of the unit (A), the unit (B) and the unit (D) is the total monomer units constituting the crude ionomer resin. As a standard, it is preferably 6 to 10 mol %. In addition to the units (A), (B), and (C), and optionally the units (D), the crude ionomer resin further contains carboxylic acids other than (meth)acrylic acid units. Acid units (A1) and other monomer units such as neutralized carboxylic acid units (B1) other than neutralized (meth)acrylic acid units may be included.
 粗アイオノマー樹脂における前記単位(A)および前記単位(B)、ならびに、場合により含んでいてもよい前記単位(D)、他の単量体単位(A1)および(B1)の例としては、本発明のアイオノマー樹脂に含まれる単位(A)、単位(B)、単位(D)、単位(A1)および単位(B1)として上述した単位と同様のものがそれぞれ挙げられ、好ましい形態も上述のアイオノマー樹脂と同様である。また、粗アイオノマー樹脂中の各単位の含有量、および、単位(A)、および単位(B)の合計含有量、場合により単位(D)を含む場合には単位(A)、単位(B)および単位(D)の合計含有量も、本発明のアイオノマー樹脂について上述した含有量と好ましい形態を含め同様である。 Examples of the unit (A) and the unit (B) in the crude ionomer resin, the unit (D) which may optionally be included, and the other monomeric units (A1) and (B1) are Units (A), units (B), units (D), units (A1), and units (B1) contained in the ionomer resin of the invention include the same units as those described above, and preferred forms are the ionomers described above. Similar to resin. In addition, the content of each unit in the crude ionomer resin, the total content of the unit (A) and the unit (B), and optionally the unit (A) and the unit (B) when the unit (D) is included and the total content of units (D) are the same as those described above for the ionomer resin of the present invention, including preferred forms.
 粗アイオノマー樹脂の溶液は、工程iにより得られた粗アイオノマー樹脂を溶媒に溶解させることにより調製でき、工程iにより得られる粗アイオノマー樹脂の反応溶液を粗アイオノマー樹脂の溶液として用いてもよい。 The crude ionomer resin solution can be prepared by dissolving the crude ionomer resin obtained in step i in a solvent, and the reaction solution of the crude ionomer resin obtained in step i may be used as the crude ionomer resin solution.
 粗アイオノマー樹脂の溶液における溶媒としては、粗アイオノマー樹脂を溶解可能な溶媒であれば特に制限されず、上記けん化反応に用いる溶媒と同様の溶媒が例示される。なかでも、粗アイオノマー樹脂の溶解性の観点から、トルエン等の芳香族化合物とメタノール等のアルコール類との混合溶媒が好ましい。前記混合溶媒における芳香族化合物とアルコール類との割合は、用いる各溶媒の種類に応じて適宜選択すればよく、例えば、芳香族化合物とアルコール類との質量割合(芳香族化合物/アルコール類)は、50/50~90/10、好ましくは65/35~85/15であってよい。 The solvent in the solution of the crude ionomer resin is not particularly limited as long as it can dissolve the crude ionomer resin, and the same solvents as those used in the saponification reaction are exemplified. Among them, a mixed solvent of an aromatic compound such as toluene and an alcohol such as methanol is preferable from the viewpoint of solubility of the crude ionomer resin. The ratio of the aromatic compound to the alcohol in the mixed solvent may be appropriately selected according to the type of each solvent used. For example, the mass ratio of the aromatic compound to the alcohol (aromatic compound/alcohol) is , 50/50 to 90/10, preferably 65/35 to 85/15.
 粗アイオノマー樹脂の溶液の濃度は、粒子径の小さな粒状樹脂が得やすく、その結果、アイオノマー樹脂中の塩の含有量を1~400mg/kgの範囲内に調整しやすくなり、アイオノマー樹脂の耐熱分解性を向上しやすい観点から、好ましくは30質量%以下、より好ましくは15質量%以下であり、また、好ましくは1質量%以上、より好ましくは5質量%以上である。 The concentration of the solution of the crude ionomer resin makes it easy to obtain a granular resin with a small particle size. From the viewpoint of easily improving the properties, the content is preferably 30% by mass or less, more preferably 15% by mass or less, and preferably 1% by mass or more, more preferably 5% by mass or more.
 粗アイオノマー樹脂の溶液の温度は、析出する粒状樹脂の凝集または膠着を抑制しやすく、アイオノマー樹脂中の塩の含有量を1~400mg/kgの範囲内に調整しやすく、アイオノマー樹脂組成物の耐熱分解性を向上しやすい観点から、アイオノマー樹脂の融点以下であることが好ましく、より好ましくは60℃以下、さらに好ましくは50℃以下である。また、粗アイオノマー樹脂の溶液の流動性の観点から、前記温度は、より好ましくは25℃以上、さらに好ましくは30℃以上である。 The temperature of the solution of the crude ionomer resin makes it easy to suppress aggregation or agglutination of the precipitated granular resin, makes it easy to adjust the salt content in the ionomer resin within the range of 1 to 400 mg/kg, and increases the heat resistance of the ionomer resin composition. From the viewpoint of easily improving the decomposability, the temperature is preferably the melting point of the ionomer resin or less, more preferably 60° C. or less, and still more preferably 50° C. or less. From the viewpoint of the fluidity of the crude ionomer resin solution, the temperature is more preferably 25° C. or higher, more preferably 30° C. or higher.
 (貧溶媒)
 粗アイオノマー樹脂の溶液に添加する貧溶媒としては、粗アイオノマー樹脂の溶液と混合し、アイオノマー樹脂が溶解しない溶媒であれば特に制限されず、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール類;水;アセトン、メチルエチルケトン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類;n-ヘキサン、シクロヘキサン、ヘプタン等の炭化水素化合物等が挙げられる。これらは1種単独で使用しても、2種以上を組合せて使用してもよい。これらのなかでも、沸点が低いためアイオノマー樹脂を乾燥しやすく、また、塩を溶解可能であるため粒状樹脂中の塩を除去しやすい観点から、前記貧溶媒は好ましくはメタノール、2-プロパノール等のアルコール類、水、およびこれらの混合溶媒、より好ましくはメタノール等のアルコール類である。
(poor solvent)
The poor solvent added to the solution of the crude ionomer resin is not particularly limited as long as it is mixed with the solution of the crude ionomer resin and does not dissolve the ionomer resin. Examples include methanol, ethanol, 1-propanol, 2-propanol, alcohols such as 1-butanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; ethers such as dimethyl ether, diethyl ether and tetrahydrofuran; compounds and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type. Among these, the poor solvent is preferably methanol, 2-propanol, or the like, from the viewpoint of easy drying of the ionomer resin due to its low boiling point and easy removal of the salt in the granular resin because it can dissolve the salt. Alcohols, water, and mixed solvents thereof, more preferably alcohols such as methanol.
 貧溶媒の添加量は、粗アイオノマー樹脂の溶液の濃度に応じて適宜選択してよい。例えば、貧溶媒の添加量は、粗アイオノマー樹脂の溶液100質量部に対して、好ましくは30質量部以上、より好ましくは60質量部以上であり、特に好ましくは100質量部以上である。貧溶媒の添加量の上限値は特に制限されず、粗アイオノマー樹脂の溶液100質量部に対して、通常1000質量部以下である。 The amount of the poor solvent to be added may be appropriately selected according to the concentration of the crude ionomer resin solution. For example, the amount of the poor solvent to be added is preferably 30 parts by mass or more, more preferably 60 parts by mass or more, and particularly preferably 100 parts by mass or more with respect to 100 parts by mass of the crude ionomer resin solution. The upper limit of the amount of the poor solvent to be added is not particularly limited, and is usually 1000 parts by mass or less with respect to 100 parts by mass of the crude ionomer resin solution.
 粗アイオノマー樹脂の溶液に貧溶媒を添加する方法は特に制限されず、例えば、粗アイオノマー樹脂の溶液に貧溶媒を一度に添加してもよく、滴加等により複数回に分けて添加してもよい。粒状樹脂の粒子径が小さくなりやすくなり、それにより粒状樹脂中の塩の除去性を向上しやすく、その結果、アイオノマー樹脂組成物の透明性を向上しやすい観点から、貧溶媒の添加は比較的短時間で行うことが好ましく、一度に添加することがより好ましい。貧溶媒を複数回に分けて添加する場合には、貧溶媒の添加を1時間以内、より好ましくは30分間以内、さらに好ましくは10分間以内に完了することが好ましい。 The method of adding the poor solvent to the solution of the crude ionomer resin is not particularly limited. good. The particle size of the granular resin is likely to be reduced, thereby easily improving the removability of the salt in the granular resin, and as a result, from the viewpoint of easily improving the transparency of the ionomer resin composition. It is preferable to carry out in a short time, and it is more preferable to add at once. When the poor solvent is added in multiple portions, the addition of the poor solvent is preferably completed within 1 hour, more preferably within 30 minutes, and even more preferably within 10 minutes.
 粗アイオノマー樹脂の溶液に貧溶媒を添加した後、粗アイオノマー樹脂の溶液と貧溶媒との混合液を撹拌することが好ましい。撹拌速度は特に制限されないが、撹拌速度が速いほど、粒子径の小さな粒状樹脂を得やすくなる。撹拌時間は特に制限されず、例えば、粒状樹脂が析出して、粗アイオノマー樹脂の溶液と貧溶媒との混合液がスラリー状になるまで撹拌すればよく、具体的には、好ましくは1秒間以上3時間以下、より好ましくは10秒間以上1時間以下、さらに好ましくは1分間以上30分間以下である。 After adding the poor solvent to the crude ionomer resin solution, it is preferable to stir the mixture of the crude ionomer resin solution and the poor solvent. The stirring speed is not particularly limited, but the faster the stirring speed, the easier it is to obtain a granular resin with a small particle size. The stirring time is not particularly limited, and for example, the granular resin may be precipitated and the mixture of the crude ionomer resin solution and the poor solvent may be stirred until it becomes a slurry. Specifically, it is preferably 1 second or longer. It is 3 hours or less, more preferably 10 seconds or more and 1 hour or less, and still more preferably 1 minute or more and 30 minutes or less.
 (粒状樹脂)
 粗アイオノマー樹脂の溶液に貧溶媒を添加して析出させる粒状樹脂のピークトップ粒子径は、粒状樹脂の比表面積を大きくすることにより粒状樹脂中の塩の含有量を低減しやすくして、その結果、塩の含有量が1~400mg/kgの範囲内に調整しやすくなり、アイオノマー樹脂組成物の耐熱分解性を向上しやすい観点から、700μm以下、好ましくは650μm以下、より好ましくは600μm以下、さらに好ましくは550μm以下である。また、粒状樹脂の濾過性を向上しやすく、アイオノマー樹脂の製造効率を向上しやすい観点から、好ましくは50μm以上、より好ましくは70μm以上、好ましくは80μm以上である。ピークトップ粒子径は、例えばレーザ回折/散乱式粒子径分布測定装置を用いて、粒状樹脂の粒径分布を測定することにより求めることができる。
(granular resin)
The peak top particle size of the granular resin precipitated by adding a poor solvent to the solution of the crude ionomer resin is increased by increasing the specific surface area of the granular resin, thereby making it easier to reduce the salt content in the granular resin. , From the viewpoint of easily adjusting the salt content within the range of 1 to 400 mg / kg and easily improving the thermal decomposition resistance of the ionomer resin composition, the salt content is 700 μm or less, preferably 650 μm or less, more preferably 600 μm or less, and further It is preferably 550 μm or less. From the viewpoint of easily improving the filterability of the granular resin and easily improving the production efficiency of the ionomer resin, it is preferably 50 μm or more, more preferably 70 μm or more, and preferably 80 μm or more. The peak top particle size can be determined by measuring the particle size distribution of the granular resin using, for example, a laser diffraction/scattering particle size distribution analyzer.
 粗アイオノマー樹脂の溶液に貧溶媒を添加して析出させる粒状樹脂のピークトップ粒子径は、粗アイオノマー樹脂の溶液の濃度および温度によって調整できる。具体的には、粗アイオノマー樹脂の溶液の濃度および/または温度を低くすると、析出する粒状樹脂のピークトップ粒子径を小さくでき、粗アイオノマー樹脂の溶液の濃度および/または温度を高くすると、析出する粒状樹脂のピークトップ粒子径を大きくできる。また、粒状樹脂のピークトップ粒子径は、貧溶媒の添加方法および粗アイオノマー樹脂の溶液と貧溶媒との混合液の撹拌速度によっても調整できる。 The peak top particle size of the granular resin precipitated by adding a poor solvent to the crude ionomer resin solution can be adjusted by the concentration and temperature of the crude ionomer resin solution. Specifically, when the concentration and/or temperature of the crude ionomer resin solution is decreased, the peak top particle size of the precipitated granular resin can be decreased, and when the concentration and/or temperature of the crude ionomer resin solution is increased, precipitation occurs. The peak top particle size of the granular resin can be increased. The peak top particle size of the granular resin can also be adjusted by the method of adding the poor solvent and the stirring speed of the mixture of the crude ionomer resin solution and the poor solvent.
 (工程iii)
 (洗浄液)
 工程iiiにおける洗浄液としては、アイオノマー樹脂が溶解せず、かつ、塩を溶解可能な溶媒であれば特に制限されない。好ましい洗浄液の例としては、メタノール、エタノール、1-プロパノール、2-イソプロパノール等のアルコール類;水;アセトン、メチルエチルケトン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類が挙げられる。これらは1種単独で使用しても、2種以上を組合せて使用してもよい。
(Step iii)
(washing liquid)
The washing liquid in step iii is not particularly limited as long as it does not dissolve the ionomer resin and can dissolve the salt. Examples of preferred washing liquids include alcohols such as methanol, ethanol, 1-propanol and 2-isopropanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; and ethers of These may be used individually by 1 type, or may be used in combination of 2 or more type.
 これらの洗浄液のなかでも、塩の溶解性が高く、粒状樹脂に含まれる塩を除去しやすい観点から、アルコール類、水、およびこれらの混合液が好ましい。さらに、塩の溶解性を高めることに加え、洗浄液の比重を粒状樹脂よりも小さくすることにより、洗浄液と粒状樹脂との接触面積を増大させることによって、塩の除去性を高めやすく、粒状樹脂中に含まれる有機化合物等の不純物を除去しやすい観点、および洗浄後に得られるアイオノマー樹脂を乾燥しやすくする観点から、より好ましい洗浄液は、水とアルコール類との混合液である。好ましいアルコール類は、乾燥しやすいこと、および水との相溶性が高いことから、メタノール、エタノール、より好ましくはメタノールである。
 水とアルコール類との混合液における水とアルコール類との割合(水/アルコール類(質量%))は、好ましくは20/80~80/20、より好ましくは30/70~70/30である。
Among these washing liquids, alcohols, water, and mixed liquids thereof are preferable from the viewpoint of high solubility of salts and easy removal of salts contained in the granular resin. Furthermore, in addition to increasing the solubility of the salt, by making the specific gravity of the cleaning liquid smaller than that of the granular resin, the contact area between the cleaning liquid and the granular resin is increased, so that the removability of the salt can be easily improved. A more preferable cleaning liquid is a mixed liquid of water and alcohols from the viewpoint of facilitating removal of impurities such as organic compounds contained in the resin and facilitating drying of the ionomer resin obtained after washing. Preferred alcohols are methanol, ethanol, and more preferably methanol, since they are easy to dry and have high compatibility with water.
The ratio of water and alcohols (water/alcohols (% by mass)) in the mixture of water and alcohols is preferably 20/80 to 80/20, more preferably 30/70 to 70/30. .
 粒状樹脂を洗浄液で洗浄する方法の例としては、工程iiにおいて粒状樹脂が析出した粒状樹脂分散液から、粒状樹脂を濾取して、濾取した粒状樹脂を洗浄液と混合後、脱液する方法が挙げられる。より具体的には、前記粒状樹脂分散液から濾取した粒状樹脂と洗浄液とを混合後、洗浄液から粒状樹脂を濾取し(以下、洗浄工程(a)ともいう)、次いで、濾取した粒状樹脂を新たな洗浄液と混合後、洗浄液から粒状樹脂を濾取する(以下、洗浄工程(b)ともいう)ことにより、洗浄する方法が挙げられる。粒状樹脂に含まれる塩の含有量を1~400mg/kgの範囲内に調整しやすく、アイオノマー樹脂組成物の耐熱分解性を向上しやすい観点およびアイオノマー樹脂の製造効率の観点から、粒状樹脂の洗浄は、バッチプロセスの場合、例えば1回の洗浄工程(a)の後、洗浄工程(b)を1~10回行うことが好ましく、1回の洗浄工程(a)の後の洗浄工程(b)の回数は、より好ましくは1~6回、さらに好ましくは1~4回である。 An example of a method of washing the granular resin with a washing liquid is a method of filtering the granular resin from the granular resin dispersion liquid in which the granular resin is precipitated in step ii, mixing the filtered granular resin with the washing liquid, and then removing the liquid. is mentioned. More specifically, after mixing the granular resin filtered from the granular resin dispersion with a washing liquid, the granular resin is filtered from the washing liquid (hereinafter also referred to as washing step (a)), and then the filtered granular There is a method of washing by mixing the resin with a fresh washing liquid and then filtering out the granular resin from the washing liquid (hereinafter also referred to as washing step (b)). From the viewpoint of easily adjusting the content of the salt contained in the granular resin within the range of 1 to 400 mg / kg, easily improving the thermal decomposition resistance of the ionomer resin composition, and from the viewpoint of the production efficiency of the ionomer resin, cleaning of the granular resin In the case of a batch process, for example, after one washing step (a), the washing step (b) is preferably performed 1 to 10 times, and the washing step (b) after one washing step (a). is more preferably 1 to 6 times, more preferably 1 to 4 times.
 1回の洗浄工程あたりの前記洗浄液の使用量は、洗浄する粒状樹脂の量に応じて適宜選択してよい。例えば、1回の洗浄工程あたりの前記洗浄液の使用量は乾燥時の粒状樹脂100質量部に対して、好ましくは100質量部~2000質量部、より好ましくは200質量部~1000質量部、さらに好ましくは300質量部~700質量部である。 The amount of the cleaning liquid used in one cleaning step may be appropriately selected according to the amount of granular resin to be cleaned. For example, the amount of the cleaning liquid used in one cleaning step is preferably 100 parts by mass to 2000 parts by mass, more preferably 200 parts by mass to 1000 parts by mass, and still more preferably 100 parts by mass of the dried granular resin. is 300 parts by mass to 700 parts by mass.
 工程iiiにより得られたアイオノマー樹脂は、必要に応じて乾燥してもよい。乾燥温度としては、好ましくはアイオノマー樹脂の融点以下、より好ましくは80℃以下であってよい。 The ionomer resin obtained in step iii may be dried if necessary. The drying temperature is preferably below the melting point of the ionomer resin, more preferably below 80°C.
 〔シランカップリング剤〕
 本発明のアイオノマー樹脂組成物は、アイオノマー樹脂100質量部に対して0.005~0.5質量部のシランカップリング剤を含む。上記範囲内のシランカップリング剤を含むことにより、ガラスとの接着性、特に湿潤状態におけるガラスとの接着性を向上できる。これは、シランカップリング剤はガラス等の無機材料と反応する反応基と樹脂等の有機材料と反応する反応基とを有しているため、アイオノマー樹脂とガラスとをシランカップリング剤が化学結合またはイオン結合等により結びつけることができるためであると考えられる。また、本発明では、シランカップリング剤の量がアイオノマー樹脂100質量部に対して0.005~0.5質量部という少量であってもアイオノマー樹脂組成物とガラスとの接着性を高めることができるため、シランカップリング剤を含んでいても架橋ゲルの生成を抑制して、表面平滑性に優れる等外観が良好な樹脂シートを得ることができる。一方、前記シランカップリング剤の含有量が上記下限値未満であると、湿潤状態におけるガラスとの接着性が低下する傾向にあるため、湿潤状態においてガラスとの剥離が生じやすい。また、上記上限値を超えるとシランカップリング剤による架橋反応によりゲル化が進行しやすくなり、外観が良好な樹脂シートを得にくい傾向がある。
〔Silane coupling agent〕
The ionomer resin composition of the present invention contains 0.005 to 0.5 parts by mass of the silane coupling agent per 100 parts by mass of the ionomer resin. By including the silane coupling agent within the above range, the adhesiveness to glass, particularly the adhesiveness to glass in a wet state can be improved. This is because the silane coupling agent has a reactive group that reacts with inorganic materials such as glass and a reactive group that reacts with organic materials such as resin. Alternatively, it is considered that they can be bound by an ionic bond or the like. Further, in the present invention, even if the amount of the silane coupling agent is as small as 0.005 to 0.5 parts by mass with respect to 100 parts by mass of the ionomer resin, the adhesion between the ionomer resin composition and the glass can be enhanced. Therefore, even if a silane coupling agent is contained, formation of a crosslinked gel can be suppressed, and a resin sheet having a good appearance such as excellent surface smoothness can be obtained. On the other hand, if the content of the silane coupling agent is less than the above lower limit, the adhesiveness to glass in a wet state tends to decrease, so peeling from the glass tends to occur in a wet state. On the other hand, when the above upper limit is exceeded, gelation tends to proceed due to the cross-linking reaction by the silane coupling agent, and it tends to be difficult to obtain a resin sheet with good appearance.
 本発明の一実施形態において、シランカップリング剤の含有量は、ガラスとの接着性、特に湿潤状態におけるガラスとの接着性を向上しやすい観点から、アイオノマー樹脂100質量部に対して、0.005質量部以上、好ましくは0.01質量部以上、より好ましくは0.02質量部以上、さらに好ましくは0.05質量部以上、さらにより好ましくは0.07質量部以上、特に好ましくは0.08質量部以上である。また、前記含有量は、アイオノマー樹脂組成物のゲル化を抑制し、外観が良好な樹脂シートを得やすい観点から、アイオノマー樹脂100質量部に対して、0.5質量部以下、好ましくは0.4質量部以下、より好ましくは0.3質量部以下、さらに好ましくは0.2質量部以下、特に好ましくは0.18質量部以下である。 In one embodiment of the present invention, the content of the silane coupling agent is 0.00 per 100 parts by mass of the ionomer resin, from the viewpoint of easily improving the adhesion to glass, particularly the adhesion to glass in a wet state. 005 mass parts or more, preferably 0.01 mass parts or more, more preferably 0.02 mass parts or more, still more preferably 0.05 mass parts or more, even more preferably 0.07 mass parts or more, particularly preferably 0.07 mass parts or more. 08 parts by mass or more. Moreover, the content is 0.5 parts by mass or less, preferably 0.5 parts by mass or less, based on 100 parts by mass of the ionomer resin, from the viewpoint of suppressing gelation of the ionomer resin composition and easily obtaining a resin sheet with a good appearance. It is 4 parts by mass or less, more preferably 0.3 parts by mass or less, still more preferably 0.2 parts by mass or less, and particularly preferably 0.18 parts by mass or less.
 シランカップリング剤は特に制限されず、例えばアミノ系化合物、グリシドキシ系化合物、スルフィド系化合物、メルカプト系化合物、ビニル系化合物、ニトロ系化合物、クロロ系化合物等が挙げられる。これらのシランカップリング剤は1種単独でも2種以上の組合せでもよい。 The silane coupling agent is not particularly limited, and examples thereof include amino-based compounds, glycidoxy-based compounds, sulfide-based compounds, mercapto-based compounds, vinyl-based compounds, nitro-based compounds, and chloro-based compounds. These silane coupling agents may be used singly or in combination of two or more.
 アミノ系化合物としては、例えばN-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノメチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノメチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノメチル)-3-アミノプロピルメチルジエトキシシラン、N-(2-アミノメチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、N-(2-アミノメチル)-8-アミノオクチルトリメトキシシラン、N-(2-アミノエチル)-8-アミノオクチルトリメトキシシラン、N-(2-アミノメチル)-8-アミノオクチルトリエトキシシラン、N-(2-アミノエチル)-8-アミノオクチルトリエトキシシラン等が挙げられる。 Examples of amino compounds include N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-β-(aminoethyl)-γ-aminopropylmethyldimethoxysilane, N-β-(aminoethyl)- γ-aminopropylmethyldiethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, N-(2-aminomethyl)-3-aminopropyltrimethoxysilane, N-(2-aminomethyl )-3-aminopropylmethyldimethoxysilane, N-(2-aminomethyl)-3-aminopropylmethyldiethoxysilane, N-(2-aminomethyl)-3-aminopropyltriethoxysilane, 3-aminopropyltri Methoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-amino Propyltriethoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, N-(2-aminomethyl)-8-aminooctyltrimethoxysilane, N-(2 -aminoethyl)-8-aminooctyltrimethoxysilane, N-(2-aminomethyl)-8-aminooctyltriethoxysilane, N-(2-aminoethyl)-8-aminooctyltriethoxysilane and the like. .
 グリシドキシ系化合物としては、例えば2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシランおよび3-グリシドキシプロピルトリエトキシシラン等が挙げられる。 Examples of glycidoxy compounds include 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane. Examples include ethoxysilane and 3-glycidoxypropyltriethoxysilane.
 スルフィド系化合物としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、3-オクタノイルチオ-1-プロピルトリエトキシシランなどが挙げられる。 Examples of sulfide compounds include bis(3-triethoxysilylpropyl)tetrasulfide, bis(2-triethoxysilylethyl)tetrasulfide, bis(3-trimethoxysilylpropyl)tetrasulfide, bis(2-trimethoxy silylethyl) tetrasulfide, bis(3-triethoxysilylpropyl) trisulfide, bis(3-trimethoxysilylpropyl) trisulfide, bis(3-triethoxysilylpropyl) disulfide, bis(3-trimethoxysilylpropyl) Disulfide, 3-trimethoxysilylpropyl-N,N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N,N-dimethylthiocarbamoyl tetrasulfide, 2-trimethoxysilylethyl-N,N-dimethylthiocarbamoyl Tetrasulfide, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, 3-octanoylthio-1 -propyltriethoxysilane and the like.
 メルカプト系化合物としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、および2-メルカプトエチルトリエトキシシランなどが挙げられる。 Mercapto-based compounds include, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, and 2-mercaptoethyltriethoxysilane.
 ビニル系化合物としては、例えばビニルトリエトキシシラン、およびビニルトリメトキシシランジメトキシメチルビニルシラン、ジエトキシ(メチル)ビニルシランなどが挙げられる。 Examples of vinyl compounds include vinyltriethoxysilane, vinyltrimethoxysilane, dimethoxymethylvinylsilane, and diethoxy(methyl)vinylsilane.
 ニトロ系化合物としては、例えば、3-ニトロプロピルトリメトキシシラン、および3-ニトロプロピルトリエトキシシラン等が挙げられる。 Examples of nitro compounds include 3-nitropropyltrimethoxysilane and 3-nitropropyltriethoxysilane.
 クロロ系化合物としては、例えば、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、2-クロロエチルトリメトキシシラン、および2-クロロエチルトリエトキシシランなどが挙げられる。 Examples of chloro-based compounds include 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 2-chloroethyltrimethoxysilane, and 2-chloroethyltriethoxysilane.
 その他の化合物としては、例えば、ジエトキシジメチルシラン、1,3-ジエトキシ-1,1,3,3-テトラメチルジシロキサン、ジメトキシジメチルシラン、メチルジエトキシシラン、ジイソプロピルジメトキシシラン、ジシクロペンチルジメトキシシラン、オクチルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、ヘキサデシルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、N,N,N-トリス(3-トリメトキシシリルプロピル)トリイソシアヌレートなどが挙げられる。 Other compounds include, for example, diethoxydimethylsilane, 1,3-diethoxy-1,1,3,3-tetramethyldisiloxane, dimethoxydimethylsilane, methyldiethoxysilane, diisopropyldimethoxysilane, dicyclopentyldimethoxysilane, octyltriethoxysilane, methyltriethoxysilane, methyltrimethoxysilane, hexadecyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, N,N,N-tris(3-trimethoxysilylpropyl)triisocyanurate, etc. mentioned.
 本発明の一実施形態において、シランカップリング剤は、トリアルコキシシランであってもジアルコキシシランであってもよいが、湿潤状態におけるガラスとの接着性を向上しやすい観点からは、ジアルコキシシランであることが好ましい。 In one embodiment of the present invention, the silane coupling agent may be either trialkoxysilane or dialkoxysilane. is preferably
 本発明の一実施形態において、シランカップリング剤は、上記の中でも湿潤状態におけるガラスとの接着性を向上しやすい観点から、好ましくはアミノ系化合物、グリシドキシ系化合物であり、より好ましくはN-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、さらに好ましくはN-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシランである。これらのシランカップリング剤は単独でまたは二種以上組み合わせて使用できる。 In one embodiment of the present invention, the silane coupling agent is preferably an amino-based compound or a glycidoxy-based compound, more preferably N-β, from the viewpoint of easily improving the adhesion to glass in a wet state among the above. -(aminoethyl)-γ-aminopropylmethyldimethoxysilane, N-β-(aminoethyl)-γ-aminopropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane Ethoxysilane, more preferably N-β-(aminoethyl)-γ-aminopropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane. These silane coupling agents can be used alone or in combination of two or more.
 〔他の添加剤〕
 本発明の一実施形態において、本発明の樹脂組成物は、シランカップリング剤に加えて、必要に応じて他の添加剤を含んでいてもよい。添加剤の例としては、紫外線吸収剤、老化防止剤、酸化防止剤、熱劣化防止剤、光安定剤、膠着防止剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、有機色素、艶消し剤、蛍光体等が挙げられる。これらの添加剤のなかでも、紫外線吸収剤、老化防止剤、酸化防止剤、熱劣化防止剤、光安定剤、膠着防止剤、滑剤、離型剤、高分子加工助剤、有機色素が好ましい。添加剤は1種単独でも2種以上の組み合わせでもよい。
[Other additives]
In one embodiment of the present invention, the resin composition of the present invention may optionally contain other additives in addition to the silane coupling agent. Examples of additives include UV absorbers, anti-aging agents, antioxidants, heat deterioration inhibitors, light stabilizers, anti-sticking agents, lubricants, release agents, polymer processing aids, antistatic agents, flame retardants. , dyes and pigments, organic dyes, matting agents, phosphors, and the like. Among these additives, ultraviolet absorbers, anti-aging agents, antioxidants, heat deterioration inhibitors, light stabilizers, anti-sticking agents, lubricants, release agents, polymer processing aids and organic dyes are preferred. Additives may be used alone or in combination of two or more.
 紫外線吸収剤は、紫外線を吸収する能力を有する化合物であり、主に光エネルギーを熱エネルギーに変換する機能を有すると言われる。紫外線吸収剤の例としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。 A UV absorber is a compound that has the ability to absorb UV rays, and is said to have the function of mainly converting light energy into heat energy. Examples of UV absorbers include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic acid esters, formamidines and the like. These may be used singly or in combination of two or more.
 ベンゾトリアゾール類は紫外線被照による着色等の光学特性低下を抑制する効果が高いため、紫外線吸収剤として好ましい。好ましいベンゾトリアゾール類の例としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF社製;商品名:TINUVIN329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製;商品名:TINUVIN234)、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-t-オクチルフェノール]((株)ADEKA製;商品名:アデカスタブLA-31)、2-(5-オクチルチオ-2H-ベンゾトリアゾール-2-イル)-6-tert-ブチル-4-メチルフェノール等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。 Benzotriazoles are preferable as UV absorbers because they are highly effective in suppressing deterioration of optical properties such as coloration due to exposure to UV light. Examples of preferred benzotriazoles include 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (manufactured by BASF; trade name: TINUVIN329), 2 -(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (manufactured by BASF; trade name: TINUVIN234), 2,2'-methylenebis[6-(2H -benzotriazol-2-yl)-4-t-octylphenol] (manufactured by ADEKA Corporation; trade name: ADEKA STAB LA-31), 2-(5-octylthio-2H-benzotriazol-2-yl)-6- tert-butyl-4-methylphenol and the like. These may be used singly or in combination of two or more.
 トリアジン類の紫外線吸収剤の例としては、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン((株)ADEKA製;商品名:アデカスタブLA-F70)や、その類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASF社製;商品名:TINUVIN477やTINUVIN460)、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン等を挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。 Examples of triazine UV absorbers include 2,4,6-tris(2-hydroxy-4-hexyloxy-3-methylphenyl)-1,3,5-triazine (manufactured by ADEKA Corporation; trade name : Adekastab LA-F70) and its analogues, hydroxyphenyltriazine-based UV absorbers (manufactured by BASF; trade names: TINUVIN477 and TINUVIN460), 2,4-diphenyl-6-(2-hydroxy-4-hexyloxy phenyl)-1,3,5-triazine and the like. These may be used singly or in combination of two or more.
 老化防止剤としては、公知の材料が例示される。具体的な老化防止剤の例としては、ヒドロキノン、ヒドロキノンモノメチルエーテル、2,5-ジ-t-ブチルフェノール、2,6-ジ(t-ブチル)-4-メチルフェノール、モノ(またはジ、またはトリ)(α-メチルベンジル)フェノール等のフェノール系化合物;2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)等のビスフェノール系化合物;2-メルカプトベンズイミダゾール、2-メルカプトメチルベンズイミダゾール等のベンズイミダゾール系化合物;6-エトキシ-1,2-ジヒドロ-2,2,4-トリメチルキノリン、ジフェニルアミンとアセトンの反応物、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体等のアミン-ケトン系化合物;N-フェニル-1-ナフチルアミン、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン等の芳香族二級アミン系化合物;1,3-ビス(ジメチルアミノプロピル)-2-チオ尿素、トリブチルチオ尿素等のチオウレア系化合物等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。 Well-known materials are exemplified as anti-aging agents. Examples of specific anti-aging agents include hydroquinone, hydroquinone monomethyl ether, 2,5-di-t-butylphenol, 2,6-di(t-butyl)-4-methylphenol, mono (or di, or tri ) (α-methylbenzyl)phenol and other phenolic compounds; 2,2′-methylenebis(4-ethyl-6-t-butylphenol), 4,4′-butylidenebis(3-methyl-6-t-butylphenol), bisphenol compounds such as 4,4'-thiobis (3-methyl-6-t-butylphenol); benzimidazole compounds such as 2-mercaptobenzimidazole and 2-mercaptomethylbenzimidazole; 6-ethoxy-1,2- Amine-ketone compounds such as dihydro-2,2,4-trimethylquinoline, reaction products of diphenylamine and acetone, 2,2,4-trimethyl-1,2-dihydroquinoline polymers; N-phenyl-1-naphthylamine, Aromatics such as alkylated diphenylamine, octylated diphenylamine, 4,4′-bis(α,α-dimethylbenzyl)diphenylamine, p-(p-toluenesulfonylamido)diphenylamine, N,N′-diphenyl-p-phenylenediamine Secondary amine compounds; thiourea compounds such as 1,3-bis(dimethylaminopropyl)-2-thiourea and tributylthiourea; These may be used singly or in combination of two or more.
 酸化防止剤は、酸素存在下においてそれ単体で樹脂の酸化劣化防止に効果を有するものである。例えば、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤等が挙げられる。これらの酸化防止剤は1種を単独でも2種以上の組み合わせでもよい。なかでも、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤が好ましく、リン系酸化防止剤とヒンダードフェノール系酸化防止剤との組み合わせがより好ましい。  Antioxidants are effective by themselves to prevent oxidative deterioration of resins in the presence of oxygen. Examples include phosphorus antioxidants, hindered phenol antioxidants, thioether antioxidants, and the like. These antioxidants may be used alone or in combination of two or more. Among them, from the viewpoint of the effect of preventing deterioration of optical properties due to coloring, phosphorus-based antioxidants and hindered phenol-based antioxidants are preferable, and a combination of a phosphorus-based antioxidant and a hindered phenol-based antioxidant is more preferable. .
 リン系酸化防止剤とヒンダードフェノール系酸化防止剤とを組み合わせる場合、リン系酸化防止剤の使用量:ヒンダードフェノール系酸化防止剤の使用量は、質量比で、好ましくは1:5~2:1、より好ましくは1:2~1:1である。 When a phosphorus-based antioxidant and a hindered phenol-based antioxidant are combined, the amount of phosphorus-based antioxidant used: the amount of hindered phenol-based antioxidant used is preferably 1:5 to 2 in mass ratio. :1, more preferably 1:2 to 1:1.
 好ましいリン系酸化防止剤の例としては、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト((株)ADEKA製;商品名:アデカスタブHP-10)、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASF社製;商品名:IRGAFOS168)、3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン((株)ADEKA製;商品名:アデカスタブPEP-36)等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。 Examples of preferred phosphorus antioxidants include 2,2-methylenebis(4,6-di-t-butylphenyl)octylphosphite (manufactured by ADEKA Corporation; trade name: ADEKA STAB HP-10), Tris (2 ,4-di-t-butylphenyl)phosphite (manufactured by BASF; trade name: IRGAFOS168), 3,9-bis(2,6-di-t-butyl-4-methylphenoxy)-2,4,8 , 10-tetraoxa-3,9-diphosphaspiro[5.5]undecane (manufactured by ADEKA Corporation; trade name: ADEKA STAB PEP-36). These may be used singly or in combination of two or more.
 好ましいヒンダードフェノール系酸化防止剤の例としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(BASF社製;商品名:IRGANOX1010)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(BASF社製;商品名:IRGANOX1076)等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。 Preferred examples of hindered phenolic antioxidants include pentaerythrityl-tetrakis [3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] (manufactured by BASF; trade name: IRGANOX1010), Octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate (manufactured by BASF; trade name: IRGANOX1076) and the like. These may be used singly or in combination of two or more.
 熱劣化防止剤は、実質上無酸素の状態下で高熱にさらされたときに生じるポリマーラジカルを捕捉することによって樹脂の熱劣化を防止できるものである。好ましい熱劣化防止剤の例としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学(株)製;商品名:スミライザーGM)、2,4-ジ-t-アミル-6-(3’,5’-ジ-t-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学(株)製;商品名:スミライザーGS)等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。 Thermal degradation inhibitors can prevent thermal degradation of resins by scavenging polymer radicals that are generated when exposed to high heat under virtually oxygen-free conditions. Examples of preferred heat deterioration inhibitors include 2-t-butyl-6-(3′-t-butyl-5′-methyl-hydroxybenzyl)-4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd.; trade name : Sumilizer GM), 2,4-di-t-amyl-6-(3′,5′-di-t-amyl-2′-hydroxy-α-methylbenzyl)phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd.; trade name: Sumilizer GS) and the like. These may be used singly or in combination of two or more.
 光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。好ましい光安定剤の例としては、2,2,6,6-テトラアルキルピペリジン骨格を持つ化合物等のヒンダードアミン類が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。 A light stabilizer is a compound that is said to have the function of scavenging radicals that are mainly generated by light oxidation. Examples of preferred light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton. These may be used singly or in combination of two or more.
 膠着防止剤の例としては、脂肪酸の塩もしくはエステル、多価アルコールのエステル、無機塩、無機酸化物、粒子状の樹脂が挙げられる。好ましい膠着防止剤の例としては、ステアリン酸カルシウム、炭酸カルシウム、硫酸カルシウム、硫酸マグネシウム、硫酸バリウム、二酸化ケイ素(エボニック社製;商品名:アエロジル)、粒子状のアクリル樹脂等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。 Examples of anti-adhesion agents include salts or esters of fatty acids, esters of polyhydric alcohols, inorganic salts, inorganic oxides, and particulate resins. Examples of preferred anti-adhesion agents include calcium stearate, calcium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, silicon dioxide (manufactured by Evonik; trade name: Aerosil), and particulate acrylic resins. These may be used singly or in combination of two or more.
 滑剤の例としては、ステアリン酸、ベヘニン酸、ステアロアミド酸、メチレンビスステアロアミド、ヒドロキシステアリン酸トリグリセリド、パラフィンワックス、ケトンワックス、オクチルアルコール、硬化油等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。 Examples of lubricants include stearic acid, behenic acid, stearamic acid, methylenebisstearamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, and hydrogenated oil. These may be used singly or in combination of two or more.
 離型剤の例としては、セチルアルコール、ステアリルアルコール等の高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライド等のグリセリン高級脂肪酸エステル等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。 Examples of release agents include higher alcohols such as cetyl alcohol and stearyl alcohol; glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride. These may be used singly or in combination of two or more.
 高分子加工助剤は、通常、乳化重合法によって製造できる、0.05~0.5μmの粒子径を有する重合体粒子が用いられる。該重合体粒子は、単一組成比および単一極限粘度の重合体からなる単層粒子であってもよく、組成比または極限粘度の異なる2種以上の重合体からなる多層粒子であってもよい。これらは1種単独でも2種以上の組み合わせでもよい。この中でも、内層に低い極限粘度を有する重合体層を有し、外層に5dl/g以上の高い極限粘度を有する重合体層を有する2層構造の粒子が好ましい。高分子加工助剤の極限粘度は好ましくは3~6dl/gである。極限粘度が小さすぎると成形性の改善効果が低い傾向があり、極限粘度が大きすぎると共重合体の成形加工性の低下を招く傾向がある。 As the polymer processing aid, polymer particles having a particle size of 0.05 to 0.5 μm, which can be produced by an emulsion polymerization method, are usually used. The polymer particles may be monolayer particles composed of a polymer having a single composition ratio and a single intrinsic viscosity, or may be multilayer particles composed of two or more polymers having different composition ratios or intrinsic viscosities. good. These may be used singly or in combination of two or more. Among these, particles having a two-layer structure having an inner layer of a polymer layer having a low intrinsic viscosity and an outer layer of a polymer layer having a high intrinsic viscosity of 5 dl/g or more are preferred. The intrinsic viscosity of the polymeric processing aid is preferably 3-6 dl/g. If the intrinsic viscosity is too low, the effect of improving the moldability tends to be low, and if the intrinsic viscosity is too high, the molding processability of the copolymer tends to deteriorate.
 有機色素の例としては、紫外線を可視光線に変換する機能を有する化合物が好ましく用いられる。有機色素は1種単独でも2種以上の組み合わせでもよい。 As an example of an organic dye, a compound that has the function of converting ultraviolet light into visible light is preferably used. The organic dyes may be used singly or in combination of two or more.
 蛍光体の例としては、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、蛍光漂白剤等が挙げられる。これらは1種単独でも2種以上の組み合わせでもよい。 Examples of phosphors include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent whitening agents, and fluorescent bleaching agents. These may be used singly or in combination of two or more.
 各種添加剤の含有量は、本発明の効果を損なわない範囲で適宜選択でき、各種添加剤の合計含有量は、樹脂組成物の総質量に対して、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。 The content of various additives can be appropriately selected within a range that does not impair the effects of the present invention, and the total content of various additives is preferably 7% by mass or less, more preferably 7% by mass or less, more preferably It is 5% by mass or less, more preferably 4% by mass or less.
 〔アイオノマー樹脂組成物〕
 本発明のアイオノマー樹脂組成物は、アイオノマー樹脂およびシランカップリング剤を含み、前記アイオノマー樹脂が(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)およびエチレン単位(C)を含み、前記単位(A)および前記単位(B)の合計含有量が前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であり、前記アイオノマー樹脂中の強酸および強塩基からなる塩の含有量が1~400mg/kgであり、前記シランカップリング剤の含有量が、アイオノマー樹脂100質量部に対して0.005~0.5質量部であるため、高い透明性、高い耐熱分解性および湿潤状態におけるガラスとの高い接着性を有し、さらに優れた外観を有する樹脂シートを形成できる。
[Ionomer resin composition]
The ionomer resin composition of the present invention comprises an ionomer resin and a silane coupling agent, wherein the ionomer resin contains (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B) and ethylene units (C ), the total content of the units (A) and the units (B) is 6 to 10 mol% based on the total monomer units constituting the ionomer resin, and the strong acid and the strong Since the content of the salt composed of a base is 1 to 400 mg/kg, and the content of the silane coupling agent is 0.005 to 0.5 parts by mass with respect to 100 parts by mass of the ionomer resin, high transparency , it has high thermal decomposition resistance and high adhesion to glass in a wet state, and can form a resin sheet having an excellent appearance.
 本発明の一実施形態において、アイオノマー樹脂の含有量は、透明性、耐熱分解性および特に湿潤状態におけるガラスとの接着性を向上しやすい観点から、アイオノマー樹脂組成物の総質量に対して、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、さらにより好ましくは99質量%以上であり、また、好ましくは100質量%未満、より好ましくは99.99質量%以下である。 In one embodiment of the present invention, the content of the ionomer resin is preferably relative to the total mass of the ionomer resin composition, from the viewpoint of easily improving transparency, thermal decomposition resistance, and particularly adhesion to glass in a wet state. is 90% by mass or more, more preferably 95% by mass or more, still more preferably 98% by mass or more, still more preferably 99% by mass or more, and preferably less than 100% by mass, more preferably 99.99% by mass It is below.
 本発明のアイオノマー樹脂組成物は、上述のように塩を1~400mg/kg含有するため、高い耐熱分解性を有することができる。本発明の好適な実施形態において、本発明のアイオノマー樹脂組成物の窒素雰囲気下、10℃/分昇温時の1%重量減少温度(Td1)は、好ましくは330℃以上、より好ましくは350℃以上、さらに好ましくは360℃以上、特に好ましくは370℃以上であり、通常450℃以下である。アイオノマー樹脂組成物の1%重量減少温度が上記下限値以上であると、アイオノマー樹脂組成物の溶融成形時等の発泡および/または熱分解を低減しやすく、気泡および/または樹脂の熱分解によって生じる黒色異物等の欠点を有さない中間膜を得やすい。なお、本明細書中において、1%重量減少温度は200℃時点の重量を基準として、重量減少率が1%となる際の温度を表す。前記1%重量減少温度はJIS K7120:1987に従って測定でき、例えば、実施例に記載の方法で測定できる。 Since the ionomer resin composition of the present invention contains 1 to 400 mg/kg of salt as described above, it can have high thermal decomposition resistance. In a preferred embodiment of the present invention, the ionomer resin composition of the present invention has a 1% weight loss temperature (Td1) when heated at 10°C/min in a nitrogen atmosphere, preferably 330°C or higher, more preferably 350°C. Above, more preferably 360° C. or higher, particularly preferably 370° C. or higher, and usually 450° C. or lower. When the 1% weight loss temperature of the ionomer resin composition is at least the above lower limit, foaming and/or thermal decomposition during melt molding of the ionomer resin composition is likely to be reduced, and air bubbles and/or are generated by thermal decomposition of the resin. It is easy to obtain an intermediate film that does not have defects such as black foreign matter. In this specification, the 1% weight reduction temperature represents the temperature at which the weight reduction rate becomes 1% based on the weight at 200°C. The 1% weight loss temperature can be measured according to JIS K7120:1987, for example, by the method described in Examples.
 本発明の一実施形態において、本発明のアイオノマー樹脂組成物の動的粘弾性測定で測定される50℃での貯蔵弾性率(E’)は、良好な自立性(すなわち、高い弾性率)、特に高温環境下における自立性(高温環境下における高い弾性率)の観点から、好ましくは20MPa以上、より好ましくは30MPa以上、さらに好ましくは40MPa以上、特に好ましくは50MPa以上である。貯蔵弾性率(E’)上限値は特に制限されず、1000MPaであってよい。前記貯蔵弾性率は、アイオノマー樹脂の分子量、ならびに(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに場合により含まれる(メタ)アクリル酸エステル単位(D)の含有量によって調整できる。 In one embodiment of the present invention, the storage modulus (E′) at 50° C. measured by dynamic viscoelasticity measurement of the ionomer resin composition of the present invention has good self-sustainability (i.e., high elastic modulus), In particular, from the viewpoint of self-sustainability in high-temperature environments (high elastic modulus in high-temperature environments), it is preferably 20 MPa or higher, more preferably 30 MPa or higher, even more preferably 40 MPa or higher, and particularly preferably 50 MPa or higher. The storage modulus (E') upper limit is not particularly limited, and may be 1000 MPa. Said storage modulus is determined by the molecular weight of the ionomer resin and (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and optionally including (meth) It can be adjusted by the content of the acrylate unit (D).
 本発明のアイオノマー樹脂組成物は高い透明性を有している。本発明の一実施形態において、本発明のアイオノマー樹脂組成物のヘイズは、好ましくは2.0%以下、より好ましくは1.5%以下、さらに好ましくは1.0%以下である。ヘイズが小さいほどアイオノマー樹脂組成物の透明性が高まるため、下限値は特に制限されず、例えば、0.01%以上であってもよい。なお、アイオノマー樹脂組成物のヘイズは、ヘイズメーターを用いてJIS K7136:2000に準拠して測定される。 The ionomer resin composition of the present invention has high transparency. In one embodiment of the present invention, the ionomer resin composition of the present invention preferably has a haze of 2.0% or less, more preferably 1.5% or less, even more preferably 1.0% or less. Since the transparency of the ionomer resin composition increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01% or more. The haze of the ionomer resin composition is measured using a haze meter according to JIS K7136:2000.
 本発明者らは、アイオノマー樹脂中に強酸および強塩基からなる塩を含有させるとアイオノマー樹脂組成物の耐熱分解性を向上しやすい一方、塩の含有量が多すぎるとアイオノマー樹脂組成物の透明性、とりわけ、アイオノマー樹脂組成物が吸水した状態における透明性(吸水時の透明性)が低下するという知見を得た。そこで本発明者らはさらに検討を行った結果、アイオノマー樹脂中の塩の含有量が400mg/kg以下であれば、アイオノマー樹脂組成物が吸水した状態における透明性も高めることができることを見出した。そのため、アイオノマー樹脂中の塩の含有量が1~400mg/kgである本発明のアイオノマー樹脂組成物は吸水時においても高い透明性を有している。
 本発明の一実施形態において、本発明のアイオノマー樹脂組成物が吸水した状態のヘイズ(吸水ヘイズ)は、好ましくは9.0%以下、より好ましくは5.0%以下、さらに好ましくは3.0%以下、特に好ましくは2.5%以下である。吸水ヘイズが小さいほどアイオノマー樹脂組成物の吸水した状態における透明性が高まるため、下限値は特に制限されず、例えば、0.01%以上であってもよい。なお、吸水ヘイズはアイオノマー樹脂組成物を23℃のイオン交換水に浸漬させた状態で300時間保持し、イオン交換水から取出し、表面に付着した水分をふき取ったアイオノマー樹脂組成物を試験片として、ヘイズメーターを用い、JIS K7136:2000に準拠して測定でき、例えば、実施例に記載の方法で測定できる。
The present inventors have found that the inclusion of a salt of a strong acid and a strong base in the ionomer resin tends to improve the thermal decomposition resistance of the ionomer resin composition. In particular, the inventors have found that the transparency of the ionomer resin composition in a water-absorbing state (transparency at the time of water absorption) is reduced. As a result of further studies, the present inventors have found that if the content of salt in the ionomer resin is 400 mg/kg or less, the transparency of the ionomer resin composition in a water-absorbed state can also be enhanced. Therefore, the ionomer resin composition of the present invention having a salt content of 1 to 400 mg/kg in the ionomer resin has high transparency even when absorbing water.
In one embodiment of the present invention, the haze (water absorption haze) of the ionomer resin composition of the present invention after absorbing water is preferably 9.0% or less, more preferably 5.0% or less, further preferably 3.0%. % or less, particularly preferably 2.5% or less. The lower the water absorption haze, the higher the transparency of the ionomer resin composition in a water-absorbed state. The water absorption haze was measured by immersing the ionomer resin composition in ion-exchanged water at 23° C. for 300 hours, removing the ionomer resin composition from the ion-exchanged water, and wiping off the water adhering to the surface. Using a haze meter, it can be measured according to JIS K7136:2000, for example, it can be measured by the method described in Examples.
 本発明者らの検討によれば、アイオノマー樹脂の結晶性が高すぎるとアイオノマー樹脂が白化しやすい傾向があるため、アイオノマー樹脂組成物を徐冷して、アイオノマー樹脂の結晶化を促進させた状態における透明性(徐冷時の透明性)が低下しやすい。しかし本発明におけるアイオノマー樹脂は、樹脂中の(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)の合計含有量が6モル%以上であるため、結晶化しにくくなり、徐冷時においても高い透明性を有する。
 本発明の好適な実施形態において、本発明のアイオノマー樹脂組成物の徐冷により該組成物に含まれるアイオノマー樹脂の結晶化を促進させた状態のヘイズ(徐冷ヘイズ)は、好ましくは5.0%以下、より好ましくは4.5%以下、さらに好ましくは4.0%以下、さらにより好ましくは3.0%以下、特に好ましくは2.5%以下である。ヘイズが小さいほどアイオノマー樹脂組成物の透明性が高まるため、下限値は特に制限されず、例えば、0.01%以上であってもよい。徐冷ヘイズは、アイオノマー樹脂組成物から形成される樹脂シートを中間膜として2つのガラス板の間に配置して合わせガラスを作製し、該合わせガラスを140℃まで加熱した後、140℃から0.1℃/分の速度で23℃まで徐冷した後のヘイズを、ヘイズメーターでJIS K7136:2000に準拠して測定することによって得られる。
According to the study of the present inventors, the ionomer resin tends to whiten easily if the crystallinity of the ionomer resin is too high, so the ionomer resin composition is slowly cooled to promote the crystallization of the ionomer resin transparency (transparency during slow cooling) tends to decrease. However, in the ionomer resin of the present invention, the total content of (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units (B) in the resin is 6 mol% or more, so that it is difficult to crystallize. , and has high transparency even when slowly cooled.
In a preferred embodiment of the present invention, the haze of the ionomer resin composition of the present invention in which crystallization of the ionomer resin contained in the composition is accelerated by slow cooling (slow cooling haze) is preferably 5.0. % or less, more preferably 4.5% or less, still more preferably 4.0% or less, even more preferably 3.0% or less, and particularly preferably 2.5% or less. Since the transparency of the ionomer resin composition increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01% or more. Slow-cooling haze is obtained by disposing a resin sheet formed from an ionomer resin composition as an intermediate film between two glass plates to prepare a laminated glass, heating the laminated glass to 140°C, and then reducing the haze from 140°C to 0.1. Obtained by measuring the haze after slowly cooling to 23°C at a rate of °C/min with a haze meter in accordance with JIS K7136:2000.
 本発明の一実施形態において、本発明のアイオノマー樹脂組成物は着色度が小さく、好ましくは無色である。本発明のアイオノマー樹脂組成物の黄色度(YI)は、低着色性の観点から、好ましくは2.0以下、より好ましくは1.8以下、さらに好ましくは1.5以下、特に好ましくは1.0以下である。黄色度(YI)が小さいほどアイオノマー樹脂組成物の着色性が小さくなるため、下限値は特に制限されず、例えば、0以上であってよい。なお、黄色度(YI)は測色色差計を用い、JIS Z8722:2009に準拠して測定できる。 In one embodiment of the present invention, the ionomer resin composition of the present invention has a low degree of coloring and is preferably colorless. The yellowness index (YI) of the ionomer resin composition of the present invention is preferably 2.0 or less, more preferably 1.8 or less, still more preferably 1.5 or less, and particularly preferably 1.5 or less, from the viewpoint of low coloring. 0 or less. Since the lower the yellowness index (YI), the lower the colorability of the ionomer resin composition, the lower limit is not particularly limited, and may be, for example, 0 or more. The yellowness index (YI) can be measured using a colorimetric color difference meter in accordance with JIS Z8722:2009.
 本発明の一実施形態において、本発明のアイオノマー樹脂組成物のガラスとの接着力は、例えば、WO1999―058334号公報に記載の圧縮せん断強度試験(Compression shear strength test)により測定される。圧縮せん断強度は、前記接着力を高めやすい観点から、好ましくは15MPa以上、より好ましくは20MPa以上、特に好ましくは25MPa以上である。また、圧縮せん断強度は、合わせガラスの耐貫通性を高めやすい観点から、50MPa以下であってよい。 In one embodiment of the present invention, the adhesive strength of the ionomer resin composition of the present invention to glass is measured by, for example, the compression shear strength test described in WO1999-058334. The compressive shear strength is preferably 15 MPa or more, more preferably 20 MPa or more, and particularly preferably 25 MPa or more, from the viewpoint of easily increasing the adhesive strength. Moreover, the compressive shear strength may be 50 MPa or less from the viewpoint of easily increasing the penetration resistance of the laminated glass.
 本発明の一実施形態において、本発明のアイオノマー樹脂組成物のガラスとの湿潤状態における接着性は、湿潤状態で行われる剥離試験によって測定されるアイオノマー樹脂組成物から形成される樹脂シートのガラス接着力により評価できる。湿潤状態におけるガラス接着力は、好ましくは0.1N/cm以上、より好ましくは0.3N/cm以上、さらに好ましくは0.7N/cm以上、さらにより好ましくは1.0N/cm以上、特に好ましくは1.2N/cm以上である。上限は特に制限されず、10N/cm以下であってよい。前記接着力は、引張試験装置によって測定でき、例えば実施例に記載の方法により測定できる。 In one embodiment of the present invention, the wet state adhesion of the ionomer resin composition of the present invention to glass is measured by a peel test performed in a wet state. It can be evaluated by force. The glass adhesive strength in a wet state is preferably 0.1 N/cm or more, more preferably 0.3 N/cm or more, still more preferably 0.7 N/cm or more, still more preferably 1.0 N/cm or more, and particularly preferably is 1.2 N/cm or more. The upper limit is not particularly limited, and may be 10 N/cm or less. The adhesive strength can be measured by a tensile tester, for example, by the method described in the Examples.
 本発明のアイオノマー樹脂組成物は、保存、運搬、または成形時の利便性を高めるために、ペレット等の形態にしてよい。アイオノマー樹脂組成物をペレット化する場合は、例えば、溶融押出法にて得られるストランドをカットすることにより得ることができる。溶融押出法によってペレット化する場合における溶融押出時の樹脂組成物の温度は、押出機からの吐出を安定化しやすい観点から、好ましくは150℃以上、より好ましくは170℃以上である。また、前記温度は、樹脂が熱分解して劣化することを抑制する観点から、好ましくは250℃以下、より好ましくは230℃以下である。本発明のアイオノマー樹脂組成物は耐熱分解性が高いため、このように溶融押出法によりペレット化する際に、アイオノマー樹脂組成物が熱分解して黒色異物が生じる等の問題が起こりにくい。 The ionomer resin composition of the present invention may be in the form of pellets or the like in order to enhance convenience during storage, transportation, or molding. When the ionomer resin composition is pelletized, it can be obtained, for example, by cutting strands obtained by a melt extrusion method. When the resin composition is pelletized by a melt extrusion method, the temperature of the resin composition during melt extrusion is preferably 150° C. or higher, more preferably 170° C. or higher, from the viewpoint of easily stabilizing the discharge from the extruder. In addition, the temperature is preferably 250° C. or lower, more preferably 230° C. or lower, from the viewpoint of suppressing thermal decomposition and deterioration of the resin. Since the ionomer resin composition of the present invention has high thermal decomposition resistance, problems such as the generation of black foreign matter due to thermal decomposition of the ionomer resin composition are less likely to occur when the ionomer resin composition is pelletized by the melt extrusion method.
 本発明のアイオノマー樹脂組成物の製造方法は特に制限されず、例えばアイオノマー樹脂、シランカップリング剤および任意に他の添加剤を混合することにより製造できる。 The method for producing the ionomer resin composition of the present invention is not particularly limited, and it can be produced, for example, by mixing an ionomer resin, a silane coupling agent and optionally other additives.
 アイオノマー樹脂とシランカップリング剤との混合方法は特に制限されず、例えばアイオノマー樹脂にシランカップリング剤を直接添加して混合してよい。また、本発明の一実施形態において、シランカップリング剤をアイオノマー樹脂のマスターバッチの一部として添加しておき、前記マスターバッチとアイオノマー樹脂とを混合して、アイオノマー樹脂組成物中のシランカップリング剤の含有量を調整することもできる。さらに、シランカップリング剤の添加は、ペレット化する工程、シートやフィルム等に成形加工する工程に行ってもよい。 The method of mixing the ionomer resin and the silane coupling agent is not particularly limited. For example, the silane coupling agent may be directly added to the ionomer resin and mixed. Further, in one embodiment of the present invention, a silane coupling agent is added as part of the ionomer resin masterbatch, and the masterbatch and the ionomer resin are mixed to perform silane coupling in the ionomer resin composition. The content of the agent can also be adjusted. Furthermore, the addition of the silane coupling agent may be carried out in the step of pelletizing, or in the step of forming into sheets, films, or the like.
 各種添加剤は、アイオノマー樹脂を製造する際に添加してもよく、アイオノマー樹脂の製造後にアイオノマー樹脂に添加してもよく、ペレット化する工程、シートやフィルム等に成形加工する工程に行ってもよい。 Various additives may be added during production of the ionomer resin, may be added to the ionomer resin after production of the ionomer resin, or may be added to the process of pelletizing, forming into sheets, films, etc. good.
[樹脂シート]
 本発明は本発明のアイオノマー樹脂組成物を含む層を1層以上含んでなる樹脂シートも包含する。本発明の樹脂シートは、本発明の樹脂組成物を含む層を含んでなるため、透明性およびガラス等の基材との接着性に優れており、また、黒色異物や架橋ゲル等が少なく外観も良好である。
[Resin sheet]
The present invention also includes a resin sheet comprising one or more layers containing the ionomer resin composition of the present invention. Since the resin sheet of the present invention comprises a layer containing the resin composition of the present invention, it has excellent transparency and adhesion to substrates such as glass. is also good.
 本発明の樹脂シートは、本発明のアイオノマー樹脂組成物を含む層(以下、層(x)ともいう)を1層以上含む。
 本発明の樹脂シートは、層(x)のみから構成されていてもよく、層(x)を少なくとも1層含む積層体であってもよい。前記積層体としては、特に限定されないが、例えば、2層以上の層(x)を含む積層体、1層以上の層(x)と1層以上の他の層とを含む積層体等が挙げられる。層(x)または他の層が複数の層である場合、各層を構成する樹脂または樹脂組成物は、同じでも異なっていてもよい。
The resin sheet of the present invention includes one or more layers containing the ionomer resin composition of the present invention (hereinafter also referred to as layer (x)).
The resin sheet of the present invention may be composed of only the layer (x), or may be a laminate containing at least one layer (x). The laminate is not particularly limited, but examples thereof include a laminate containing two or more layers (x), a laminate containing one or more layers (x) and one or more other layers, and the like. be done. When layer (x) or another layer is a plurality of layers, the resin or resin composition constituting each layer may be the same or different.
 前記他の層としては、公知の樹脂を含む層が例示される。該樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリウレタン、ポリテトラフルオロエチレン、アクリル樹脂、ポリアミド、ポリアセタール、ポリカーボネート、ポリエステルのうちポリエチレンテレフタレート、ポリブチレンテレフタレート、環状ポリオレフィン、ポリフェニレンスルファイド、ポリテトラフロロエチレン、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、液晶ポリマー、ポリイミド、熱可塑性エラストマー等を用いることができる。また、他の層も、必要に応じて、前記添加剤、ならびに、可塑剤、顔料、染料、遮熱材料(例えば、赤外線吸収能を有する、無機遮熱性微粒子または有機遮熱性材料)、機能性無機化合物等の添加剤を1種以上含有してよい。 A layer containing a known resin is exemplified as the other layer. Examples of the resin include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polytetrafluoroethylene, acrylic resin, polyamide, polyacetal, polycarbonate, polyethylene terephthalate among polyesters, polybutylene terephthalate, cyclic polyolefin, polyphenylene sulfide, Polytetrafluoroethylene, polysulfone, polyethersulfone, polyarylate, liquid crystal polymer, polyimide, thermoplastic elastomer and the like can be used. In addition, other layers, if necessary, the additives, plasticizers, pigments, dyes, heat-shielding materials (for example, inorganic heat-shielding fine particles or organic heat-shielding materials having infrared absorption ability), functional It may contain one or more additives such as inorganic compounds.
 本発明の一実施形態において、樹脂シートと基材とを熱圧着する際の泡抜け性に優れる観点から、本発明の樹脂シートは表面にメルトフラクチャーやエンボス等、従来公知の方法で凹凸構造を有することが好ましい。メルトフラクチャーおよびエンボスの形状は、従来公知のものを適宜選択してよい。 In one embodiment of the present invention, the resin sheet of the present invention has an uneven structure on the surface thereof by a conventionally known method such as melt fracture or embossing, from the viewpoint of excellent bubble removal properties when the resin sheet and the substrate are thermocompression bonded. It is preferable to have The shape of the melt fracture and embossing may be appropriately selected from conventionally known shapes.
 本発明の樹脂シートにおける層(x)1層の厚さは、好ましくは0.1mm以上、より好ましくは0.2mm以上、さらに好ましくは0.3mm以上、特に好ましくは0.4mm以上であり、また、好ましくは5mm以下、より好ましくは4mm以下、さらに好ましくは2mm以下、特に好ましくは1mm以下である。樹脂シートにおける層(x)が複数の層である場合、樹脂シートにおける複数の層(x)1層の厚さは同じでも異なっていてもよい。 The thickness of one layer (x) in the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, and particularly preferably 0.4 mm or more, Also, it is preferably 5 mm or less, more preferably 4 mm or less, even more preferably 2 mm or less, and particularly preferably 1 mm or less. When the layer (x) in the resin sheet is a plurality of layers, the thickness of each of the layers (x) in the resin sheet may be the same or different.
 本発明の樹脂シートの厚さは、好ましくは0.1mm以上、より好ましくは0.2mm以上、さらに好ましくは0.3mm以上、さらにより好ましくは0.4mm以上、とりわけ好ましくは0.5mm以上、とりわけより好ましくは0.6mm以上、とりわけさらに好ましくは0.7mm以上、特に好ましくは0.75mm以上であり、また、好ましくは20mm以下、より好ましくは15mm以下、さらに好ましくは10mm以下、さらにより好ましくは5mm以下、とりわけ好ましくは4mm以下、とりわけより好ましくは2mm以下、とりわけさらに好ましくは1mm以下である。 The thickness of the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, even more preferably 0.4 mm or more, and particularly preferably 0.5 mm or more. More preferably 0.6 mm or more, even more preferably 0.7 mm or more, particularly preferably 0.75 mm or more, and preferably 20 mm or less, more preferably 15 mm or less, still more preferably 10 mm or less, still more preferably is 5 mm or less, particularly preferably 4 mm or less, particularly more preferably 2 mm or less, and even more preferably 1 mm or less.
 樹脂シートの厚さは従来公知の方法、例えば接触式または非接触式の厚み計等を用いて測定される。樹脂シートはロール状に巻き取った状態であっても、1枚1枚の枚葉の状態であってもよい。 The thickness of the resin sheet is measured using a conventionally known method, such as a contact or non-contact thickness gauge. The resin sheet may be wound into a roll or may be in the form of individual sheets.
 本発明の好適な一実施形態において、本発明の樹脂シートは、〔アイオノマー樹脂組成物〕の項に記載の本発明のアイオノマー樹脂組成物の重量減少温度、ヘイズ、吸水ヘイズ、徐冷ヘイズ、黄色度、50℃での貯蔵弾性率、接着力、湿潤状態における接着力と同じ値を示す。 In a preferred embodiment of the present invention, the resin sheet of the present invention has the weight loss temperature, haze, water absorption haze, slow cooling haze, and yellow color of the ionomer resin composition of the present invention described in the [Ionomer resin composition] section. degree, storage modulus at 50° C., adhesive strength, and adhesive strength in a wet state.
 本発明の樹脂シートは、合わせガラスを製造する際に発泡しにくいという観点から、含水量が少ない方が好ましい。樹脂シートの含水量は好ましくは1質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.02質量%以下、特に好ましくは0.01質量%以下である。前記含有量は電量滴定法により測定できる。 The resin sheet of the present invention preferably has a low water content from the viewpoint of resistance to foaming during production of laminated glass. The water content of the resin sheet is preferably 1% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.02% by mass or less, and particularly preferably 0.01% by mass or less. The content can be measured by a coulometric titration method.
  本発明の樹脂シートの製造方法は特に限定されない。例えば、本発明のアイオノマー樹脂組成物を均一に混練した後、押出法、カレンダー法、プレス法、溶液キャスト法、溶融キャスト法、インフレーション法等の公知の製膜方法により層(x)を製造できる。層(x)は単独で樹脂シートとして使用してもよい。また、必要に応じて、2層以上の層(x)、または1層以上の層(x)と1層以上の他の層とをプレス成形等で積層させて積層樹脂シートにしてもよく、2層以上の層(x)、または1層以上の層(x)と1層以上の他の層とを共押出法により成形して積層樹脂シートとしてもよい。層(x)または他の層が複数の層である場合、各層を構成する樹脂組成物は、同じでも異なっていてもよい。 The method for manufacturing the resin sheet of the present invention is not particularly limited. For example, after uniformly kneading the ionomer resin composition of the present invention, the layer (x) can be produced by a known film-forming method such as an extrusion method, a calendar method, a press method, a solution casting method, a melt casting method, or an inflation method. . Layer (x) may be used alone as a resin sheet. Further, if necessary, two or more layers (x), or one or more layers (x) and one or more other layers may be laminated by press molding or the like to form a laminated resin sheet. Two or more layers (x), or one or more layers (x) and one or more other layers may be co-extruded to form a laminated resin sheet. When the layer (x) or other layers are a plurality of layers, the resin composition constituting each layer may be the same or different.
 公知の製膜方法のなかでも、押出機を用いて樹脂シートを製造する方法が好適に用いられる。押出時の樹脂温度は、押出機からの樹脂の吐出を安定化しやすく、機械トラブルを低減しやすい観点から、好ましくは150℃以上、より好ましくは170℃以上である。押出し時の樹脂温度は、樹脂の分解および分解に伴う樹脂の劣化を低減しやすい観点から、好ましくは250℃以下、より好ましくは230℃以下である。また、揮発性物質を効率的に除去するために、減圧によって押出機のベント口から、揮発性物質を除去することが好ましい。 Among known film-forming methods, a method of producing a resin sheet using an extruder is preferably used. The resin temperature during extrusion is preferably 150° C. or higher, more preferably 170° C. or higher, from the viewpoints of easily stabilizing the discharge of the resin from the extruder and easily reducing mechanical troubles. The resin temperature during extrusion is preferably 250° C. or lower, more preferably 230° C. or lower, from the viewpoint of facilitating decomposition of the resin and deterioration of the resin accompanying the decomposition. Moreover, in order to remove the volatile substances efficiently, it is preferable to remove the volatile substances from the vent port of the extruder by reducing the pressure.
 [合わせガラス中間膜および合わせガラス]
 本発明の樹脂シートは、合わせガラス中間膜(単に中間膜ともいう)として好適に使用できる。したがって、本発明は、本発明の樹脂シートからなる合わせガラス中間膜を包含する。また、本発明は、2つのガラス板と、該2つのガラス板の間に配置された本発明の合わせガラス中間膜とを有する、合わせガラスも包含する。本発明の合わせガラスは、前記樹脂シートからなる合わせガラス中間膜を有するため、優れた透明性を有することができる。
[Laminated glass intermediate film and laminated glass]
The resin sheet of the present invention can be suitably used as an intermediate film for laminated glass (simply referred to as an intermediate film). Therefore, the present invention includes a laminated glass interlayer made of the resin sheet of the present invention. The invention also includes a laminated glass comprising two glass sheets and a laminated glass interlayer of the invention arranged between the two glass sheets. Since the laminated glass of the present invention has the laminated glass intermediate film made of the resin sheet, it can have excellent transparency.
 本発明の中間膜と積層させるガラス板としては、例えば、フロート板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、熱線吸収板ガラス等の無機ガラスのほか、ポリメタクリル酸メチル、ポリカーボネート等の従来公知の有機ガラス等を使用し得る。これらは無色または有色のいずれであってもよい。これらは1種を使用してもよく、2種以上を組み合わせて用いてもよい。また、1枚のガラス板の厚さは、100mm以下であることが好ましく、2枚のガラス板の厚さは同じでも異なっていてもよい。 Examples of the glass plate to be laminated with the interlayer film of the present invention include inorganic glass such as float plate glass, polished plate glass, figured glass, wired plate glass, and heat-absorbing plate glass, as well as conventionally known organic glasses such as polymethyl methacrylate and polycarbonate. Glass or the like can be used. They may be either colorless or colored. These may be used alone or in combination of two or more. Moreover, the thickness of one glass plate is preferably 100 mm or less, and the thickness of the two glass plates may be the same or different.
 本発明の樹脂シートを2枚のガラスに挟んでなる合わせガラスは、従来公知の方法で製造できる。例えば真空ラミネーター装置を用いる方法、真空バッグを用いる方法、真空リングを用いる方法、ニップロールを用いる方法等が挙げられる。また上記方法により仮圧着した後に、オートクレーブに投入して本接着する方法も挙げられる。 A laminated glass obtained by sandwiching the resin sheet of the present invention between two sheets of glass can be produced by a conventionally known method. Examples thereof include a method using a vacuum laminator, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll. Moreover, after carrying out temporary press-bonding by the said method, the method of putting into an autoclave and carrying out final adhesion is also mentioned.
 真空ラミネーター装置を用いる場合、例えば1×10-6~1×10-1MPaの減圧下、60~200℃、特に80~160℃でガラス板、中間膜、および任意の層(例えば接着性樹脂層等)をラミネートすることにより、合わせガラスを製造できる。真空バッグまたは真空リングを用いる方法は、例えば欧州特許第1235683号明細書に記載されており、約2×10-2~3×10-2MPa程度の圧力下、100~160℃でガラス板、中間膜および任意の層をラミネートすることにより、合わせガラスを製造できる。 When using a vacuum laminator apparatus, for example, under a reduced pressure of 1×10 −6 to 1×10 −1 MPa, at 60 to 200° C., especially 80 to 160° C., a glass plate, an interlayer, and any layer (for example, an adhesive resin layers, etc.), laminated glass can be produced. A method using a vacuum bag or a vacuum ring is described, for example, in EP 1235683, wherein a glass plate is heated at 100-160° C. under a pressure of about 2×10 −2 to 3×10 −2 MPa. Laminated glass can be produced by laminating the interlayer and optional layers.
 ニップロールを用いる製造方法の例としては、ガラス板、中間膜および任意の層を積層し、中間膜の流動開始温度以下の温度でロールにより脱気した後、さらに流動開始温度に近い温度で圧着を行う方法が挙げられる。具体的には、例えば赤外線ヒーター等で30~70℃に加熱した後、ロールで脱気し、さらに50~120℃に加熱した後ロールで圧着させる方法が挙げられる。 As an example of a manufacturing method using nip rolls, a glass plate, an intermediate film and an arbitrary layer are laminated, degassed by rolls at a temperature below the flow start temperature of the intermediate film, and then crimped at a temperature close to the flow start temperature. method of doing so. Specifically, for example, after heating to 30 to 70° C. with an infrared heater or the like, degassing with rolls, further heating to 50 to 120° C., and pressing with rolls can be mentioned.
 上述の方法を用いて圧着させた後にオートクレーブに投入してさらに圧着を行う場合、オートクレーブ工程の運転条件は合わせガラスの厚さや構成により適宜選択されるが、例えば0.5~1.5MPaの圧力下、100~160℃にて0.5~3時間処理することが好ましい。 When pressure bonding is performed by putting it into an autoclave after pressure bonding using the above method, the operating conditions of the autoclave process are appropriately selected depending on the thickness and structure of the laminated glass. It is preferable to treat at 100 to 160° C. for 0.5 to 3 hours.
 本発明のアイオノマー樹脂組成物、および該樹脂組成物から得られる樹脂シートが高い透明性およびガラスへの高い接着性を有するため、本発明の合わせガラスは透明性に優れる。本発明の一実施形態において、本発明の合わせガラスのヘイズは、好ましくは1.0%以下、より好ましくは0.8%以下、さらに好ましくは0.5%以下である。ヘイズが小さいほど合わせガラスの透明性が高まるため、下限値は特に制限されず、例えば、0.01%であってもよい。なお、合わせガラスのヘイズは、ヘイズメーターを用いてJIS K7136:2000に準拠して測定される。 Because the ionomer resin composition of the present invention and the resin sheet obtained from the resin composition have high transparency and high adhesion to glass, the laminated glass of the present invention has excellent transparency. In one embodiment of the present invention, the haze of the laminated glass of the present invention is preferably 1.0% or less, more preferably 0.8% or less, still more preferably 0.5% or less. Since the transparency of the laminated glass increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01%. The haze of laminated glass is measured using a haze meter according to JIS K7136:2000.
 本発明の合わせガラスは、徐冷時の透明性にも優れている。徐冷時の透明性は、徐冷時のヘイズ(徐冷ヘイズ)によって評価できる。本発明の合わせガラスの徐冷ヘイズは、好ましくは5.0%以下、より好ましくは4.5%以下、さらに好ましくは4.0%以下、さらにより好ましくは3.0%以下、特に好ましくは2.5%以下である。ヘイズが小さいほど合わせガラスの透明性が高まるため、下限値は特に制限されず、例えば、0.01%以上であってもよい。合わせガラスの徐冷ヘイズは、合わせガラスを140℃まで加熱した後、140℃から0.1℃/分の速度で23℃まで徐冷した後のヘイズを、ヘイズメーターを用いてJIS K7136:2000に準拠して測定することにより求められ、例えば実施例に記載の方法で求めることができる。 The laminated glass of the present invention also has excellent transparency during slow cooling. The transparency during slow cooling can be evaluated by the haze during slow cooling (slow cooling haze). The slow cooling haze of the laminated glass of the present invention is preferably 5.0% or less, more preferably 4.5% or less, still more preferably 4.0% or less, still more preferably 3.0% or less, and particularly preferably 2.5% or less. The lower the haze, the higher the transparency of the laminated glass, so the lower limit is not particularly limited, and may be, for example, 0.01% or more. The slow-cooling haze of the laminated glass is obtained by heating the laminated glass to 140°C and then slowly cooling it from 140°C to 23°C at a rate of 0.1°C/min. It can be obtained by measuring according to, for example, by the method described in Examples.
 本発明の合わせガラスは着色が少なく、可能な限り、無色であることが好ましい。本発明の合わせガラスの黄色度(YI)は、好ましくは3.0以下、より好ましくは2.0以下、さらに好ましくは1.5以下、特に好ましくは1.0以下であり、好ましくは0以上であってよい。なお、黄色度(YI)は測色色差計を用い、JIS Z8722に準拠して測定できる。 The laminated glass of the present invention is less colored and is preferably colorless as much as possible. The yellowness index (YI) of the laminated glass of the present invention is preferably 3.0 or less, more preferably 2.0 or less, still more preferably 1.5 or less, particularly preferably 1.0 or less, and preferably 0 or more. can be The yellowness index (YI) can be measured using a colorimetric color difference meter in accordance with JIS Z8722.
 本発明の合わせガラスにおけるガラス板と中間膜との接着力は、例えば、WO1999―058334号公報に記載の圧縮せん断強度試験(Compression shear strength test)により測定される。圧縮せん断強度は、前記接着力を高めやすい観点から、好ましくは15MPa以上、より好ましくは20MPa以上、特に好ましくは25MPa以上である。また、圧縮せん断強度は、合わせガラスの耐貫通性を高めやすい観点から、50MPa以下であってよい。 The adhesive strength between the glass plate and the interlayer in the laminated glass of the present invention is measured by, for example, the compression shear strength test described in WO1999-058334. The compressive shear strength is preferably 15 MPa or more, more preferably 20 MPa or more, and particularly preferably 25 MPa or more, from the viewpoint of easily increasing the adhesive strength. Moreover, the compressive shear strength may be 50 MPa or less from the viewpoint of easily increasing the penetration resistance of the laminated glass.
 本発明の合わせガラスにおけるガラス板と中間膜との湿潤状態における接着性は、湿潤状態で行われる剥離試験によって測定される中間膜のガラス接着力により評価できる。湿潤状態におけるガラス接着力は、好ましくは0.1N/cm以上、より好ましくは0.3N/cm以上、さらに好ましくは0.7N/cm以上、さらにより好ましくは1.0N/cm以上、特に好ましくは1.2N/cm以上である。上限は特に制限されず、10N/cm以下であってよい。前記接着力は、引張試験装置によって測定でき、例えば実施例に記載の方法により測定できる。 The wet state adhesion between the glass plate and the interlayer in the laminated glass of the present invention can be evaluated by the glass adhesive strength of the interlayer measured by a peeling test performed in the wet state. The glass adhesive strength in a wet state is preferably 0.1 N/cm or more, more preferably 0.3 N/cm or more, still more preferably 0.7 N/cm or more, still more preferably 1.0 N/cm or more, and particularly preferably is 1.2 N/cm or more. The upper limit is not particularly limited, and may be 10 N/cm or less. The adhesive strength can be measured by a tensile tester, for example, by the method described in the Examples.
 上記のように、本発明のアイオノマー樹脂組成物を含む層を1層以上含んでなる樹脂シートは合わせガラス中間膜として有用である。該合わせガラス中間膜は、ガラス等の基材への接着性、透明性、自立性に優れる点から、特に、構造材料用(ファサード用)合わせガラスの中間膜として好ましい。 As described above, a resin sheet comprising one or more layers containing the ionomer resin composition of the present invention is useful as an interlayer film for laminated glass. The interlayer film for laminated glass is particularly preferable as an interlayer film for laminated glass for structural materials (for facades) because of its excellent adhesion to substrates such as glass, transparency, and self-supporting properties.
 また、構造材料用合わせガラスの中間膜に限らず、本発明の合わせガラスは、自動車用フロントガラス、自動車用サイドガラス、自動車用サンルーフ、自動車用リアガラス、ヘッドアップディスプレイ用ガラス、外壁および屋根のためのラミネート、パネル、ドア、窓、壁、屋根、サンルーフ、遮音壁、表示窓、バルコニー、手摺壁等の建材、会議室の仕切りガラス部材、ソーラーパネル等に好適に用いることができる。 In addition, the laminated glass of the present invention is not limited to the interlayer film of laminated glass for structural materials, and can be used for automobile windshields, automobile side glasses, automobile sunroofs, automobile rear glasses, head-up display glasses, exterior walls and roofs. It can be suitably used for building materials such as laminates, panels, doors, windows, walls, roofs, sunroofs, sound insulation walls, display windows, balconies, and handrails, partition glass members for conference rooms, solar panels, and the like.
 以下、実施例および比較例によって本発明を具体的に説明するが、本発明は下記実施例に限定されない。 The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples.
 〔実施例および比較例で得られた樹脂の単量体単位の含有量〕
 実施例および比較例で得られたアイオノマー樹脂組成物について、アイオノマー樹脂における(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)、および(メタ)アクリル酸エステル単位(D)の含有量の分析を、以下のようにして行った。
[Content of monomer units of resins obtained in Examples and Comparative Examples]
Regarding the ionomer resin compositions obtained in Examples and Comparative Examples, the (meth)acrylic acid unit (A), the (meth)acrylic acid neutralized product unit (B), the ethylene unit (C), and the (meth)acrylic acid unit (B) in the ionomer resin ) Analysis of the content of acrylic acid ester units (D) was carried out as follows.
 実施例および比較例で得られたアイオノマー樹脂組成物をそれぞれ脱水トルエン/脱水酢酸(75/25質量%)の混合溶媒に溶解し、100℃にて2時間反応させた後、アセトン/水(80/20質量%)の混合溶媒に再沈殿させることで(メタ)アクリル酸中和物単位(B)を(メタ)アクリル酸単位(A)に変換した。得られた樹脂を十分水で洗浄した後、乾燥し、乾燥した樹脂について下記(1)~(3)を行った。
 (1)熱分解GC-MSにより、樹脂を構成する単量体単位の成分を分析した。
 (2)JIS K0070:1992に準じて、樹脂の酸価を測定した。
 (3)重水素化トルエンと重水素化メタノールとの混合溶媒を用いて、樹脂のH-NMR(400MHz、日本電子(株)製)測定を行った。
 (4)また、実施例および比較例で得られたアイオノマー樹脂組成物を、それぞれ、硝酸によるマイクロ波分解前処理に付した後、ICP発光分析(Thermo Fisher Scientific iCAP6500Duo)によって、(メタ)アクリル酸中和物単位(B)の金属イオンの種類と量を同定した。
 上記(1)から、(メタ)アクリル酸エステル単位(D)および(メタ)アクリル酸単位(A)の種類と構造を同定した。その情報、ならびに上記(2)および(3)の情報から、エチレン単位(C)/(メタ)アクリル酸エステル単位(D)/((メタ)アクリル酸単位(A)と(メタ)アクリル酸中和物単位(B)の合計)の比率を算出した。さらに、上記(4)の情報からエチレン単位(C)/(メタ)アクリル酸エステル単位(D)/(メタ)アクリル酸単位(A)/(メタ)アクリル酸中和物単位(B)の比率を算出した。
 また、原料であるエチレン-(メタ)アクリル酸エステル共重合体(X)の各単量体単位の含有量については、重トルエンまたは重THFに溶解させ、H-NMR(400MHz、日本電子(株)製)にて測定し、算出した。
The ionomer resin compositions obtained in Examples and Comparative Examples were each dissolved in a mixed solvent of dehydrated toluene/dehydrated acetic acid (75/25% by mass), reacted at 100° C. for 2 hours, and then dissolved in acetone/water (80% by mass). /20% by mass) to convert the neutralized (meth)acrylic acid unit (B) into the (meth)acrylic acid unit (A). The obtained resin was thoroughly washed with water and then dried, and the following (1) to (3) were performed on the dried resin.
(1) The component of the monomer unit constituting the resin was analyzed by pyrolysis GC-MS.
(2) The acid value of the resin was measured according to JIS K0070:1992.
(3) Using a mixed solvent of deuterated toluene and deuterated methanol, the resin was subjected to 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) measurement.
(4) In addition, the ionomer resin compositions obtained in Examples and Comparative Examples were each subjected to microwave decomposition pretreatment with nitric acid, and then analyzed by ICP emission spectrometry (Thermo Fisher Scientific iCAP6500Duo) to determine (meth)acrylic acid The type and amount of metal ions in the neutralized unit (B) were identified.
From the above (1), the types and structures of the (meth)acrylic acid ester unit (D) and the (meth)acrylic acid unit (A) were identified. From that information and the information in (2) and (3) above, ethylene unit (C) / (meth) acrylic acid ester unit (D) / ((meth) acrylic acid unit (A) and (meth) acrylic acid The ratio of the sum of hydrate units (B)) was calculated. Furthermore, from the information in (4) above, the ratio of ethylene units (C) / (meth)acrylic acid ester units (D) / (meth)acrylic acid units (A) / (meth)acrylic acid neutralized units (B) was calculated.
Further, the content of each monomer unit of the ethylene-(meth)acrylic acid ester copolymer (X) as a raw material was determined by dissolving it in heavy toluene or heavy THF, and performing 1 H-NMR (400 MHz, (manufactured by Co., Ltd.) and calculated.
 〔アイオノマー樹脂中の強酸および強塩基からなる塩の含有量(残存無機塩量)〕
 実施例および比較例で得られたアイオノマー樹脂を0.1g秤取し、該樹脂に超純水10mLを加え、90℃で1時間加温した。その後放冷し、目開き0.45μmのフィルターで濾過した。濾過して得た濾液をサンプル液とし、イオンクロマトグラフ((株)島津製作所製)を用いて、下記の条件にて測定した。測定で得られたピーク面積により、塩素イオンまたは硫酸イオンを定量し、該塩素イオンまたは硫酸イオンの量をナトリウム塩の量に換算し、残存無機塩量を求めた。
 (測定条件)
 溶離液:炭酸ナトリウム水溶液(0.6mmol/L)と炭酸水素ナトリウム水溶液(12mmol/L)との混合溶液;
 流速:1.0mL/分;
 カラム温度:40℃;
 カラム:IC-SA2(250L×4.0)
[Content of Salt Consisting of Strong Acid and Strong Base in Ionomer Resin (Amount of Residual Inorganic Salt)]
0.1 g of the ionomer resin obtained in Examples and Comparative Examples was weighed, 10 mL of ultrapure water was added to the resin, and the mixture was heated at 90° C. for 1 hour. After that, it was allowed to cool and filtered through a filter with an opening of 0.45 μm. The filtrate obtained by filtration was used as a sample liquid, and measurement was performed under the following conditions using an ion chromatograph (manufactured by Shimadzu Corporation). Chloride ions or sulfate ions were quantified from the peak area obtained by the measurement, and the amount of the chloride ions or sulfate ions was converted to the amount of sodium salt to obtain the amount of residual inorganic salt.
(Measurement condition)
Eluent: mixed solution of sodium carbonate aqueous solution (0.6 mmol/L) and sodium hydrogencarbonate aqueous solution (12 mmol/L);
Flow rate: 1.0 mL/min;
Column temperature: 40°C;
Column: IC-SA2 (250L×4.0)
 〔耐熱分解性〕
 JIS K7120:1987に準拠して、実施例および比較例で得られたアイオノマー樹脂組成物の耐熱分解性を評価した。具体的には、示差熱熱重量同時測定装置TG-DTA7200((株)日立ハイテクサイエンス製)を用い、昇温速度10℃/分、流量50mL/分の窒素雰囲気下で、各樹脂組成物を20℃~550℃まで加熱した際の重量減少率を測定した。200℃時点の重量を基準に重量減少率が1%となる際の温度である1%重量減少温度(Td1)を耐熱分解性の指標とした。
[Heat decomposition resistance]
Thermal decomposition resistance of the ionomer resin compositions obtained in Examples and Comparative Examples was evaluated according to JIS K7120:1987. Specifically, using a simultaneous differential thermogravimetric analyzer TG-DTA7200 (manufactured by Hitachi High-Tech Science Co., Ltd.), each resin composition was measured under a nitrogen atmosphere at a temperature increase rate of 10 ° C./min and a flow rate of 50 mL/min. The weight loss rate was measured when heated from 20°C to 550°C. The 1% weight reduction temperature (Td1), which is the temperature at which the weight reduction rate reaches 1% based on the weight at 200° C., was used as an index of thermal decomposition resistance.
 〔吸水時の透明性(吸水ヘイズ)〕
 実施例および比較例で得られた樹脂シートを50mm四方に切り出し、切り出したサンプルを23℃のイオン交換水に浸漬させた状態で300時間保持し、吸水サンプルを得た。イオン交換水から取出した吸水サンプルの表面に付着した水分を拭き取った後、吸水サンプルのヘイズをヘイズメーターHZ-1(スガ試験機(株)製)を用いてJIS K7136:2000に準拠して測定した。
[Transparency at the time of water absorption (water absorption haze)]
The resin sheets obtained in Examples and Comparative Examples were cut into 50 mm squares, and the cut samples were immersed in deionized water at 23° C. and held for 300 hours to obtain water-absorbing samples. After wiping off the water adhering to the surface of the water-absorbing sample taken out of the deionized water, the haze of the water-absorbing sample was measured using a haze meter HZ-1 (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7136:2000. did.
 〔徐冷時の透明性(徐冷ヘイズ)〕
 実施例および比較例で得られた樹脂シートを厚さ2.7mmのフロートガラス2枚に挟み、真空ラミネーター(日清紡メカトロニクス(株)製 1522N)を使用し、100℃で真空ラミネーター内を1分間減圧し、減圧度および温度を保持したまま30kPaで5分間プレスして、仮接着体を得た。得られた仮接着体をオートクレーブに投入し、140℃、1.2MPaで30分間処理して、合わせガラスを得た。
 上述の方法にて得られた合わせガラスを140℃まで加熱したのち、0.1℃/分の速度で23℃まで徐冷した。徐冷操作後の合わせガラスのヘイズをヘイズメーターHZ-1(スガ試験機(株)製)を用いてJIS K7136:2000に準拠して測定した。
[Transparency during slow cooling (slow cooling haze)]
The resin sheets obtained in Examples and Comparative Examples were sandwiched between two sheets of float glass having a thickness of 2.7 mm, and a vacuum laminator (1522N manufactured by Nisshinbo Mechatronics Co., Ltd.) was used to reduce the pressure in the vacuum laminator at 100°C for 1 minute. and pressed at 30 kPa for 5 minutes while maintaining the degree of pressure reduction and temperature to obtain a temporarily bonded body. The obtained temporarily bonded body was put into an autoclave and treated at 140° C. and 1.2 MPa for 30 minutes to obtain laminated glass.
After heating the laminated glass obtained by the above-described method to 140° C., it was slowly cooled to 23° C. at a rate of 0.1° C./min. The haze of the laminated glass after slow cooling was measured using a haze meter HZ-1 (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7136:2000.
 〔湿潤状態でのガラス接着力〕
 厚さ2.7mmのフロートガラスを幅100mm、長さ200mmの長方形に切断し、その表面を洗浄した。シリコーン接着剤付きの薄いポリエステルテープ(厚さ25um、幅25mm)を2つの平行なストリップとなるようにフロートガラスの空気面に貼り付け、ポリエステルテープ間に均一な25mm幅の接着領域を得た。当該接着領域の上に樹脂シート(厚さ0.8mm、幅150mm、長さ200mm)を配置し、さらに当該樹脂シートの上に12μmのフッ素樹脂フィルムを配置した。その後、フッ素樹脂フィルムの上に前記フロートガラスとは異なるガラス片を配置することで、積層工程のための比較的平坦な表面を得て、当該ガラス片を除去するための剥離層として前記フッ素樹脂フィルムを機能させた。得られた仮接着体をオートクレーブに投入し、140℃、1.2MPaで30分間処理して、フッ素樹脂フィルムとその上に配したガラス片を取り外し、フロートガラスおよびアイオノマー樹脂シートの2層が接着した剥離試験片を得た。その後、各サンプルについて、引張試験装置(島津社製、オートグラフ)により90°の角度の方向に剥離試験を行い、ガラス接着力を測定した。フロートガラス面とアイオノマー樹脂シートとの剥離は、23℃50%RH下で、1cm/分のヘッド速度で行った。約100mmのサンプルを引き剥がした後、イオン交換水をフロートガラスと樹脂シートとの剥離界面に塗布し、界面が液体の水に完全に浸るようにした。その後、剥離速度を0.25mm/分に下げ、更に約100mmのサンプルの剥離試験を行い、ガラス接着力を評価した。この試験期間中にサンプルが確実に「湿潤」状態を維持するのに十分な水が存在していた。得られた湿潤状態のガラス接着力の平均値をその値とした。
[Glass Adhesion in Wet State]
A float glass having a thickness of 2.7 mm was cut into a rectangle having a width of 100 mm and a length of 200 mm, and its surface was washed. A thin polyester tape (25 um thick, 25 mm wide) with silicone adhesive was applied to the air side of the float glass in two parallel strips to give a uniform 25 mm wide adhesive area between the polyester tapes. A resin sheet (thickness: 0.8 mm, width: 150 mm, length: 200 mm) was placed on the adhesive region, and a 12 μm fluororesin film was placed on the resin sheet. After that, a glass piece different from the float glass is placed on the fluororesin film to obtain a relatively flat surface for the lamination process, and the fluororesin film is used as a peeling layer for removing the glass piece. Made the film work. The obtained temporarily bonded body was put into an autoclave and treated at 140 ° C. and 1.2 MPa for 30 minutes, the fluororesin film and the glass piece placed thereon were removed, and the two layers of the float glass and the ionomer resin sheet were bonded. A peel test piece was obtained. After that, each sample was subjected to a peel test in the direction of an angle of 90° using a tensile tester (manufactured by Shimadzu Corporation, Autograph) to measure the adhesive strength to glass. The separation between the float glass surface and the ionomer resin sheet was performed at 23° C. and 50% RH at a head speed of 1 cm/min. After peeling off a sample of about 100 mm, deionized water was applied to the peeled interface between the float glass and the resin sheet so that the interface was completely immersed in liquid water. After that, the peel speed was reduced to 0.25 mm/min, and a peel test was conducted on a sample of about 100 mm to evaluate the adhesive strength to glass. Sufficient water was present to ensure that the samples remained "wet" during this test period. The average value of the wet-state glass adhesive strength obtained was used as the value.
 〔原料〕
 実施例および比較例において、アイオノマー樹脂の原料として用いた各エチレン-(メタ)アクリル酸エステル共重合体(X)のメタクリル酸メチル(MMA)変性量またはアクリル酸エチル(EA)変性量、およびMFRを表1に示す。
 EMMA1としては住友化学(株)製「アクリフト」(登録商標)WH401F、EEA1としては日本ポリエチレン(株)製「レクスパール」(登録商標)A4250を用いた。
〔material〕
Methyl methacrylate (MMA) modified amount or ethyl acrylate (EA) modified amount of each ethylene-(meth)acrylic acid ester copolymer (X) used as a raw material for the ionomer resin in Examples and Comparative Examples, and MFR are shown in Table 1.
As EMMA1, "Aclift" (registered trademark) WH401F manufactured by Sumitomo Chemical Co., Ltd. was used, and as EEA1, "Rex Pearl" (registered trademark) A4250 manufactured by Japan Polyethylene Co., Ltd. was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例および比較例において用いたシランカップリング剤を下記に示す。
 シランカップリング剤1(S1):3-グリシドキシプロピルメチルジエトキシシラン(信越化学工業株式会社製)
 シランカップリング剤2(S2):N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン(信越化学工業株式会社製)
The silane coupling agents used in Examples and Comparative Examples are shown below.
Silane coupling agent 1 (S1): 3-glycidoxypropylmethyldiethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
Silane coupling agent 2 (S2): N-β-(aminoethyl)-γ-aminopropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
 〔実施例1〕
 SUS製の耐圧容器に、表1中のEMMA2 100質量部を導入し、そこにトルエン233質量部を加えて、0.02MPa加圧下、60℃で撹拌し、EMMA2を溶解させた。得られた溶液に水酸化ナトリウムのメタノール溶液(20質量%)96質量部を添加し、100℃で4時間撹拌し、EMMA2をけん化して、メタクリル酸メチル単位の一部をメタクリル酸ナトリウム単位に変換した。次いで、この溶液を50℃まで冷却した後に、塩酸(20質量%)83質量部を添加し、50℃で1時間撹拌して、メタクリル酸ナトリウム単位の一部をメタクリル酸に変換し、粗アイオノマー樹脂溶液を得た。
 得られた粗アイオノマー樹脂溶液にトルエン/メタノール(75/25質量%)の混合溶媒を粗アイオノマー樹脂濃度が10質量%となるように添加して、該溶液を希釈した。次いで、得られた粗アイオノマー樹脂の希釈溶液を34℃に調整した後、前記希釈溶液に34℃のメタノールを粗アイオノマー樹脂溶液100質量部に対して430質量部添加して、粒状樹脂を析出させた。次いで、得られた粒状樹脂を濾取した後、濾取した粒状樹脂100質量部と水/メタノール(50/50質量%)の混合溶媒600質量部とを混合した。前記混合により得られたスラリーを40℃で1時間撹拌し、その後、粒状樹脂を室温にて濾取した。水/メタノール(50/50質量%)の混合溶媒による粒状樹脂の洗浄をさらに3回行い、洗浄されたアイオノマー樹脂1を得た。
 得られたアイオノマー樹脂1を8時間以上真空乾燥した後、アイオノマー樹脂1 100質量部とシランカップリング剤(S1) 0.15質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート1を得た。アイオノマー樹脂シート1の分析結果および評価結果を表2に示す。
[Example 1]
100 parts by mass of EMMA2 in Table 1 was introduced into a SUS pressure vessel, 233 parts by mass of toluene was added thereto, and the mixture was stirred at 60° C. under a pressure of 0.02 MPa to dissolve EMMA2. 96 parts by mass of a methanol solution of sodium hydroxide (20% by mass) was added to the resulting solution and stirred at 100° C. for 4 hours to saponify EMMA2 to convert part of the methyl methacrylate units into sodium methacrylate units. Converted. Next, after cooling this solution to 50° C., 83 parts by mass of hydrochloric acid (20% by mass) is added and stirred at 50° C. for 1 hour to convert a part of the sodium methacrylate units to methacrylic acid, resulting in a crude ionomer. A resin solution was obtained.
A mixed solvent of toluene/methanol (75/25% by mass) was added to the resulting crude ionomer resin solution so that the concentration of the crude ionomer resin was 10% by mass to dilute the solution. Next, after adjusting the obtained diluted solution of the crude ionomer resin to 34° C., 430 parts by mass of methanol at 34° C. per 100 parts by mass of the crude ionomer resin solution was added to the diluted solution to precipitate the granular resin. rice field. Next, after filtering the obtained granular resin, 100 parts by mass of the filtered granular resin was mixed with 600 parts by mass of a mixed solvent of water/methanol (50/50% by mass). The slurry obtained by the above mixing was stirred at 40° C. for 1 hour, after which the granular resin was collected by filtration at room temperature. The granular resin was further washed three times with a mixed solvent of water/methanol (50/50 mass %) to obtain washed ionomer resin 1.
After vacuum drying the obtained ionomer resin 1 for 8 hours or more, 100 parts by mass of the ionomer resin 1 and 0.15 parts by mass of the silane coupling agent (S1) were melt-kneaded at 210°C, and the melt-kneaded product was heated to 210°C. Under heating at , compression molding was performed for 5 minutes at a pressure of 4.9 MPa (50 kgf/cm 2 ) to obtain an ionomer resin sheet 1 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the ionomer resin sheet 1.
 〔実施例2〕
 EMMA2に代えてEMMA3を用い、粗アイオノマー樹脂の希釈溶液ならびにメタノールの温度を34℃から37℃にした以外は、実施例1と同様にして、アイオノマー樹脂2を得た。アイオノマー樹脂2 100質量部とシランカップリング剤(S1) 0.06質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート2を得た。得られたアイオノマー樹脂シート2の分析結果および評価結果を表2に示す。
[Example 2]
Ionomer resin 2 was obtained in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2 and the temperature of the diluted solution of crude ionomer resin and methanol was changed from 34°C to 37°C. 100 parts by mass of the ionomer resin 2 and 0.06 parts by mass of the silane coupling agent (S1) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 2 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 2.
 〔実施例3〕
 EMMA2に代えてEMMA3を用い、粗アイオノマー樹脂の希釈溶液ならびにメタノールの温度を34℃から40℃にした以外は、実施例1と同様にして、アイオノマー樹脂3を得た。アイオノマー樹脂3 100質量部とシランカップリング剤(S2) 0.10質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート3を得た。得られたアイオノマー樹脂シート3の分析結果および評価結果を表2に示す。
[Example 3]
Ionomer resin 3 was obtained in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2, and the temperature of the diluted solution of crude ionomer resin and methanol was changed from 34°C to 40°C. 100 parts by mass of the ionomer resin 3 and 0.10 parts by mass of the silane coupling agent (S2) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 3 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 3.
 〔実施例4〕
 塩酸に代えて硫酸(30質量%)220質量部を添加した以外は、実施例3と同様にして、アイオノマー樹脂4を得た。アイオノマー樹脂4 100質量部とシランカップリング剤(S2)0.25質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート4を得た。得られたアイオノマー樹脂シート4の分析結果および評価結果を表2に示す。
[Example 4]
An ionomer resin 4 was obtained in the same manner as in Example 3, except that 220 parts by mass of sulfuric acid (30% by mass) was added instead of hydrochloric acid. 100 parts by mass of the ionomer resin 4 and 0.25 parts by mass of the silane coupling agent (S2) are melt-kneaded at 210°C, and the melt-kneaded product is heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed under pressure for 5 minutes to obtain an ionomer resin sheet 4 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 4.
 〔実施例5〕
 EMMA2に代えてEEA1を用い、粗アイオノマー樹脂の希釈溶液の濃度を10質量%から6質量%にし、粗アイオノマー樹脂の希釈溶液ならびにメタノールの温度を34℃から41℃にした以外は、実施例1と同様にして、アイオノマー樹脂5を得た。アイオノマー樹脂5 100質量部とシランカップリング剤(S2)0.10質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート5を得た。得られたアイオノマー樹脂シート5の分析結果および評価結果を表2に示す。
[Example 5]
Example 1 except that EEA1 was used instead of EMMA2, the concentration of the diluted crude ionomer resin solution was changed from 10% by weight to 6% by weight, and the temperature of the diluted crude ionomer resin solution and methanol was changed from 34°C to 41°C. An ionomer resin 5 was obtained in the same manner as above. 100 parts by mass of the ionomer resin 5 and 0.10 parts by mass of the silane coupling agent (S2) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed under pressure for 5 minutes to obtain an ionomer resin sheet 5 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the ionomer resin sheet 5 thus obtained.
 〔実施例6〕
 EMMA2に代えてEMMA1を用い、水酸化ナトリウムのメタノール溶液(20質量%)の添加量を96質量部から73質量部にし、塩酸(20質量%)の添加量を83質量部から63質量部にし、粗アイオノマー樹脂の希釈溶液ならびにメタノールの温度を34℃から37℃にした以外は、実施例1と同様にして、アイオノマー樹脂6を得た。アイオノマー樹脂6 100質量部とシランカップリング剤(S2)0.40質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート6を得た。得られたアイオノマー樹脂シート6の分析結果および評価結果を表2に示す。
[Example 6]
EMMA1 was used instead of EMMA2, the amount of methanol solution of sodium hydroxide (20% by mass) was changed from 96 parts by mass to 73 parts by mass, and the amount of hydrochloric acid (20% by mass) was changed from 83 parts by mass to 63 parts by mass. Ionomer resin 6 was obtained in the same manner as in Example 1, except that the temperature of the dilute solution of crude ionomer resin and methanol was changed from 34°C to 37°C. 100 parts by mass of the ionomer resin 6 and 0.40 parts by mass of the silane coupling agent (S2) are melt-kneaded at 210°C, and the melt-kneaded product is heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 6 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 6 .
 〔実施例7〕
 実施例3と同様にしてアイオノマー樹脂3を得た後、該アイオノマー樹脂3 100質量部に対し、シランカップリング剤(S2)0.12質量部および紫外線吸収剤〔2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF社製;商品名:TINUVIN329)〕0.1質量部を加え、210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート7を得た。アイオノマー樹脂シート7の分析結果および評価結果を表2に示す。
[Example 7]
After obtaining ionomer resin 3 in the same manner as in Example 3, 0.12 parts by mass of a silane coupling agent (S2) and an ultraviolet absorber [2-(2H-benzotriazole- 2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (manufactured by BASF; trade name: TINUVIN329)] 0.1 part by mass was added, melt-kneaded at 210 ° C., and melt-kneaded. The product was compression molded for 5 minutes at a pressure of 4.9 MPa (50 kgf/cm 2 ) under heating at 210° C. to obtain an ionomer resin sheet 7 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the ionomer resin sheet 7.
 〔実施例8〕
 EMMA2に代えてEMMA3を用い、粗アイオノマー樹脂を含む希釈溶液およびメタノールの温度を34℃から41℃に変更したこと以外は実施例1と同様にして、アイオノマー樹脂8を得た。アイオノマー樹脂8 100質量部とシランカップリング剤(S1)0.11質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート8を得た。得られたアイオノマー樹脂シート8の分析結果および評価結果を表2に示す。
[Example 8]
Ionomer resin 8 was obtained in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2, and the temperature of the diluted solution containing the crude ionomer resin and methanol was changed from 34°C to 41°C. 100 parts by mass of the ionomer resin 8 and 0.11 parts by mass of the silane coupling agent (S1) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed under pressure for 5 minutes to obtain an ionomer resin sheet 8 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the ionomer resin sheet 8 thus obtained.
 〔実施例9〕
 EMMA2に代えてEMMA3を用い、塩酸(20質量%)83質量部に代えて硫酸(30質量%)147質量部を用い、粗アイオノマー樹脂を含む希釈溶液およびメタノールの温度を34℃から41℃に変更したこと以外は実施例1と同様にして、アイオノマー樹脂9を得た。アイオノマー樹脂9 100質量部とシランカップリング剤(S1)0.09質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート9を得た。得られたアイオノマー樹脂シート9の分析結果および評価結果を表2に示す。
[Example 9]
EMMA3 was used instead of EMMA2, 147 parts by weight of sulfuric acid (30% by weight) was used instead of 83 parts by weight of hydrochloric acid (20% by weight), and the temperature of the diluted solution containing the crude ionomer resin and methanol was increased from 34°C to 41°C. An ionomer resin 9 was obtained in the same manner as in Example 1, except for the change. 100 parts by mass of the ionomer resin 9 and 0.09 parts by mass of the silane coupling agent (S1) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 9 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 9.
 〔比較例1〕
 粗アイオノマー樹脂の希釈溶液ならびにメタノールの温度を34℃から43℃にした以外は、実施例1と同様にして、アイオノマー樹脂10を得た。アイオノマー樹脂10 100質量部とシランカップリング剤(S1)0.10質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート10を得た。得られたアイオノマー樹脂シート10の分析結果および評価結果を表2に示す。
[Comparative Example 1]
Ionomer resin 10 was obtained in the same manner as in Example 1, except that the temperature of the diluted solution of crude ionomer resin and methanol was changed from 34°C to 43°C. 100 parts by mass of the ionomer resin 10 and 0.10 parts by mass of the silane coupling agent (S1) are melt-kneaded at 210°C, and the melt-kneaded product is heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 10 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the ionomer resin sheet 10 thus obtained.
 〔比較例2〕
 粗アイオノマー樹脂の希釈溶液ならびにメタノールの温度を34℃から46℃にした以外は、実施例1と同様にして、アイオノマー樹脂11を得た。アイオノマー樹脂11 100質量部とシランカップリング剤(S1)0.10質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート11を得た。得られたアイオノマー樹脂シート11の分析結果および評価結果を表2に示す。
[Comparative Example 2]
Ionomer resin 11 was obtained in the same manner as in Example 1, except that the temperature of the diluted solution of crude ionomer resin and methanol was changed from 34°C to 46°C. 100 parts by mass of the ionomer resin 11 and 0.10 parts by mass of the silane coupling agent (S1) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 11 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 11 .
 〔比較例3〕
 塩酸に代えて硫酸(30質量%)220質量部を添加し、粗アイオノマー樹脂の希釈溶液ならびにメタノールの温度を34℃から50℃にした以外は、実施例1と同様にして、アイオノマー樹脂12を得た。アイオノマー樹脂12 100質量部とシランカップリング剤(S1)0.10質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート12を得た。得られたアイオノマー樹脂シート12の分析結果および評価結果を表2に示す。
[Comparative Example 3]
Ionomer resin 12 was prepared in the same manner as in Example 1, except that 220 parts by mass of sulfuric acid (30% by mass) was added instead of hydrochloric acid, and the temperature of the diluted solution of the crude ionomer resin and methanol was changed from 34°C to 50°C. Obtained. 100 parts by mass of the ionomer resin 12 and 0.10 parts by mass of the silane coupling agent (S1) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 12 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 12 .
 〔比較例4〕
 EMMA2に代えてEMMA3を用い、粗アイオノマー樹脂溶液を該粗アイオノマー樹脂100質量部に対して500質量部のアセトン/水(80/20質量%)の混合溶媒に再沈殿させることで粒状樹脂を得、さらに得られた粒状樹脂をアセトン/水(20/80質量%)の混合溶媒で3回洗浄したこと以外は実施例1と同様にして、アイオノマー樹脂13を得た。アイオノマー樹脂13 100質量部とシランカップリング剤(S2)0.10質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート13を得た。得られたアイオノマー樹脂シート13の分析結果および評価結果を表2に示す。
[Comparative Example 4]
EMMA3 is used in place of EMMA2, and a granular resin is obtained by reprecipitating a crude ionomer resin solution in a mixed solvent of 500 parts by mass of acetone/water (80/20% by mass) with respect to 100 parts by mass of the crude ionomer resin. Ionomer resin 13 was obtained in the same manner as in Example 1, except that the resulting granular resin was washed three times with a mixed solvent of acetone/water (20/80% by mass). 100 parts by mass of the ionomer resin 13 and 0.10 parts by mass of the silane coupling agent (S2) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 13 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 13 .
 〔比較例5〕
 EMMA2に代えてEMMA4を用い、水酸化ナトリウムのメタノール溶液(20質量%)の添加量を96質量部から66質量部にし、塩酸(20質量%)の添加量を83質量部から57質量部にした以外は、実施例1と同様にして、アイオノマー樹脂14を得た。アイオノマー樹脂14 100質量部とシランカップリング剤(S2)0.10質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート14を得た。得られたアイオノマー樹脂シート14の分析結果および評価結果を表2に示す。
[Comparative Example 5]
EMMA4 was used instead of EMMA2, the amount of methanol solution of sodium hydroxide (20% by mass) was changed from 96 parts by mass to 66 parts by mass, and the amount of hydrochloric acid (20% by mass) was changed from 83 parts by mass to 57 parts by mass. An ionomer resin 14 was obtained in the same manner as in Example 1, except that 100 parts by mass of the ionomer resin 14 and 0.10 parts by mass of the silane coupling agent (S2) were melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ). Compression molding was performed with pressure for 5 minutes to obtain an ionomer resin sheet 14 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the obtained ionomer resin sheet 14 .
 〔比較例6〕
 実施例3と同様にしてアイオノマー樹脂3を得た後、該アイオノマー樹脂3 100質量部を210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmのアイオノマー樹脂シート15を得た。アイオノマー樹脂シート15の分析結果および評価結果を表2に示す。
[Comparative Example 6]
After obtaining ionomer resin 3 in the same manner as in Example 3, 100 parts by mass of ionomer resin 3 was melt-kneaded at 210°C, and the melt-kneaded product was heated at 210°C to 4.9 MPa (50 kgf/cm 2 ) for 5 minutes to obtain an ionomer resin sheet 15 having a thickness of 0.8 mm. Table 2 shows the analysis results and evaluation results of the ionomer resin sheet 15 .
 〔比較例7〕
 実施例3と同様にしてアイオノマー樹脂3を得た後、該アイオノマー樹脂3 100質量部とシランカップリング剤(S2)1.0質量部とを210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形したが、ゲル化し平滑な表面のアイオノマー樹脂シートを得ることが出来なかった。
[Comparative Example 7]
After obtaining the ionomer resin 3 in the same manner as in Example 3, 100 parts by mass of the ionomer resin 3 and 1.0 parts by mass of the silane coupling agent (S2) were melt-kneaded at 210°C, and the melt-kneaded product was C. and compression molding at a pressure of 4.9 MPa (50 kgf/ cm.sup.2 ) for 5 minutes, but an ionomer resin sheet with a gelled and smooth surface could not be obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、実施例1~9で得られたアイオノマー樹脂組成物は、1%重量減少温度(Td1)が高いこと、吸水ヘイズおよび徐冷ヘイズが低く透明性が高いことならびに湿潤状態におけるガラス接着力が高いことが確認された。また、実施例で得られたアイオノマー樹脂組成物を用いて製造された樹脂シートは、黒色異物やゲル化物が少なく、表面平滑性および外観が良好であった。これに対して、比較例1~7で得られたアイオノマー樹脂組成物は、1%重量減少温度、吸水ヘイズ、徐冷ヘイズおよび湿潤状態におけるガラス接着力のうち、少なくとも1つが不良な結果となった。 As shown in Table 2, the ionomer resin compositions obtained in Examples 1 to 9 had a high 1% weight loss temperature (Td1), low water absorption haze and slow cooling haze, and high transparency. It was confirmed that the glass adhesive strength in the state is high. In addition, the resin sheets produced using the ionomer resin compositions obtained in Examples had little black foreign matter and gelled matter, and had good surface smoothness and appearance. In contrast, the ionomer resin compositions obtained in Comparative Examples 1 to 7 exhibited poor results in at least one of the 1% weight loss temperature, water absorption haze, slow cooling haze, and wet state glass adhesion. rice field.

Claims (9)

  1.  アイオノマー樹脂およびシランカップリング剤を含むアイオノマー樹脂組成物であり、
     前記アイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)およびエチレン単位(C)を含み、前記単位(A)および前記単位(B)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であり、前記アイオノマー樹脂中の強酸および強塩基からなる塩の含有量は1~400mg/kgであり、
     前記シランカップリング剤の含有量はアイオノマー樹脂100質量部に対して0.005~0.5質量部である、アイオノマー樹脂組成物。
    An ionomer resin composition comprising an ionomer resin and a silane coupling agent,
    The ionomer resin contains (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B) and ethylene units (C), and the total content of the units (A) and the units (B) The amount is 6 to 10 mol% based on the total monomer units constituting the ionomer resin, and the content of the salt composed of a strong acid and a strong base in the ionomer resin is 1 to 400 mg/kg,
    The ionomer resin composition, wherein the content of the silane coupling agent is 0.005 to 0.5 parts by mass with respect to 100 parts by mass of the ionomer resin.
  2.  前記アイオノマー樹脂はさらに(メタ)アクリル酸エステル単位(D)を含み、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である、請求項1に記載のアイオノマー樹脂組成物。 The ionomer resin further contains (meth)acrylic acid ester units (D), and the total content of the units (A), the units (B) and the units (D) is the total amount of monomers constituting the ionomer resin. The ionomer resin composition according to claim 1, which is 6 to 10 mol% based on body units.
  3.  前記強酸および強塩基からなる塩は、アルカリ金属および/またはアルカリ土類金属の金属塩である、請求項1または2に記載のアイオノマー樹脂組成物。 The ionomer resin composition according to claim 1 or 2, wherein the salt composed of a strong acid and a strong base is a metal salt of an alkali metal and/or an alkaline earth metal.
  4.  前記強酸および強塩基からなる塩は、ナトリウムイオンおよびカリウムイオンからなる群から選択される少なくとも1種のカチオンと、ハロゲンイオン、硝酸イオンおよび硫酸イオンからなる群から選択される少なくとも1種のアニオンとからなる塩である、請求項1~3のいずれかに記載のアイオノマー樹脂組成物。 The salt composed of a strong acid and a strong base contains at least one cation selected from the group consisting of sodium ions and potassium ions and at least one anion selected from the group consisting of halogen ions, nitrate ions and sulfate ions. The ionomer resin composition according to any one of claims 1 to 3, which is a salt consisting of
  5.  前記シランカップリング剤は、アミノ系化合物、グリシドキシ系化合物、スルフィド系化合物、メルカプト系化合物、ビニル系化合物、ニトロ系化合物およびクロロ系化合物からなる群から選択される少なくとも1つのシランカップリング剤である、請求項1~4のいずれかに記載のアイオノマー樹脂組成物。 The silane coupling agent is at least one silane coupling agent selected from the group consisting of amino-based compounds, glycidoxy-based compounds, sulfide-based compounds, mercapto-based compounds, vinyl-based compounds, nitro-based compounds and chloro-based compounds. , the ionomer resin composition according to any one of claims 1 to 4.
  6.  前記シランカップリング剤は、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシランおよび3-グリシドキシプロピルメチルジエトキシシランからなる群から選択される少なくとも1つのシランカップリング剤である、請求項1~5のいずれかに記載のアイオノマー樹脂組成物。 The silane coupling agent is at least one silane coupling agent selected from the group consisting of N-β-(aminoethyl)-γ-aminopropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane. , the ionomer resin composition according to any one of claims 1 to 5.
  7.  請求項1~6のいずれかに記載のアイオノマー樹脂組成物を含む層を1層以上含んでなる、樹脂シート。 A resin sheet comprising one or more layers containing the ionomer resin composition according to any one of claims 1 to 6.
  8.  請求項7に記載の樹脂シートからなる合わせガラス中間膜。 A laminated glass intermediate film made of the resin sheet according to claim 7.
  9.  2つのガラス板と、該2つのガラス板の間に配置された請求項8に記載の合わせガラス中間膜とを有する、合わせガラス。 A laminated glass comprising two glass plates and the laminated glass intermediate film according to claim 8 arranged between the two glass plates.
PCT/JP2022/024906 2021-06-23 2022-06-22 Ionomer resin composition, resin sheet, and laminated glass WO2022270545A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023530096A JPWO2022270545A1 (en) 2021-06-23 2022-06-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021104273 2021-06-23
JP2021-104273 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022270545A1 true WO2022270545A1 (en) 2022-12-29

Family

ID=84545452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024906 WO2022270545A1 (en) 2021-06-23 2022-06-22 Ionomer resin composition, resin sheet, and laminated glass

Country Status (2)

Country Link
JP (1) JPWO2022270545A1 (en)
WO (1) WO2022270545A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072879A (en) * 1998-08-27 2000-03-07 Du Pont Mitsui Polychem Co Ltd Aqueous dispersion and its use
WO2012105150A1 (en) * 2011-02-02 2012-08-09 株式会社クレハ Resin composition and use thereof
JP2014058409A (en) * 2012-09-14 2014-04-03 Du Pont Mitsui Polychem Co Ltd Intermediate film for laminated glass and laminated glass
JP2016188158A (en) * 2015-03-30 2016-11-04 三井・デュポンポリケミカル株式会社 Laminate and laminated glass
WO2020241515A1 (en) * 2019-05-31 2020-12-03 株式会社クラレ Ionomer, resin sheet, and laminated glass
WO2021124951A1 (en) * 2019-12-19 2021-06-24 株式会社クラレ Ionomer resin, resin sheet, and laminated glass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072879A (en) * 1998-08-27 2000-03-07 Du Pont Mitsui Polychem Co Ltd Aqueous dispersion and its use
WO2012105150A1 (en) * 2011-02-02 2012-08-09 株式会社クレハ Resin composition and use thereof
JP2014058409A (en) * 2012-09-14 2014-04-03 Du Pont Mitsui Polychem Co Ltd Intermediate film for laminated glass and laminated glass
JP2016188158A (en) * 2015-03-30 2016-11-04 三井・デュポンポリケミカル株式会社 Laminate and laminated glass
WO2020241515A1 (en) * 2019-05-31 2020-12-03 株式会社クラレ Ionomer, resin sheet, and laminated glass
WO2021124951A1 (en) * 2019-12-19 2021-06-24 株式会社クラレ Ionomer resin, resin sheet, and laminated glass

Also Published As

Publication number Publication date
JPWO2022270545A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP6913264B1 (en) Ionomer resin, resin sheet and laminated glass
JP7232770B2 (en) Vinylidene fluoride resin multilayer film
WO2020241515A1 (en) Ionomer, resin sheet, and laminated glass
KR20170134341A (en) Resin composition and production method therefor, molded body, film, and article
WO2021124950A1 (en) Method for producing ionomer resin
WO2021079886A1 (en) Resin sheet and method for producing same
KR20170129173A (en) PV cell and back sheet Polyester film
JP7124246B1 (en) ionomer resin
JP7186329B2 (en) Ionomer resin, resin sheet and laminated glass
WO2022270545A1 (en) Ionomer resin composition, resin sheet, and laminated glass
WO2022270540A1 (en) Resin sheet having layer that contains ionomer resin composition, and laminated glass
EP4082745A1 (en) Methacrylic resin composition
WO2023008485A1 (en) Ionomer resin particulate production method
TWI840579B (en) Methacrylic resin composition and method for producing molded product and film thereof
WO2023032909A1 (en) Ionomer resin composition, resin sheet, and laminated glass
JP2018053210A (en) Multi-layered body and manufacturing method thereof, and composite body and method for manufacturing the same
WO2022270542A1 (en) Resin composition formed by containing ionomer resin, resin sheet, and laminated glass
EP4140738A1 (en) Laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530096

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE