WO2022270542A1 - Resin composition formed by containing ionomer resin, resin sheet, and laminated glass - Google Patents

Resin composition formed by containing ionomer resin, resin sheet, and laminated glass Download PDF

Info

Publication number
WO2022270542A1
WO2022270542A1 PCT/JP2022/024898 JP2022024898W WO2022270542A1 WO 2022270542 A1 WO2022270542 A1 WO 2022270542A1 JP 2022024898 W JP2022024898 W JP 2022024898W WO 2022270542 A1 WO2022270542 A1 WO 2022270542A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
ionomer resin
resin composition
acrylic acid
units
Prior art date
Application number
PCT/JP2022/024898
Other languages
French (fr)
Japanese (ja)
Inventor
卓郎 新村
淳裕 中原
憲太 竹本
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2023530093A priority Critical patent/JPWO2022270542A1/ja
Publication of WO2022270542A1 publication Critical patent/WO2022270542A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention provides a resin composition comprising a specific ionomer resin and a specific organic compound, a resin sheet having one or more layers containing the resin composition, a laminated glass intermediate film comprising the resin sheet, and the laminate It relates to a laminated glass having a glass interlayer.
  • Ionomer resins which are neutralized ethylene-unsaturated carboxylic acid copolymers, are used in interlayer films for laminated glass because of their excellent transparency and adhesion to glass (for example, Patent Document 1).
  • Patent Document 1 the demand for laminated glass has increased, and regardless of the production conditions of laminated glass, laminated glass having a laminated glass intermediate film using an ionomer resin has superior properties (e.g., optical properties and appearance). It is now required to have
  • Patent Document 3 describes a resin composition for a molded body in which 1 to 50 parts by mass of a dimer acid is added to 100 parts by mass of an ionomer. It is described that both improvement in fluidity and suppression of bleed-out have been achieved.
  • Patent Document 4 describes a method for manufacturing a laminated glass interlayer film using an ionomer, in which the moisture content contained in the laminated glass interlayer film is suppressed to 0.066 wt% or less, and in addition to transparency, It is stated that an improvement in adhesion to glass could also be achieved.
  • the resin composition described in Patent Document 3 has insufficient adhesiveness to glass (hereinafter also referred to as "glass adhesiveness") and transparency, and is colored during molding. It has been found that it is difficult to obtain a molded article having an excellent appearance without foaming or streaks because the strength tends to decrease during long-term use.
  • the laminated glass interlayer using the ionomer described in Patent Document 4 does not have sufficient adhesion to glass, especially under high humidity conditions, tends to be colored during molding, and loses strength when used for a long time. It was found to be easy to decrease. Accordingly, the problem to be solved by the present invention is to provide a resin composition containing an ionomer resin which is excellent in transparency, color resistance and adhesion to glass.
  • a resin composition comprising an ionomer resin containing (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and an organic compound.
  • the total content of the units (A) and the units (B) is 6 to 10 mol% based on the total monomer units constituting the ionomer resin, and the organic compound is a liquid at 23°C.
  • the ionomer resin further includes (meth)acrylic acid ester units (D), and the total content of the units (A), the units (B) and the units (D) constitutes the ionomer resin.
  • the organic compound includes toluene, xylene, ethanol, 1-butanol, methacrylic acid, acrylic acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, methyl acrylate, ethyl acrylate, and n-acrylate.
  • An interlayer film for laminated glass comprising the resin sheet according to [4].
  • a laminated glass comprising two glass plates and the laminated glass intermediate film according to claim 5 disposed between the two glass plates.
  • a resin composition comprising the ionomer resin of the present invention (hereinafter also referred to as “ionomer resin composition”) comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and It comprises an ionomer resin containing ethylene units (C) and a specific organic compound (hereinafter also referred to as "specific organic compound").
  • the organic compound is one organic compound or two or more organic It is a combination of compounds. Moreover, the content of the specific organic compound in the ionomer resin composition is 1 ppm by mass or more and 300 ppm by mass or less.
  • ionomer resin may be prone to thermal deterioration.
  • a resin sheet or laminated glass is produced using such an ionomer resin, a colored resin sheet or laminated glass is obtained.
  • the adhesiveness between the resin sheet and the glass is also poor.
  • the inventors of the present invention have investigated the coloring resistance and glass adhesiveness of a resin sheet containing an ionomer resin, and surprisingly found that a resin sheet containing an ionomer resin and a specific organic compound in a specific ratio It was found that an ionomer resin composition having excellent color resistance and high glass adhesion. Although it is not clear why the ionomer resin composition contains a specific organic compound in a specific ratio, the ionomer resin composition is excellent in color resistance and adhesion to glass. It is presumed that this is because the is moderately plasticized.
  • the present inventors have unexpectedly found that the ionomer resin composition contains a specific organic compound in a specific ratio, and thus the ionomer resin composition exhibits high adhesion to glass, particularly under high humidity conditions, excellent It was also found that the characteristics of transparency and sufficient creep resistance were exhibited. Generally, ionomer resin compositions containing components other than ionomer resins tend to be inferior to the ionomer resins themselves in adhesion to glass and transparency under high humidity conditions, and also have insufficient creep resistance. Therefore, it was unexpected that the ionomer resin composition of the present invention has the aforementioned features.
  • the ionomer resin composition When the content of the specific organic compound is less than 1 ppm by mass, the ionomer resin composition is impaired in color resistance and adhesion to glass. On the other hand, when the content of the specific organic compound exceeds 300 ppm by mass, the transparency (especially the appearance) of the ionomer resin composition tends to decrease. Therefore, for example, a resin sheet obtained from the ionomer resin composition is used as an interlayer film for laminated glass. If so, the design and appearance of the laminated glass may be impaired. In addition, when the content of the specific organic compound exceeds 300 ppm by mass, the creep resistance of the ionomer resin composition tends to decrease. The strength tends to decrease when used for a long time, and there is a possibility of impairing safety. Furthermore, when the content of the specific organic compound exceeds 300 ppm by mass, the coloration resistance and thermal decomposition resistance of the ionomer resin composition tend to decrease.
  • the content of the specific organic compound is preferably 2 ppm by mass or more, more preferably 3 ppm by mass or more, and still more preferably 4 ppm by mass or more, from the viewpoint of easily improving color resistance and glass adhesion.
  • the content of the specific organic compound is preferably 295 mass ppm or less, more preferably 290 mass ppm or less, still more preferably 285 mass ppm or less, still more preferably 280 mass ppm or less, from the viewpoint of easily increasing transparency and creep resistance. It is mass ppm or less, particularly preferably 275 mass ppm or less.
  • the content of the specific organic compound in the ionomer resin composition can be determined by gas chromatography or the like, for example, by the method described in Examples.
  • the aromatic compound is not particularly limited, and examples include compounds that are liquid at 23°C, such as toluene, xylene, ethylbenzene, cumene, anisole, benzaldehyde, acetophenone, nitrobenzene, aniline, benzonitrile and styrene.
  • aromatic hydrocarbons are preferable, and toluene and/or xylene are more preferable, from the viewpoint of easily improving the color resistance, glass adhesion, transparency and creep resistance of the resulting ionomer resin composition.
  • the alcohols are not particularly limited, and examples include primary alcohols, secondary alcohols, and tertiary alcohols. Among these, primary alcohols are preferable, and methanol, ethanol, 1-butanol and mixtures thereof are more preferable, from the viewpoint of easily increasing the color resistance, transparency and creep resistance of the resulting ionomer resin composition. and/or 1-butanol is particularly preferred.
  • the organic carboxylic acid is not particularly limited, and includes, for example, monocarboxylic acid, dicarboxylic acid, and tricarboxylic acid.
  • monocarboxylic acids are preferable, and methacrylic acid and/or acrylic acid are more preferable, from the viewpoint of easily improving the color resistance, transparency and creep resistance of the resulting ionomer resin composition.
  • the organic carboxylic acid ester is not particularly limited, and examples thereof include monocarboxylic acid esters, dicarboxylic acid esters, and tricarboxylic acid esters.
  • monocarboxylic acid esters having 4 to 9 carbon atoms are preferable from the viewpoint of easily improving the color resistance, transparency and creep resistance of the resulting ionomer resin composition, and methyl methacrylate and ethyl methacrylate.
  • n-butyl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate and mixtures thereof are more preferred, and methyl methacrylate, methyl acrylate and mixtures thereof are more preferred.
  • the specific organic compound is toluene, xylene, ethanol, 1-butanol, methacrylic acid, acrylic acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, methyl acrylate, acrylic at least one organic compound selected from the group consisting of ethyl acetate and n-butyl acrylate;
  • the ionomer resin in the present invention contains (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and the units (A) and the units (B) is 6 to 10 mol % based on the total monomer units constituting the ionomer resin.
  • unit means a "derived structural unit", for example, a (meth)acrylic acid unit refers to a structural unit derived from (meth)acrylic acid, (meth)acrylic acid
  • the acid-neutralized unit indicates a structural unit derived from a (meth)acrylic acid-neutralized product
  • the ethylene unit indicates a structural unit derived from ethylene.
  • (meth)acrylic acid indicates methacrylic acid or acrylic acid.
  • the total content is 6 mol % or more, preferably 6.5 mol % or more, more preferably 6.5 mol % or more, from the viewpoint of easily improving the transparency of the ionomer resin composition (especially the transparency during slow cooling) and the adhesion to glass. is 7.0 mol% or more, more preferably 7.5 mol% or more, and from the viewpoint of easily obtaining more suitable moldability, 10 mol% or less, preferably 9.9 mol% or less, more preferably is 9.5 mol % or less.
  • the total content of the units (A) and the units (B) can be adjusted according to the preparation method of the ionomer resin. More specifically, when an ionomer resin is prepared by a method comprising an ethylene-(meth)acrylic acid ester copolymer as a raw material and a saponification reaction step and a demetallization reaction step of the copolymer, ethylene-( Saponification reaction and demetallization reaction for converting (meth)acrylic acid ester units in the meth)acrylic acid ester copolymer into (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units (B) It can be adjusted by each reactivity (conversion rate). Further, as described in US Pat. No.
  • Examples of monomers constituting the (meth)acrylic acid unit (A) include acrylic acid and methacrylic acid, and methacrylic acid is preferred from the viewpoint of heat resistance and adhesion to glass.
  • the (meth)acrylic acid units may be used singly or in combination of two or more.
  • the content of the (meth)acrylic acid unit (A) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is 6 to 6 based on the total monomer units constituting the ionomer resin. There is no particular limitation as long as it is within the range of 10 mol %.
  • the content of (meth)acrylic acid units (A) in the ionomer resin is preferably 4.5 mol% or more, based on the total monomer units constituting the ionomer resin, and more Preferably 5.0 mol% or more, more preferably 5.5 mol% or more, particularly preferably 5.8 mol% or more, and preferably 9.0 mol% or less, more preferably 8.5 mol% Below, more preferably 8.0 mol % or less, particularly preferably 7.5 mol % or less.
  • the content of the unit (A) is at least the lower limit, the transparency of the ionomer resin composition and the excellent adhesion to glass are likely to be obtained. Moreover, when it is equal to or less than the above upper limit, it is easy to obtain more excellent moldability.
  • the neutralized (meth)acrylic acid unit (B) is preferably the neutralized (meth)acrylic acid unit (A).
  • the neutralized (meth)acrylic acid is obtained by replacing hydrogen ions of (meth)acrylic acid with metal ions.
  • the metal ions include ions of monovalent metals such as lithium, sodium and potassium, and ions of polyvalent metals such as magnesium, calcium, zinc, aluminum and titanium. Such metal ions may be used singly or in combination of two or more. For example, it may be a combination of one or more monovalent metal ions and one or more divalent metal ions.
  • the content of the (meth)acrylic acid neutralized unit (B) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is the total monomer units constituting the ionomer resin. As a standard, it is not particularly limited as long as it is within the range of 6 to 10 mol %. In one embodiment of the present invention, the content of (meth)acrylic acid neutralized units (B) is preferably 0.65 mol % or more, more preferably 0.65 mol % or more, based on the total monomer units constituting the ionomer resin.
  • the content of the unit (B) is at least the lower limit, better transparency and elastic modulus are likely to be obtained, and when it is at most the upper limit, an increase in melt viscosity during molding is suppressed. easy to be
  • Each content of the unit (A) and the unit (B) is obtained by using an ethylene-(meth)acrylic acid ester copolymer as a raw material, and ionomer by a method including a saponification reaction step and a demetallization reaction step of the copolymer.
  • the (meth)acrylic acid ester unit in the ethylene-(meth)acrylic acid ester copolymer is replaced with the (meth)acrylic acid unit (A) and the (meth)acrylic acid neutralized product unit (B ) can be adjusted by each reactivity of the saponification reaction and the demetallization reaction.
  • the content of the ethylene unit (C) is based on the total monomer units constituting the ionomer resin, and the mechanical strength (especially impact resistance) of the ionomer resin composition can be easily increased, and excellent moldability can be obtained. From the viewpoint of easy cooling, it is preferably 80 mol% or more, more preferably 85 mol% or more, and still more preferably 88 mol% or more, and the transparency of the ionomer resin composition (especially the transparency during slow cooling) is easy to increase. From the viewpoint, it is preferably 94 mol % or less, more preferably 92 mol % or less.
  • ⁇ (Meth) acrylic acid ester unit (D)> The ionomer resin in the present invention, in addition to the (meth)acrylic acid unit (A), the (meth)acrylic acid neutralized unit (B), and the ethylene unit (C), from the viewpoint of easily obtaining higher transparency, Furthermore, it is preferable that the (meth)acrylic acid ester unit (D) is included.
  • the ionomer resin contains the (meth)acrylic acid ester unit (D), the total content of the unit (A), the unit (B) and the unit (D) increases the transparency (especially during slow cooling). transparency), it is preferably 6 to 10 mol % based on the total monomer units constituting the ionomer resin.
  • the ionomer resin in the present invention comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), ethylene units (C), and ( Including the meth)acrylic acid ester unit (D), the total content of the unit (A), the unit (B) and the unit (D) is 6 based on the total monomer units constituting the ionomer resin. ⁇ 10 mol%.
  • the ionomer resin contains (meth)acrylic acid ester units (D), the total content of the units (A), the units (B) and the units (D) is not more than the upper limit, the ionomer resin composition It is easy to suppress the increase in the melt viscosity during the molding process of the product, and thereby, it is easy to obtain the ionomer resin composition with better moldability. Further, when the total content is at least the lower limit, it is easy to obtain higher transparency of the ionomer resin composition (especially transparency during slow cooling).
  • the total content of the units (A), the units (B) and the units (D) provides higher transparency (especially slow cooling 6 mol% or more, preferably 6.5 mol% or more, more preferably 7.0 mol% or more, still more preferably 7.5 mol%
  • the content is 10 mol % or less, preferably 9.9 mol % or less, more preferably 9.5 mol % or less.
  • the total content of the units (A), the units (B) and the units (D) can be adjusted depending on the raw material of the ionomer resin. More specifically, when an ethylene-(meth)acrylic acid ester copolymer is used as a raw material and an ionomer resin is prepared by a method including a saponification reaction step and a demetallization reaction step of the copolymer, the ionomer resin It can be adjusted by the (meth)acrylic acid ester modification amount of the raw material ethylene-(meth)acrylic acid ester copolymer. Further, as described in US Pat. No.
  • Examples of monomers constituting the (meth)acrylate unit (D) include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and isopropyl (meth)acrylate.
  • n-butyl (meth)acrylate isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, amyl (meth)acrylate, isoamyl (meth)acrylate, ( n-hexyl meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, pentadecyl (meth)acrylate, dodecyl (meth)acrylate, isobornyl (meth)acrylate, (meth)acrylic acid Phenyl, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, glycidyl (meth)acrylate, and (meth)acrylic acid allyl and the like.
  • preferred monomers from the viewpoint of transparency or heat resistance are methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, ( n-butyl meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, and t-butyl (meth)acrylate, more preferred monomers are methyl (meth)acrylate, Ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and more preferred monomers are ( Methyl meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and a particularly preferred monomer is methyl (meth)acrylate. These monomers may be used
  • the content of the (meth)acrylic acid ester units (D) in the ionomer resin is not particularly limited.
  • the content of (meth)acrylic acid ester units (D) in the ionomer resin is preferably greater than 0 mol %, more preferably more than 0 mol %, based on the total monomer units constituting the ionomer resin. is 0.01 mol% or more, more preferably 0.05 mol% or more, particularly preferably 0.08 mol% or more, and preferably 1.0 mol% or less, more preferably 0.7 mol% or less , more preferably 0.5 mol % or less.
  • the content of the unit (D) is at least the lower limit and at most the upper limit, higher transparency of the ionomer resin composition can be easily obtained.
  • the ionomer resin contains the (meth)acrylic acid ester unit (D)
  • the content of the unit (D) is obtained by using an ethylene-(meth)acrylic acid ester copolymer as a raw material and saponifying the copolymer. and when preparing an ionomer resin by a method including a demetallization reaction step, the (meth)acrylic acid ester units in the ethylene-(meth)acrylic acid ester copolymer are converted to (meth)acrylic acid units (A) It can be adjusted by the reactivity of the saponification reaction.
  • the ionomer resin in the present invention comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and optionally included (meth)acrylic acid ester units ( It may contain monomeric units other than D).
  • Examples of other monomer units include a carboxylic acid unit (A2) other than the (meth)acrylic acid unit (A), and a neutralized carboxylic acid unit other than the (meth)acrylic acid neutralized unit (B). (B2) and the like.
  • Examples of monomers constituting the carboxylic acid unit (A2) include itaconic acid, maleic anhydride, monomethyl maleate, and monoethyl maleate, with monomethyl maleate and monoethyl maleate being preferred.
  • Examples of the monomer constituting the neutralized carboxylic acid unit (B2) include neutralized units of the neutralized carboxylic acid unit (A2).
  • the neutralized carboxylic acid is obtained by replacing hydrogen ions of carboxylic acid with metal ions.
  • Examples of the metal ions include those similar to the metal ions in the neutralized (meth)acrylic acid unit (B) described above, and the metal ions may be used singly or in combination of two or more. These other monomer units may be used singly or in combination of two or more.
  • the total content thereof for example the total content of (A2) and (B2), may be appropriately selected within a range that does not impair the effects of the present invention.
  • the total monomer units constituting the ionomer resin preferably 5 mol% or less, more preferably 3 mol% or less, still more preferably 1 mol% or less, and preferably 0.01 mol% or more, More preferably, it is 0.1 mol % or more.
  • (Meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C) in the ionomer resin in the present invention and (meth)acrylic acid ester units when included ( D) and other monomeric unit contents (e.g., unit (A2) and unit (B2)) are determined by first identifying the monomeric units in the ionomer resin in the ionomer resin composition by pyrolysis gas chromatography. and then determined by using nuclear magnetic resonance spectroscopy (NMR) and elemental analysis. More specifically, it can be determined by the method described in Examples. It can also be determined by a method combining the above analysis method with IR and/or Raman analysis. Prior to these analyses, it is preferable to remove components other than the ionomer resin by reprecipitation or Soxhlet extraction.
  • NMR nuclear magnetic resonance spectroscopy
  • the content of the ionomer resin is preferably 90% by mass or more, more It is preferably 95% by mass or more, more preferably 98% by mass or more, still more preferably 99% by mass or more, and preferably less than 100% by mass, more preferably 99.99% by mass or less.
  • the degree of branching per 1000 carbon atoms of the ionomer resin of the present invention is not particularly limited, and is preferably 5-30, more preferably 6-20.
  • the degree of branching is determined by the temperature at which the ionomer resin is polymerized, for example, an ethylene-(meth)acrylic acid ester copolymer is used as a raw material, and the ionomer resin is obtained by a method including a saponification reaction step and a demetallization reaction step of the copolymer. can be adjusted by the polymerization temperature when preparing the ethylene-(meth)acrylic acid ester copolymer.
  • the degree of branching per 1000 carbons can be measured by the DDMAS method using solid-state NMR.
  • the melting point of the ionomer resin is preferably 50°C or higher, more preferably 60°C or higher, and even more preferably 80°C or higher, from the viewpoint of heat resistance and thermal decomposition resistance.
  • the melting point is preferably 200° C. or lower, more preferably 180° C. or lower, and even more preferably 150° C. or lower, from the viewpoint of easily exhibiting adhesive strength with glass when producing laminated glass.
  • the melting point can be measured based on JIS K7121:2012.
  • DSC differential scanning calorimeter
  • the heat of fusion of the ionomer resin is preferably 0 J/g or more and 25 J/g or less.
  • the heat of fusion can be measured based on JIS K7122:2012. Specifically, using a differential scanning calorimeter (DSC), measurement was performed under the conditions of a cooling rate of ⁇ 10° C./min and a heating rate of 10° C./min, and the area of the melting peak during the second heating was calculated. can do.
  • DSC differential scanning calorimeter
  • the MFR of the ionomer resin measured under the conditions of 190°C and 2.16 kg according to JIS K7210 is preferably 0.1 g/10 min or more, more preferably 0.3 g/10. minutes or more, more preferably 0.7 g/10 minutes or more, still more preferably 1.0 g/10 minutes or more, particularly preferably 1.5 g/10 minutes or more, preferably 50 g/10 minutes or less, more preferably 50 g/10 minutes or more. 30 g/10 minutes or less, particularly preferably 10 g/10 minutes or less.
  • the MFR of the ionomer resin is not less than the lower limit and not more than the upper limit, it is easy to perform molding while suppressing deterioration due to heat, and it is easy to obtain a resin sheet having excellent penetration resistance.
  • the melting point, heat of fusion and MFR of an ionomer resin are determined by the molecular weight of the ionomer resin and the ionomer resin's (meth)acrylic acid unit (A), neutralized (meth)acrylic acid unit (B), and ethylene unit (C), It can also be adjusted by the content of the (meth)acrylic acid ester unit (D) optionally included.
  • the ionomer resin composition in the present invention may further contain additives, if necessary.
  • additives that may optionally be included include UV absorbers, anti-aging agents, antioxidants, thermal degradation inhibitors, light stabilizers, anti-adhesive agents, lubricants, release agents, polymer processing aids, Examples include antistatic agents, flame retardants, dyes, pigments, organic dyes, matting agents, and phosphors.
  • ultraviolet absorbers, anti-aging agents, antioxidants, heat deterioration inhibitors, light stabilizers, anti-sticking agents, lubricants, release agents, polymer processing aids, and organic dyes are preferred.
  • the additives contained may be used singly or in combination of two or more.
  • the content of various additives can be appropriately selected within a range that does not impair the effects of the present invention, and the total content of various additives is, with respect to the total mass of the ionomer resin composition, It is preferably 7% by mass or less, more preferably 5% by mass or less, and even more preferably 4% by mass or less.
  • the various additives may be added when manufacturing the ionomer resin composition, may be added after manufacturing the ionomer resin composition, or may be added when manufacturing the resin sheet described below.
  • the ionomer resin composition in the present invention may have a shape such as pellets in order to improve convenience during storage, transportation, or molding.
  • the pelletization can be carried out, for example, by cutting strands obtained by a melt extrusion method.
  • the temperature of the ionomer resin composition during pelletization by melt extrusion is preferably 150° C. or higher, more preferably 170° C. or higher, from the viewpoint of easily stabilizing the discharge from the extruder.
  • the temperature is preferably 250° C. or lower, more preferably 230° C. or lower, from the viewpoint of easily suppressing thermal decomposition and deterioration of the ionomer resin. Since the ionomer resin composition of the present invention has high thermal decomposition resistance, the ionomer resin is less likely to be thermally decomposed and changed in properties when it is pelletized by the melt extrusion method.
  • the ionomer resin composition of the present invention can be prepared, for example, by (1) a method comprising producing an ionomer resin and mixing the resulting ionomer resin with a specific organic compound, or (2) It can be produced by a method comprising leaving the compound and optionally mixing the obtained mixture (composition) of the residual specific organic compound and ionomer resin with a further specific organic compound.
  • Method (1) is preferable from the viewpoint of ease of adjusting the ratio of the specific organic compound to a desired value and from the viewpoint of productivity.
  • the manufacturing method of the ionomer resin is not particularly limited.
  • (I) a step of saponifying an ethylene-(meth)acrylic acid ester copolymer (X) as a raw material (saponification step), and a step of demetallizing at least part of the obtained saponified product (demetallization and (II) a step of copolymerizing ethylene and (meth)acrylic acid as raw materials (copolymerization step), and a step of partially neutralizing the resulting copolymer (partial neutralization step), and the like.
  • the production method described in US Pat. No. 8,399,096 can be referred to.
  • Method (I) is preferable from the viewpoint of easily adjusting the ratio of the specific organic compound to a desired value. This method (I) will be described in detail below.
  • the ethylene-(meth)acrylic acid ester copolymer (X) as a raw material is dissolved in an organic solvent to obtain an ethylene-(meth)acrylic acid ester copolymer (X) solution.
  • step i) all or part of the (meth)acrylic acid ester units of the ethylene-(meth)acrylic acid ester copolymer (X) in the resulting solution are neutralized with (meth)acrylic acid by a saponification reaction; to obtain a saponified product of ethylene-(meth)acrylic acid ester copolymer (X) (step ii, saponification step), and subjecting the obtained saponified product to a demetallization reaction to obtain (meth) At least part of the neutralized acrylic acid units (B) are converted to (meth)acrylic acid units (A) to obtain a crude ionomer resin composition containing an ionomer resin and a specific organic compound (step iii, demetallization step) and separating and purifying the crude ionomer resin composition (step iv).
  • Examples of monomers constituting the (meth)acrylate units of the ethylene-(meth)acrylate copolymer (X) include methyl (meth)acrylate, ethyl (meth)acrylate, and (meth)acrylate.
  • n-propyl acrylate isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, (meth)acrylate amyl acrylate, isoamyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, pentadecyl (meth)acrylate, dodecyl (meth)acrylate, Isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, ( Examples include g
  • preferred monomers are methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, ( Isobutyl meth)acrylate, sec-butyl (meth)acrylate, and t-butyl (meth)acrylate, more preferred monomers are methyl (meth)acrylate, ethyl (meth)acrylate, (meth)acrylate, ) n-propyl acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and more preferred monomers are methyl (meth)acrylate, (meth) They are n-butyl acrylate and isobutyl (meth)acrylate, and a particularly preferred monomer is methyl (meth)acrylate.
  • the monomers may be used
  • ethylene-(meth)acrylic acid ester copolymer (X) examples include ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacryl Ethyl acid copolymer, ethylene-n-propyl acrylate copolymer, ethylene-n-propyl methacrylate copolymer, ethylene-isopropyl acrylate copolymer, ethylene-isopropyl methacrylate copolymer, ethylene-acrylic acid n-butyl copolymer, ethylene-n-butyl methacrylate copolymer, ethylene-sec-butyl acrylate copolymer, ethylene-sec-butyl methacrylate copolymer and the like.
  • copolymer (X) a commercially available product may be used, or one synthesized by the high-temperature, high-pressure radical polymerization method described in US2013/0274424, JP-A-2006-233059, or JP-A-2007-84743 may be used.
  • Examples of the commercially available products include "Aclift” (registered trademark) WD301F and WH401F manufactured by Sumitomo Chemical Co., Ltd., and "Rekspearl” (registered trademark) A4250 manufactured by Nippon Polyethylene Co., Ltd., and the like.
  • the content of (meth)acrylate units in the ethylene-(meth)acrylate copolymer (X) is preferably 6 mol% or more, more preferably 6.5 mol% or more, and still more preferably 7 mol. % or more, particularly preferably 7.5 mol % or more, and preferably 10 mol % or less, more preferably 9.9 mol % or less, still more preferably 9.5 mol % or less.
  • the content of the (meth)acrylic acid ester units in the copolymer (X) is the (meth)acrylic acid unit (A) in the ionomer resin in the resulting crude ionomer resin composition and the ionomer resin in the ionomer resin composition.
  • the content of (meth)acrylic acid ester units in the copolymer (X) can be adjusted by the copolymerization ratio of ethylene and (meth)acrylic acid ester.
  • the content is the (meth)acrylic acid unit (A), the (meth)acrylic acid neutralized product unit (B), and the ethylene unit (C) in the ionomer resin described above, and when included (meth) As well as the contents of acrylic acid ester units (D) and other monomeric units (e.g. units (A2) and units (B2)), pyrolysis gas chromatography, nuclear magnetic resonance spectroscopy (NMR) and It can be determined by elemental analysis.
  • acrylic acid ester units (D) and other monomeric units e.g. units (A2) and units (B2)
  • NMR nuclear magnetic resonance spectroscopy
  • the melt flow rate (MFR ) is preferably 5 g/10 min or more, more preferably 10 g/10 min or more, still more preferably 50 g/10 min or more, still more preferably 100 g/10 min or more, preferably 400 g/10 min or less, more It is preferably 350 g/10 minutes or less, more preferably 300 g/10 minutes or less, and even more preferably 250 g/10 minutes or less.
  • MFR of the ethylene-(meth)acrylic acid ester copolymer (X) is at least the lower limit and at most the upper limit, more suitable moldability and higher strength of the resulting ionomer resin composition are likely to be obtained. .
  • the MFR of the ethylene-(meth)acrylic acid ester copolymer (X) can be adjusted by the degree of polymerization and the content of (meth)acrylic acid ester units.
  • the MFR can be measured, for example, by the method described in Examples.
  • the weight-average molecular weight of the ethylene-(meth)acrylic acid ester copolymer (X) is preferably 15,000 g/mol or more, more It is preferably 20,000 g/mol or more, more preferably 30,000 g/mol or more, preferably 200,000 g/mol or less, more preferably 100,000 g/mol or less.
  • the number average molecular weight of the ethylene-(meth)acrylate copolymer (X) is preferably 5,000 g/mol or more, more preferably 10,000 g/mol or more, still more preferably 15 ,000 g/mol or more, preferably 100,000 g/mol or less, more preferably 50,000 g/mol or less.
  • the weight average molecular weight and number average molecular weight can be adjusted by adjusting the amount of polymerization initiator and/or chain transfer agent during polymerization.
  • the molecular weights (weight average molecular weight and number average molecular weight) of these ethylene-(meth)acrylic acid ester copolymers (X) are determined by column (TSKgel GMH HR -H(20)HT three in series) and 1,2, Using 4-trichlorobenzene as a solvent, the measurement can be performed at a column temperature of 140° C. in terms of polystyrene.
  • the degree of branching per 1000 carbon atoms of the ethylene-(meth)acrylic acid ester copolymer (X) is not particularly limited, and is preferably 5-30, more preferably 6-20.
  • the degree of branching can be adjusted by the polymerization temperature when polymerizing the copolymer (X).
  • the degree of branching can be measured by performing a 13 C-NMR inverse gate decoupling method using an ethylene-(meth)acrylate copolymer (X) dissolved in deuterated ortho-dichlorobenzene. .
  • the organic solvent for dissolving the ethylene-(meth)acrylate copolymer (X) is not particularly limited as long as it can dissolve the copolymer (X).
  • examples thereof include ethers such as tetrahydrofuran and dioxane; halogen-containing solvents such as chloroform and dichlorobenzene; ketones having 6 or more carbon atoms such as methyl butyl ketone; hydrocarbon compounds such as hexane; Acetic esters; Mixed solvents of hydrocarbon compounds and alcohols such as methanol, ethanol, 1-propanol, 2-propanol and 1-butanol; Aromatic compounds such as benzene, toluene, xylene and ethylbenzene; Aromatic compounds and alcohols and a mixed solvent with These solvents may be used alone or in combination of two or more. Among these, aromatic compounds or mixed solvents of aromatic compounds and alcohols are preferred, and aromatic compounds are more preferred, from the viewpoints of solubility, recovery
  • the content of the copolymer (X) in the ethylene-(meth)acrylate copolymer (X) solution obtained in step i) is preferably 5% by mass or more, more preferably 10% by mass or more, It is more preferably 20% by mass or more, preferably 80% by mass or less, more preferably 60% by mass or less, and even more preferably 40% by mass or less.
  • the content is equal to or less than the upper limit, the processability tends to be good, and the reaction is easy to control.
  • the productivity tends to be high.
  • the temperature at which the ethylene-(meth)acrylate copolymer (X) is dissolved in the organic solvent in step i) is not particularly limited. From the viewpoint of the solubility of the ethylene-(meth)acrylic acid ester copolymer (X), the temperature is preferably 30° C. or higher, more preferably 40° C. or higher, still more preferably 50° C. or higher, and particularly preferably 55° C. or higher.
  • the upper limit of the temperature is preferably 120° C. or lower, more preferably 100° C. or lower, and even more preferably 80° C. or lower.
  • Step i) may be performed in the air or in an inert gas such as nitrogen gas or argon gas.
  • step i) may be carried out under normal pressure, increased pressure or reduced pressure, preferably under increased pressure.
  • the copolymer (X) is saponified by mixing the ethylene-(meth)acrylate copolymer (X) solution obtained in step i) with a base.
  • the saponification reaction all or part of the (meth)acrylic acid ester units in the ethylene-(meth)acrylic acid ester copolymer (X) are converted to neutralized (meth)acrylic acid units, and (meth)acrylic
  • a saponified product of an ethylene-(meth)acrylate copolymer (X) containing acid-neutralized units (B), ethylene units (C) and optionally (meth)acrylate units (D) is obtained.
  • bases used for saponification include strong bases such as sodium hydroxide, potassium hydroxide, and calcium hydroxide.
  • a base may be used alone or in combination of two or more.
  • Sodium hydroxide and/or potassium hydroxide are preferred from the viewpoints of solubility in the organic solvent contained in the ethylene-(meth)acrylate copolymer (X) solution and economic efficiency.
  • the amount of the base to be added is preferably 100 to 300 mol parts, more preferably 120 to 250 mol parts, per 100 mol parts of the (meth)acrylic acid ester units of the ethylene-(meth)acrylic acid ester copolymer (X). parts, more preferably 150 to 200 molar parts.
  • Examples of the solvent used for saponification include solvents similar to the organic solvent for dissolving the ethylene-(meth)acrylic acid ester copolymer (X) in step i).
  • preferred solvents are mixed solvents of hydrocarbon compounds and alcohols, and mixed solvents of aromatic compounds and alcohols, and more preferred solvents are toluene and the like.
  • the ratio of the hydrocarbon compound or aromatic compound and alcohol in the mixed solvent may be appropriately selected according to the type of each solvent used.
  • the mass ratio of the hydrocarbon compound or aromatic compound and alcohol ( hydrocarbons or aromatics/alcohols) can be from 50/50 to 90/10.
  • the temperature at which the saponification reaction is performed is preferably 50° C. or higher, more preferably 60° C. or higher, further preferably 60° C. or higher, from the viewpoint of the reactivity and the solubility of the ethylene-(meth)acrylic acid ester copolymer (X). is 70° C. or higher, particularly preferably 80° C. or higher.
  • the upper limit of the temperature is preferably 180° C. or lower, more preferably 150° C. or lower, still more preferably 120° C. or lower.
  • the saponification reaction may be performed in air or in an inert gas such as nitrogen gas or argon gas.
  • the saponification reaction may be carried out under normal pressure, increased pressure or reduced pressure, preferably under increased pressure.
  • Step iii) By mixing the saponified product obtained in step ii) with an acid, the saponified product is subjected to a demetallization reaction. At least a part (step iii-1) or all of (step iii-1) or all (step iii-2) is converted to a (meth)acrylic acid unit (A).
  • acids used for the demetallization reaction include weak acids such as acetic acid and strong acids such as hydrochloric acid, nitric acid, sulfuric acid, and toluenesulfonic acid.
  • strong acids are preferred, and inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid are more preferred, from the viewpoint of facilitating washing and removal of salts produced from the base used in the saponification reaction and the acid used in the demetalization reaction.
  • the same solvent as the solvent used for the saponification reaction in step ii) can be selected.
  • the amount of acid added can be selected appropriately according to the amount of strong base added in order to adjust the (meth)acrylic acid neutralized unit (B) to an arbitrary value.
  • the temperature at which demetallization is performed is preferably 20° C. or higher, more preferably 30° C. or higher, still more preferably 40° C. or higher, and preferably 180° C. or lower. It is preferably 150° C. or lower, more preferably 120° C. or lower, particularly preferably 100° C. or lower.
  • Demetallization may be performed in the air or in an inert gas such as nitrogen gas or argon gas. Moreover, demetallization may be performed under normal pressure, under pressure, or under reduced pressure, preferably under pressure.
  • step iii-2 that is, by demetallization reaction, all of the (meth)acrylic acid neutralized product units (B) in the saponified product of ethylene-(meth)acrylic acid ester copolymer (X) are When converting to (meth)acrylic acid units (A), in step iii-2), part of the (meth)acrylic acid units (A) obtained by demetallization is neutralized with metal ions ( Further comprising converting to meth)acrylic acid neutralized units (B).
  • the neutralizing agent used in this neutralizing step is not particularly limited as long as it is an ionic compound containing metal ions.
  • the metal ions include ions of alkali metals such as lithium, potassium and sodium, ions of alkaline earth metals such as magnesium and calcium, ions of transition metals such as zinc, nickel, iron and titanium, and aluminum ions. mentioned.
  • examples of neutralizing agents include sodium hydroxide, sodium acetate, sodium bicarbonate, and the like. Polymers such as ionomer resins containing sodium (meth)acrylate units can also be used as the neutralizing agent.
  • Step iii a crude ionomer resin composition containing an ionomer resin and a specific organic compound is separated from the resulting reaction solution and purified to obtain an ionomer resin in the present invention (in the case of method (1)) or The ionomer resin composition of the present invention (in the case of method (2) above) can be obtained. Separation and purification may be carried out by conventional methods such as filtration, washing, concentration, reprecipitation, recrystallization, silica gel columnography and the like.
  • the separation and purification is performed from the viewpoint of easily washing and removing a salt (hereinafter also referred to as a "by-product salt”) that may be produced as a by-product from the base used in the saponification reaction and the acid used in the demetalization reaction.
  • a poor solvent is added to the solution of the crude ionomer resin composition to precipitate particles containing the ionomer resin, the by-product salt and the specific organic compound (hereinafter also simply referred to as "granules”), and then the precipitated particles are separated. It is preferably carried out by washing with a washing liquid.
  • a solution of the crude ionomer resin composition can be prepared by dissolving the crude ionomer resin composition obtained after step iii) in a solvent.
  • the reaction solution after the demetallization step (step iii-1) or the reaction solution after the neutralization step (step iii-2) obtained in step iii) may be used as the solution of the crude ionomer resin composition.
  • the solvent in the solution of the crude ionomer resin composition is not particularly limited as long as it is capable of dissolving the crude ionomer resin composition, and the same solvents as those used in the saponification reaction are exemplified.
  • a mixed solvent of an aromatic compound such as toluene and an alcohol such as methanol is preferable from the viewpoint of the solubility of the crude ionomer resin composition.
  • the ratio of the aromatic compound to the alcohol in the mixed solvent may be appropriately selected according to the type of each solvent used.
  • the mass ratio of the aromatic compound to the alcohol (aromatic compound/alcohol) is , 50/50 to 90/10, preferably 65/35 to 85/15.
  • the concentration of the crude ionomer resin composition in the solution of the crude ionomer resin composition is preferably 30% by mass or less, more preferably 15% by mass, from the viewpoints of facilitating the production of granules with a small particle size and facilitating the removal of by-product salts. %, preferably 1% by mass or more, more preferably 5% by mass or more.
  • the temperature of the solution of the crude ionomer resin composition is preferably not higher than the melting point of the ionomer resin, more preferably 60° C., from the viewpoints of easily suppressing aggregation or agglomeration of precipitated particles and easily removing by-product salts. 50° C. or less, more preferably 50° C. or less. From the viewpoint of fluidity of the solution of the crude ionomer resin composition, the temperature is more preferably 25° C. or higher, more preferably 30° C. or higher.
  • the poor solvent added to the solution of the crude ionomer resin composition is not particularly limited as long as it is mixed with the solution of the crude ionomer resin composition and does not dissolve the ionomer resin.
  • examples thereof include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and 1-butanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; ethers such as tetrahydrofuran; and hydrocarbon compounds such as n-hexane, cyclohexane, heptane, and the like. These may be used alone or in combination of two or more.
  • the poor solvent is preferably methanol, 2 - Alcohols such as propanol, water, and mixed solvents thereof, more preferably alcohols such as methanol.
  • the amount of the poor solvent to be added may be appropriately selected according to the concentration of the solution of the crude ionomer resin composition.
  • the amount of the poor solvent added is preferably 30 parts by mass or more, more preferably 60 parts by mass or more, and particularly preferably 100 parts by mass or more with respect to 100 parts by mass of the solution of the crude ionomer resin composition.
  • the upper limit of the amount of the poor solvent to be added is not particularly limited, and the upper limit of the amount of the poor solvent to be added is usually 1000 parts by mass or less with respect to 100 parts by mass of the solution of the crude ionomer resin composition.
  • the method of adding the poor solvent to the solution of the crude ionomer resin composition is not particularly limited. may be added.
  • the particle diameter of the granules is likely to be reduced, thereby easily improving the removability of the by-product salt, and as a result, from the viewpoint of easily improving the transparency of the resin sheet formed from the resulting ionomer resin composition.
  • the addition of the poor solvent is preferably completed within 1 hour, more preferably within 30 minutes, and even more preferably within 10 minutes.
  • the stirring speed is not particularly limited, but the faster the stirring speed, the easier it is to obtain granular particles with a smaller particle size.
  • the stirring time is not particularly limited. Seconds or more and 3 hours or less, more preferably 10 seconds or more and 1 hour or less, and still more preferably 1 minute or more and 30 minutes or less.
  • the peak top particle size of the granules precipitated by adding a poor solvent to the solution of the crude ionomer resin composition is determined from the viewpoint that by-product salts in the granules can be easily removed by increasing the specific surface area of the granules. From the viewpoint of facilitating almost complete removal of the specific organic compound in the particulate matter (below the detection limit), the particle size is 700 ⁇ m or less, preferably 650 ⁇ m or less, more preferably 600 ⁇ m or less, and even more preferably 550 ⁇ m or less.
  • the ionomer resin composition From the viewpoint of easily improving the filterability of the particulate matter and easily improving the production efficiency of the ionomer resin composition, it is preferably 50 ⁇ m or more, more preferably 70 ⁇ m or more, and preferably 80 ⁇ m or more.
  • the peak top particle size can be measured, for example, by a laser diffraction/scattering method or a single light scattering method.
  • the peak top particle size of the particulate material precipitated by adding a poor solvent to the solution of the crude ionomer resin composition can be adjusted by the concentration and temperature of the solution of the crude ionomer resin composition. Specifically, when the concentration and/or temperature of the solution of the crude ionomer resin composition are lowered, the peak top particle size of the precipitated particulate matter can be reduced, and the concentration and/or temperature of the solution of the crude ionomer resin composition is increased. Then, the peak top particle size of the precipitated particulate matter can be increased.
  • the peak top particle size of the particulate matter can also be adjusted by the method of adding the poor solvent and the stirring speed of the mixture of the crude ionomer resin composition solution and the poor solvent.
  • the cleaning liquid for cleaning the precipitated particulate matter is not particularly limited as long as it is a solvent in which the ionomer resin or the ionomer resin composition is not dissolved.
  • preferred washing liquids include alcohols such as methanol, ethanol, 1-propanol and 2-isopropanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; and ethers of These may be used alone or in combination of two or more.
  • washing liquids alcohols, water, and mixed liquids thereof are preferable from the viewpoint of easy removal of by-product salts and specific organic compounds. Furthermore, by making the specific gravity of the cleaning liquid smaller than that of the particulate matter, the contact area between the cleaning liquid and the particulate matter is increased, thereby making it easier to improve the removability of the by-product salt. From the viewpoint of facilitating adjustment of the content of the specific organic compound within the desired range, and/or from the viewpoint of facilitating drying of the ionomer resin or ionomer resin composition obtained after washing, a more preferable washing liquid is water and alcohols.
  • the ratio of water and alcohols (water/alcohols (% by mass)) in the mixture of water and alcohols is preferably 20/80 to 80/20, more preferably 30/70 to 70/30. .
  • Examples of the method of washing the particulate matter with a washing liquid include a method of filtering the particulate matter from the granular matter dispersion liquid in which the particulate matter is precipitated, mixing the filtered particulate matter with the washing liquid, and then draining the liquid. . More specifically, after mixing the granules filtered from the particulate dispersion and the washing liquid, the granules are filtered from the washing liquid (hereinafter also referred to as washing step (a)), and then the filtered granules There is a method of washing by mixing the substance with a fresh washing liquid and then filtering the particulate matter from the washing liquid (hereinafter also referred to as washing step (b)).
  • the particulate matter is washed in a batch process, for example, after one washing step (a). It is preferred to carry out step (b) preferably 1 to 10 times, more preferably 1 to 8 times, even more preferably 1 to 6 times.
  • the content of the organic carboxylic acid and/or organic carboxylic acid ester (specific organic compound) in the granules can be adjusted by the number of washings.
  • the washing step (b) preferably 4 to 10 times, more preferably 6 to 8 times, the content of the organic carboxylic acid and/or organic carboxylic acid ester in the granules after washing is reduced to 1 mass can be adjusted to less than ppm.
  • the washing step (b) preferably 1 to 3 times, more preferably 1 to 2 times, the content of the organic carboxylic acid and/or organic carboxylic acid ester in the washed granules can be reduced to It can be adjusted to 1 mass ppm or more and 300 mass ppm.
  • the amount of the cleaning liquid used in one cleaning step may be appropriately selected according to the amount of granular material to be cleaned.
  • the amount of the cleaning liquid used in one cleaning process is preferably 100 parts by mass to 2000 parts by mass, more preferably 200 parts by mass to 1000 parts by mass, and still more preferably 100 parts by mass of the dried granular material. is 300 parts by mass to 700 parts by mass.
  • the temperature is preferably below the melting point of the ionomer resin, more preferably below 80°C.
  • drying may be carried out under normal pressure, under pressure, or under reduced pressure, preferably under reduced pressure.
  • the content of aromatic compounds and/or alcohols (specific organic compounds) in the granules can be adjusted by the drying conditions. For example, by drying under vacuum for 24 hours or more, the content of aromatic compounds and/or alcohols in the dried granules can be adjusted to less than 1 ppm by mass. Further, for example, by drying under vacuum for 1 hour to about 8 hours, the content of aromatic compounds and/or alcohols in the dried granules can be adjusted to 1 mass ppm or more and 300 mass ppm. .
  • the content of the specific organic compound in the granules can be adjusted by mixing the granules after drying with the specific organic compound as necessary. From the viewpoint of easy adjustment of the content of the specific organic compound to the desired value, and from the viewpoint of productivity and quality stability, the content of the specific organic compound in the dried granules is substantially zero (e.g.
  • a mixing method is not particularly limited. For example, it may be mixed using a batch melt kneader, a vented single screw extruder, or a vented twin screw extruder.
  • the mixing temperature is preferably 220° C. or lower, more preferably 210° C.
  • the mixing temperature is preferably 160° C. or higher, more preferably 170° C. or higher, and even more preferably 180° C. or higher, from the viewpoint of productivity.
  • the dispersion state of the specific organic compound in the ionomer resin composition is not particularly limited, it is preferably dispersed uniformly in the ionomer resin composition from the viewpoint of easily obtaining the better effects of the present invention. Therefore, mixing is preferably carried out until a homogeneous ionomer resin composition is obtained.
  • the ionomer resin composition of the present invention has excellent transparency.
  • the haze of the sheet of the ionomer resin composition of the present invention at a thickness of 0.8 mm is preferably 2.0% or less, more preferably 1.5% or less, still more preferably 1.0% or less. Since the transparency of the ionomer resin composition increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01%.
  • the haze of the ionomer resin composition is measured using, for example, a haze meter according to JIS K7136:2000.
  • the ionomer resin of the present invention the total content of (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units (B) in the resin is 6 mol% or more. Also, the resin is difficult to crystallize.
  • the ionomer resin composition of the present invention containing such an ionomer resin can have high transparency even in a state in which crystallization of the ionomer resin is promoted by slow cooling.
  • the haze (gradual cooling haze) of the ionomer resin composition in the present invention in a state in which crystallization of the ionomer resin is promoted by slow cooling is preferably 5.0% or less, more preferably 4.5% or less, and even more preferably 4.5% or less. is 4.0% or less, more preferably 3.0% or less, and particularly preferably 2.5% or less. Since the transparency of the ionomer resin composition increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01%.
  • Slow-cooling haze is obtained by disposing a sheet of an ionomer resin composition having a thickness of 0.8 mm between two glass plates to prepare a laminated glass, heating the laminated glass to 140 ° C., and then reducing the haze from 140 ° C.
  • the haze after slowly cooling to 23°C at a rate of 1/min can be measured by measuring with a haze meter in accordance with JIS K7136:2000.
  • the ionomer resin composition of the present invention has excellent color resistance and is less likely to be colored during molding.
  • the yellowness index (YI) at a sheet thickness of 0.8 mm of the ionomer resin composition of the present invention is preferably 1.1 or less, more preferably 0.9 or less, and still more preferably 0.9 or less, from the viewpoint of easily improving color resistance. is 0.7 or less. Since the color resistance of the ionomer resin composition increases as the yellowness index (YI) decreases, the lower limit value is not particularly limited, and may be, for example, 0 or more.
  • the yellowness index (YI) can be measured using a colorimetric color difference meter in accordance with JIS Z8722, for example, by the method described in Examples.
  • the adhesion between the ionomer resin composition of the present invention and glass can be evaluated by the peel energy between the ionomer resin composition and glass measured by a peel test.
  • the peel energy between the ionomer resin composition and glass measured under standard conditions is preferably 2.0 kJ/m 2 or more, more preferably 2.5 kJ/m 2 or more, and still more preferably is at least 3.0 kJ/m 2 , particularly preferably at least 3.5 kJ/m 2 .
  • the adhesion between the ionomer resin composition and glass under high humidity conditions can be evaluated by the peel energy between the ionomer resin composition and glass measured by a peel test under wet conditions.
  • This peeling energy is preferably 0.05 kJ/m 2 or more, more preferably 0.10 kJ/m 2 or more, still more preferably 0.15 kJ/m 2 or more, still more preferably 0.17 kJ/m 2 or more, especially It is preferably 0.20 kJ/m 2 or more.
  • the upper limit of the peeling energy under standard conditions and high humidity conditions is not particularly limited, and may be 10 kJ/m 2 or less.
  • the peel test can be carried out, for example, by the method described in WO 2019-027865 as a peel adhesion measurement method.
  • the peel energy measured under the standard conditions and wet conditions can be measured, for example, by the method described in the Examples.
  • the ionomer resin composition of the present invention has sufficient creep resistance. Therefore, when a resin sheet having one or more layers containing the ionomer resin composition of the present invention, which will be described later, is used as an interlayer for laminated glass, the strength is unlikely to decrease even after long-term use, ensuring safety. Cheap.
  • the creep resistance of the ionomer resin composition is determined by the relaxation modulus after a long period of time (long-term relaxation modulus), for example, 2.6 ⁇ 10 6 seconds (about 1 month) after creating a master curve at 50°C. ) can be evaluated by the relaxation modulus. In one embodiment of the present invention, the relaxation modulus after 2.6 ⁇ 10 6 seconds when creating a master curve at 50° C.
  • the relaxation modulus is preferably 0.00, from the viewpoint of easily increasing the creep resistance of the ionomer resin composition. It is 40 MPa or more, more preferably 0.45 MPa or more, and still more preferably 0.50 MPa or more.
  • the relaxation modulus may be 5.0 MPa or less, preferably 2.5 or less, from the viewpoint of handleability of the resin sheet.
  • the relaxation modulus of elasticity is measured by dynamic viscoelasticity measurement using a dynamic viscoelasticity measuring device after allowing a resin sheet made of the ionomer resin composition to stand in an atmosphere of 23° C. and 50% RH for one week or longer. It can be obtained from a synthetic curve (referred to as a master curve) at a reference temperature of 50° C. obtained from the time-temperature conversion rule, and can be obtained, for example, by the method described in Examples.
  • the present invention also relates to a resin sheet having one or more layers containing the ionomer resin composition of the present invention (hereinafter also referred to as layer (x)).
  • layer (x) is composed of the ionomer resin composition of the invention.
  • the resin sheet of the present invention may be composed of only one layer (x), or may be a laminate containing at least one layer (x).
  • the structure of the laminate is not particularly limited. Examples thereof include a laminate consisting of two or more layers (x), a laminate including one or more layers (x) and one or more other layers, and the like. When the laminate includes multiple layers (x) or multiple other layers, the resin or resin composition that constitutes each layer (x) or each other layer may be the same or different.
  • a layer containing a known resin can be used as the other layer.
  • the resin include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polytetrafluoroethylene, acrylic resin, polyamide, polyacetal, polycarbonate, polyethylene terephthalate among polyesters, polybutylene terephthalate, cyclic polyolefin, polyphenylene sulfide, Examples include polysulfone, polyethersulfone, polyarylate, liquid crystal polymer, polyimide, and thermoplastic elastomer.
  • the other layer may include the additives exemplified in the section [Additives] above, as well as a plasticizer, a heat-shielding material (for example, inorganic heat-shielding fine particles having infrared absorption ability or an organic It may contain one or more additives such as heat shielding materials) and functional inorganic compounds.
  • a heat-shielding material for example, inorganic heat-shielding fine particles having infrared absorption ability or an organic It may contain one or more additives such as heat shielding materials
  • functional inorganic compounds for example, a plasticizer, a plasticizer, a plasticizer, a heat-shielding material (for example, inorganic heat-shielding fine particles having infrared absorption ability or an organic It may contain one or more additives such as heat shielding materials) and functional inorganic compounds.
  • At least one surface, preferably both surfaces, of the resin sheet of the present invention is coated with a melt from the viewpoint of excellent defoaming properties when the resin sheet and glass are thermocompression bonded. It is preferable to have an uneven structure imparted by a conventionally known method such as a fracture method or an embossing method.
  • the shape of the melt fracture and emboss is not particularly limited, and conventionally known shapes may be appropriately selected.
  • the thickness of one layer (x) in the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, and particularly preferably 0.4 mm or more, Also, it is preferably 5 mm or less, more preferably 4 mm or less, even more preferably 2 mm or less, and particularly preferably 1 mm or less.
  • the thickness of each layer (x) may be the same or different.
  • the thickness of the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, even more preferably 0.4 mm or more, and particularly preferably 0.5 mm or more. More preferably 0.6 mm or more, even more preferably 0.7 mm or more, particularly preferably 0.75 mm or more, and preferably 20 mm or less, more preferably 15 mm or less, still more preferably 10 mm or less, still more preferably is 5 mm or less, particularly preferably 4 mm or less, particularly more preferably 2 mm or less, and even more preferably 1 mm or less.
  • the thickness of the resin sheet is measured using a conventionally known method, such as a contact or non-contact thickness gauge.
  • the resin sheet may be in the state of being wound into a roll, or may be in the state of individual sheets.
  • the content of the ionomer resin composition of the present invention contained in the resin sheet of the present invention is adjusted from the viewpoint of easily increasing the transparency, color resistance and creep resistance of the resulting resin sheet. It is preferably 90% by mass or more, more preferably 93% by mass or more, still more preferably 95% by mass or more, still more preferably 98% by mass or more, and preferably 100% by mass or less based on the mass of the resin sheet. .
  • the resin sheet of the present invention Due to the properties of the ionomer resin composition of the present invention, the resin sheet of the present invention has transparency, transparency during slow cooling, color resistance, adhesion to glass (under standard conditions and wet conditions), and excellent resistance to thermal decomposition and sufficient creep resistance.
  • the resin sheet of the present invention has the same haze, slow cooling haze, yellowness, adhesion to glass, thermal decomposition resistance and creep resistance as those of the ionomer resin composition of the present invention. have.
  • the method for producing the resin sheet of the present invention is not particularly limited.
  • the layer (x) can be produced by a known film-forming method such as an extrusion method, a calendar method, a press method, a solution casting method, a melt casting method, or an inflation method.
  • Layer (x) may be used alone as a resin sheet.
  • two or more layers (x), or one or more layers (x) and one or more other layers are laminated by press molding or the like to obtain a laminate, or two At least one layer (x), or at least one layer (x) and at least one other layer may be formed by a coextrusion method to obtain a laminate, and this laminate may be used as a resin sheet. good.
  • the laminate includes multiple layers (x) or multiple other layers, the resin or resin composition that constitutes each layer (x) or each other layer may be the same or different.
  • the resin temperature or the resin composition temperature during extrusion is preferably 150° C. or higher, more preferably 170° C. or higher, from the viewpoints of easily stabilizing the discharge of the resin from the extruder and easily reducing mechanical troubles.
  • the temperature is preferably 250° C. or lower, more preferably 230° C. or lower, from the viewpoint of facilitating decomposition of the resin and deterioration of the resin accompanying the decomposition.
  • the resin sheet of the present invention can be suitably used as an intermediate film for laminated glass (also simply referred to as an intermediate film). Therefore, the present invention includes a laminated glass interlayer made of the resin sheet of the present invention. The invention also includes a laminated glass comprising two glass sheets and a laminated glass interlayer of the invention arranged between the two glass sheets. Since the laminated glass of the present invention has the laminated glass intermediate film made of the resin sheet, it can have excellent transparency and color resistance, and has excellent adhesiveness between the intermediate film and the glass.
  • Examples of the glass plate to be laminated with the interlayer film of the present invention include inorganic glass such as float glass, polished plate glass, figured glass, wired plate glass, and heat-absorbing plate glass, as well as conventionally known organic glass such as polymethyl methacrylate and polycarbonate. Glass or the like may be used. They may be either colorless or colored. These may use 1 type and may use 2 or more types together. Moreover, the thickness of one glass plate is preferably 100 mm or less, and the thickness of the two glass plates may be the same or different.
  • the laminated glass of the present invention can be produced by a conventionally known method. Examples thereof include a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll. Moreover, after crimping
  • a vacuum laminator device for example, under a reduced pressure of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 1 MPa, at 60 to 200° C., especially 80 to 160° C., a glass plate, an interlayer, and any layer (for example, adhesiveness A laminated glass can be manufactured by laminating a resin layer, etc.).
  • a method using a vacuum bag or a vacuum ring is described, for example, in EP 1235683 , wherein a glass plate and a A laminated glass can be produced by laminating the intermediate film.
  • a glass plate, an intermediate film and an arbitrary layer are laminated, degassed by rolls at a temperature below the flow start temperature of the intermediate film, and then crimped at a temperature close to the flow start temperature.
  • method of doing so Specifically, for example, after heating to 30 to 70° C. with an infrared heater or the like, degassing with rolls, further heating to 50 to 120° C., and pressing with rolls can be mentioned.
  • the operating conditions of the autoclave process are appropriately selected depending on the thickness and/or structure of the laminated glass. is preferably treated for 0.5 to 3 hours.
  • the laminated glass of the present invention Due to the properties of the ionomer resin composition of the present invention, the laminated glass of the present invention has transparency, transparency during slow cooling, color resistance, and adhesion to glass (under standard conditions and under wet conditions). and has sufficient creep resistance. In a preferred embodiment of the present invention, the laminated glass of the present invention has haze, slow cooling haze, yellowness, adhesion to glass, and creep resistance equivalent to those of the ionomer resin composition of the present invention.
  • the neutralized (meth)acrylic acid unit (B) was converted to the (meth)acrylic acid unit (A). Then, after thoroughly washing with water and drying, the following (1) to (3) were carried out.
  • (1) The component of the monomer unit constituting the resin was analyzed by pyrolysis GC-MS.
  • (2) The acid value of the resin was measured according to JIS K0070:1992.
  • ethylene unit (C) / (meth) acrylic acid ester unit (D) / ((meth) acrylic acid unit (A) and (meth) acrylic acid The ratio of the sum of hydrate units (B)) was calculated. Furthermore, from the information in (4) above, the ratio of ethylene units (C) / (meth)acrylic acid ester units (D) / (meth)acrylic acid units (A) / (meth)acrylic acid neutralized units (B) was calculated.
  • Headspace conditions heating temperature 120 ° C., heating time 30 minutes GC conditions: column; DB-WaxUI (30 m-0.25 mm-0.5 ⁇ m), oven; after holding at 40 ° C. for 5 minutes, 240 at 10 ° C./min C. and held at 240.degree. C. for 15 minutes, inlet: 200.degree. C., split injection (20:1) Measurement was performed five times in succession, and the total peak area of the target component was obtained by simulation from the obtained data. Compounds that did not reach gas-solid equilibrium under the above conditions were quantified by a one-point calibration method from the peak area obtained from the first measurement.
  • Water content in ionomer resin composition and resin sheet The water content of the ionomer resin composition and the resin sheet obtained in Comparative Example 2 was quantified by the Karl Fischer titration method. Specifically, using a moisture vaporizer VA-121 (manufactured by Mitsubishi Chemical Corporation) and a trace moisture content analyzer CA-200 (manufactured by Mitsubishi Chemical Corporation), 1 g of each sample was placed on a quartz cell in the furnace of the moisture vaporizer. The water vapor generated during heating at 200° C. was introduced into the electrolysis cell of the trace moisture content measuring device by nitrogen gas, and the moisture content was measured.
  • VA-121 manufactured by Mitsubishi Chemical Corporation
  • CA-200 trace moisture content analyzer
  • Thermal decomposition resistance of the ionomer resin compositions obtained in Examples and Comparative Examples was evaluated according to JIS K7120:1987. Specifically, using a simultaneous differential thermal thermogravimetric analyzer TG-DTA7200 (manufactured by Hitachi High-Tech Science Co., Ltd.), a temperature increase rate of 10 ° C./min and a flow rate of 50 mL/min under a nitrogen atmosphere were prepared from each resin composition. The weight reduction rate was measured when each resin sheet was heated to 20°C to 550°C. The 1% weight reduction temperature (Td1), which is the temperature at which the weight reduction rate reaches 1% based on the weight at 200° C., was used as an index of thermal decomposition resistance.
  • Td1 The 1% weight reduction temperature
  • the haze of the laminated glass after slow cooling was measured using a haze meter HZ-1 (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7136:2000.
  • the adhesion to glass under high humidity conditions was evaluated by measuring the peel energy under wet conditions by the following method.
  • MMA Methyl methacrylate
  • EA ethyl acrylate
  • X ethylene-(meth)acrylic acid ester copolymer
  • MFR MFR
  • EMMA1 "Aclift” (registered trademark) WH401F manufactured by Sumitomo Chemical Co., Ltd. was used
  • EEA1 "Rexpearl” (registered trademark) A4250 manufactured by Japan Polyethylene Co., Ltd. was used.
  • the MFR was measured according to JIS K7210-1:2014.
  • each raw material resin is melted in a cylinder and extruded from a die with a nominal hole diameter of 2.095 mm installed at the bottom of the cylinder under a load of 2.16 kg at 190 ° C. Resin extruded per 10 minutes The amount (g/10 min) was measured and the value was taken as the MFR.
  • Example 1 100 parts by mass of EMMA2 shown in Table 1 was introduced into the reactor, and 233 parts by mass of toluene was added thereto and stirred at 60° C. under a pressure of 0.02 MPa to dissolve EMMA2. 100 parts by mass of a methanol solution of sodium hydroxide (20% by mass) was added to the resulting solution and stirred at 100°C for 4 hours to saponify EMMA2 to convert part of the methyl methacrylate units into sodium methacrylate units. Converted. Next, after cooling this solution to 50°C, 83 parts by mass of hydrochloric acid (20% by mass) was added to the reaction solution and stirred at 50°C for 1 hour to convert part of the sodium methacrylate units into methacrylic acid.
  • Example 2 An ionomer resin, an ionomer resin composition and a resin sheet were prepared in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2, and 0.0045 parts by mass of xylene was used instead of 0.0015 parts by mass of toluene during melt-kneading. were obtained, analyzed and evaluated. Table 2 shows the results.
  • Example 3 An ionomer resin, an ionomer resin composition and a resin were prepared in the same manner as in Example 1 except that EMMA3 was used instead of EMMA2, and 0.0008 parts by mass of methacrylic acid was used instead of 0.0015 parts by mass of toluene during melt-kneading. Sheets were obtained, analyzed and evaluated. Table 2 shows the results.
  • Example 4 An ionomer resin, an ionomer resin composition and A resin sheet was obtained and analyzed and evaluated. Table 2 shows the results.
  • Example 5 An ionomer resin, an ionomer resin composition and A resin sheet was obtained and analyzed and evaluated. Table 2 shows the results.
  • EMMA1 was used instead of EMMA2, the amount of methanol solution of sodium hydroxide (20% by mass) and the amount of hydrochloric acid (20% by mass) added were changed to 80 parts by mass and 66 parts by mass, respectively, and toluene 0 was added during melt kneading.
  • An ionomer resin, an ionomer resin composition and a resin sheet were obtained, analyzed and evaluated in the same manner as in Example 1 except that 0.0300 parts by mass of methanol was used instead of 0.0015 parts by mass. Table 2 shows the results.
  • Example 7 An ionomer resin, an ionomer resin composition and a resin were prepared in the same manner as in Example 1 except that EEA1 was used instead of EMMA2 and 0.0030 parts by mass of acrylic acid was used instead of 0.0015 parts by mass of toluene during melt-kneading. Sheets were obtained, analyzed and evaluated. Table 2 shows the results.
  • Example 8 An ionomer resin, an ionomer resin composition and a resin sheet were obtained, analyzed and evaluated in the same manner as in Example 1 except that 0.0350 parts by mass of toluene was used instead of 0.0015 parts by mass of toluene during melt-kneading. rice field. Table 2 shows the results.
  • Example 9 An ionomer resin, an ionomer resin composition and a resin sheet were prepared in the same manner as in Example 1 except that EMMA3 was used instead of EMMA2 and 0.0340 parts by mass of methanol was used instead of 0.0015 parts by mass of toluene during melt-kneading. were obtained, analyzed and evaluated. Table 2 shows the results.
  • EMMA4 was used instead of EMMA2, and the amount of methanol solution of sodium hydroxide (20% by mass) and the amount of hydrochloric acid (20% by mass) added were changed to 72 parts by mass and 59 parts by mass, respectively.
  • An ionomer resin, an ionomer resin composition and a resin sheet were obtained, analyzed and evaluated in the same manner as in Example 1 except that 0.0120 parts by mass of methanol was used instead of 0.0015 parts by mass. Table 2 shows the results.
  • the ionomer resin compositions obtained in Examples 1 to 9 were confirmed to have high transparency and adhesion to glass, and low colorability. Moreover, it was confirmed that the ionomer resin compositions obtained in Examples 1 to 9 had high thermal decomposition resistance and sufficient creep resistance. In contrast, the ionomer resin obtained in Comparative Example 1 and the ionomer resin compositions obtained in Comparative Examples 2 to 4 were inferior in at least one of transparency, glass adhesion and color resistance.
  • this resin sheet can be used as an interlayer film for laminated glass, for example, for architectural and structural applications (for example, laminates for facades, exterior walls or roofs, panels, doors, windows, walls, roofs, sunroofs, sound insulation walls, display windows, balconies, etc.). , building materials such as handrail walls, partition glass members for conference rooms, solar panels, etc.), or laminated glass for vehicle applications (e.g., automobile windshield, automobile side glass, automobile sunroof, automobile rear glass, head-up display glass, etc.).
  • the laminated glass of the present invention can be suitably used as laminated glass for architectural/structural use or vehicle use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a resin composition that is formed by containing: an organic compound; and an ionomer resin that contains a (meth)acrylic acid unit (A), a neutralized (meth)acrylic acid unit (B) and an ethylene unit (C). The total content of the unit (A) and the unit (B) is 6-10 mol% relative to the total amount of monomer units that constitute the ionomer resin. The organic compound is a liquid at 23ºC and is at least one organic compound selected from the group consisting of aromatic compounds, alcohols, organic carboxylic acids and organic carboxylic acid esters. The content of the organic compound is 1-300 ppm by mass.

Description

アイオノマー樹脂を含んでなる樹脂組成物、樹脂シートおよび合わせガラスResin composition containing ionomer resin, resin sheet and laminated glass
 本特許出願は日本国特許出願第2021-104272(出願日:2021年6月23日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、特定のアイオノマー樹脂と特定の有機化合物とを含んでなる樹脂組成物、該樹脂組成物を含む層を1層以上有する樹脂シート、該樹脂シートからなる合わせガラス中間膜、および該合わせガラス中間膜を有する合わせガラスに関する。
This patent application claims priority under the Paris Convention of Japanese Patent Application No. 2021-104272 (filing date: June 23, 2021), and is hereby incorporated by reference in its entirety. shall be incorporated within.
The present invention provides a resin composition comprising a specific ionomer resin and a specific organic compound, a resin sheet having one or more layers containing the resin composition, a laminated glass intermediate film comprising the resin sheet, and the laminate It relates to a laminated glass having a glass interlayer.
 エチレン-不飽和カルボン酸共重合体の中和物であるアイオノマー樹脂は、透明性およびガラスとの接着性に優れるため、合わせガラスの中間膜に使用されている(例えば特許文献1)。近年、合わせガラスに対する要求が高くなっており、合わせガラスの製作条件によらず、アイオノマー樹脂を用いた合わせガラス中間膜を有する合わせガラスに対して、より優れた特性(例えば、光学特性および外観)を有することが求められるようになってきた。  Ionomer resins, which are neutralized ethylene-unsaturated carboxylic acid copolymers, are used in interlayer films for laminated glass because of their excellent transparency and adhesion to glass (for example, Patent Document 1). In recent years, the demand for laminated glass has increased, and regardless of the production conditions of laminated glass, laminated glass having a laminated glass intermediate film using an ionomer resin has superior properties (e.g., optical properties and appearance). It is now required to have
 例えば、特許文献2には、エチレンの共重合単位と、3~10個の炭素原子を有する第一α,β-不飽和カルボン酸の共重合単位と、3~10個の炭素原子を有する第二α,β-不飽和カルボン酸の誘導体の共重合単位とを特定の割合で含むエチレン酸コポリマーの中和生成物であるイオノマーが記載されており、このイオノマーは従来のイオノマーと比べて向上した光学特性を示すことが記載されている。 For example, in Patent Document 2, copolymerized units of ethylene, copolymerized units of a first α,β-unsaturated carboxylic acid having 3 to 10 carbon atoms, and a second copolymer having 3 to 10 carbon atoms, Ionomers are described which are neutralization products of ethylene acid copolymers containing specific proportions of copolymerized units of derivatives of diα,β-unsaturated carboxylic acids, which ionomers are improved compared to conventional ionomers. It is described to exhibit optical properties.
 光学特性に加えて他の特性も向上させる試みも行われている。
 例えば特許文献3には、アイオノマー100質量部に対してダイマー酸を1~50質量部添加した成形体用樹脂組成物が記載されており、ダイマー酸の添加により、透明性をほとんど損なうことなく、流動性の改良とブリードアウト抑制との両立を達成できたことが記載されている。
 また、例えば特許文献4には、アイオノマーを用いた合わせガラス中間膜に含まれる水分含有量を0.066wt%以下に抑えた合わせガラス中間膜の製造方法が記載されており、透明性に加えてガラスに対する接着性の向上も達成できたことが記載されている。
Attempts have also been made to improve other properties in addition to the optical properties.
For example, Patent Document 3 describes a resin composition for a molded body in which 1 to 50 parts by mass of a dimer acid is added to 100 parts by mass of an ionomer. It is described that both improvement in fluidity and suppression of bleed-out have been achieved.
Further, for example, Patent Document 4 describes a method for manufacturing a laminated glass interlayer film using an ionomer, in which the moisture content contained in the laminated glass interlayer film is suppressed to 0.066 wt% or less, and in addition to transparency, It is stated that an improvement in adhesion to glass could also be achieved.
米国特許第6432522号明細書U.S. Pat. No. 6,432,522 特表2017-519083号公報Japanese Patent Publication No. 2017-519083 国際公開第2011/043271号WO2011/043271 米国特許第7951865号明細書U.S. Pat. No. 7,951,865
 しかしながら、本発明者らの検討によれば、特許文献3に記載の樹脂組成物は、ガラスに対する接着性(以下、「ガラス接着性」とも称する)および透明性が十分ではなく、成形加工時に着色しやすく、長時間使用時に強度が低下しやすく、発泡またはスジ等のない外観に優れた成形体を得ることが困難であることがわかった。また、特許文献4に記載のアイオノマーを用いた合わせガラス中間膜は、ガラス接着性、特に高湿度条件下でのガラス接着性が十分ではなく、成形加工時に着色しやすく、長時間使用時に強度が低下しやすいことがわかった。
 従って、本発明が解決しようとする課題は、透明性、耐着色性、およびガラスに対する接着性に優れた、アイオノマー樹脂を含んでなる樹脂組成物を提供することである。
However, according to the studies of the present inventors, the resin composition described in Patent Document 3 has insufficient adhesiveness to glass (hereinafter also referred to as "glass adhesiveness") and transparency, and is colored during molding. It has been found that it is difficult to obtain a molded article having an excellent appearance without foaming or streaks because the strength tends to decrease during long-term use. In addition, the laminated glass interlayer using the ionomer described in Patent Document 4 does not have sufficient adhesion to glass, especially under high humidity conditions, tends to be colored during molding, and loses strength when used for a long time. It was found to be easy to decrease.
Accordingly, the problem to be solved by the present invention is to provide a resin composition containing an ionomer resin which is excellent in transparency, color resistance and adhesion to glass.
 本発明者らは、前記課題を解決するために鋭意検討した結果、本発明を完成するに至った。すなわち、本発明には、以下のものが含まれる。
[1](メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)を含むアイオノマー樹脂と、有機化合物とを含んでなる樹脂組成物であって、前記単位(A)および前記単位(B)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であり、前記有機化合物は、23℃において液体であり、芳香族化合物、アルコール類、有機カルボン酸、および有機カルボン酸エステルからなる群から選択される少なくとも1つの有機化合物であり、前記有機化合物の含有量は1質量ppm以上300質量ppm以下である、樹脂組成物。
[2]前記アイオノマー樹脂は、(メタ)アクリル酸エステル単位(D)をさらに含み、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である、[1]に記載の樹脂組成物。
[3]前記有機化合物は、トルエン、キシレン、エタノール、1-ブタノール、メタクリル酸、アクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、アクリル酸メチル、アクリル酸エチル、およびアクリル酸n-ブチルからなる群から選択される少なくとも1つの有機化合物である、[1]または[2]に記載の樹脂組成物。
[4][1]~[3]のいずれかに記載の樹脂組成物を含む層を1層以上有する、樹脂シート。
[5][4]に記載の樹脂シートからなる合わせガラス中間膜。
[6]2つのガラス板と、該2つのガラス板の間に配置された請求項5に記載の合わせガラス中間膜とを有する、合わせガラス。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, the present invention includes the following.
[1] A resin composition comprising an ionomer resin containing (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and an organic compound. The total content of the units (A) and the units (B) is 6 to 10 mol% based on the total monomer units constituting the ionomer resin, and the organic compound is a liquid at 23°C. is at least one organic compound selected from the group consisting of aromatic compounds, alcohols, organic carboxylic acids, and organic carboxylic acid esters, and the content of the organic compound is 1 mass ppm or more and 300 mass ppm or less. There is a resin composition.
[2] The ionomer resin further includes (meth)acrylic acid ester units (D), and the total content of the units (A), the units (B) and the units (D) constitutes the ionomer resin. The resin composition according to [1], which is 6 to 10 mol% based on the total monomer units.
[3] The organic compound includes toluene, xylene, ethanol, 1-butanol, methacrylic acid, acrylic acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, methyl acrylate, ethyl acrylate, and n-acrylate. - The resin composition according to [1] or [2], which is at least one organic compound selected from the group consisting of butyl.
[4] A resin sheet having one or more layers containing the resin composition according to any one of [1] to [3].
[5] An interlayer film for laminated glass comprising the resin sheet according to [4].
[6] A laminated glass comprising two glass plates and the laminated glass intermediate film according to claim 5 disposed between the two glass plates.
 本発明によれば、透明性、耐着色性、およびガラスに対する接着性に優れた、アイオノマー樹脂を含んでなる樹脂組成物を提供できる。 According to the present invention, it is possible to provide a resin composition containing an ionomer resin that is excellent in transparency, color resistance, and adhesion to glass.
 以下、本発明の実施形態について詳細に説明する。なお、本発明の範囲はここで説明する実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited to the embodiments described here, and various modifications can be made without departing from the scope of the present invention.
[アイオノマー樹脂を含んでなる樹脂組成物]
 本発明のアイオノマー樹脂を含んでなる樹脂組成物(以下、「アイオノマー樹脂組成物」とも称する)は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)を含むアイオノマー樹脂と、特定の有機化合物(以下、「特定有機化合物」とも称する)とを含んでなる。
[Resin composition containing ionomer resin]
A resin composition comprising the ionomer resin of the present invention (hereinafter also referred to as "ionomer resin composition") comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and It comprises an ionomer resin containing ethylene units (C) and a specific organic compound (hereinafter also referred to as "specific organic compound").
〔特定の有機化合物〕
 まず、本発明のアイオノマー樹脂組成物において必須の成分である特定の有機化合物について説明する。
 この有機化合物は、大気圧下、23℃において液体であり、芳香族化合物、アルコール類、有機カルボン酸、および有機カルボン酸エステルからなる群から選択される、1つの有機化合物または2つ以上の有機化合物の組み合わせである。また、アイオノマー樹脂組成物における特定有機化合物の含有量は1質量ppm以上300質量ppm以下である。
[Specific organic compound]
First, specific organic compounds, which are essential components in the ionomer resin composition of the present invention, will be described.
The organic compound is one organic compound or two or more organic It is a combination of compounds. Moreover, the content of the specific organic compound in the ionomer resin composition is 1 ppm by mass or more and 300 ppm by mass or less.
 アイオノマー樹脂は、その組成、加工温度および加工時間等に応じて熱劣化しやすい場合がある。そのようなアイオノマー樹脂を用いて樹脂シートまたは合わせガラスを作製すると、着色された樹脂シートまたは合わせガラスが得られる。また、そのような合わせガラスでは、樹脂シートとガラスとの接着性も劣る。そこで本発明者らは、アイオノマー樹脂を含んでなる樹脂シートの耐着色性およびガラス接着性について検討を進めたところ、驚くべきことに、アイオノマー樹脂と特定の割合の特定の有機化合物とを含んでなるアイオノマー樹脂組成物が、優れた耐着色性および高いガラス接着性を有することを見出した。アイオノマー樹脂組成物が特定の割合の特定の有機化合物を含有することにより、アイオノマー樹脂組成物が耐着色性およびガラス接着性に優れる理由は明らかでないが、特定の割合の特定の有機化合物によりアイオノマー樹脂が適度に可塑化されたためであると推定される。 Depending on its composition, processing temperature, processing time, etc., ionomer resin may be prone to thermal deterioration. When a resin sheet or laminated glass is produced using such an ionomer resin, a colored resin sheet or laminated glass is obtained. Moreover, in such laminated glass, the adhesiveness between the resin sheet and the glass is also poor. Accordingly, the inventors of the present invention have investigated the coloring resistance and glass adhesiveness of a resin sheet containing an ionomer resin, and surprisingly found that a resin sheet containing an ionomer resin and a specific organic compound in a specific ratio It was found that an ionomer resin composition having excellent color resistance and high glass adhesion. Although it is not clear why the ionomer resin composition contains a specific organic compound in a specific ratio, the ionomer resin composition is excellent in color resistance and adhesion to glass. It is presumed that this is because the is moderately plasticized.
 さらに本発明者らは、アイオノマー樹脂組成物が特定の割合の特定の有機化合物を含有することにより、意外なことに、アイオノマー樹脂組成物が特に高湿度条件下での高いガラス接着性、優れた透明性、および十分な耐クリープ性という特長を発現することも見出した。通常、アイオノマー樹脂以外の成分を含んでなるアイオノマー樹脂組成物は、該アイオノマー樹脂自体よりも、高湿度条件下でのガラス接着性および透明性に劣る傾向があり、また、不十分な耐クリープ性を示す傾向があることから、本発明のアイオノマー樹脂組成物が前記特長を有することは意外であった。 Furthermore, the present inventors have unexpectedly found that the ionomer resin composition contains a specific organic compound in a specific ratio, and thus the ionomer resin composition exhibits high adhesion to glass, particularly under high humidity conditions, excellent It was also found that the characteristics of transparency and sufficient creep resistance were exhibited. Generally, ionomer resin compositions containing components other than ionomer resins tend to be inferior to the ionomer resins themselves in adhesion to glass and transparency under high humidity conditions, and also have insufficient creep resistance. Therefore, it was unexpected that the ionomer resin composition of the present invention has the aforementioned features.
 特定有機化合物の含有量が1質量ppm未満であると、アイオノマー樹脂組成物の耐着色性およびガラス接着性が損なわれる。
 一方、特定有機化合物の含有量が300質量ppmを超えると、アイオノマー樹脂組成物の透明性(特に外観)が低下しやすいため、例えばアイオノマー樹脂組成物から得られる樹脂シートを合わせガラス中間膜として使用する場合、合わせガラスの意匠性および外観を損なう可能性がある。また、特定有機化合物の含有量が300質量ppmを超えると、アイオノマー樹脂組成物の耐クリープ性が低下しやすいため、例えばアイオノマー樹脂組成物から得られる樹脂シートを合わせガラス中間膜として使用する場合、長時間使用時に強度が低下しやすく、安全性を損なう可能性がある。さらに、特定有機化合物の含有量が300質量ppmを超えると、アイオノマー樹脂組成物の耐着色性および耐熱分解性も低下しやすい。
When the content of the specific organic compound is less than 1 ppm by mass, the ionomer resin composition is impaired in color resistance and adhesion to glass.
On the other hand, when the content of the specific organic compound exceeds 300 ppm by mass, the transparency (especially the appearance) of the ionomer resin composition tends to decrease. Therefore, for example, a resin sheet obtained from the ionomer resin composition is used as an interlayer film for laminated glass. If so, the design and appearance of the laminated glass may be impaired. In addition, when the content of the specific organic compound exceeds 300 ppm by mass, the creep resistance of the ionomer resin composition tends to decrease. The strength tends to decrease when used for a long time, and there is a possibility of impairing safety. Furthermore, when the content of the specific organic compound exceeds 300 ppm by mass, the coloration resistance and thermal decomposition resistance of the ionomer resin composition tend to decrease.
 特定有機化合物の含有量は、耐着色性およびガラス接着性を高めやすい観点から、好ましくは2質量ppm以上、より好ましくは3質量ppm以上、さらに好ましくは4質量ppm以上である。また、特定有機化合物の含有量は、透明性および耐クリープ性を高めやすい観点から、好ましくは295質量ppm以下、より好ましくは290質量ppm以下、さらに好ましくは285質量ppm以下、さらにより好ましくは280質量ppm以下、特に好ましくは275質量ppm以下である。アイオノマー樹脂組成物中の特定有機化合物の含有量は、ガスクロマトグラフィー等により求めることができ、例えば実施例に記載の方法により求めることができる。 The content of the specific organic compound is preferably 2 ppm by mass or more, more preferably 3 ppm by mass or more, and still more preferably 4 ppm by mass or more, from the viewpoint of easily improving color resistance and glass adhesion. In addition, the content of the specific organic compound is preferably 295 mass ppm or less, more preferably 290 mass ppm or less, still more preferably 285 mass ppm or less, still more preferably 280 mass ppm or less, from the viewpoint of easily increasing transparency and creep resistance. It is mass ppm or less, particularly preferably 275 mass ppm or less. The content of the specific organic compound in the ionomer resin composition can be determined by gas chromatography or the like, for example, by the method described in Examples.
 前記芳香族化合物としては、特に制限されず、例えば、トルエン、キシレン、エチルベンゼン、クメン、アニソール、ベンズアルデヒド、アセトフェノン、ニトロベンゼン、アニリン、ベンゾニトリルおよびスチレン等の、23℃において液体である化合物が挙げられる。これらの中でも、得られるアイオノマー樹脂組成物の耐着色性、ガラス接着性、透明性および耐クリープ性を高めやすい観点からは、芳香族炭化水素が好ましく、トルエンおよび/またはキシレンがより好ましい。 The aromatic compound is not particularly limited, and examples include compounds that are liquid at 23°C, such as toluene, xylene, ethylbenzene, cumene, anisole, benzaldehyde, acetophenone, nitrobenzene, aniline, benzonitrile and styrene. Among these, aromatic hydrocarbons are preferable, and toluene and/or xylene are more preferable, from the viewpoint of easily improving the color resistance, glass adhesion, transparency and creep resistance of the resulting ionomer resin composition.
 前記アルコール類としては、特に制限されず、例えば、第1級アルコール、第2級アルコール、および第3級アルコールが挙げられる。これらの中でも、得られるアイオノマー樹脂組成物の耐着色性、透明性および耐クリープ性を高めやすい観点からは、1級アルコールが好ましく、メタノール、エタノール、1-ブタノールおよびこれらの混合物がより好ましく、エタノールおよび/または1-ブタノールが特に好ましい。 The alcohols are not particularly limited, and examples include primary alcohols, secondary alcohols, and tertiary alcohols. Among these, primary alcohols are preferable, and methanol, ethanol, 1-butanol and mixtures thereof are more preferable, from the viewpoint of easily increasing the color resistance, transparency and creep resistance of the resulting ionomer resin composition. and/or 1-butanol is particularly preferred.
 前記有機カルボン酸としては、特に制限されず、例えば、モノカルボン酸、ジカルボン酸、およびトリカルボン酸が挙げられる。これらの中でも、得られるアイオノマー樹脂組成物の耐着色性、透明性および耐クリープ性を高めやすい観点からは、モノカルボン酸が好ましく、メタクリル酸および/またはアクリル酸がより好ましい。 The organic carboxylic acid is not particularly limited, and includes, for example, monocarboxylic acid, dicarboxylic acid, and tricarboxylic acid. Among these, monocarboxylic acids are preferable, and methacrylic acid and/or acrylic acid are more preferable, from the viewpoint of easily improving the color resistance, transparency and creep resistance of the resulting ionomer resin composition.
 前記有機カルボン酸エステルとしては、特に制限されず、例えば、モノカルボン酸エステル、ジカルボン酸エステル、およびトリカルボン酸エステルが挙げられる。これらの中でも、得られるアイオノマー樹脂組成物の耐着色性、透明性および耐クリープ性を高めやすい観点からは、炭素数が4~9であるモノカルボン酸エステルが好ましく、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチルおよびこれらの混合物がより好ましく、メタクリル酸メチル、アクリル酸メチルおよびこれらの混合物がさらに好ましい。 The organic carboxylic acid ester is not particularly limited, and examples thereof include monocarboxylic acid esters, dicarboxylic acid esters, and tricarboxylic acid esters. Among these, monocarboxylic acid esters having 4 to 9 carbon atoms are preferable from the viewpoint of easily improving the color resistance, transparency and creep resistance of the resulting ionomer resin composition, and methyl methacrylate and ethyl methacrylate. , n-butyl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate and mixtures thereof are more preferred, and methyl methacrylate, methyl acrylate and mixtures thereof are more preferred.
 本発明の好適な一実施形態において、特定有機化合物は、トルエン、キシレン、エタノール、1-ブタノール、メタクリル酸、アクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、アクリル酸メチル、アクリル酸エチル、およびアクリル酸n-ブチルからなる群から選択される少なくとも1つの有機化合物である。 In a preferred embodiment of the present invention, the specific organic compound is toluene, xylene, ethanol, 1-butanol, methacrylic acid, acrylic acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, methyl acrylate, acrylic at least one organic compound selected from the group consisting of ethyl acetate and n-butyl acrylate;
〔アイオノマー樹脂〕
 次に、本発明のアイオノマー樹脂組成物において必須のもう一方の成分であるアイオノマー樹脂について説明する。
 本発明におけるアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)を含み、前記単位(A)および前記単位(B)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である。
 本明細書において、「単位」とは、「由来の構成単位」を意味するものであり、例えば(メタ)アクリル酸単位とは、(メタ)アクリル酸由来の構成単位を示し、(メタ)アクリル酸中和物単位とは、(メタ)アクリル酸中和物由来の構成単位を示し、エチレン単位とはエチレン由来の構成単位を示す。また、本明細書において、「(メタ)アクリル酸」とは、メタクリル酸またはアクリル酸を示す。
[Ionomer resin]
Next, the ionomer resin, which is another essential component in the ionomer resin composition of the present invention, will be described.
The ionomer resin in the present invention contains (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and the units (A) and the units (B) is 6 to 10 mol % based on the total monomer units constituting the ionomer resin.
In the present specification, the term "unit" means a "derived structural unit", for example, a (meth)acrylic acid unit refers to a structural unit derived from (meth)acrylic acid, (meth)acrylic acid The acid-neutralized unit indicates a structural unit derived from a (meth)acrylic acid-neutralized product, and the ethylene unit indicates a structural unit derived from ethylene. Moreover, in this specification, "(meth)acrylic acid" indicates methacrylic acid or acrylic acid.
 前記合計含有量が前記上限値を超えると、アイオノマー樹脂組成物の成形加工時における溶融粘度の上昇を抑制しにくく、それにより、アイオノマー樹脂組成物の成形加工性が低下しやすい。さらに、前記合計含有量が前記下限値未満であると、アイオノマー樹脂組成物の透明性、特に徐冷してアイオノマー樹脂の結晶化を促進させた場合における透明性(以下、徐冷時の透明性とも称する)が低下しやすい。前記合計含有量は、アイオノマー樹脂組成物の透明性(特に徐冷時の透明性)およびガラスに対する接着性を向上しやすい観点から、6モル%以上、好ましくは6.5モル%以上、より好ましくは7.0モル%以上、さらに好ましくは7.5モル%以上であり、また、より好適な成形加工性を得やすい観点から、10モル%以下、好ましくは9.9モル%以下、より好ましくは9.5モル%以下である。 When the total content exceeds the upper limit, it is difficult to suppress the increase in the melt viscosity during molding of the ionomer resin composition, which tends to reduce the moldability of the ionomer resin composition. Furthermore, when the total content is less than the lower limit, the transparency of the ionomer resin composition, particularly the transparency when the crystallization of the ionomer resin is promoted by slow cooling (hereinafter referred to as the transparency during slow cooling also called) tends to decrease. The total content is 6 mol % or more, preferably 6.5 mol % or more, more preferably 6.5 mol % or more, from the viewpoint of easily improving the transparency of the ionomer resin composition (especially the transparency during slow cooling) and the adhesion to glass. is 7.0 mol% or more, more preferably 7.5 mol% or more, and from the viewpoint of easily obtaining more suitable moldability, 10 mol% or less, preferably 9.9 mol% or less, more preferably is 9.5 mol % or less.
 前記単位(A)および前記単位(B)の合計含有量は、アイオノマー樹脂の調製方法により調整できる。より具体的には、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属反応工程を含む方法によりアイオノマー樹脂を調製する場合には、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位を(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)に変換するけん化反応および脱金属反応の各反応度(変換割合)により調整できる。また、米国特許第8399096号明細書に記載されるように、エチレンおよび(メタ)アクリル酸を原料とし、これらを重合してアイオノマー樹脂を製造する場合には、共重合させるエチレンと(メタ)アクリル酸との割合により調整できる。 The total content of the units (A) and the units (B) can be adjusted according to the preparation method of the ionomer resin. More specifically, when an ionomer resin is prepared by a method comprising an ethylene-(meth)acrylic acid ester copolymer as a raw material and a saponification reaction step and a demetallization reaction step of the copolymer, ethylene-( Saponification reaction and demetallization reaction for converting (meth)acrylic acid ester units in the meth)acrylic acid ester copolymer into (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units (B) It can be adjusted by each reactivity (conversion rate). Further, as described in US Pat. No. 8,399,096, when ethylene and (meth)acrylic acid are used as raw materials and these are polymerized to produce an ionomer resin, ethylene and (meth)acrylic acid to be copolymerized It can be adjusted by adjusting the ratio with the acid.
<(メタ)アクリル酸単位(A)>
 (メタ)アクリル酸単位(A)を構成する単量体の例としては、アクリル酸およびメタクリル酸が挙げられ、耐熱性およびガラスに対する接着性の観点から、メタクリル酸が好ましい。(メタ)アクリル酸単位は、1種単独でも2種以上の組み合わせでもよい。
<(Meth) acrylic acid unit (A)>
Examples of monomers constituting the (meth)acrylic acid unit (A) include acrylic acid and methacrylic acid, and methacrylic acid is preferred from the viewpoint of heat resistance and adhesion to glass. The (meth)acrylic acid units may be used singly or in combination of two or more.
 (メタ)アクリル酸単位(A)のアイオノマー樹脂中の含有量は、前記単位(A)および前記単位(B)の合計含有量が、アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%の範囲内であれば特に制限されない。本発明の一実施形態において、(メタ)アクリル酸単位(A)のアイオノマー樹脂中の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは4.5モル%以上、より好ましくは5.0モル%以上、さらに好ましくは5.5モル%以上、特に好ましくは5.8モル%以上であり、また、好ましくは9.0モル%以下、より好ましくは8.5モル%以下、さらに好ましくは8.0モル%以下、特に好ましくは7.5モル%以下である。単位(A)の前記含有量が前記下限値以上であると、アイオノマー樹脂組成物の透明性およびガラスに対するより優れた接着性を得やすい。また、前記上限値以下であると、より優れた成形加工性を得やすい。 The content of the (meth)acrylic acid unit (A) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is 6 to 6 based on the total monomer units constituting the ionomer resin. There is no particular limitation as long as it is within the range of 10 mol %. In one embodiment of the present invention, the content of (meth)acrylic acid units (A) in the ionomer resin is preferably 4.5 mol% or more, based on the total monomer units constituting the ionomer resin, and more Preferably 5.0 mol% or more, more preferably 5.5 mol% or more, particularly preferably 5.8 mol% or more, and preferably 9.0 mol% or less, more preferably 8.5 mol% Below, more preferably 8.0 mol % or less, particularly preferably 7.5 mol % or less. When the content of the unit (A) is at least the lower limit, the transparency of the ionomer resin composition and the excellent adhesion to glass are likely to be obtained. Moreover, when it is equal to or less than the above upper limit, it is easy to obtain more excellent moldability.
<(メタ)アクリル酸中和物単位(B)>
 (メタ)アクリル酸中和物単位(B)としては、前記(メタ)アクリル酸単位(A)の中和物単位が好ましい。なお、(メタ)アクリル酸中和物は、(メタ)アクリル酸の水素イオンを金属イオンで置き換えたものである。前記金属イオンの例としては、リチウム、ナトリウム、カリウム等の1価金属のイオン、マグネシウム、カルシウム、亜鉛、アルミニウム、チタン等の多価金属のイオンが挙げられる。このような金属イオンは1種単独でも2種以上の組み合わせでもよい。例えば、1種以上の1価金属イオンと1種以上の2価金属イオンとの組み合わせであってもよい。
<(Meth)acrylic acid neutralized unit (B)>
The neutralized (meth)acrylic acid unit (B) is preferably the neutralized (meth)acrylic acid unit (A). The neutralized (meth)acrylic acid is obtained by replacing hydrogen ions of (meth)acrylic acid with metal ions. Examples of the metal ions include ions of monovalent metals such as lithium, sodium and potassium, and ions of polyvalent metals such as magnesium, calcium, zinc, aluminum and titanium. Such metal ions may be used singly or in combination of two or more. For example, it may be a combination of one or more monovalent metal ions and one or more divalent metal ions.
 (メタ)アクリル酸中和物単位(B)のアイオノマー樹脂中の含有量は、前記単位(A)および前記単位(B)の合計含有量が、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%の範囲内であれば特に制限されない。本発明の一実施形態において、(メタ)アクリル酸中和物単位(B)の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは0.65モル%以上、より好ましくは1.0モル%以上、さらに好ましくは1.5モル%以上、特に好ましくは1.6モル%以上であり、また、好ましくは3.0モル%以下、より好ましくは2.7モル%以下、さらに好ましくは2.6モル%以下、特に好ましくは2.5モル%以下である。前記単位(B)の含有量が前記下限値以上であると、より優れた透明性およびより優れた弾性率を得やすく、前記上限値以下であると、成形加工時の溶融粘度の上昇が抑制されやすい。 The content of the (meth)acrylic acid neutralized unit (B) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is the total monomer units constituting the ionomer resin. As a standard, it is not particularly limited as long as it is within the range of 6 to 10 mol %. In one embodiment of the present invention, the content of (meth)acrylic acid neutralized units (B) is preferably 0.65 mol % or more, more preferably 0.65 mol % or more, based on the total monomer units constituting the ionomer resin. is 1.0 mol% or more, more preferably 1.5 mol% or more, particularly preferably 1.6 mol% or more, and preferably 3.0 mol% or less, more preferably 2.7 mol% or less , more preferably 2.6 mol % or less, particularly preferably 2.5 mol % or less. When the content of the unit (B) is at least the lower limit, better transparency and elastic modulus are likely to be obtained, and when it is at most the upper limit, an increase in melt viscosity during molding is suppressed. easy to be
 前記単位(A)および前記単位(B)の各含有量は、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属反応工程を含む方法によりアイオノマー樹脂を調製する場合には、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位を(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)に変換するけん化反応および脱金属反応の各反応度により調整できる。 Each content of the unit (A) and the unit (B) is obtained by using an ethylene-(meth)acrylic acid ester copolymer as a raw material, and ionomer by a method including a saponification reaction step and a demetallization reaction step of the copolymer. When preparing a resin, the (meth)acrylic acid ester unit in the ethylene-(meth)acrylic acid ester copolymer is replaced with the (meth)acrylic acid unit (A) and the (meth)acrylic acid neutralized product unit (B ) can be adjusted by each reactivity of the saponification reaction and the demetallization reaction.
<エチレン単位(C)>
 エチレン単位(C)の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、アイオノマー樹脂組成物の機械的強度(特に耐衝撃性)を高めやすく、より優れた成形加工性を得やすい観点から、好ましくは80モル%以上、より好ましくは85モル%以上、さらに好ましくは88モル%以上であり、また、アイオノマー樹脂組成物の透明性(特に徐冷時の透明性)を高めやすい観点から、好ましくは94モル%以下、より好ましくは92モル%以下である。
<Ethylene unit (C)>
The content of the ethylene unit (C) is based on the total monomer units constituting the ionomer resin, and the mechanical strength (especially impact resistance) of the ionomer resin composition can be easily increased, and excellent moldability can be obtained. From the viewpoint of easy cooling, it is preferably 80 mol% or more, more preferably 85 mol% or more, and still more preferably 88 mol% or more, and the transparency of the ionomer resin composition (especially the transparency during slow cooling) is easy to increase. From the viewpoint, it is preferably 94 mol % or less, more preferably 92 mol % or less.
<(メタ)アクリル酸エステル単位(D)>
 本発明におけるアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)に加えて、より高い透明性を得やすい観点から、さらに(メタ)アクリル酸エステル単位(D)を含むことが好ましい。
<(Meth) acrylic acid ester unit (D)>
The ionomer resin in the present invention, in addition to the (meth)acrylic acid unit (A), the (meth)acrylic acid neutralized unit (B), and the ethylene unit (C), from the viewpoint of easily obtaining higher transparency, Furthermore, it is preferable that the (meth)acrylic acid ester unit (D) is included.
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、より高い透明性(特に徐冷時の透明性)を得やすい観点から、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であることが好ましい。すなわち、本発明の好適な一実施形態において、本発明におけるアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)、および(メタ)アクリル酸エステル単位(D)を含み、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である。アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量が前記上限値以下であると、アイオノマー樹脂組成物の成形加工時における溶融粘度の上昇が抑制されやすく、それにより、アイオノマー樹脂組成物のより優れた成形加工性を得やすい。また、前記合計含有量が前記下限値以上であると、アイオノマー樹脂組成物のより高い透明性(特に徐冷時の透明性)を得やすい。
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合において、前記単位(A)、前記単位(B)および前記単位(D)の前記合計含有量は、より高い透明性(特に徐冷時の透明性)およびガラスに対するより高い接着性を得やすい観点から、6モル%以上、好ましくは6.5モル%以上、より好ましくは7.0モル%以上、さらに好ましくは7.5モル%以上であり、また、成形加工性の観点から、10モル%以下、好ましくは9.9モル%以下、より好ましくは9.5モル%以下である。
When the ionomer resin contains the (meth)acrylic acid ester unit (D), the total content of the unit (A), the unit (B) and the unit (D) increases the transparency (especially during slow cooling). transparency), it is preferably 6 to 10 mol % based on the total monomer units constituting the ionomer resin. That is, in a preferred embodiment of the present invention, the ionomer resin in the present invention comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), ethylene units (C), and ( Including the meth)acrylic acid ester unit (D), the total content of the unit (A), the unit (B) and the unit (D) is 6 based on the total monomer units constituting the ionomer resin. ~10 mol%. When the ionomer resin contains (meth)acrylic acid ester units (D), the total content of the units (A), the units (B) and the units (D) is not more than the upper limit, the ionomer resin composition It is easy to suppress the increase in the melt viscosity during the molding process of the product, and thereby, it is easy to obtain the ionomer resin composition with better moldability. Further, when the total content is at least the lower limit, it is easy to obtain higher transparency of the ionomer resin composition (especially transparency during slow cooling).
When the ionomer resin contains (meth)acrylic acid ester units (D), the total content of the units (A), the units (B) and the units (D) provides higher transparency (especially slow cooling 6 mol% or more, preferably 6.5 mol% or more, more preferably 7.0 mol% or more, still more preferably 7.5 mol% From the viewpoint of moldability, the content is 10 mol % or less, preferably 9.9 mol % or less, more preferably 9.5 mol % or less.
 前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、アイオノマー樹脂の原料により調整できる。より具体的には、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属反応工程を含む方法によりアイオノマー樹脂を調製する場合には、アイオノマー樹脂の原料であるエチレン-(メタ)アクリル酸エステル共重合体の(メタ)アクリル酸エステル変性量により調整できる。また、米国特許第8399096号明細書に記載されるように、エチレンおよび(メタ)アクリル酸を原料とし、これらを重合してアイオノマー樹脂を調製する場合には、共重合させるエチレンと(メタ)アクリル酸との割合により調整できる。 The total content of the units (A), the units (B) and the units (D) can be adjusted depending on the raw material of the ionomer resin. More specifically, when an ethylene-(meth)acrylic acid ester copolymer is used as a raw material and an ionomer resin is prepared by a method including a saponification reaction step and a demetallization reaction step of the copolymer, the ionomer resin It can be adjusted by the (meth)acrylic acid ester modification amount of the raw material ethylene-(meth)acrylic acid ester copolymer. Further, as described in US Pat. No. 8,399,096, when ethylene and (meth)acrylic acid are used as raw materials and these are polymerized to prepare an ionomer resin, ethylene and (meth)acrylic acid to be copolymerized It can be adjusted by adjusting the ratio with the acid.
 (メタ)アクリル酸エステル単位(D)を構成する単量体の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸グリシジル、および(メタ)アクリル酸アリル等が挙げられる。
 これらのうち、透明性または耐熱性の観点から、好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、および(メタ)アクリル酸t-ブチルであり、より好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、および(メタ)アクリル酸イソブチルであり、さらに好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸n-ブチル、および(メタ)アクリル酸イソブチルであり、特に好ましい単量体は、(メタ)アクリル酸メチルである。これら単量体は、1種単独でも2種以上の組み合わせでもよい。
Examples of monomers constituting the (meth)acrylate unit (D) include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and isopropyl (meth)acrylate. , n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, amyl (meth)acrylate, isoamyl (meth)acrylate, ( n-hexyl meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, pentadecyl (meth)acrylate, dodecyl (meth)acrylate, isobornyl (meth)acrylate, (meth)acrylic acid Phenyl, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, glycidyl (meth)acrylate, and (meth)acrylic acid allyl and the like.
Among these, preferred monomers from the viewpoint of transparency or heat resistance are methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, ( n-butyl meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, and t-butyl (meth)acrylate, more preferred monomers are methyl (meth)acrylate, Ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and more preferred monomers are ( Methyl meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and a particularly preferred monomer is methyl (meth)acrylate. These monomers may be used singly or in combination of two or more.
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、(メタ)アクリル酸エステル単位(D)のアイオノマー樹脂中の含有量は特に制限されない。本発明の一実施形態において、(メタ)アクリル酸エステル単位(D)のアイオノマー樹脂中の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは0モル%超、より好ましくは0.01モル%以上、さらに好ましくは0.05モル%以上、特に好ましくは0.08モル%以上であり、また、好ましくは1.0モル%以下、より好ましくは0.7モル%以下、さらに好ましくは0.5モル%以下である。単位(D)の含有量が前記下限値以上、かつ前記上限値以下であると、アイオノマー樹脂組成物のより高い透明性を得やすい。 When the ionomer resin contains (meth)acrylic acid ester units (D), the content of the (meth)acrylic acid ester units (D) in the ionomer resin is not particularly limited. In one embodiment of the present invention, the content of (meth)acrylic acid ester units (D) in the ionomer resin is preferably greater than 0 mol %, more preferably more than 0 mol %, based on the total monomer units constituting the ionomer resin. is 0.01 mol% or more, more preferably 0.05 mol% or more, particularly preferably 0.08 mol% or more, and preferably 1.0 mol% or less, more preferably 0.7 mol% or less , more preferably 0.5 mol % or less. When the content of the unit (D) is at least the lower limit and at most the upper limit, higher transparency of the ionomer resin composition can be easily obtained.
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合の前記単位(D)の含有量は、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属反応工程を含む方法によりアイオノマー樹脂を調製する場合には、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位を(メタ)アクリル酸単位(A)に変換するけん化反応の反応度により調整できる。 When the ionomer resin contains the (meth)acrylic acid ester unit (D), the content of the unit (D) is obtained by using an ethylene-(meth)acrylic acid ester copolymer as a raw material and saponifying the copolymer. and when preparing an ionomer resin by a method including a demetallization reaction step, the (meth)acrylic acid ester units in the ethylene-(meth)acrylic acid ester copolymer are converted to (meth)acrylic acid units (A) It can be adjusted by the reactivity of the saponification reaction.
<他の単量体単位>
 本発明におけるアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに場合により含まれる(メタ)アクリル酸エステル単位(D)以外の他の単量体単位を含んでいてもよい。他の単量体単位の例としては、(メタ)アクリル酸単位(A)以外のカルボン酸単位(A2)、および(メタ)アクリル酸中和物単位(B)以外のカルボン酸中和物単位(B2)等が挙げられる。
 前記カルボン酸単位(A2)を構成する単量体の例としては、イタコン酸、無水マレイン酸、マレイン酸モノメチル、およびマレイン酸モノエチル等が挙げられ、マレイン酸モノメチル、およびマレイン酸モノエチルが好ましい。前記カルボン酸中和物単位(B2)を構成する単量体の例としては、前記カルボン酸単位(A2)の中和物単位等が挙げられる。なお、カルボン酸中和物は、カルボン酸の水素イオンを金属イオンで置き換えたものである。前記金属イオンとしては、上述した(メタ)アクリル酸中和物単位(B)における金属イオンと同様のものが挙げられ、該金属イオンは、1種単独でも2種以上の組み合わせでもよい。
 これらの他の単量体単位は、1種単独でも2種以上の組み合わせでもよい。
<Other monomer units>
The ionomer resin in the present invention comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and optionally included (meth)acrylic acid ester units ( It may contain monomeric units other than D). Examples of other monomer units include a carboxylic acid unit (A2) other than the (meth)acrylic acid unit (A), and a neutralized carboxylic acid unit other than the (meth)acrylic acid neutralized unit (B). (B2) and the like.
Examples of monomers constituting the carboxylic acid unit (A2) include itaconic acid, maleic anhydride, monomethyl maleate, and monoethyl maleate, with monomethyl maleate and monoethyl maleate being preferred. Examples of the monomer constituting the neutralized carboxylic acid unit (B2) include neutralized units of the neutralized carboxylic acid unit (A2). The neutralized carboxylic acid is obtained by replacing hydrogen ions of carboxylic acid with metal ions. Examples of the metal ions include those similar to the metal ions in the neutralized (meth)acrylic acid unit (B) described above, and the metal ions may be used singly or in combination of two or more.
These other monomer units may be used singly or in combination of two or more.
 アイオノマー樹脂が前記他の単量体単位を含む場合、その合計含有量、例えば(A2)および(B2)の合計含有量は、本発明の効果を損なわない範囲で適宜選択すればよく、例えば、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは5モル%以下、より好ましくは3モル%以下、さらに好ましくは1モル%以下であり、また、好ましくは0.01モル%以上、より好ましくは0.1モル%以上である。 When the ionomer resin contains the other monomer units, the total content thereof, for example the total content of (A2) and (B2), may be appropriately selected within a range that does not impair the effects of the present invention. Based on the total monomer units constituting the ionomer resin, preferably 5 mol% or less, more preferably 3 mol% or less, still more preferably 1 mol% or less, and preferably 0.01 mol% or more, More preferably, it is 0.1 mol % or more.
 本発明におけるアイオノマー樹脂中の(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに含まれる場合の(メタ)アクリル酸エステル単位(D)および他の単量体単位(例えば単位(A2)および単位(B2))の各含有量は、まず、アイオノマー樹脂組成物中のアイオノマー樹脂における単量体単位を熱分解ガスクロマトグラフィーで同定し、次いで、核磁気共鳴分光法(NMR)および元素分析を用いることによって、求めることができる。より具体的には実施例に記載の方法により求めることができる。また、前記分析方法と、IRおよび/またはラマン分析とを組み合せた方法で求めることもできる。これらの分析の前に、アイオノマー樹脂以外の成分を、再沈殿法またはソックスレー抽出法にて除去しておくことが好ましい。 (Meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C) in the ionomer resin in the present invention, and (meth)acrylic acid ester units when included ( D) and other monomeric unit contents (e.g., unit (A2) and unit (B2)) are determined by first identifying the monomeric units in the ionomer resin in the ionomer resin composition by pyrolysis gas chromatography. and then determined by using nuclear magnetic resonance spectroscopy (NMR) and elemental analysis. More specifically, it can be determined by the method described in Examples. It can also be determined by a method combining the above analysis method with IR and/or Raman analysis. Prior to these analyses, it is preferable to remove components other than the ionomer resin by reprecipitation or Soxhlet extraction.
 アイオノマー樹脂の含有量は、得られるアイオノマー樹脂組成物の耐着色性、透明性、および耐クリープ性を高めやすい観点から、アイオノマー樹脂組成物の総質量に対して、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、さらにより好ましくは99質量%以上であり、また、好ましくは100質量%未満、より好ましくは99.99質量%以下である。 The content of the ionomer resin is preferably 90% by mass or more, more It is preferably 95% by mass or more, more preferably 98% by mass or more, still more preferably 99% by mass or more, and preferably less than 100% by mass, more preferably 99.99% by mass or less.
 本発明の一実施形態において、本発明におけるアイオノマー樹脂の炭素1000個当たりの分岐度は、特に制限されず、好ましくは5~30、より好ましくは6~20である。前記分岐度は、アイオノマー樹脂を重合する際の温度、例えば、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属反応工程を含む方法によりアイオノマー樹脂を調製する場合には、エチレン-(メタ)アクリル酸エステル共重合体を調製する際の重合温度により調整できる。炭素1000個当たりの分岐度は、固体NMRを用いてDDMAS法にて測定できる。 In one embodiment of the present invention, the degree of branching per 1000 carbon atoms of the ionomer resin of the present invention is not particularly limited, and is preferably 5-30, more preferably 6-20. The degree of branching is determined by the temperature at which the ionomer resin is polymerized, for example, an ethylene-(meth)acrylic acid ester copolymer is used as a raw material, and the ionomer resin is obtained by a method including a saponification reaction step and a demetallization reaction step of the copolymer. can be adjusted by the polymerization temperature when preparing the ethylene-(meth)acrylic acid ester copolymer. The degree of branching per 1000 carbons can be measured by the DDMAS method using solid-state NMR.
 本発明の一実施形態において、アイオノマー樹脂の融点は、耐熱性および耐熱分解性の観点から、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは80℃以上である。また、合わせガラスを作製する際、ガラスとの接着力が発現し易いという観点から、前記融点は、好ましくは200℃以下、より好ましくは180℃以下、さらに好ましくは150℃以下である。前記融点は、JIS K7121:2012に基づき測定できる。具体的には、示差走査熱量計(DSC)を用いて、冷却速度-10℃/分、昇温速度10℃/分の条件で測定し、2回目の昇温の融解ピークのピックトップ温度から求めることができる。 In one embodiment of the present invention, the melting point of the ionomer resin is preferably 50°C or higher, more preferably 60°C or higher, and even more preferably 80°C or higher, from the viewpoint of heat resistance and thermal decomposition resistance. In addition, the melting point is preferably 200° C. or lower, more preferably 180° C. or lower, and even more preferably 150° C. or lower, from the viewpoint of easily exhibiting adhesive strength with glass when producing laminated glass. The melting point can be measured based on JIS K7121:2012. Specifically, using a differential scanning calorimeter (DSC), measurement was performed under the conditions of a cooling rate of −10° C./min and a heating rate of 10° C./min, and from the pick-top temperature of the melting peak of the second heating can ask.
 本発明の一実施形態において、アイオノマー樹脂の融解熱は、好ましくは0J/g以上25J/g以下である。前記融解熱は、JIS K7122:2012に基づき測定できる。具体的には、示差走査熱量計(DSC)を用いて、冷却速度-10℃/分、昇温速度10℃/分の条件で測定し、2回目の昇温時の融解ピークの面積から算出することができる。 In one embodiment of the present invention, the heat of fusion of the ionomer resin is preferably 0 J/g or more and 25 J/g or less. The heat of fusion can be measured based on JIS K7122:2012. Specifically, using a differential scanning calorimeter (DSC), measurement was performed under the conditions of a cooling rate of −10° C./min and a heating rate of 10° C./min, and the area of the melting peak during the second heating was calculated. can do.
 本発明の一実施形態において、JIS K7210に準拠し、190℃、2.16Kgの条件で測定されるアイオノマー樹脂のMFRは、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.7g/10分以上、さらにより好ましくは1.0g/10分以上、特に好ましくは1.5g/10分以上であり、好ましくは50g/10分以下、より好ましくは30g/10分以下、特に好ましくは10g/10分以下である。アイオノマー樹脂のMFRが前記下限値以上かつ上限値以下であると、熱による劣化を抑えた成形加工がしやすく、耐貫通性に優れる樹脂シートを得やすい。 In one embodiment of the present invention, the MFR of the ionomer resin measured under the conditions of 190°C and 2.16 kg according to JIS K7210 is preferably 0.1 g/10 min or more, more preferably 0.3 g/10. minutes or more, more preferably 0.7 g/10 minutes or more, still more preferably 1.0 g/10 minutes or more, particularly preferably 1.5 g/10 minutes or more, preferably 50 g/10 minutes or less, more preferably 50 g/10 minutes or more. 30 g/10 minutes or less, particularly preferably 10 g/10 minutes or less. When the MFR of the ionomer resin is not less than the lower limit and not more than the upper limit, it is easy to perform molding while suppressing deterioration due to heat, and it is easy to obtain a resin sheet having excellent penetration resistance.
 アイオノマー樹脂の融点、融解熱およびMFRは、アイオノマー樹脂の分子量、ならびにアイオノマー樹脂の(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに場合により含まれる(メタ)アクリル酸エステル単位(D)の含有量により調整できる。 The melting point, heat of fusion and MFR of an ionomer resin are determined by the molecular weight of the ionomer resin and the ionomer resin's (meth)acrylic acid unit (A), neutralized (meth)acrylic acid unit (B), and ethylene unit (C), It can also be adjusted by the content of the (meth)acrylic acid ester unit (D) optionally included.
〔添加剤〕
 本発明におけるアイオノマー樹脂組成物は、必要に応じて、添加剤をさらに含んでもよい。
 場合より含まれてよい添加剤の例としては、紫外線吸収剤、老化防止剤、酸化防止剤、熱劣化防止剤、光安定剤、膠着防止剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染料、顔料、有機色素、艶消し剤、および蛍光体等が挙げられる。これらの添加剤のなかでも、紫外線吸収剤、老化防止剤、酸化防止剤、熱劣化防止剤、光安定剤、膠着防止剤、滑剤、離型剤、高分子加工助剤、および有機色素が好ましい。アイオノマー樹脂組成物が添加剤を含む場合、含まれる添加剤は1種単独でも2種以上の組み合わせでもよい。
〔Additive〕
The ionomer resin composition in the present invention may further contain additives, if necessary.
Examples of additives that may optionally be included include UV absorbers, anti-aging agents, antioxidants, thermal degradation inhibitors, light stabilizers, anti-adhesive agents, lubricants, release agents, polymer processing aids, Examples include antistatic agents, flame retardants, dyes, pigments, organic dyes, matting agents, and phosphors. Among these additives, ultraviolet absorbers, anti-aging agents, antioxidants, heat deterioration inhibitors, light stabilizers, anti-sticking agents, lubricants, release agents, polymer processing aids, and organic dyes are preferred. . When the ionomer resin composition contains additives, the additives contained may be used singly or in combination of two or more.
 これらの添加剤を添加する場合、各種添加剤の含有量は、本発明の効果を損なわない範囲で適宜選択でき、各種添加剤の合計含有量は、アイオノマー樹脂組成物の総質量に対して、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。 When these additives are added, the content of various additives can be appropriately selected within a range that does not impair the effects of the present invention, and the total content of various additives is, with respect to the total mass of the ionomer resin composition, It is preferably 7% by mass or less, more preferably 5% by mass or less, and even more preferably 4% by mass or less.
 各種添加剤は、アイオノマー樹脂組成物を製造する際に添加してもよく、アイオノマー樹脂組成物の製造後に添加してもよく、後述の樹脂シートの製造時に添加してもよい。 The various additives may be added when manufacturing the ionomer resin composition, may be added after manufacturing the ionomer resin composition, or may be added when manufacturing the resin sheet described below.
 本発明におけるアイオノマー樹脂組成物は、保存、運搬、または成形時の利便性を高めるために、ペレット等の形状を有してよい。アイオノマー樹脂組成物をペレット化する場合は、例えば、溶融押出法にて得られるストランドをカットすることによりペレット化を実施できる。溶融押出法によってペレット化する場合における溶融押出時のアイオノマー樹脂組成物の温度は、押出機からの吐出を安定化しやすい観点から、好ましくは150℃以上、より好ましくは170℃以上である。また、前記温度は、アイオノマー樹脂が熱分解して劣化することを抑制しやすい観点から、好ましくは250℃以下、より好ましくは230℃以下である。本発明におけるアイオノマー樹脂組成物は耐熱分解性が高いため、このように溶融押出法によりペレット化する際に、アイオノマー樹脂が熱分解してその特性が変わってしまう問題が起こりにくい。 The ionomer resin composition in the present invention may have a shape such as pellets in order to improve convenience during storage, transportation, or molding. When pelletizing the ionomer resin composition, the pelletization can be carried out, for example, by cutting strands obtained by a melt extrusion method. The temperature of the ionomer resin composition during pelletization by melt extrusion is preferably 150° C. or higher, more preferably 170° C. or higher, from the viewpoint of easily stabilizing the discharge from the extruder. In addition, the temperature is preferably 250° C. or lower, more preferably 230° C. or lower, from the viewpoint of easily suppressing thermal decomposition and deterioration of the ionomer resin. Since the ionomer resin composition of the present invention has high thermal decomposition resistance, the ionomer resin is less likely to be thermally decomposed and changed in properties when it is pelletized by the melt extrusion method.
[アイオノマー樹脂組成物の製造方法]
 本発明のアイオノマー樹脂組成物は、例えば、(1)アイオノマー樹脂を製造し、得られたアイオノマー樹脂と特定有機化合物とを混合することを含む方法、または(2)アイオノマー樹脂の製造中に特定有機化合物を残留させること、ならびに場合により、得られた残留特定有機化合物およびアイオノマー樹脂の混合物(組成物)とさらなる特定有機化合物とを混合することを含む方法により製造できる。特定有機化合物の割合を所望の値に調整しやすい観点および生産性の観点から、方法(1)が好ましい。
[Method for producing ionomer resin composition]
The ionomer resin composition of the present invention can be prepared, for example, by (1) a method comprising producing an ionomer resin and mixing the resulting ionomer resin with a specific organic compound, or (2) It can be produced by a method comprising leaving the compound and optionally mixing the obtained mixture (composition) of the residual specific organic compound and ionomer resin with a further specific organic compound. Method (1) is preferable from the viewpoint of ease of adjusting the ratio of the specific organic compound to a desired value and from the viewpoint of productivity.
 アイオノマー樹脂の製造方法は特に制限されない。例えば、(I)エチレン-(メタ)アクリル酸エステル共重合体(X)を原料とし、これをけん化する工程(けん化工程)、および得られたけん化物の少なくとも一部を脱金属する工程(脱金属工程)を含む方法、ならびに(II)エチレンおよび(メタ)アクリル酸を原料とし、これらを共重合する工程(共重合工程)、および得られた共重合体を部分中和する工程(部分中和工程)を含む方法等が挙げられる。前記方法(II)としては、米国特許第8399096号明細書に記載の製造方法を参照できる。特定有機化合物の割合を所望の値に調整しやすい観点からは、方法(I)が好ましい。以下、この方法(I)について詳述する。 The manufacturing method of the ionomer resin is not particularly limited. For example, (I) a step of saponifying an ethylene-(meth)acrylic acid ester copolymer (X) as a raw material (saponification step), and a step of demetallizing at least part of the obtained saponified product (demetallization and (II) a step of copolymerizing ethylene and (meth)acrylic acid as raw materials (copolymerization step), and a step of partially neutralizing the resulting copolymer (partial neutralization step), and the like. As the method (II), the production method described in US Pat. No. 8,399,096 can be referred to. Method (I) is preferable from the viewpoint of easily adjusting the ratio of the specific organic compound to a desired value. This method (I) will be described in detail below.
 方法(I)の例としては、原料であるエチレン-(メタ)アクリル酸エステル共重合体(X)を有機溶媒に溶解させて、エチレン-(メタ)アクリル酸エステル共重合体(X)溶液を得(工程i)、得られた溶液中においてエチレン-(メタ)アクリル酸エステル共重合体(X)の(メタ)アクリル酸エステル単位の全部または一部をけん化反応により(メタ)アクリル酸中和物単位に変換して、エチレン-(メタ)アクリル酸エステル共重合体(X)のけん化物を得(工程ii、けん化工程)、得られたけん化物を脱金属反応に付すことにより、(メタ)アクリル酸中和物単位(B)の少なくとも一部を(メタ)アクリル酸単位(A)に変換し、アイオノマー樹脂および特定有機化合物を含む粗アイオノマー樹脂組成物を得(工程iii、脱金属工程)、粗アイオノマー樹脂組成物を分離精製する(工程iv)ことを含む方法が挙げられる。 As an example of method (I), the ethylene-(meth)acrylic acid ester copolymer (X) as a raw material is dissolved in an organic solvent to obtain an ethylene-(meth)acrylic acid ester copolymer (X) solution. obtaining (step i), all or part of the (meth)acrylic acid ester units of the ethylene-(meth)acrylic acid ester copolymer (X) in the resulting solution are neutralized with (meth)acrylic acid by a saponification reaction; to obtain a saponified product of ethylene-(meth)acrylic acid ester copolymer (X) (step ii, saponification step), and subjecting the obtained saponified product to a demetallization reaction to obtain (meth) At least part of the neutralized acrylic acid units (B) are converted to (meth)acrylic acid units (A) to obtain a crude ionomer resin composition containing an ionomer resin and a specific organic compound (step iii, demetallization step) and separating and purifying the crude ionomer resin composition (step iv).
<工程i)>
 エチレン-(メタ)アクリル酸エステル共重合体(X)の(メタ)アクリル酸エステル単位を構成する単量体の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸グリシジル、および(メタ)アクリル酸アリル等が挙げられる。これらのうち、好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、および(メタ)アクリル酸t-ブチルであり、より好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、および(メタ)アクリル酸イソブチルであり、さらに好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチルであり、特に好ましい単量体は(メタ)アクリル酸メチルである。前記単量体は、1種単独であっても2種以上の組み合わせであってもよい。
<Step i)>
Examples of monomers constituting the (meth)acrylate units of the ethylene-(meth)acrylate copolymer (X) include methyl (meth)acrylate, ethyl (meth)acrylate, and (meth)acrylate. n-propyl acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, (meth)acrylate amyl acrylate, isoamyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, pentadecyl (meth)acrylate, dodecyl (meth)acrylate, Isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, ( Examples include glycidyl meth)acrylate and allyl (meth)acrylate. Among these, preferred monomers are methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, ( Isobutyl meth)acrylate, sec-butyl (meth)acrylate, and t-butyl (meth)acrylate, more preferred monomers are methyl (meth)acrylate, ethyl (meth)acrylate, (meth)acrylate, ) n-propyl acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and more preferred monomers are methyl (meth)acrylate, (meth) They are n-butyl acrylate and isobutyl (meth)acrylate, and a particularly preferred monomer is methyl (meth)acrylate. The monomers may be used alone or in combination of two or more.
 エチレン-(メタ)アクリル酸エステル共重合体(X)の具体例としては、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-アクリル酸n-プロピル共重合体、エチレン-メタクリル酸n-プロピル共重合体、エチレン-アクリル酸イソプロピル共重合体、エチレン-メタクリル酸イソプロピル共重合体、エチレン-アクリル酸n-ブチル共重合体、エチレン-メタクリル酸n-ブチル共重合体、エチレン-アクリル酸sec-ブチル共重合体、およびエチレン-メタクリル酸sec-ブチル共重合体等が挙げられる。
 共重合体(X)として、市販品を用いてもよく、US2013/0274424、特開2006-233059または特開2007-84743に記載の高温高圧ラジカル重合法によって合成したものを用いてもよい。前記市販品の例としては、住友化学(株)製「アクリフト」(登録商標)WD301FおよびWH401F、ならびに日本ポリエチレン(株)製「レクスパール」(登録商標)A4250等が挙げられる。
Specific examples of the ethylene-(meth)acrylic acid ester copolymer (X) include ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacryl Ethyl acid copolymer, ethylene-n-propyl acrylate copolymer, ethylene-n-propyl methacrylate copolymer, ethylene-isopropyl acrylate copolymer, ethylene-isopropyl methacrylate copolymer, ethylene-acrylic acid n-butyl copolymer, ethylene-n-butyl methacrylate copolymer, ethylene-sec-butyl acrylate copolymer, ethylene-sec-butyl methacrylate copolymer and the like.
As the copolymer (X), a commercially available product may be used, or one synthesized by the high-temperature, high-pressure radical polymerization method described in US2013/0274424, JP-A-2006-233059, or JP-A-2007-84743 may be used. Examples of the commercially available products include "Aclift" (registered trademark) WD301F and WH401F manufactured by Sumitomo Chemical Co., Ltd., and "Rekspearl" (registered trademark) A4250 manufactured by Nippon Polyethylene Co., Ltd., and the like.
 エチレン-(メタ)アクリル酸エステル共重合体(X)中の(メタ)アクリル酸エステル単位の含有量は、好ましくは6モル%以上、より好ましくは6.5モル%以上、さらに好ましくは7モル%以上、特に好ましくは7.5モル%以上であり、また、好ましくは10モル%以下、より好ましくは9.9モル%以下、さらに好ましくは9.5モル%以下である。共重合体(X)中の(メタ)アクリル酸エステル単位の含有量は、得られる粗アイオノマー樹脂組成物中のアイオノマー樹脂およびアイオノマー樹脂組成物中のアイオノマー樹脂における(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)、ならびに含まれる場合の(メタ)アクリル酸エステル単位(D)の合計含有量と対応するため、共重合体(X)中の(メタ)アクリル酸エステル単位の含有量が前記下限値以上であると、アイオノマー樹脂組成物のより高い透明性、特に徐冷時の透明性、およびより高いガラス接着性を得やすく、また、前記含有量が前記上限値以下であると、得られるアイオノマー樹脂組成物のより好適な成形加工性を得やすい。
 共重合体(X)中の(メタ)アクリル酸エステル単位の含有量は、エチレンと(メタ)アクリル酸エステルとの共重合比により調整できる。なお、前記含有量は、上述したアイオノマー樹脂中の(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに含まれる場合(メタ)アクリル酸エステル単位(D)、および他の単量体単位(例えば単位(A2)および単位(B2))の各含有量と同様に、熱分解ガスクロマトグラフィー、核磁気共鳴分光法(NMR)および元素分析によって求めることができる。
The content of (meth)acrylate units in the ethylene-(meth)acrylate copolymer (X) is preferably 6 mol% or more, more preferably 6.5 mol% or more, and still more preferably 7 mol. % or more, particularly preferably 7.5 mol % or more, and preferably 10 mol % or less, more preferably 9.9 mol % or less, still more preferably 9.5 mol % or less. The content of the (meth)acrylic acid ester units in the copolymer (X) is the (meth)acrylic acid unit (A) in the ionomer resin in the resulting crude ionomer resin composition and the ionomer resin in the ionomer resin composition. and (meth)acrylic acid neutralized units (B), and (meth)acrylic acid ester units (D) when included, to correspond to the total content of (meth)acrylic acid in the copolymer (X) When the content of the acid ester unit is at least the above lower limit, it is easy to obtain higher transparency of the ionomer resin composition, particularly transparency during slow cooling, and higher adhesion to glass. When it is equal to or less than the upper limit, it is easy to obtain more suitable moldability of the resulting ionomer resin composition.
The content of (meth)acrylic acid ester units in the copolymer (X) can be adjusted by the copolymerization ratio of ethylene and (meth)acrylic acid ester. In addition, the content is the (meth)acrylic acid unit (A), the (meth)acrylic acid neutralized product unit (B), and the ethylene unit (C) in the ionomer resin described above, and when included (meth) As well as the contents of acrylic acid ester units (D) and other monomeric units (e.g. units (A2) and units (B2)), pyrolysis gas chromatography, nuclear magnetic resonance spectroscopy (NMR) and It can be determined by elemental analysis.
 本発明の一実施形態において、JIS K7210-1:2014に準拠し、190℃、2.16Kgの条件で測定されるエチレン-(メタ)アクリル酸エステル共重合体(X)のメルトフローレート(MFR)は、好ましくは5g/10分以上、より好ましくは10g/10分以上、さらに好ましくは50g/10分以上、さらにより好ましくは100g/10分以上であり、好ましくは400g/10分以下、より好ましくは350g/10分以下、さらに好ましくは300g/10分以下、さらにより好ましくは250g/10分以下である。エチレン-(メタ)アクリル酸エステル共重合体(X)のMFRが前記下限値以上かつ前記上限値以下であると、得られるアイオノマー樹脂組成物のより好適な成形加工性およびより高い強度を得やすい。エチレン-(メタ)アクリル酸エステル共重合体(X)のMFRは、重合度および(メタ)アクリル酸エステル単位の含有量により調整できる。前記MFRは、例えば実施例に記載の方法で測定できる。 In one embodiment of the present invention, the melt flow rate (MFR ) is preferably 5 g/10 min or more, more preferably 10 g/10 min or more, still more preferably 50 g/10 min or more, still more preferably 100 g/10 min or more, preferably 400 g/10 min or less, more It is preferably 350 g/10 minutes or less, more preferably 300 g/10 minutes or less, and even more preferably 250 g/10 minutes or less. When the MFR of the ethylene-(meth)acrylic acid ester copolymer (X) is at least the lower limit and at most the upper limit, more suitable moldability and higher strength of the resulting ionomer resin composition are likely to be obtained. . The MFR of the ethylene-(meth)acrylic acid ester copolymer (X) can be adjusted by the degree of polymerization and the content of (meth)acrylic acid ester units. The MFR can be measured, for example, by the method described in Examples.
 エチレン-(メタ)アクリル酸エステル共重合体(X)の重量平均分子量は、得られるアイオノマー樹脂組成物の成形加工性および強度をより向上しやすい観点から、好ましくは15,000g/モル以上、より好ましくは20,000g/モル以上、さらに好ましくは30,000g/モル以上であり、好ましくは200,000g/モル以下、より好ましくは100,000g/モル以下である。また、同様の観点から、エチレン-(メタ)アクリル酸エステル共重合体(X)の数平均分子量は、好ましくは5,000g/モル以上、より好ましくは10,000g/モル以上、さらに好ましくは15,000g/モル以上であり、好ましくは100,000g/モル以下、より好ましくは50,000g/モル以下である。前記重量平均分子量および数平均分子量は、重合時の重合開始剤および/または連鎖移動剤の量により調整できる。これらのエチレン-(メタ)アクリル酸エステル共重合体(X)の分子量(重量平均分子量および数平均分子量)は、カラム(TSKgel GMHHR-H(20)HTの3本直列)および1,2,4-トリクロロベンゼン溶媒を用いて、カラム温度140℃の条件で、ポリスチレン換算で測定できる。 The weight-average molecular weight of the ethylene-(meth)acrylic acid ester copolymer (X) is preferably 15,000 g/mol or more, more It is preferably 20,000 g/mol or more, more preferably 30,000 g/mol or more, preferably 200,000 g/mol or less, more preferably 100,000 g/mol or less. From the same point of view, the number average molecular weight of the ethylene-(meth)acrylate copolymer (X) is preferably 5,000 g/mol or more, more preferably 10,000 g/mol or more, still more preferably 15 ,000 g/mol or more, preferably 100,000 g/mol or less, more preferably 50,000 g/mol or less. The weight average molecular weight and number average molecular weight can be adjusted by adjusting the amount of polymerization initiator and/or chain transfer agent during polymerization. The molecular weights (weight average molecular weight and number average molecular weight) of these ethylene-(meth)acrylic acid ester copolymers (X) are determined by column (TSKgel GMH HR -H(20)HT three in series) and 1,2, Using 4-trichlorobenzene as a solvent, the measurement can be performed at a column temperature of 140° C. in terms of polystyrene.
 エチレン-(メタ)アクリル酸エステル共重合体(X)の炭素1000個当たりの分岐度は、特に制限されず、好ましくは5~30、より好ましくは6~20である。前記分岐度は、前記共重合体(X)を重合する際の重合温度により調整できる。前記分岐度は、重水素化オルトジクロロベンゼンに溶解させたエチレン-(メタ)アクリル酸エステル共重合体(X)を用いて、13C-NMRのインバースゲートデカップリング法を実施することにより測定できる。 The degree of branching per 1000 carbon atoms of the ethylene-(meth)acrylic acid ester copolymer (X) is not particularly limited, and is preferably 5-30, more preferably 6-20. The degree of branching can be adjusted by the polymerization temperature when polymerizing the copolymer (X). The degree of branching can be measured by performing a 13 C-NMR inverse gate decoupling method using an ethylene-(meth)acrylate copolymer (X) dissolved in deuterated ortho-dichlorobenzene. .
 エチレン-(メタ)アクリル酸エステル共重合体(X)を溶解させる有機溶媒としては、前記共重合体(X)を溶解できる溶媒であれば特に制限されない。その例としては、テトラヒドロフラン、ジオキサン等のエーテル類;クロロホルム、ジクロロベンゼン等のハロゲン含有溶媒;メチルブチルケトン等の炭素数6以上のケトン類;ヘキサン等の炭化水素化合物;酢酸エチル、酢酸メチル等の酢酸エステル類;炭化水素化合物とメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール類との混合溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族化合物;芳香族化合物とアルコール類との混合溶媒等が挙げられる。これらの溶媒は単独で、または2以上組み合わせて使用してもよい。これらの中でも、溶解性、ならびに得られるアイオノマー樹脂組成物および溶媒の回収性の観点から、芳香族化合物、または芳香族化合物とアルコール類との混合溶媒が好ましく、芳香族化合物がより好ましい。 The organic solvent for dissolving the ethylene-(meth)acrylate copolymer (X) is not particularly limited as long as it can dissolve the copolymer (X). Examples thereof include ethers such as tetrahydrofuran and dioxane; halogen-containing solvents such as chloroform and dichlorobenzene; ketones having 6 or more carbon atoms such as methyl butyl ketone; hydrocarbon compounds such as hexane; Acetic esters; Mixed solvents of hydrocarbon compounds and alcohols such as methanol, ethanol, 1-propanol, 2-propanol and 1-butanol; Aromatic compounds such as benzene, toluene, xylene and ethylbenzene; Aromatic compounds and alcohols and a mixed solvent with These solvents may be used alone or in combination of two or more. Among these, aromatic compounds or mixed solvents of aromatic compounds and alcohols are preferred, and aromatic compounds are more preferred, from the viewpoints of solubility, recovery of the resulting ionomer resin composition and solvent.
 工程i)で得られるエチレン-(メタ)アクリル酸エステル共重合体(X)溶液中の前記共重合体(X)の含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは20質量%以上であり、好ましくは80質量%以下、より好ましくは60質量%以下、さらに好ましくは40質量%以下である。前記含有量が前記上限値以下であると、工程通過性が良好になりやすく、反応を制御しやすい。前記含有量が前記下限値以上であると、生産性が高くなりやすい。 The content of the copolymer (X) in the ethylene-(meth)acrylate copolymer (X) solution obtained in step i) is preferably 5% by mass or more, more preferably 10% by mass or more, It is more preferably 20% by mass or more, preferably 80% by mass or less, more preferably 60% by mass or less, and even more preferably 40% by mass or less. When the content is equal to or less than the upper limit, the processability tends to be good, and the reaction is easy to control. When the content is at least the lower limit, the productivity tends to be high.
 工程i)において、エチレン-(メタ)アクリル酸エステル共重合体(X)を有機溶媒に溶解させる際の温度は、特に制限されない。エチレン-(メタ)アクリル酸エステル共重合体(X)の溶解性の観点から、好ましくは30℃以上、より好ましくは40℃以上、さらに好ましくは50℃以上、特に好ましくは55℃以上である。該温度の上限は、好ましく120℃以下、より好ましくは100℃以下、さらに好ましくは80℃以下である。 The temperature at which the ethylene-(meth)acrylate copolymer (X) is dissolved in the organic solvent in step i) is not particularly limited. From the viewpoint of the solubility of the ethylene-(meth)acrylic acid ester copolymer (X), the temperature is preferably 30° C. or higher, more preferably 40° C. or higher, still more preferably 50° C. or higher, and particularly preferably 55° C. or higher. The upper limit of the temperature is preferably 120° C. or lower, more preferably 100° C. or lower, and even more preferably 80° C. or lower.
 工程i)は、空気中で行っても、窒素ガス、アルゴンガス等の不活性ガス中で行ってもよい。また、工程i)は、常圧下、加圧下、または減圧下のいずれで行ってもよく、好ましくは加圧下で行われる。 Step i) may be performed in the air or in an inert gas such as nitrogen gas or argon gas. In addition, step i) may be carried out under normal pressure, increased pressure or reduced pressure, preferably under increased pressure.
<工程ii)>
 工程i)で得られたエチレン-(メタ)アクリル酸エステル共重合体(X)溶液と塩基とを混合することにより、共重合体(X)をけん化する。けん化反応により、エチレン-(メタ)アクリル酸エステル共重合体(X)中の(メタ)アクリル酸エステル単位の全部または一部は(メタ)アクリル酸中和物単位に変換され、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)および場合により(メタ)アクリル酸エステル単位(D)を含むエチレン-(メタ)アクリル酸エステル共重合体(X)のけん化物が得られる。
<Step ii)>
The copolymer (X) is saponified by mixing the ethylene-(meth)acrylate copolymer (X) solution obtained in step i) with a base. By the saponification reaction, all or part of the (meth)acrylic acid ester units in the ethylene-(meth)acrylic acid ester copolymer (X) are converted to neutralized (meth)acrylic acid units, and (meth)acrylic A saponified product of an ethylene-(meth)acrylate copolymer (X) containing acid-neutralized units (B), ethylene units (C) and optionally (meth)acrylate units (D) is obtained.
 けん化に用いる塩基の例としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の強塩基が挙げられる。塩基は、単独で用いてもよいし、2以上を組み合わせて用いてもよい。エチレン-(メタ)アクリル酸エステル共重合体(X)溶液に含まれている有機溶媒への溶解性および経済性の観点から、水酸化ナトリウムおよび/または水酸化カリウムが好ましい。 Examples of bases used for saponification include strong bases such as sodium hydroxide, potassium hydroxide, and calcium hydroxide. A base may be used alone or in combination of two or more. Sodium hydroxide and/or potassium hydroxide are preferred from the viewpoints of solubility in the organic solvent contained in the ethylene-(meth)acrylate copolymer (X) solution and economic efficiency.
 塩基の添加量は、エチレン-(メタ)アクリル酸エステル共重合体(X)の(メタ)アクリル酸エステル単位100モル部に対して、好ましくは100~300モル部、より好ましくは120~250モル部、さらに好ましくは150~200モル部である。 The amount of the base to be added is preferably 100 to 300 mol parts, more preferably 120 to 250 mol parts, per 100 mol parts of the (meth)acrylic acid ester units of the ethylene-(meth)acrylic acid ester copolymer (X). parts, more preferably 150 to 200 molar parts.
 けん化に用いる溶媒の例としては、工程i)においてエチレン-(メタ)アクリル酸エステル共重合体(X)を溶解させる有機溶媒と同様の溶媒が挙げられる。これらのうち、けん化反応前後の樹脂の溶解性の観点から、好ましい溶媒は炭化水素化合物とアルコール類との混合溶媒、および芳香族化合物とアルコール類との混合溶媒であり、より好ましい溶媒はトルエン等の芳香族化合物とメタノール等のアルコール類との混合溶媒である。前記混合溶媒における炭化水素化合物または芳香族化合物とアルコール類との割合は、用いる各溶媒の種類に応じて適宜選択すればよく、例えば、炭化水素化合物または芳香族化合物とアルコール類との質量割合(炭化水素化合物または芳香族化合物/アルコール類)は、50/50~90/10であってよい。 Examples of the solvent used for saponification include solvents similar to the organic solvent for dissolving the ethylene-(meth)acrylic acid ester copolymer (X) in step i). Among these, from the viewpoint of the solubility of the resin before and after the saponification reaction, preferred solvents are mixed solvents of hydrocarbon compounds and alcohols, and mixed solvents of aromatic compounds and alcohols, and more preferred solvents are toluene and the like. is a mixed solvent of an aromatic compound and an alcohol such as methanol. The ratio of the hydrocarbon compound or aromatic compound and alcohol in the mixed solvent may be appropriately selected according to the type of each solvent used. For example, the mass ratio of the hydrocarbon compound or aromatic compound and alcohol ( hydrocarbons or aromatics/alcohols) can be from 50/50 to 90/10.
 けん化反応を行う際の温度としては、その反応性およびエチレン-(メタ)アクリル酸エステル共重合体(X)の溶解性の観点から、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上、特に好ましくは80℃以上である。該温度の上限は、好ましく180℃以下、より好ましくは150℃以下、さらに好ましくは120℃以下である。 The temperature at which the saponification reaction is performed is preferably 50° C. or higher, more preferably 60° C. or higher, further preferably 60° C. or higher, from the viewpoint of the reactivity and the solubility of the ethylene-(meth)acrylic acid ester copolymer (X). is 70° C. or higher, particularly preferably 80° C. or higher. The upper limit of the temperature is preferably 180° C. or lower, more preferably 150° C. or lower, still more preferably 120° C. or lower.
 けん化反応は、空気中で行っても、窒素ガス、アルゴンガス等の不活性ガス中で行ってもよい。また、けん化反応は、常圧下、加圧下、または減圧下のいずれで行ってもよく、好ましくは加圧下で行われる。 The saponification reaction may be performed in air or in an inert gas such as nitrogen gas or argon gas. The saponification reaction may be carried out under normal pressure, increased pressure or reduced pressure, preferably under increased pressure.
<工程iii)>
 工程ii)で得られたけん化物と酸とを混合することにより、けん化物を脱金属反応に付す。脱金属反応により、エチレン-(メタ)アクリル酸エステル共重合体(X)のけん化物中の(メタ)アクリル酸中和物単位(B)の少なくとも一部(工程iii-1)または全部(工程iii-2)を(メタ)アクリル酸単位(A)に変換する。
<Step iii)>
By mixing the saponified product obtained in step ii) with an acid, the saponified product is subjected to a demetallization reaction. At least a part (step iii-1) or all of (step iii-1) or all (step iii-2) is converted to a (meth)acrylic acid unit (A).
 脱金属反応に用いる酸としては、例えば、酢酸等の弱酸、および塩酸、硝酸、硫酸、トルエンスルホン酸等の強酸が挙げられる。これらの中でも、けん化反応に用いる塩基と脱金属反応に用いる酸とから生成される塩を洗浄除去しやすい観点から、強酸が好ましく、塩酸、硝酸、硫酸等の無機酸がより好ましい。 Examples of acids used for the demetallization reaction include weak acids such as acetic acid and strong acids such as hydrochloric acid, nitric acid, sulfuric acid, and toluenesulfonic acid. Among these, strong acids are preferred, and inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid are more preferred, from the viewpoint of facilitating washing and removal of salts produced from the base used in the saponification reaction and the acid used in the demetalization reaction.
 脱金属反応に用いる溶媒の例としては、工程ii)においてけん化反応に用いる溶媒と同様の溶媒を選択できる。 As an example of the solvent used for the demetalization reaction, the same solvent as the solvent used for the saponification reaction in step ii) can be selected.
 酸の添加量は、(メタ)アクリル酸中和物単位(B)を任意の値に調節するために、強塩基の添加量に合わせて適した量を選択することができる。 The amount of acid added can be selected appropriately according to the amount of strong base added in order to adjust the (meth)acrylic acid neutralized unit (B) to an arbitrary value.
 脱金属化を行う際の温度は、反応液の粘度を低くしやすい観点から、好ましくは20℃以上、より好ましくは30℃以上、さらに好ましくは40℃以上であり、好ましくは180℃以下、より好ましくは150℃以下、さらに好ましくは120℃以下、特に好ましくは100℃以下である。 From the viewpoint of easily reducing the viscosity of the reaction solution, the temperature at which demetallization is performed is preferably 20° C. or higher, more preferably 30° C. or higher, still more preferably 40° C. or higher, and preferably 180° C. or lower. It is preferably 150° C. or lower, more preferably 120° C. or lower, particularly preferably 100° C. or lower.
 脱金属化は、空気中で行っても、窒素ガス、アルゴンガス等の不活性ガス中で行ってもよい。また、脱金属化は、常圧下、加圧下、または減圧下のいずれで行ってもよく、好ましくは加圧下で行われる。 Demetallization may be performed in the air or in an inert gas such as nitrogen gas or argon gas. Moreover, demetallization may be performed under normal pressure, under pressure, or under reduced pressure, preferably under pressure.
 前記工程iii-2)の場合、すなわち、脱金属反応により、エチレン-(メタ)アクリル酸エステル共重合体(X)のけん化物中の(メタ)アクリル酸中和物単位(B)の全部を(メタ)アクリル酸単位(A)に変換する場合は、工程iii-2)は、脱金属化により得られた(メタ)アクリル酸単位(A)の一部を、金属イオンによる中和により(メタ)アクリル酸中和物単位(B)に変換することをさらに含む。
 この中和工程において用いる中和剤は、金属イオンを含有するイオン性化合物であれば特に制限されない。前記金属イオンの例としては、リチウム、カリウム、ナトリウム等のアルカリ金属のイオン、マグネシウム、カルシウム等のアルカリ土類金属のイオン、亜鉛、ニッケル、鉄、チタン等の遷移金属のイオン、アルミニウムイオン等が挙げられる。例えば、金属イオンがナトリウムカチオンである場合、中和剤の例としては、水酸化ナトリウム、酢酸ナトリウム、炭酸水素ナトリウム等が挙げられる。また、(メタ)アクリル酸ナトリウム単位を含有するアイオノマー樹脂等の重合体も中和剤として用いることができる。
In the case of step iii-2), that is, by demetallization reaction, all of the (meth)acrylic acid neutralized product units (B) in the saponified product of ethylene-(meth)acrylic acid ester copolymer (X) are When converting to (meth)acrylic acid units (A), in step iii-2), part of the (meth)acrylic acid units (A) obtained by demetallization is neutralized with metal ions ( Further comprising converting to meth)acrylic acid neutralized units (B).
The neutralizing agent used in this neutralizing step is not particularly limited as long as it is an ionic compound containing metal ions. Examples of the metal ions include ions of alkali metals such as lithium, potassium and sodium, ions of alkaline earth metals such as magnesium and calcium, ions of transition metals such as zinc, nickel, iron and titanium, and aluminum ions. mentioned. For example, when the metal ion is a sodium cation, examples of neutralizing agents include sodium hydroxide, sodium acetate, sodium bicarbonate, and the like. Polymers such as ionomer resins containing sodium (meth)acrylate units can also be used as the neutralizing agent.
<工程iv)>
 工程iii)の後、得られた反応液から、アイオノマー樹脂および特定有機化合物を含む粗アイオノマー樹脂組成物を分離し、精製することにより、本発明におけるアイオノマー樹脂(前記方法(1)の場合)または本発明のアイオノマー樹脂組成物(前記方法(2)の場合)を得ることができる。分離精製は、慣用の方法、例えば、濾過、洗浄、濃縮、再沈殿、再結晶、シリカゲルカラムトグラフィー等の分離手段により行ってよい。
<Step iv)>
After step iii), a crude ionomer resin composition containing an ionomer resin and a specific organic compound is separated from the resulting reaction solution and purified to obtain an ionomer resin in the present invention (in the case of method (1)) or The ionomer resin composition of the present invention (in the case of method (2) above) can be obtained. Separation and purification may be carried out by conventional methods such as filtration, washing, concentration, reprecipitation, recrystallization, silica gel columnography and the like.
 本発明の一実施形態において、分離精製は、けん化反応に用いる塩基と脱金属反応に用いる酸とから副生し得る塩(以下、「副生塩」とも称する)を洗浄除去しやすい観点から、粗アイオノマー樹脂組成物の溶液に貧溶媒を添加して、アイオノマー樹脂、副生塩および特定有機化合物を含む粒状物(以下、単に「粒状物」とも称する)を析出させ、次いで析出した粒状物を洗浄液で洗浄することにより行うことが好ましい。 In one embodiment of the present invention, the separation and purification is performed from the viewpoint of easily washing and removing a salt (hereinafter also referred to as a "by-product salt") that may be produced as a by-product from the base used in the saponification reaction and the acid used in the demetalization reaction. A poor solvent is added to the solution of the crude ionomer resin composition to precipitate particles containing the ionomer resin, the by-product salt and the specific organic compound (hereinafter also simply referred to as "granules"), and then the precipitated particles are separated. It is preferably carried out by washing with a washing liquid.
 粗アイオノマー樹脂組成物の溶液は、工程iii)の後に得られた粗アイオノマー樹脂組成物を溶媒に溶解させることにより調製できる。または、工程iii)において得られた脱金属工程後の反応液(工程iii-1)もしくは中和工程後の反応液(工程iii-2)を粗アイオノマー樹脂組成物の溶液として用いてもよい。 A solution of the crude ionomer resin composition can be prepared by dissolving the crude ionomer resin composition obtained after step iii) in a solvent. Alternatively, the reaction solution after the demetallization step (step iii-1) or the reaction solution after the neutralization step (step iii-2) obtained in step iii) may be used as the solution of the crude ionomer resin composition.
 粗アイオノマー樹脂組成物の溶液における溶媒としては、粗アイオノマー樹脂組成物を溶解可能な溶媒であれば特に制限されず、前記けん化反応に用いる溶媒と同様の溶媒が例示される。なかでも、粗アイオノマー樹脂組成物の溶解性の観点から、トルエン等の芳香族化合物とメタノール等のアルコール類との混合溶媒が好ましい。前記混合溶媒における芳香族化合物とアルコール類との割合は、用いる各溶媒の種類に応じて適宜選択すればよく、例えば、芳香族化合物とアルコール類との質量割合(芳香族化合物/アルコール類)は、50/50~90/10、好ましくは65/35~85/15であってよい。 The solvent in the solution of the crude ionomer resin composition is not particularly limited as long as it is capable of dissolving the crude ionomer resin composition, and the same solvents as those used in the saponification reaction are exemplified. Among them, a mixed solvent of an aromatic compound such as toluene and an alcohol such as methanol is preferable from the viewpoint of the solubility of the crude ionomer resin composition. The ratio of the aromatic compound to the alcohol in the mixed solvent may be appropriately selected according to the type of each solvent used. For example, the mass ratio of the aromatic compound to the alcohol (aromatic compound/alcohol) is , 50/50 to 90/10, preferably 65/35 to 85/15.
 粗アイオノマー樹脂組成物の溶液中の粗アイオノマー樹脂組成物の濃度は、粒子径の小さい粒状物を得やすく、副生塩を除去しやすい観点から、好ましくは30質量%以下、より好ましくは15質量%以下であり、また、好ましくは1質量%以上、より好ましくは5質量%以上である。 The concentration of the crude ionomer resin composition in the solution of the crude ionomer resin composition is preferably 30% by mass or less, more preferably 15% by mass, from the viewpoints of facilitating the production of granules with a small particle size and facilitating the removal of by-product salts. %, preferably 1% by mass or more, more preferably 5% by mass or more.
 粗アイオノマー樹脂組成物の溶液の温度は、析出する粒状物の凝集または膠着を抑制しやすく、副生塩を除去しやすい観点から、アイオノマー樹脂の融点以下であることが好ましく、より好ましくは60℃以下、さらに好ましくは50℃以下である。また、粗アイオノマー樹脂組成物の溶液の流動性の観点から、前記温度は、より好ましくは25℃以上、さらに好ましくは30℃以上である。 The temperature of the solution of the crude ionomer resin composition is preferably not higher than the melting point of the ionomer resin, more preferably 60° C., from the viewpoints of easily suppressing aggregation or agglomeration of precipitated particles and easily removing by-product salts. 50° C. or less, more preferably 50° C. or less. From the viewpoint of fluidity of the solution of the crude ionomer resin composition, the temperature is more preferably 25° C. or higher, more preferably 30° C. or higher.
 粗アイオノマー樹脂組成物の溶液に添加する貧溶媒としては、粗アイオノマー樹脂組成物の溶液と混合し、アイオノマー樹脂が溶解しない溶媒であれば特に制限されない。その例としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール類;水;アセトン、メチルエチルケトン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類;n-ヘキサン、シクロヘキサン、ヘプタン等の炭化水素化合物等が挙げられる。これらは単独であっても、2種以上を組み合せて用いてもよい。これらのなかでも、沸点が低いため後述の乾燥工程においてアイオノマー樹脂またはアイオノマー樹脂組成物を乾燥しやすく、また、粒状物中の副生塩を除去しやすい観点から、貧溶媒は好ましくはメタノール、2-プロパノール等のアルコール類、水、およびこれらの混合溶媒、より好ましくはメタノール等のアルコール類である。 The poor solvent added to the solution of the crude ionomer resin composition is not particularly limited as long as it is mixed with the solution of the crude ionomer resin composition and does not dissolve the ionomer resin. Examples thereof include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and 1-butanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; ethers such as tetrahydrofuran; and hydrocarbon compounds such as n-hexane, cyclohexane, heptane, and the like. These may be used alone or in combination of two or more. Among them, the poor solvent is preferably methanol, 2 - Alcohols such as propanol, water, and mixed solvents thereof, more preferably alcohols such as methanol.
 貧溶媒の添加量は、粗アイオノマー樹脂組成物の溶液の濃度に応じて適宜選択してよい。例えば、貧溶媒の添加量は、粗アイオノマー樹脂組成物の溶液100質量部に対して、好ましくは30質量部以上、より好ましくは60質量部以上、特に好ましくは100質量部以上である。貧溶媒の添加量の上限値は特に制限されず、貧溶媒の添加量の上限値は、粗アイオノマー樹脂組成物の溶液100質量部に対して、通常1000質量部以下である。 The amount of the poor solvent to be added may be appropriately selected according to the concentration of the solution of the crude ionomer resin composition. For example, the amount of the poor solvent added is preferably 30 parts by mass or more, more preferably 60 parts by mass or more, and particularly preferably 100 parts by mass or more with respect to 100 parts by mass of the solution of the crude ionomer resin composition. The upper limit of the amount of the poor solvent to be added is not particularly limited, and the upper limit of the amount of the poor solvent to be added is usually 1000 parts by mass or less with respect to 100 parts by mass of the solution of the crude ionomer resin composition.
 粗アイオノマー樹脂組成物の溶液に貧溶媒を添加する方法は特に制限されず、例えば、粗アイオノマー樹脂組成物の溶液に貧溶媒を一度に添加してもよく、滴加等により複数回に分けて添加してもよい。粒状物の粒子径が小さくなりやすくなり、それにより副生塩の除去性を向上しやすく、その結果、得られるアイオノマー樹脂組成物から形成される樹脂シートの透明性を向上しやすい観点から、貧溶媒の添加は比較的短時間で行うことが好ましく、一度に添加することがより好ましい。貧溶媒を複数回に分けて添加する場合には、貧溶媒の添加を1時間以内、より好ましくは30分間以内、さらに好ましくは10分間以内に完了することが好ましい。 The method of adding the poor solvent to the solution of the crude ionomer resin composition is not particularly limited. may be added. The particle diameter of the granules is likely to be reduced, thereby easily improving the removability of the by-product salt, and as a result, from the viewpoint of easily improving the transparency of the resin sheet formed from the resulting ionomer resin composition. It is preferable to add the solvent in a relatively short period of time, and it is more preferable to add it all at once. When the poor solvent is added in multiple portions, the addition of the poor solvent is preferably completed within 1 hour, more preferably within 30 minutes, and even more preferably within 10 minutes.
 粗アイオノマー樹脂組成物の溶液に貧溶媒を添加した後、粗アイオノマー樹脂組成物の溶液と貧溶媒との混合液を撹拌することが好ましい。撹拌速度は特に制限されないが、撹拌速度が速いほど、粒子径の小さな粒状粒子を得やすくなる。撹拌時間は特に制限されず、例えば、粒状物が析出して、粗アイオノマー樹脂組成物の溶液と貧溶媒との混合液がスラリー状になるまで撹拌すればよく、具体的には、好ましくは1秒間以上3時間以下、より好ましくは10秒間以上1時間以下、さらに好ましくは1分間以上30分間以下である。 After adding the poor solvent to the solution of the crude ionomer resin composition, it is preferable to stir the mixture of the solution of the crude ionomer resin composition and the poor solvent. The stirring speed is not particularly limited, but the faster the stirring speed, the easier it is to obtain granular particles with a smaller particle size. The stirring time is not particularly limited. Seconds or more and 3 hours or less, more preferably 10 seconds or more and 1 hour or less, and still more preferably 1 minute or more and 30 minutes or less.
 粗アイオノマー樹脂組成物の溶液に貧溶媒を添加して析出させる粒状物のピークトップ粒子径は、粒状物の比表面積を大きくすることにより粒状物中の副生塩を除去しやすい観点から、また、粒状物中の特定有機化合物をほぼ完全に(検出限界値以下に)除去しやすい観点から、700μm以下、好ましくは650μm以下、より好ましくは600μm以下、さらに好ましくは550μm以下である。また、粒状物の濾過性を向上しやすく、アイオノマー樹脂組成物の製造効率を向上しやすい観点から、好ましくは50μm以上、より好ましくは70μm以上、好ましくは80μm以上である。ピークトップ粒子径は、例えばレーザー回折/散乱法または単一光散乱法等により測定できる。 The peak top particle size of the granules precipitated by adding a poor solvent to the solution of the crude ionomer resin composition is determined from the viewpoint that by-product salts in the granules can be easily removed by increasing the specific surface area of the granules. From the viewpoint of facilitating almost complete removal of the specific organic compound in the particulate matter (below the detection limit), the particle size is 700 μm or less, preferably 650 μm or less, more preferably 600 μm or less, and even more preferably 550 μm or less. From the viewpoint of easily improving the filterability of the particulate matter and easily improving the production efficiency of the ionomer resin composition, it is preferably 50 μm or more, more preferably 70 μm or more, and preferably 80 μm or more. The peak top particle size can be measured, for example, by a laser diffraction/scattering method or a single light scattering method.
 粗アイオノマー樹脂組成物の溶液に貧溶媒を添加して析出させる粒状物のピークトップ粒子径は、粗アイオノマー樹脂組成物の溶液の濃度および温度によって調整できる。具体的には、粗アイオノマー樹脂組成物の溶液の濃度および/または温度を低くすると、析出する粒状物のピークトップ粒子径を小さくでき、粗アイオノマー樹脂組成物の溶液の濃度および/または温度を高くすると、析出する粒状物のピークトップ粒子径を大きくできる。また、粒状物のピークトップ粒子径は、貧溶媒の添加方法および粗アイオノマー樹脂組成物の溶液と貧溶媒との混合液の撹拌速度によっても調整できる。 The peak top particle size of the particulate material precipitated by adding a poor solvent to the solution of the crude ionomer resin composition can be adjusted by the concentration and temperature of the solution of the crude ionomer resin composition. Specifically, when the concentration and/or temperature of the solution of the crude ionomer resin composition are lowered, the peak top particle size of the precipitated particulate matter can be reduced, and the concentration and/or temperature of the solution of the crude ionomer resin composition is increased. Then, the peak top particle size of the precipitated particulate matter can be increased. The peak top particle size of the particulate matter can also be adjusted by the method of adding the poor solvent and the stirring speed of the mixture of the crude ionomer resin composition solution and the poor solvent.
 析出した粒状物を洗浄する洗浄液としては、アイオノマー樹脂またはアイオノマー樹脂組成物が溶解しない溶媒であれば、特に制限されない。好ましい洗浄液の例としては、メタノール、エタノール、1-プロパノール、2-イソプロパノール等のアルコール類;水;アセトン、メチルエチルケトン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類が挙げられる。これらは単独であっても、2種以上組み合せて用いてもよい。 The cleaning liquid for cleaning the precipitated particulate matter is not particularly limited as long as it is a solvent in which the ionomer resin or the ionomer resin composition is not dissolved. Examples of preferred washing liquids include alcohols such as methanol, ethanol, 1-propanol and 2-isopropanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; and ethers of These may be used alone or in combination of two or more.
 これらの洗浄液のなかでも、副生塩および特定有機化合物を除去しやすい観点から、アルコール類、水、およびこれらの混合液が好ましい。さらに、洗浄液の比重を粒状物よりも小さくすることにより洗浄液と粒状物との接触面積を増大させることによって副生塩の除去性を高めやすい観点、洗浄後に得られるアイオノマー樹脂中またはアイオノマー樹脂組成物中の特定有機化合物の含有量を所望の範囲内に調整しやすい観点、および/または洗浄後に得られるアイオノマー樹脂またはアイオノマー樹脂組成物を乾燥しやすい観点から、より好ましい洗浄液は、水とアルコール類との混合液である。好ましいアルコール類は、乾燥しやすいこと、および水との相溶性が高いことから、メタノールおよびエタノール、より好ましくはメタノールである。
 水とアルコール類との混合液における水とアルコール類との割合(水/アルコール類(質量%))は、好ましくは20/80~80/20、より好ましくは30/70~70/30である。
Among these washing liquids, alcohols, water, and mixed liquids thereof are preferable from the viewpoint of easy removal of by-product salts and specific organic compounds. Furthermore, by making the specific gravity of the cleaning liquid smaller than that of the particulate matter, the contact area between the cleaning liquid and the particulate matter is increased, thereby making it easier to improve the removability of the by-product salt. From the viewpoint of facilitating adjustment of the content of the specific organic compound within the desired range, and/or from the viewpoint of facilitating drying of the ionomer resin or ionomer resin composition obtained after washing, a more preferable washing liquid is water and alcohols. is a mixture of Preferred alcohols are methanol and ethanol, more preferably methanol, due to their ease of drying and high compatibility with water.
The ratio of water and alcohols (water/alcohols (% by mass)) in the mixture of water and alcohols is preferably 20/80 to 80/20, more preferably 30/70 to 70/30. .
 粒状物を洗浄液で洗浄する方法の例としては、粒状物が析出した粒状物分散液から、粒状物を濾取して、濾取した粒状物を洗浄液と混合後、脱液する方法が挙げられる。より具体的には、前記粒状物分散液から濾取した粒状物と洗浄液とを混合後、洗浄液から粒状物を濾取し(以下、洗浄工程(a)ともいう)、次いで、濾取した粒状物を新たな洗浄液と混合した後、洗浄液から粒状物を濾取する(以下、洗浄工程(b)ともいう)ことにより、洗浄する方法が挙げられる。粒状物に含まれる副生塩および特定有機化合物を除去しやすい観点、ならびに製造効率の観点から、粒状物の洗浄は、バッチプロセスの場合、例えば、1回の洗浄工程(a)の後、洗浄工程(b)を好ましくは1~10回、より好ましくは1~8回、さらに好ましくは1~6回実施することが好ましい。洗浄回数により、粒状物中の有機カルボン酸および/または有機カルボン酸エステル(特定有機化合物)の含有量を調整できる。例えば、洗浄工程(b)を好ましくは4~10回、より好ましくは6~8回実施することにより、洗浄後の粒状物中の有機カルボン酸および/または有機カルボン酸エステルの含有量を1質量ppm未満に調整することができる。また、例えば、洗浄工程(b)を好ましくは1~3回、より好ましくは1~2回実施することにより、洗浄後の粒状物中の有機カルボン酸および/または有機カルボン酸エステルの含有量を1質量ppm以上300質量ppmに調整することができる。 Examples of the method of washing the particulate matter with a washing liquid include a method of filtering the particulate matter from the granular matter dispersion liquid in which the particulate matter is precipitated, mixing the filtered particulate matter with the washing liquid, and then draining the liquid. . More specifically, after mixing the granules filtered from the particulate dispersion and the washing liquid, the granules are filtered from the washing liquid (hereinafter also referred to as washing step (a)), and then the filtered granules There is a method of washing by mixing the substance with a fresh washing liquid and then filtering the particulate matter from the washing liquid (hereinafter also referred to as washing step (b)). From the viewpoint of easy removal of by-product salts and specific organic compounds contained in the particulate matter, and from the viewpoint of production efficiency, the particulate matter is washed in a batch process, for example, after one washing step (a). It is preferred to carry out step (b) preferably 1 to 10 times, more preferably 1 to 8 times, even more preferably 1 to 6 times. The content of the organic carboxylic acid and/or organic carboxylic acid ester (specific organic compound) in the granules can be adjusted by the number of washings. For example, by performing the washing step (b) preferably 4 to 10 times, more preferably 6 to 8 times, the content of the organic carboxylic acid and/or organic carboxylic acid ester in the granules after washing is reduced to 1 mass can be adjusted to less than ppm. Further, for example, by performing the washing step (b) preferably 1 to 3 times, more preferably 1 to 2 times, the content of the organic carboxylic acid and/or organic carboxylic acid ester in the washed granules can be reduced to It can be adjusted to 1 mass ppm or more and 300 mass ppm.
 1回の洗浄工程あたりの前記洗浄液の使用量は、洗浄する粒状物の量に応じて適宜選択してよい。例えば、1回の洗浄工程あたりの前記洗浄液の使用量は乾燥時の粒状物100質量部に対して、好ましくは100質量部~2000質量部、より好ましくは200質量部~1000質量部、さらに好ましくは300質量部~700質量部である。 The amount of the cleaning liquid used in one cleaning step may be appropriately selected according to the amount of granular material to be cleaned. For example, the amount of the cleaning liquid used in one cleaning process is preferably 100 parts by mass to 2000 parts by mass, more preferably 200 parts by mass to 1000 parts by mass, and still more preferably 100 parts by mass of the dried granular material. is 300 parts by mass to 700 parts by mass.
 洗浄後の粒状物は乾燥することが好ましい。乾燥を行う場合、その温度は、好ましくはアイオノマー樹脂の融点以下、より好ましくは80℃以下である。乾燥を行う場合、乾燥は常圧下、加圧下、または減圧下のいずれで行ってもよく、好ましくは減圧下で行われる。乾燥条件により、粒状物中の芳香族化合物および/またはアルコール類(特定有機化合物)の含有量を調整できる。例えば、真空下で24時間以上乾燥することにより、乾燥後の粒状物中の芳香族化合物および/またはアルコール類の含有量を1質量ppm未満に調整することができる。また、例えば、真空下で1時間~約8時間乾燥することにより、乾燥後の粒状物中の芳香族化合物および/またはアルコール類の含有量を1質量ppm以上300質量ppmに調整することができる。 It is preferable to dry the granular material after washing. When drying is performed, the temperature is preferably below the melting point of the ionomer resin, more preferably below 80°C. When drying is carried out, drying may be carried out under normal pressure, under pressure, or under reduced pressure, preferably under reduced pressure. The content of aromatic compounds and/or alcohols (specific organic compounds) in the granules can be adjusted by the drying conditions. For example, by drying under vacuum for 24 hours or more, the content of aromatic compounds and/or alcohols in the dried granules can be adjusted to less than 1 ppm by mass. Further, for example, by drying under vacuum for 1 hour to about 8 hours, the content of aromatic compounds and/or alcohols in the dried granules can be adjusted to 1 mass ppm or more and 300 mass ppm. .
 方法(1)の場合、および方法(2)の場合は必要に応じて、乾燥後の粒状物と特定有機化合物とを混合することにより、粒状物中の特定有機化合物の含有量を調整できる。特定有機化合物の含有量を所望の値に調整しやすい観点、ならびに生産性および品質安定性の観点から、乾燥後の粒状物における特定有機化合物の含有量が実質的にゼロ(例えば検出限界値(0.1質量ppm)以下)であって(すなわち、乾燥後の粒状物が、アイオノマー樹脂および特定有機化合物を含んでなるアイオノマー樹脂組成物ではなく、アイオノマー樹脂であって)、当該粒状物と特定有機化合物とを混合することにより、粒状物中の特定有機化合物の含有量を1質量ppm以上300質量ppmに調整することが好ましい。
 混合方法は特に制限されない。例えば、バッチ式溶融混練機、ベント付単軸押出機、またはベント付二軸押出機を用いて混合してよい。混合温度は、品質安定性の観点から、好ましくは220℃以下、より好ましくは210℃以下、さらに好ましくは200℃以下である。また、混合温度は、生産性の観点から、好ましくは160℃以上、より好ましくは170℃以上、さらに好ましくは180℃以上である。
 アイオノマー樹脂組成物中の特定有機化合物の分散状態は特に制限されないが、本発明のより良好な効果を得やすい観点から、アイオノマー樹脂組成物中に均一に分散していることが好ましい。従って、混合は、均質なアイオノマー樹脂組成物が得られるまで行うことが好ましい。
In the case of method (1) and in the case of method (2), the content of the specific organic compound in the granules can be adjusted by mixing the granules after drying with the specific organic compound as necessary. From the viewpoint of easy adjustment of the content of the specific organic compound to the desired value, and from the viewpoint of productivity and quality stability, the content of the specific organic compound in the dried granules is substantially zero (e.g. detection limit value ( 0.1 mass ppm) or less) (that is, the particulate matter after drying is not an ionomer resin composition containing an ionomer resin and a specific organic compound, but an ionomer resin), and the particulate matter and the specific It is preferable to adjust the content of the specific organic compound in the particulate material to 1 ppm by mass or more and 300 ppm by mass by mixing with the organic compound.
A mixing method is not particularly limited. For example, it may be mixed using a batch melt kneader, a vented single screw extruder, or a vented twin screw extruder. The mixing temperature is preferably 220° C. or lower, more preferably 210° C. or lower, and even more preferably 200° C. or lower from the viewpoint of quality stability. The mixing temperature is preferably 160° C. or higher, more preferably 170° C. or higher, and even more preferably 180° C. or higher, from the viewpoint of productivity.
Although the dispersion state of the specific organic compound in the ionomer resin composition is not particularly limited, it is preferably dispersed uniformly in the ionomer resin composition from the viewpoint of easily obtaining the better effects of the present invention. Therefore, mixing is preferably carried out until a homogeneous ionomer resin composition is obtained.
<アイオノマー樹脂組成物の特性>
 本発明のアイオノマー樹脂組成物は、優れた透明性を有する。本発明におけるアイオノマー樹脂組成物のシートの厚さ0.8mmにおけるヘイズは、好ましくは2.0%以下、より好ましくは1.5%以下、さらに好ましくは1.0%以下である。ヘイズが小さいほどアイオノマー樹脂組成物の透明性が高まるため、下限値は特に制限されず、例えば、0.01%であってもよい。なお、アイオノマー樹脂組成物のヘイズは、例えばヘイズメーターを用いてJIS K7136:2000に準拠して測定される。
<Characteristics of ionomer resin composition>
The ionomer resin composition of the present invention has excellent transparency. The haze of the sheet of the ionomer resin composition of the present invention at a thickness of 0.8 mm is preferably 2.0% or less, more preferably 1.5% or less, still more preferably 1.0% or less. Since the transparency of the ionomer resin composition increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01%. The haze of the ionomer resin composition is measured using, for example, a haze meter according to JIS K7136:2000.
 本発明者らの検討によれば、アイオノマー樹脂の結晶性が高すぎるとアイオノマー樹脂は白化しやすい傾向にある。従って、通常、アイオノマー樹脂を徐冷して該樹脂の結晶化を促進させると、アイオノマー樹脂の透明性(徐冷時の透明性)は低下しやすい。しかし、本発明におけるアイオノマー樹脂は、樹脂中の(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)の合計含有量が6モル%以上であるため、徐冷時においても樹脂が結晶化しにくい。その結果、そのようなアイオノマー樹脂を含んでなる本発明におけるアイオノマー樹脂組成物は、徐冷によりアイオノマー樹脂の結晶化を促進させた状態であっても高い透明性を有することができる。
 本発明におけるアイオノマー樹脂組成物の、徐冷によりアイオノマー樹脂の結晶化を促進させた状態のヘイズ(徐冷ヘイズ)は、好ましくは5.0%以下、より好ましくは4.5%以下、さらに好ましくは4.0%以下、さらにより好ましくは3.0%以下、特に好ましくは2.5%以下である。ヘイズが小さいほどアイオノマー樹脂組成物の透明性が高まるため、下限値は特に制限されず、例えば0.01%であってもよい。徐冷ヘイズは、厚さ0.8mmのアイオノマー樹脂組成物のシートを2つのガラス板の間に配置して合わせガラスを作製し、該合わせガラスを140℃まで加熱した後、140℃から0.1℃/分の速度で23℃まで徐冷した後のヘイズを、ヘイズメーターでJIS K7136:2000に準拠して測定することによって測定できる。
According to studies by the present inventors, when the crystallinity of the ionomer resin is too high, the ionomer resin tends to whiten easily. Therefore, when the ionomer resin is slowly cooled to accelerate the crystallization of the resin, the transparency of the ionomer resin (transparency during slow cooling) tends to decrease. However, in the ionomer resin of the present invention, the total content of (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units (B) in the resin is 6 mol% or more. Also, the resin is difficult to crystallize. As a result, the ionomer resin composition of the present invention containing such an ionomer resin can have high transparency even in a state in which crystallization of the ionomer resin is promoted by slow cooling.
The haze (gradual cooling haze) of the ionomer resin composition in the present invention in a state in which crystallization of the ionomer resin is promoted by slow cooling is preferably 5.0% or less, more preferably 4.5% or less, and even more preferably 4.5% or less. is 4.0% or less, more preferably 3.0% or less, and particularly preferably 2.5% or less. Since the transparency of the ionomer resin composition increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01%. Slow-cooling haze is obtained by disposing a sheet of an ionomer resin composition having a thickness of 0.8 mm between two glass plates to prepare a laminated glass, heating the laminated glass to 140 ° C., and then reducing the haze from 140 ° C. The haze after slowly cooling to 23°C at a rate of 1/min can be measured by measuring with a haze meter in accordance with JIS K7136:2000.
 本発明のアイオノマー樹脂組成物は、耐着色性に優れ、成形加工時にも着色が生じにくい。本発明のアイオノマー樹脂組成物のシートの厚さ0.8mmにおける黄色度(YI)は、耐着色性を向上しやすい観点から、好ましくは1.1以下、より好ましくは0.9以下、さらに好ましくは0.7以下である。黄色度(YI)が小さいほどアイオノマー樹脂組成物の耐着色性が高まるため、下限値は特に制限されず、例えば、0以上であってよい。なお、黄色度(YI)は測色色差計を用い、JIS Z8722に準拠して測定でき、例えば実施例に記載の方法で測定できる。 The ionomer resin composition of the present invention has excellent color resistance and is less likely to be colored during molding. The yellowness index (YI) at a sheet thickness of 0.8 mm of the ionomer resin composition of the present invention is preferably 1.1 or less, more preferably 0.9 or less, and still more preferably 0.9 or less, from the viewpoint of easily improving color resistance. is 0.7 or less. Since the color resistance of the ionomer resin composition increases as the yellowness index (YI) decreases, the lower limit value is not particularly limited, and may be, for example, 0 or more. The yellowness index (YI) can be measured using a colorimetric color difference meter in accordance with JIS Z8722, for example, by the method described in Examples.
 本発明のアイオノマー樹脂組成物とガラスとの接着性は、剥離試験によって測定されるアイオノマー樹脂組成物とガラスとの剥離エネルギーによって評価できる。標準条件下(23℃、50%RH)において測定されるアイオノマー樹脂組成物とガラスとの剥離エネルギーは、好ましくは2.0kJ/m以上、より好ましくは2.5kJ/m以上、さらに好ましくは3.0kJ/m以上、特に好ましくは3.5kJ/m以上である。
 また、高湿度条件下におけるアイオノマー樹脂組成物とガラスとの接着性は、Wet条件下における剥離試験によって測定されるアイオノマー樹脂組成物とガラスとの剥離エネルギーによって評価できる。この剥離エネルギーは、好ましくは0.05kJ/m以上、より好ましくは0.10kJ/m以上、さらに好ましくは0.15kJ/m以上、よりさらに好ましくは0.17kJ/m以上、特に好ましくは0.20kJ/m以上である。
 標準条件下および高湿度条件下における前記剥離エネルギーの上限は特に制限されず、10kJ/m以下であってよい。前記剥離試験は、例えば国際公開第2019-027865号公報に剥離接着力測定(Peel Adhesion Measurement)の方法として記載されている方法で実施できる。前記標準条件下およびWet条件下において測定される剥離エネルギーは、例えば実施例に記載の方法により測定できる。
The adhesion between the ionomer resin composition of the present invention and glass can be evaluated by the peel energy between the ionomer resin composition and glass measured by a peel test. The peel energy between the ionomer resin composition and glass measured under standard conditions (23° C., 50% RH) is preferably 2.0 kJ/m 2 or more, more preferably 2.5 kJ/m 2 or more, and still more preferably is at least 3.0 kJ/m 2 , particularly preferably at least 3.5 kJ/m 2 .
Also, the adhesion between the ionomer resin composition and glass under high humidity conditions can be evaluated by the peel energy between the ionomer resin composition and glass measured by a peel test under wet conditions. This peeling energy is preferably 0.05 kJ/m 2 or more, more preferably 0.10 kJ/m 2 or more, still more preferably 0.15 kJ/m 2 or more, still more preferably 0.17 kJ/m 2 or more, especially It is preferably 0.20 kJ/m 2 or more.
The upper limit of the peeling energy under standard conditions and high humidity conditions is not particularly limited, and may be 10 kJ/m 2 or less. The peel test can be carried out, for example, by the method described in WO 2019-027865 as a peel adhesion measurement method. The peel energy measured under the standard conditions and wet conditions can be measured, for example, by the method described in the Examples.
 本発明のアイオノマー樹脂組成物は、十分な耐クリープ性を有する。従って、後述する、本発明のアイオノマー樹脂組成物を含む層を1層以上有する樹脂シートを合わせガラス中間膜として使用する場合、長時間使用しても強度が低下しにくいため、安全性を確保しやすい。アイオノマー樹脂組成物の耐クリープ性は、長時間経過後の緩和弾性率(長時間緩和弾性率)、例えば50℃でマスターカーブを作成した際の2.6×10秒後(約1ヵ月後)における緩和弾性率により評価できる。本発明の一実施形態において、50℃でマスターカーブを作成した際の2.6×10秒後における緩和弾性率は、アイオノマー樹脂組成物の耐クリープ性を高めやすい観点から、好ましくは0.40MPa以上、より好ましくは0.45MPa以上、さらに好ましくは0.50MPa以上である。また、前記緩和弾性率は、樹脂シートの取り扱い性の観点から、5.0MPa以下であってよく、好ましくは2.5以下であってよい。なお、前記緩和弾性率は、アイオノマー樹脂組成物からなる樹脂シートを23℃、50%RH雰囲気下で1週間以上静置した後に、動的粘弾性測定装置を用いて、動的粘弾性測定と時間-温度換算則から得られる、基準温度50℃の合成曲線(マスターカーブと称する)から求めることができ、例えば実施例に記載の方法により求めることができる。 The ionomer resin composition of the present invention has sufficient creep resistance. Therefore, when a resin sheet having one or more layers containing the ionomer resin composition of the present invention, which will be described later, is used as an interlayer for laminated glass, the strength is unlikely to decrease even after long-term use, ensuring safety. Cheap. The creep resistance of the ionomer resin composition is determined by the relaxation modulus after a long period of time (long-term relaxation modulus), for example, 2.6×10 6 seconds (about 1 month) after creating a master curve at 50°C. ) can be evaluated by the relaxation modulus. In one embodiment of the present invention, the relaxation modulus after 2.6×10 6 seconds when creating a master curve at 50° C. is preferably 0.00, from the viewpoint of easily increasing the creep resistance of the ionomer resin composition. It is 40 MPa or more, more preferably 0.45 MPa or more, and still more preferably 0.50 MPa or more. In addition, the relaxation modulus may be 5.0 MPa or less, preferably 2.5 or less, from the viewpoint of handleability of the resin sheet. The relaxation modulus of elasticity is measured by dynamic viscoelasticity measurement using a dynamic viscoelasticity measuring device after allowing a resin sheet made of the ionomer resin composition to stand in an atmosphere of 23° C. and 50% RH for one week or longer. It can be obtained from a synthetic curve (referred to as a master curve) at a reference temperature of 50° C. obtained from the time-temperature conversion rule, and can be obtained, for example, by the method described in Examples.
[樹脂シート]
 本発明はまた、本発明のアイオノマー樹脂組成物を含む層(以下、層(x)とも称する)を1層以上有する、樹脂シートにも関する。本発明の一実施形態において、層(x)は本発明のアイオノマー樹脂組成物で構成されている。
 本発明の樹脂シートは、1層の層(x)のみから構成されていてもよく、少なくとも1層の層(x)を含む積層体であってもよい。前記積層体の構成は、特に限定されない。その例としては、2層以上の層(x)からなる積層体、1層以上の層(x)と1層以上の他の層とを含む積層体等が挙げられる。積層体に複数の層(x)または複数の他の層が含まれる場合、各層(x)または各他の層を構成する樹脂または樹脂組成物は、同じでも異なっていてもよい。
[Resin sheet]
The present invention also relates to a resin sheet having one or more layers containing the ionomer resin composition of the present invention (hereinafter also referred to as layer (x)). In one embodiment of the invention, layer (x) is composed of the ionomer resin composition of the invention.
The resin sheet of the present invention may be composed of only one layer (x), or may be a laminate containing at least one layer (x). The structure of the laminate is not particularly limited. Examples thereof include a laminate consisting of two or more layers (x), a laminate including one or more layers (x) and one or more other layers, and the like. When the laminate includes multiple layers (x) or multiple other layers, the resin or resin composition that constitutes each layer (x) or each other layer may be the same or different.
 前記他の層としては、公知の樹脂を含む層を使用できる。該樹脂の例としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリウレタン、ポリテトラフルオロエチレン、アクリル樹脂、ポリアミド、ポリアセタール、ポリカーボネート、ポリエステルのうちポリエチレンテレフタレート、ポリブチレンテレフタレート、環状ポリオレフィン、ポリフェニレンスルファイド、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、液晶ポリマー、ポリイミド、および熱可塑性エラストマー等が挙げられる。また、前記他の層は、必要に応じて、先の〔添加剤〕の項に例示された添加剤、ならびに、可塑剤、遮熱材料(例えば、赤外線吸収能を有する無機遮熱性微粒子または有機遮熱性材料)、機能性無機化合物等の添加剤を1以上含有してよい。 A layer containing a known resin can be used as the other layer. Examples of the resin include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polytetrafluoroethylene, acrylic resin, polyamide, polyacetal, polycarbonate, polyethylene terephthalate among polyesters, polybutylene terephthalate, cyclic polyolefin, polyphenylene sulfide, Examples include polysulfone, polyethersulfone, polyarylate, liquid crystal polymer, polyimide, and thermoplastic elastomer. In addition, if necessary, the other layer may include the additives exemplified in the section [Additives] above, as well as a plasticizer, a heat-shielding material (for example, inorganic heat-shielding fine particles having infrared absorption ability or an organic It may contain one or more additives such as heat shielding materials) and functional inorganic compounds.
 本発明の好ましい一実施形態において、樹脂シートとガラスとを熱圧着する際の脱泡性に優れる観点から、本発明の樹脂シートは、その少なくとも一方の表面、好ましくはその両方の表面に、メルトフラクチャー法またはエンボス加工法等の従来公知の方法により付与される凹凸構造を有することが好ましい。メルトフラクチャーおよびエンボスの形状は、特に限定されず、従来公知のものを適宜選択してよい。 In a preferred embodiment of the present invention, at least one surface, preferably both surfaces, of the resin sheet of the present invention is coated with a melt from the viewpoint of excellent defoaming properties when the resin sheet and glass are thermocompression bonded. It is preferable to have an uneven structure imparted by a conventionally known method such as a fracture method or an embossing method. The shape of the melt fracture and emboss is not particularly limited, and conventionally known shapes may be appropriately selected.
 本発明の樹脂シートにおける層(x)1層の厚さは、好ましくは0.1mm以上、より好ましくは0.2mm以上、さらに好ましくは0.3mm以上、特に好ましくは0.4mm以上であり、また、好ましくは5mm以下、より好ましくは4mm以下、さらに好ましくは2mm以下、特に好ましくは1mm以下である。樹脂シートに複数の層(x)が含まれる場合、各層(x)の厚さは同じでも異なっていてもよい。 The thickness of one layer (x) in the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, and particularly preferably 0.4 mm or more, Also, it is preferably 5 mm or less, more preferably 4 mm or less, even more preferably 2 mm or less, and particularly preferably 1 mm or less. When the resin sheet includes a plurality of layers (x), the thickness of each layer (x) may be the same or different.
 本発明の樹脂シートの厚さは、好ましくは0.1mm以上、より好ましくは0.2mm以上、さらに好ましくは0.3mm以上、さらにより好ましくは0.4mm以上、とりわけ好ましくは0.5mm以上、とりわけより好ましくは0.6mm以上、とりわけさらに好ましくは0.7mm以上、特に好ましくは0.75mm以上であり、また、好ましくは20mm以下、より好ましくは15mm以下、さらに好ましくは10mm以下、さらにより好ましくは5mm以下、とりわけ好ましくは4mm以下、とりわけより好ましくは2mm以下、とりわけさらに好ましくは1mm以下である。 The thickness of the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, even more preferably 0.4 mm or more, and particularly preferably 0.5 mm or more. More preferably 0.6 mm or more, even more preferably 0.7 mm or more, particularly preferably 0.75 mm or more, and preferably 20 mm or less, more preferably 15 mm or less, still more preferably 10 mm or less, still more preferably is 5 mm or less, particularly preferably 4 mm or less, particularly more preferably 2 mm or less, and even more preferably 1 mm or less.
 樹脂シートの厚さは従来公知の方法、例えば接触式または非接触式の厚み計等を用いて測定される。樹脂シートは、ロール状に巻回された状態であっても、1枚ずつの枚葉シートの状態であってもよい。 The thickness of the resin sheet is measured using a conventionally known method, such as a contact or non-contact thickness gauge. The resin sheet may be in the state of being wound into a roll, or may be in the state of individual sheets.
 本発明の一実施形態において、本発明の樹脂シートに含まれる本発明のアイオノマー樹脂組成物の含有量は、得られる樹脂シートの透明性、耐着色性および耐クリープ性を高めやすい観点から、該樹脂シートの質量に対して、好ましくは90質量%以上、より好ましくは93質量%以上、さらに好ましくは95質量%以上、さらにより好ましくは98質量%以上であり、好ましくは100質量%以下である。 In one embodiment of the present invention, the content of the ionomer resin composition of the present invention contained in the resin sheet of the present invention is adjusted from the viewpoint of easily increasing the transparency, color resistance and creep resistance of the resulting resin sheet. It is preferably 90% by mass or more, more preferably 93% by mass or more, still more preferably 95% by mass or more, still more preferably 98% by mass or more, and preferably 100% by mass or less based on the mass of the resin sheet. .
 本発明の樹脂シートは、本発明のアイオノマー樹脂組成物の特性に起因して、透明性、徐冷時の透明性、耐着色性、ガラスとの接着性(標準条件下およびWet条件下)、および耐熱分解性に優れ、また、十分な耐クリープ性を有する。
 本発明の好適な実施形態において、本発明の樹脂シートは、本発明におけるアイオノマー樹脂組成物と同等のヘイズ、徐冷ヘイズ、黄色度、ガラスとの接着性、耐熱分解性、および耐クリープ性を有する。
Due to the properties of the ionomer resin composition of the present invention, the resin sheet of the present invention has transparency, transparency during slow cooling, color resistance, adhesion to glass (under standard conditions and wet conditions), and excellent resistance to thermal decomposition and sufficient creep resistance.
In a preferred embodiment of the present invention, the resin sheet of the present invention has the same haze, slow cooling haze, yellowness, adhesion to glass, thermal decomposition resistance and creep resistance as those of the ionomer resin composition of the present invention. have.
[樹脂シートの製造方法]
 本発明の樹脂シートの製造方法は特に限定されない。例えば、本発明におけるアイオノマー樹脂組成物を均一に混練した後、押出法、カレンダー法、プレス法、溶液キャスト法、溶融キャスト法、インフレーション法等の公知の製膜方法により層(x)を製造できる。層(x)は、単独で樹脂シートとして使用してよい。また、必要に応じて、2層以上の層(x)、もしくは1層以上の層(x)と1層以上の他の層とをプレス成形等で積層させて積層体を得るか、または2層以上の層(x)、もしくは1層以上の層(x)と1層以上の他の層とを共押出法により成形して積層体を得、この積層体を樹脂シートとして使用してもよい。積層体に複数の層(x)または複数の他の層が含まれる場合、各層(x)または各他の層を構成する樹脂または樹脂組成物は、同じでも異なっていてもよい。
[Method for manufacturing resin sheet]
The method for producing the resin sheet of the present invention is not particularly limited. For example, after uniformly kneading the ionomer resin composition of the present invention, the layer (x) can be produced by a known film-forming method such as an extrusion method, a calendar method, a press method, a solution casting method, a melt casting method, or an inflation method. . Layer (x) may be used alone as a resin sheet. In addition, if necessary, two or more layers (x), or one or more layers (x) and one or more other layers are laminated by press molding or the like to obtain a laminate, or two At least one layer (x), or at least one layer (x) and at least one other layer may be formed by a coextrusion method to obtain a laminate, and this laminate may be used as a resin sheet. good. When the laminate includes multiple layers (x) or multiple other layers, the resin or resin composition that constitutes each layer (x) or each other layer may be the same or different.
 公知の製膜方法のなかでも、押出機を用いて樹脂シートを製造する方法が好適に用いられる。押出時の樹脂温度または樹脂組成物温度は、押出機からの樹脂の吐出を安定化しやすく、機械トラブルを低減しやすい観点から、好ましくは150℃以上、より好ましくは170℃以上である。前記温度は、樹脂の分解および分解に伴う樹脂の劣化を低減しやすい観点から、好ましくは250℃以下、より好ましくは230℃以下である。また、揮発性物質を効率的に除去するために、減圧によって押出機のベント口から、揮発性物質を除去することが好ましい。 Among known film-forming methods, a method of producing a resin sheet using an extruder is preferably used. The resin temperature or the resin composition temperature during extrusion is preferably 150° C. or higher, more preferably 170° C. or higher, from the viewpoints of easily stabilizing the discharge of the resin from the extruder and easily reducing mechanical troubles. The temperature is preferably 250° C. or lower, more preferably 230° C. or lower, from the viewpoint of facilitating decomposition of the resin and deterioration of the resin accompanying the decomposition. Moreover, in order to remove the volatile substances efficiently, it is preferable to remove the volatile substances from the vent port of the extruder by reducing the pressure.
[合わせガラス中間膜および合わせガラス]
 本発明の樹脂シートは、合わせガラス中間膜(単に中間膜とも称する)として好適に使用できる。従って、本発明は、本発明の樹脂シートからなる合わせガラス中間膜を包含する。また、本発明は、2つのガラス板と、該2つのガラス板の間に配置された本発明の合わせガラス中間膜とを有する、合わせガラスも包含する。本発明の合わせガラスは、前記樹脂シートからなる合わせガラス中間膜を有するため、優れた透明性および耐着色性を有することができ、中間膜とガラスとの接着性に優れる。
[Laminated glass intermediate film and laminated glass]
The resin sheet of the present invention can be suitably used as an intermediate film for laminated glass (also simply referred to as an intermediate film). Therefore, the present invention includes a laminated glass interlayer made of the resin sheet of the present invention. The invention also includes a laminated glass comprising two glass sheets and a laminated glass interlayer of the invention arranged between the two glass sheets. Since the laminated glass of the present invention has the laminated glass intermediate film made of the resin sheet, it can have excellent transparency and color resistance, and has excellent adhesiveness between the intermediate film and the glass.
 本発明の中間膜と積層させるガラス板としては、例えば、フロートガラス、磨き板ガラス、型板ガラス、網入り板ガラス、熱線吸収板ガラス等の無機ガラスのほか、ポリメタクリル酸メチル、ポリカーボネート等の従来公知の有機ガラス等を使用してよい。これらは無色または有色のいずれであってもよい。これらは1種を使用してもよく、2種以上を併用してもよい。また、1枚のガラス板の厚さは、100mm以下であることが好ましく、2枚のガラス板の厚さは同じでも異なっていてもよい。 Examples of the glass plate to be laminated with the interlayer film of the present invention include inorganic glass such as float glass, polished plate glass, figured glass, wired plate glass, and heat-absorbing plate glass, as well as conventionally known organic glass such as polymethyl methacrylate and polycarbonate. Glass or the like may be used. They may be either colorless or colored. These may use 1 type and may use 2 or more types together. Moreover, the thickness of one glass plate is preferably 100 mm or less, and the thickness of the two glass plates may be the same or different.
 本発明の合わせガラスは、従来公知の方法で製造できる。その例としては、真空ラミネーター装置を用いる方法、真空バッグを用いる方法、真空リングを用いる方法、およびニップロールを用いる方法等が挙げられる。また、前記方法により圧着した後に、オートクレーブに投入してさらに接着する方法も挙げられる。 The laminated glass of the present invention can be produced by a conventionally known method. Examples thereof include a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll. Moreover, after crimping|bonding by the said method, the method of putting into an autoclave and further adhering is also mentioned.
 真空ラミネーター装置を用いる場合、例えば、1×10-6~1×10-1MPaの減圧下、60~200℃、特に80~160℃でガラス板、中間膜、および任意の層(例えば接着性樹脂層等)をラミネートすることにより、合わせガラスを製造できる。真空バッグまたは真空リングを用いる方法は、例えば欧州特許第1235683号明細書に記載されており、約2×10-2~3×10-2MPa程度の減圧下、100~160℃でガラス板および中間膜をラミネートすることにより、合わせガラスを製造できる。 When using a vacuum laminator device, for example, under a reduced pressure of 1×10 −6 to 1×10 −1 MPa, at 60 to 200° C., especially 80 to 160° C., a glass plate, an interlayer, and any layer (for example, adhesiveness A laminated glass can be manufactured by laminating a resin layer, etc.). A method using a vacuum bag or a vacuum ring is described, for example, in EP 1235683 , wherein a glass plate and a A laminated glass can be produced by laminating the intermediate film.
 ニップロールを用いる製造方法の例としては、ガラス板、中間膜および任意の層を積層し、中間膜の流動開始温度以下の温度でロールにより脱気した後、さらに流動開始温度に近い温度で圧着を行う方法が挙げられる。具体的には、例えば赤外線ヒーター等で30~70℃に加熱した後、ロールで脱気し、さらに50~120℃に加熱した後ロールで圧着させる方法が挙げられる。 As an example of a manufacturing method using nip rolls, a glass plate, an intermediate film and an arbitrary layer are laminated, degassed by rolls at a temperature below the flow start temperature of the intermediate film, and then crimped at a temperature close to the flow start temperature. method of doing so. Specifically, for example, after heating to 30 to 70° C. with an infrared heater or the like, degassing with rolls, further heating to 50 to 120° C., and pressing with rolls can be mentioned.
 オートクレーブに投入してさらに圧着を行う場合、オートクレーブ工程の運転条件は、合わせガラスの厚さおよび/または構成により適宜選択されるが、例えば0.5~1.5MPaの圧力下、100~160℃にて0.5~3時間処理することが好ましい。 When the laminated glass is put into an autoclave and further pressure-bonded, the operating conditions of the autoclave process are appropriately selected depending on the thickness and/or structure of the laminated glass. is preferably treated for 0.5 to 3 hours.
 本発明の合わせガラスは、本発明のアイオノマー樹脂組成物の特性に起因して、透明性、徐冷時の透明性、耐着色性、およびガラスとの接着性(標準条件下およびWet条件下)に優れ、また、十分な耐クリープ性を有する。
 本発明の好適な実施形態において、本発明の合わせガラスは、本発明におけるアイオノマー樹脂組成物と同等のヘイズ、徐冷ヘイズ、黄色度、ガラスとの接着性、および耐クリープ性を有する。
Due to the properties of the ionomer resin composition of the present invention, the laminated glass of the present invention has transparency, transparency during slow cooling, color resistance, and adhesion to glass (under standard conditions and under wet conditions). and has sufficient creep resistance.
In a preferred embodiment of the present invention, the laminated glass of the present invention has haze, slow cooling haze, yellowness, adhesion to glass, and creep resistance equivalent to those of the ionomer resin composition of the present invention.
 以下、実施例および比較例によって本発明を具体的に説明するが、本発明は下記実施例に限定されない。 The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples.
[原料樹脂およびアイオノマー樹脂の単量体単位の含有量]
〔原料樹脂〕
 実施例および比較例において原料として用いたエチレン-(メタ)アクリル酸エステル共重合体(X)を重トルエンまたは重THFに溶解させ、H-NMR(400MHz、日本電子株式会社製)を用いて、各単量体単位の含有量を求めた。
[Contents of monomer units of raw material resin and ionomer resin]
[Raw material resin]
Ethylene-(meth)acrylic acid ester copolymer (X) used as a raw material in Examples and Comparative Examples was dissolved in heavy toluene or heavy THF, and 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) was used. , the content of each monomer unit was determined.
〔アイオノマー樹脂〕
 実施例および比較例で得られたアイオノマー樹脂組成物について、アイオノマー樹脂における(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)、および(メタ)アクリル酸エステル単位(D)の含有量の分析を、以下のようにして行った。
 実施例および比較例で得られたアイオノマー樹脂組成物をそれぞれ脱水トルエン/脱水酢酸(75/25質量%)の混合溶媒に溶解し、100℃にて2時間反応させた後、アセトン/水(80/20質量%)の混合溶媒に再沈殿させることで、(メタ)アクリル酸中和物単位(B)を(メタ)アクリル酸単位(A)に変換した。次いで、水での十分な洗浄、および乾燥を実施した後、下記(1)~(3)を行った。
 (1)熱分解GC-MSにより、樹脂を構成する単量体単位の成分を分析した。
 (2)JIS K0070:1992に準じて、樹脂の酸価を測定した。
 (3)重水素化トルエンと重水素化メタノールとの混合溶媒を用いて、樹脂のH-NMR(400MHz、日本電子株式会社製)測定を行った。
 (4)また、実施例および比較例で得られたアイオノマー樹脂組成物を、それぞれ、硝酸によるマイクロ波分解前処理に付した後、ICP発光分析(Thermo Fisher Scientific iCAP6500Duo)に付すことにより、(メタ)アクリル酸中和物単位(B)の金属イオンの種類と量を同定した。
 前記(1)から、(メタ)アクリル酸エステル単位(D)および(メタ)アクリル酸単位(A)の種類と構造を同定した。その情報、ならびに前記(2)および(3)の情報から、エチレン単位(C)/(メタ)アクリル酸エステル単位(D)/((メタ)アクリル酸単位(A)と(メタ)アクリル酸中和物単位(B)の合計)の比率を算出した。さらに、前記(4)の情報からエチレン単位(C)/(メタ)アクリル酸エステル単位(D)/(メタ)アクリル酸単位(A)/(メタ)アクリル酸中和物単位(B)の比率を算出した。
[Ionomer resin]
Regarding the ionomer resin compositions obtained in Examples and Comparative Examples, the (meth)acrylic acid unit (A), the (meth)acrylic acid neutralized product unit (B), the ethylene unit (C), and the (meth)acrylic acid unit (B) in the ionomer resin ) Analysis of the content of acrylic acid ester units (D) was carried out as follows.
The ionomer resin compositions obtained in Examples and Comparative Examples were each dissolved in a mixed solvent of dehydrated toluene/dehydrated acetic acid (75/25% by mass), reacted at 100° C. for 2 hours, and then dissolved in acetone/water (80% by mass). /20% by mass), the neutralized (meth)acrylic acid unit (B) was converted to the (meth)acrylic acid unit (A). Then, after thoroughly washing with water and drying, the following (1) to (3) were carried out.
(1) The component of the monomer unit constituting the resin was analyzed by pyrolysis GC-MS.
(2) The acid value of the resin was measured according to JIS K0070:1992.
(3) 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) of the resin was measured using a mixed solvent of deuterated toluene and deuterated methanol.
(4) In addition, the ionomer resin compositions obtained in Examples and Comparative Examples were each subjected to microwave decomposition pretreatment with nitric acid, and then subjected to ICP emission spectrometry (Thermo Fisher Scientific iCAP6500Duo). ) The type and amount of metal ions in neutralized acrylic acid unit (B) were identified.
From the above (1), the types and structures of the (meth)acrylic acid ester unit (D) and the (meth)acrylic acid unit (A) were identified. From that information and the information in (2) and (3) above, ethylene unit (C) / (meth) acrylic acid ester unit (D) / ((meth) acrylic acid unit (A) and (meth) acrylic acid The ratio of the sum of hydrate units (B)) was calculated. Furthermore, from the information in (4) above, the ratio of ethylene units (C) / (meth)acrylic acid ester units (D) / (meth)acrylic acid units (A) / (meth)acrylic acid neutralized units (B) was calculated.
[アイオノマー樹脂組成物中および樹脂シート中の特定有機化合物の含有量]
 実施例および比較例で得られたアイオノマー樹脂組成物および樹脂シートについて、マルチプルヘッドスペース-ガスクロマトグラフ質量分析(MHE-GC/MS)により特定有機化合物の含有量を定量した。具体的には、ヘッドスペース装置G1888(アジレントテクノロジー社製)およびガスクロマトグラフ質量分析計6890N 5975C inert MDS(アジレントテクノロジー社製)を用い、凍結粉砕した各サンプル0.1gについて、下記条件で検出方法SIMにて測定を行い、検出器としてMSDを用いてデータを得た。
  ヘッドスペース条件:加熱温度120℃、加熱時間30分
  GC条件:カラム;DB-WaxUI(30m-0.25mm-0.5μm)、オーブン;40℃で5分間保持した後、10℃/分で240℃に昇温し、240℃で15分間保持、注入口;200℃、スプリット注入(20:1)
 5回連続して測定を行い、得られたデータからターゲット成分ピーク面積の総和をシミュレーションにより求めた。前記条件にて気固平衡に達しない化合物については、1回目の測定により得られたピーク面積より1点検量法にて定量を行った。
[Specific organic compound content in ionomer resin composition and resin sheet]
For the ionomer resin compositions and resin sheets obtained in Examples and Comparative Examples, the content of specific organic compounds was quantified by multiple headspace-gas chromatography-mass spectrometry (MHE-GC/MS). Specifically, using a head space device G1888 (manufactured by Agilent Technologies) and a gas chromatograph mass spectrometer 6890N 5975C inert MDS (manufactured by Agilent Technologies), 0.1 g of each freeze-ground sample was subjected to the detection method SIM under the following conditions. Data was obtained using MSD as a detector.
Headspace conditions: heating temperature 120 ° C., heating time 30 minutes GC conditions: column; DB-WaxUI (30 m-0.25 mm-0.5 μm), oven; after holding at 40 ° C. for 5 minutes, 240 at 10 ° C./min C. and held at 240.degree. C. for 15 minutes, inlet: 200.degree. C., split injection (20:1)
Measurement was performed five times in succession, and the total peak area of the target component was obtained by simulation from the obtained data. Compounds that did not reach gas-solid equilibrium under the above conditions were quantified by a one-point calibration method from the peak area obtained from the first measurement.
[アイオノマー樹脂組成物中および樹脂シート中の水の含有量]
 比較例2で得られたアイオノマー樹脂組成物および樹脂シートについて、カールフィッシャー滴定法により水の含有量を定量した。具体的には、水分気化装置VA-121(三菱化学社製)および微量水分率測定装置CA-200(三菱化学社製)を用い、各サンプル1gを水分気化装置の炉内の石英セル上に乗せ、200℃で加熱した際に発生した水蒸気を窒素ガスにより微量水分率測定装置の電解セル中に導入し、水分率を測定した。
[Water content in ionomer resin composition and resin sheet]
The water content of the ionomer resin composition and the resin sheet obtained in Comparative Example 2 was quantified by the Karl Fischer titration method. Specifically, using a moisture vaporizer VA-121 (manufactured by Mitsubishi Chemical Corporation) and a trace moisture content analyzer CA-200 (manufactured by Mitsubishi Chemical Corporation), 1 g of each sample was placed on a quartz cell in the furnace of the moisture vaporizer. The water vapor generated during heating at 200° C. was introduced into the electrolysis cell of the trace moisture content measuring device by nitrogen gas, and the moisture content was measured.
[耐熱分解性]
 JIS K7120:1987に準拠して、実施例および比較例で得られたアイオノマー樹脂組成物の耐熱分解性を評価した。具体的には、示差熱熱重量同時測定装置TG-DTA7200(株式会社日立ハイテクサイエンス製)を用い、昇温速度10℃/分、流量50mL/分の窒素雰囲気下で、各樹脂組成物から作製した各樹脂シートを20℃~550℃まで加熱した際の重量減少率を測定した。200℃時点の重量を基準に重量減少率が1%となる際の温度である1%重量減少温度(Td1)を耐熱分解性の指標とした。
[Heat decomposition resistance]
Thermal decomposition resistance of the ionomer resin compositions obtained in Examples and Comparative Examples was evaluated according to JIS K7120:1987. Specifically, using a simultaneous differential thermal thermogravimetric analyzer TG-DTA7200 (manufactured by Hitachi High-Tech Science Co., Ltd.), a temperature increase rate of 10 ° C./min and a flow rate of 50 mL/min under a nitrogen atmosphere were prepared from each resin composition. The weight reduction rate was measured when each resin sheet was heated to 20°C to 550°C. The 1% weight reduction temperature (Td1), which is the temperature at which the weight reduction rate reaches 1% based on the weight at 200° C., was used as an index of thermal decomposition resistance.
[黄色度(YI)]
 実施例および比較例で得られた各樹脂シートについて、測色色差計「ZE-2000」(日本電色工業株式会社製)を用い、JIS Z8722に準拠して測定を行った。得られた値を用い、JIS K7373に準拠して算出した黄色度の値を、該樹脂シートの黄色度(YI)として採用した。
[Yellowness index (YI)]
Each resin sheet obtained in Examples and Comparative Examples was measured according to JIS Z8722 using a colorimetric color difference meter "ZE-2000" (manufactured by Nippon Denshoku Industries Co., Ltd.). Using the obtained value, the yellowness index value calculated according to JIS K7373 was adopted as the yellowness index (YI) of the resin sheet.
[耐クリープ性]
 実施例および比較例で得られた各樹脂シートを、23℃、50%RH雰囲気下で1週間以上静置した。次いで、各樹脂シートから縦40mm×横5mmの試験片を切り出した。得られた試験片を動的粘弾性測定装置(株式会社UBM製)に設置し、JIS K 0129:2005に準拠した方法に従い、温度50~100℃、周波数0.1、0.5、1、5、10、50、100Hzの条件下、引張モードで動的粘弾性測定を行った。得られた貯蔵弾性率の測定結果から、温度-時間換算則を用いて、基準温度50℃での合成曲線(マスターカーブ)を作成した。該合成曲線から、周波数4.0×10-7Hzにおける貯蔵弾性率(E’(t1))および周波数2.0×10-7Hzにおける損失弾性率(E’’(t2))を読み取った。ポアソン比を0.5に固定し、下記式(A)により50℃、2.6×10秒後の緩和弾性率G(t)求め、その値を耐クリープ性の指標とて採用した。
  G(t)=E’(t1)/3-0.4×E’’(t2)/3   式(A)
 なお、これらの一連の計算は、前記動的粘弾性測定装置に付帯されている計算ソフト「RheoStation」(株式会社UBM製)を用いて行った。
[Creep resistance]
Each resin sheet obtained in Examples and Comparative Examples was allowed to stand in an atmosphere of 23° C. and 50% RH for one week or longer. Next, a test piece of 40 mm long×5 mm wide was cut out from each resin sheet. The obtained test piece was installed in a dynamic viscoelasticity measuring device (manufactured by UBM Co., Ltd.), and measured according to JIS K 0129: 2005 at a temperature of 50 to 100 ° C. and frequencies of 0.1, 0.5, 1, Dynamic viscoelasticity measurements were performed in tensile mode under conditions of 5, 10, 50 and 100 Hz. From the obtained storage modulus measurement results, a synthetic curve (master curve) at a reference temperature of 50° C. was created using the temperature-time conversion rule. Storage modulus (E′(t1)) at frequency 4.0×10 −7 Hz and loss modulus (E″(t2)) at frequency 2.0×10 −7 Hz were read from the synthetic curve. . With the Poisson's ratio fixed at 0.5, the relaxation modulus G(t) after 2.6×10 6 seconds at 50° C. was determined by the following formula (A), and the value was adopted as an index of creep resistance.
G(t)=E'(t1)/3-0.4×E''(t2)/3 Formula (A)
A series of these calculations were performed using calculation software "RheoStation" (manufactured by UBM Co., Ltd.) attached to the dynamic viscoelasticity measuring device.
[徐冷時の透明性(徐冷ヘイズ)]
 実施例および比較例で得られた各樹脂シートを30cm四方に切り出し、30cm四方で厚さ2.7mmのフロートガラス2枚に挟み、真空ラミネーター(日清紡メカトロニクス株式会社製1522N)に投入した。100℃で真空ラミネーター内を1分間減圧し、減圧度および温度を保持したまま30kPaで5分間プレスして、仮接着体を得た。得られた仮接着体をオートクレーブに投入し、140℃、1.2MPaで30分間処理して、合わせガラスを得た。
 得られた合わせガラスを140℃まで加熱した後、0.1℃/分の速度で23℃まで徐冷した。徐冷操作後の合わせガラスのヘイズをヘイズメーターHZ-1(スガ試験機株式会社製)を用いてJIS K7136:2000に準拠して測定した。
[Transparency during slow cooling (slow cooling haze)]
Each resin sheet obtained in Examples and Comparative Examples was cut into a 30 cm square, sandwiched between two float glasses of 30 cm square and 2.7 mm thick, and placed in a vacuum laminator (1522N manufactured by Nisshinbo Mechatronics Co., Ltd.). The vacuum laminator was evacuated at 100° C. for 1 minute, and pressed at 30 kPa for 5 minutes while maintaining the degree of vacuum and temperature to obtain a temporary bonded body. The obtained temporarily bonded body was put into an autoclave and treated at 140° C. and 1.2 MPa for 30 minutes to obtain laminated glass.
After heating the obtained laminated glass to 140° C., it was gradually cooled to 23° C. at a rate of 0.1° C./min. The haze of the laminated glass after slow cooling was measured using a haze meter HZ-1 (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7136:2000.
[樹脂シートおよび合わせガラスの外観評価]
 実施例および比較例で得られた各樹脂シートにおいて、樹脂シート中央付近の30cm四方の領域を、外観評価観察用の領域に設定した。該領域を目視観察し、樹脂シートのゲル化物および気泡の有無を確認し、下記基準で評価した。
 また、上述の方法と同様にして得られた合わせガラス(30cm四方)を目視観察し、合わせガラスにおけるゲル化物および気泡の有無を確認し、下記基準で評価した。
 A:確認されたゲル化物および気泡は5個未満
 B:確認されたゲル化物および気泡は5個以上
 前記基準において、A評価は、樹脂シートまたは合わせガラスの外観が良好であることを意味する。
[Appearance Evaluation of Resin Sheet and Laminated Glass]
In each of the resin sheets obtained in Examples and Comparative Examples, a 30 cm square area near the center of the resin sheet was set as an appearance evaluation observation area. The region was visually observed to confirm the presence or absence of gelled substances and air bubbles in the resin sheet, and evaluation was made according to the following criteria.
In addition, the laminated glass (30 cm square) obtained in the same manner as described above was visually observed to confirm the presence or absence of gelled substances and air bubbles in the laminated glass, and evaluated according to the following criteria.
A: Less than 5 gelled substances and bubbles confirmed B: 5 or more gelled substances and bubbles confirmed In the above criteria, A evaluation means that the appearance of the resin sheet or laminated glass is good.
[標準条件(Dry条件)下におけるガラスとの接着性]
 上述の方法と同様にして得られた合わせガラスについて、国際公開第2019/027865号公報に剥離接着力測定(Peel Adhesion Measurement)の方法として記載されている方法に従い、剥離力PDryを測定した。具体的には、万能試験機(MTS Criterion M45)を用いて、23℃、50%RH条下、1cm/分の速度で90°方向に剥離試験を行った。剥離力PDryおよび剥離試験片の幅Wから、Dry条件下における剥離エネルギーγDryを下記式により算出した。
  γDry[kJ/m]=PDry[kJ/m]/W[m]
[Adhesion to glass under standard conditions (dry conditions)]
For the laminated glass obtained in the same manner as described above, the peel strength PDry was measured according to the method described as a peel adhesion measurement method in WO 2019/027865. Specifically, using a universal testing machine (MTS Criterion M45), a peel test was conducted in the direction of 90° at 23°C and 50% RH at a rate of 1 cm/min. From the peel force P Dry and the width W of the peel test piece, the peel energy γ Dry under the Dry condition was calculated by the following formula.
γ Dry [kJ/m 2 ]=P Dry [kJ/m]/W [m]
[Wet条件下におけるガラスとの接着性]
 高湿度条件下におけるガラスとの接着性を、下記方法でWet条件下における剥離エネルギーを測定することにより評価した。
 上述の方法と同様にして得られた合わせガラスについて、国際公開第2019/027865号公報に剥離接着力測定(Peel Adhesion Measurement)の方法として記載されている方法に従い、剥離力PWetを測定した。具体的には、万能試験機(MTS Criterion M45)を用いて、23℃、50%RH条下、1cm/分の速度で90°方向に剥離試験を行い、試験片が100mm剥離した時点でガラスと剥離面との間に水を垂らして剥離面をWet状態にし、その後0.025cm/分の速度で剥離を再開し、Wet状態における剥離力PWetを測定した。剥離力PWetおよび剥離試験片の幅Wから、Wet条件下における剥離エネルギーγWetを下記式より算出した。
  γWet[kJ/m]=PWet[kJ/m]/W[m]
[Adhesion to glass under wet conditions]
The adhesion to glass under high humidity conditions was evaluated by measuring the peel energy under wet conditions by the following method.
For the laminated glass obtained in the same manner as described above, the peel strength P Wet was measured according to the method described as a peel adhesion measurement method in WO 2019/027865. Specifically, using a universal testing machine (MTS Criterion M45), a peel test was performed in a 90° direction at a rate of 1 cm/min at 23°C and 50% RH. Water was dripped between and the release surface to make the release surface wet, and then the release was restarted at a rate of 0.025 cm/min to measure the release force P Wet in the wet state. From the peel force P Wet and the width W of the peel test piece, the peel energy γ Wet under wet conditions was calculated from the following formula.
γ Wet [kJ/m 2 ]=P Wet [kJ/m]/W [m]
[原料樹脂]
 実施例および比較例において、アイオノマー樹脂の原料として用いた各エチレン-(メタ)アクリル酸エステル共重合体(X)のメタクリル酸メチル(MMA)変性量またはアクリル酸エチル(EA)変性量、およびMFRを表1に示す。
 EMMA1としては住友化学(株)製「アクリフト」(登録商標)WH401Fを用い、EEA1としては日本ポリエチレン(株)製「レクスパール」(登録商標)A4250を用いた。
 なお、MFRは、JIS K7210-1:2014に準拠して測定した。具体的には、各原料樹脂をシリンダ内で溶融し、190℃、2.16kg荷重条件の下で、シリンダ底部に設置された公称孔径2.095mmのダイから押し出し、10分間あたりに押し出される樹脂量(g/10分)を測定し、その値をMFRとして採用した。
[Raw material resin]
Methyl methacrylate (MMA) modified amount or ethyl acrylate (EA) modified amount of each ethylene-(meth)acrylic acid ester copolymer (X) used as a raw material for the ionomer resin in Examples and Comparative Examples, and MFR are shown in Table 1.
As EMMA1, "Aclift" (registered trademark) WH401F manufactured by Sumitomo Chemical Co., Ltd. was used, and as EEA1, "Rexpearl" (registered trademark) A4250 manufactured by Japan Polyethylene Co., Ltd. was used.
The MFR was measured according to JIS K7210-1:2014. Specifically, each raw material resin is melted in a cylinder and extruded from a die with a nominal hole diameter of 2.095 mm installed at the bottom of the cylinder under a load of 2.16 kg at 190 ° C. Resin extruded per 10 minutes The amount (g/10 min) was measured and the value was taken as the MFR.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

[実施例1]
 反応槽に、表1に記載のEMMA2、100質量部を導入し、そこにトルエン233質量部を加えて、0.02MPa加圧下、60℃で撹拌し、EMMA2を溶解させた。得られた溶液に水酸化ナトリウムのメタノール溶液(20質量%)100質量部を添加し、100℃で4時間撹拌し、EMMA2をけん化して、メタクリル酸メチル単位の一部をメタクリル酸ナトリウム単位に変換した。次いで、この溶液を50℃まで冷却した後、塩酸(20質量%)83質量部を反応液中に添加し、50℃で1時間撹拌して、メタクリル酸ナトリウム単位の一部をメタクリル酸に変換し、アイオノマー樹脂を含む溶液を得た。
 得られた溶液にトルエン/メタノール(75/25質量%)の混合溶媒をアイオノマー樹脂濃度が10質量%となるように添加して、該溶液を希釈した。次いで、得られたアイオノマー樹脂を含む希釈溶液を34℃に調整した後、前記希釈溶液に34℃のメタノールを、アイオノマー樹脂を含む溶液100質量部に対して430質量部添加して、アイオノマー樹脂を含む粒状物を析出させた。次いで、得られた粒状物を濾取した後、濾取した粒状物100質量部と水/メタノール(50/50質量%)の混合溶媒600質量部とを混合した。前記混合により得られたスラリーを40℃で1時間撹拌し、その後、粒状物を室温にて濾取した。水/メタノールの混合溶媒による粒状物の洗浄をさらに6回行った後、24時間以上真空乾燥し、粒状のアイオノマー樹脂を得た。得られた粒状アイオノマー樹脂100質量部およびトルエン0.0015質量部を、バッチ式溶融混練機を用いて210℃、回転数90rpm、3分間溶融混錬し、アイオノマー樹脂組成物を得た。
 その後、得られたアイオノマー樹脂組成物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmの樹脂シートを得た。
 アイオノマー樹脂、アイオノマー樹脂組成物および樹脂シートについて、分析および評価を行った。その結果を表2に示す。
[Example 1]
100 parts by mass of EMMA2 shown in Table 1 was introduced into the reactor, and 233 parts by mass of toluene was added thereto and stirred at 60° C. under a pressure of 0.02 MPa to dissolve EMMA2. 100 parts by mass of a methanol solution of sodium hydroxide (20% by mass) was added to the resulting solution and stirred at 100°C for 4 hours to saponify EMMA2 to convert part of the methyl methacrylate units into sodium methacrylate units. Converted. Next, after cooling this solution to 50°C, 83 parts by mass of hydrochloric acid (20% by mass) was added to the reaction solution and stirred at 50°C for 1 hour to convert part of the sodium methacrylate units into methacrylic acid. to obtain a solution containing an ionomer resin.
A mixed solvent of toluene/methanol (75/25 mass %) was added to the resulting solution so that the ionomer resin concentration was 10 mass % to dilute the solution. Next, after the diluted solution containing the obtained ionomer resin was adjusted to 34° C., 430 parts by mass of methanol at 34° C. was added to the diluted solution with respect to 100 parts by mass of the solution containing the ionomer resin to convert the ionomer resin. Granules containing were precipitated out. Next, after filtering the obtained granular material, 100 parts by mass of the filtered granular material and 600 parts by mass of a mixed solvent of water/methanol (50/50% by mass) were mixed. The slurry obtained by the above mixing was stirred at 40° C. for 1 hour, after which the granules were collected by filtration at room temperature. After washing the granules with a mixed solvent of water/methanol six times, the granules were vacuum-dried for 24 hours or longer to obtain a granular ionomer resin. 100 parts by mass of the obtained granular ionomer resin and 0.0015 parts by mass of toluene were melt-kneaded at 210° C. and 90 rpm for 3 minutes using a batch-type melt-kneader to obtain an ionomer resin composition.
Thereafter, the obtained ionomer resin composition was compression molded for 5 minutes under heating at 210° C. and a pressure of 4.9 MPa (50 kgf/cm 2 ) to obtain a resin sheet with a thickness of 0.8 mm.
An ionomer resin, an ionomer resin composition and a resin sheet were analyzed and evaluated. Table 2 shows the results.
[実施例2]
 EMMA2に代えてEMMA3を用い、溶融混練時にトルエン0.0015質量部に代えてキシレン0.0045質量部を用いたこと以外は実施例1と同様にして、アイオノマー樹脂、アイオノマー樹脂組成物および樹脂シートを得、分析および評価を行った。その結果を表2に示す。
[Example 2]
An ionomer resin, an ionomer resin composition and a resin sheet were prepared in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2, and 0.0045 parts by mass of xylene was used instead of 0.0015 parts by mass of toluene during melt-kneading. were obtained, analyzed and evaluated. Table 2 shows the results.
[実施例3]
 EMMA2に代えてEMMA3を用い、溶融混練時にトルエン0.0015質量部に代えてメタクリル酸0.0008質量部を用いたこと以外は実施例1と同様にして、アイオノマー樹脂、アイオノマー樹脂組成物および樹脂シートを得、分析および評価を行った。その結果を表2に示す。
[Example 3]
An ionomer resin, an ionomer resin composition and a resin were prepared in the same manner as in Example 1 except that EMMA3 was used instead of EMMA2, and 0.0008 parts by mass of methacrylic acid was used instead of 0.0015 parts by mass of toluene during melt-kneading. Sheets were obtained, analyzed and evaluated. Table 2 shows the results.
[実施例4]
 EMMA2に代えてEMMA3を用い、溶融混練時にトルエン0.0015質量部に代えてメタクリル酸メチル0.0003質量部を用いたこと以外は実施例1と同様にして、アイオノマー樹脂、アイオノマー樹脂組成物および樹脂シートを得、分析および評価を行った。その結果を表2に示す。
[Example 4]
An ionomer resin, an ionomer resin composition and A resin sheet was obtained and analyzed and evaluated. Table 2 shows the results.
[実施例5]
 EMMA2に代えてEEA1を用い、溶融混練時にトルエン0.0015質量部に代えてアクリル酸メチル0.0075質量部を用いたこと以外は実施例1と同様にして、アイオノマー樹脂、アイオノマー樹脂組成物および樹脂シートを得、分析および評価を行った。その結果を表2に示す。
[Example 5]
An ionomer resin, an ionomer resin composition and A resin sheet was obtained and analyzed and evaluated. Table 2 shows the results.
[実施例6]
 EMMA2に代えてEMMA1を用い、水酸化ナトリウムのメタノール溶液(20質量%)の添加量および塩酸(20質量%)の添加量をそれぞれ80質量部および66質量部に変更し、溶融混練時にトルエン0.0015質量部に代えてメタノール0.0300質量部を用いたこと以外は実施例1と同様にして、アイオノマー樹脂、アイオノマー樹脂組成物および樹脂シートを得、分析および評価を行った。その結果を表2に示す。
[Example 6]
EMMA1 was used instead of EMMA2, the amount of methanol solution of sodium hydroxide (20% by mass) and the amount of hydrochloric acid (20% by mass) added were changed to 80 parts by mass and 66 parts by mass, respectively, and toluene 0 was added during melt kneading. An ionomer resin, an ionomer resin composition and a resin sheet were obtained, analyzed and evaluated in the same manner as in Example 1 except that 0.0300 parts by mass of methanol was used instead of 0.0015 parts by mass. Table 2 shows the results.
[実施例7]
 EMMA2に代えてEEA1を用い、溶融混練時にトルエン0.0015質量部に代えてアクリル酸0.0030質量部を用いたこと以外は実施例1と同様にして、アイオノマー樹脂、アイオノマー樹脂組成物および樹脂シートを得、分析および評価を行った。その結果を表2に示す。
[Example 7]
An ionomer resin, an ionomer resin composition and a resin were prepared in the same manner as in Example 1 except that EEA1 was used instead of EMMA2 and 0.0030 parts by mass of acrylic acid was used instead of 0.0015 parts by mass of toluene during melt-kneading. Sheets were obtained, analyzed and evaluated. Table 2 shows the results.
[実施例8]
 溶融混練時にトルエン0.0015質量部に代えてトルエン0.0350質量部を用いたこと以外は実施例1と同様にして、アイオノマー樹脂、アイオノマー樹脂組成物および樹脂シートを得、分析および評価を行った。その結果を表2に示す。
[Example 8]
An ionomer resin, an ionomer resin composition and a resin sheet were obtained, analyzed and evaluated in the same manner as in Example 1 except that 0.0350 parts by mass of toluene was used instead of 0.0015 parts by mass of toluene during melt-kneading. rice field. Table 2 shows the results.
[実施例9]
 EMMA2に代えてEMMA3を用い、溶融混練時にトルエン0.0015質量部に代えてメタノール0.0340質量部を用いたこと以外は実施例1と同様にして、アイオノマー樹脂、アイオノマー樹脂組成物および樹脂シートを得、分析および評価を行った。その結果を表2に示す。
[Example 9]
An ionomer resin, an ionomer resin composition and a resin sheet were prepared in the same manner as in Example 1 except that EMMA3 was used instead of EMMA2 and 0.0340 parts by mass of methanol was used instead of 0.0015 parts by mass of toluene during melt-kneading. were obtained, analyzed and evaluated. Table 2 shows the results.
[比較例1]
 溶融混練時にメタノールを用いなかったこと以外は実施例6と同様にして、アイオノマー樹脂および樹脂シートを得、分析および評価を行った。その結果を表2に示す。
[Comparative Example 1]
An ionomer resin and a resin sheet were obtained, analyzed and evaluated in the same manner as in Example 6, except that methanol was not used during melt-kneading. Table 2 shows the results.
[比較例2]
 溶融混練時にメタノール0.03質量部に代えて水0.0380質量部を用いたこと以外は実施例6と同様にして、アイオノマー樹脂、アイオノマー樹脂組成物および樹脂シートを得、分析および評価を行った。その結果を表2に示す。
[Comparative Example 2]
An ionomer resin, an ionomer resin composition and a resin sheet were obtained in the same manner as in Example 6 except that 0.0380 parts by mass of water was used instead of 0.03 parts by mass of methanol during melt-kneading, and analysis and evaluation were performed. rice field. Table 2 shows the results.
[比較例3]
 溶融混練時にキシレン0.0045質量部に代えてメタクリル酸0.1200質量部を用いたこと以外は実施例2と同様にして、アイオノマー樹脂、アイオノマー樹脂組成物および樹脂シートを得、分析および評価を行った。その結果を表2に示す。
[Comparative Example 3]
An ionomer resin, an ionomer resin composition and a resin sheet were obtained in the same manner as in Example 2 except that 0.1200 parts by mass of methacrylic acid was used instead of 0.0045 parts by mass of xylene during melt-kneading, and analyzed and evaluated. went. Table 2 shows the results.
[比較例4]
 EMMA2に代えてEMMA4を用い、水酸化ナトリウムのメタノール溶液(20質量%)の添加量および塩酸(20質量%)の添加量をそれぞれ72質量部および59質量部に変更し、溶融混練時にトルエン0.0015質量部に代えてメタノール0.0120質量部を用いたこと以外は実施例1と同様にして、アイオノマー樹脂、アイオノマー樹脂組成物および樹脂シートを得、分析および評価を行った。その結果を表2に示す。
[Comparative Example 4]
EMMA4 was used instead of EMMA2, and the amount of methanol solution of sodium hydroxide (20% by mass) and the amount of hydrochloric acid (20% by mass) added were changed to 72 parts by mass and 59 parts by mass, respectively. An ionomer resin, an ionomer resin composition and a resin sheet were obtained, analyzed and evaluated in the same manner as in Example 1 except that 0.0120 parts by mass of methanol was used instead of 0.0015 parts by mass. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されているように、実施例1~9で得られたアイオノマー樹脂組成物は、透明性およびガラス接着性が高く、かつ、着色性が低いことが確認された。また、実施例1~9で得られたアイオノマー樹脂組成物は、高い耐熱分解性、および十分な耐クリープ性を有することが確認された。
 これに対して、比較例1で得られたアイオノマー樹脂および比較例2~4で得られたアイオノマー樹脂組成物は、透明性、ガラス接着性および耐着色性の少なくとも1つが劣っていた。
As shown in Table 2, the ionomer resin compositions obtained in Examples 1 to 9 were confirmed to have high transparency and adhesion to glass, and low colorability. Moreover, it was confirmed that the ionomer resin compositions obtained in Examples 1 to 9 had high thermal decomposition resistance and sufficient creep resistance.
In contrast, the ionomer resin obtained in Comparative Example 1 and the ionomer resin compositions obtained in Comparative Examples 2 to 4 were inferior in at least one of transparency, glass adhesion and color resistance.
 本発明のアイオノマー樹脂組成物からは、透明性、ガラス接着性、耐着色性および耐熱分解性に優れ、かつ、十分な耐クリープ性を有する樹脂シートを作製できる。従って、この樹脂シートは、合わせガラス中間膜として、例えば、建築・構造用途(例えば、ファサード、外壁若しくは屋根のためのラミネート、パネル、ドア、窓、壁、屋根、サンルーフ、遮音壁、表示窓、バルコニー、手摺壁等の建材、会議室の仕切りガラス部材、ソーラーパネル等)の合わせガラスの中間膜として、または乗物用途の合わせガラス(例えば、自動車用フロントガラス、自動車用サイドガラス、自動車用サンルーフ、自動車用リアガラス、ヘッドアップディスプレイ用ガラス等)の中間膜として、好適に使用できる。また、本発明の合わせガラスは、建築・構造用途または乗物用途の合わせガラスとして、好適に使用できる。 From the ionomer resin composition of the present invention, it is possible to produce a resin sheet that is excellent in transparency, glass adhesion, color resistance, thermal decomposition resistance, and sufficient creep resistance. Therefore, this resin sheet can be used as an interlayer film for laminated glass, for example, for architectural and structural applications (for example, laminates for facades, exterior walls or roofs, panels, doors, windows, walls, roofs, sunroofs, sound insulation walls, display windows, balconies, etc.). , building materials such as handrail walls, partition glass members for conference rooms, solar panels, etc.), or laminated glass for vehicle applications (e.g., automobile windshield, automobile side glass, automobile sunroof, automobile rear glass, head-up display glass, etc.). In addition, the laminated glass of the present invention can be suitably used as laminated glass for architectural/structural use or vehicle use.

Claims (6)

  1.  (メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)を含むアイオノマー樹脂と、有機化合物とを含んでなる樹脂組成物であって、
     前記単位(A)および前記単位(B)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であり、
     前記有機化合物は、23℃において液体であり、芳香族化合物、アルコール類、有機カルボン酸、および有機カルボン酸エステルからなる群から選択される少なくとも1つの有機化合物であり、
     前記有機化合物の含有量は1質量ppm以上300質量ppm以下である、
    樹脂組成物。
    A resin composition comprising an ionomer resin containing (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and an organic compound,
    The total content of the units (A) and the units (B) is 6 to 10 mol% based on the total monomer units constituting the ionomer resin,
    The organic compound is at least one organic compound that is liquid at 23° C. and is selected from the group consisting of aromatic compounds, alcohols, organic carboxylic acids, and organic carboxylic acid esters;
    The content of the organic compound is 1 mass ppm or more and 300 mass ppm or less,
    Resin composition.
  2.  前記アイオノマー樹脂は、(メタ)アクリル酸エステル単位(D)をさらに含み、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である、請求項1に記載の樹脂組成物。 The ionomer resin further includes (meth)acrylic acid ester units (D), and the total content of the units (A), the units (B) and the units (D) is The resin composition according to claim 1, which is 6 to 10 mol% based on the monomer unit.
  3.  前記有機化合物は、トルエン、キシレン、エタノール、1-ブタノール、メタクリル酸、アクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、アクリル酸メチル、アクリル酸エチル、およびアクリル酸n-ブチルからなる群から選択される少なくとも1つの有機化合物である、請求項1または2に記載の樹脂組成物。 The organic compound is from toluene, xylene, ethanol, 1-butanol, methacrylic acid, acrylic acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, methyl acrylate, ethyl acrylate, and n-butyl acrylate. 3. The resin composition according to claim 1, which is at least one organic compound selected from the group consisting of:
  4.  請求項1~3のいずれかに記載の樹脂組成物を含む層を1層以上有する、樹脂シート。 A resin sheet having one or more layers containing the resin composition according to any one of claims 1 to 3.
  5.  請求項4に記載の樹脂シートからなる合わせガラス中間膜。 A laminated glass intermediate film made of the resin sheet according to claim 4.
  6.  2つのガラス板と、該2つのガラス板の間に配置された請求項5に記載の合わせガラス中間膜とを有する、合わせガラス。 A laminated glass comprising two glass plates and the laminated glass intermediate film according to claim 5 arranged between the two glass plates.
PCT/JP2022/024898 2021-06-23 2022-06-22 Resin composition formed by containing ionomer resin, resin sheet, and laminated glass WO2022270542A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023530093A JPWO2022270542A1 (en) 2021-06-23 2022-06-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-104272 2021-06-23
JP2021104272 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022270542A1 true WO2022270542A1 (en) 2022-12-29

Family

ID=84545441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024898 WO2022270542A1 (en) 2021-06-23 2022-06-22 Resin composition formed by containing ionomer resin, resin sheet, and laminated glass

Country Status (2)

Country Link
JP (1) JPWO2022270542A1 (en)
WO (1) WO2022270542A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336531A (en) * 1993-05-27 1994-12-06 Nippon Pariren Kk Formation of poly-p-xylylene film on ionomer resin
JP2001031915A (en) * 1999-07-22 2001-02-06 Bridgestone Corp Anisotropically electroconductive film
JP2012136609A (en) * 2010-12-24 2012-07-19 Du Pont Mitsui Polychem Co Ltd Resin composition, and laminate and method for manufacturing the same
WO2020241515A1 (en) * 2019-05-31 2020-12-03 株式会社クラレ Ionomer, resin sheet, and laminated glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336531A (en) * 1993-05-27 1994-12-06 Nippon Pariren Kk Formation of poly-p-xylylene film on ionomer resin
JP2001031915A (en) * 1999-07-22 2001-02-06 Bridgestone Corp Anisotropically electroconductive film
JP2012136609A (en) * 2010-12-24 2012-07-19 Du Pont Mitsui Polychem Co Ltd Resin composition, and laminate and method for manufacturing the same
WO2020241515A1 (en) * 2019-05-31 2020-12-03 株式会社クラレ Ionomer, resin sheet, and laminated glass

Also Published As

Publication number Publication date
JPWO2022270542A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
KR101346872B1 (en) Fluororesin film and fluororesin-laminated acrylic resin film
JP6913264B1 (en) Ionomer resin, resin sheet and laminated glass
EP2090617B1 (en) (meth)acrylic resin composition, imidized (meth)acrylic resin composition, and film obtained by molding them
JP6370683B2 (en) Thermoplastic resin film and method for producing the same, decorative film, laminated film, and laminated body
JP2011089027A (en) Acrylic resin film and method for production thereof
JP2016094537A (en) Thermoplastic resin composition and manufacturing method therefor, molded body and thermoplastic resin film
WO2021124950A1 (en) Method for producing ionomer resin
JP7124246B1 (en) ionomer resin
JP7186329B2 (en) Ionomer resin, resin sheet and laminated glass
WO2022270542A1 (en) Resin composition formed by containing ionomer resin, resin sheet, and laminated glass
JP5667533B2 (en) Acrylic thermoplastic resin composition
WO2023032909A1 (en) Ionomer resin composition, resin sheet, and laminated glass
WO2023008485A1 (en) Ionomer resin particulate production method
WO2022270540A1 (en) Resin sheet having layer that contains ionomer resin composition, and laminated glass
JP2018053210A (en) Multi-layered body and manufacturing method thereof, and composite body and method for manufacturing the same
JP2019172788A (en) (meth)acrylic-based rubber-containing graft copolymer, and acrylic resin film comprising same
JP2018193468A (en) Film composed of resin composition
JP2018127602A (en) Film comprising resin composition
WO2022270545A1 (en) Ionomer resin composition, resin sheet, and laminated glass
JP2016094535A (en) Thermoplastic resin composition and manufacturing method therefor, molded body, thermoplastic resin film, laminate film and laminate
JP2016094536A (en) Thermoplastic resin film and manufacturing method therefor, optical film, polarizer protective film and phase difference film
JP2013023598A (en) Acrylic thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530093

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE