WO2022270540A1 - Resin sheet having layer that contains ionomer resin composition, and laminated glass - Google Patents

Resin sheet having layer that contains ionomer resin composition, and laminated glass Download PDF

Info

Publication number
WO2022270540A1
WO2022270540A1 PCT/JP2022/024892 JP2022024892W WO2022270540A1 WO 2022270540 A1 WO2022270540 A1 WO 2022270540A1 JP 2022024892 W JP2022024892 W JP 2022024892W WO 2022270540 A1 WO2022270540 A1 WO 2022270540A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionomer resin
meth
units
resin composition
acrylic acid
Prior art date
Application number
PCT/JP2022/024892
Other languages
French (fr)
Japanese (ja)
Inventor
卓郎 新村
淳裕 中原
芳聡 淺沼
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2023530091A priority Critical patent/JPWO2022270540A1/ja
Publication of WO2022270540A1 publication Critical patent/WO2022270540A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to a resin sheet having one or more layers containing an ionomer resin composition, a laminated glass intermediate film comprising the resin sheet, and a laminated glass having the laminated glass intermediate film.
  • Ionomer resins which are neutralized ethylene-unsaturated carboxylic acid copolymers, are used in interlayer films for laminated glass because of their excellent transparency and adhesion to glass (for example, Patent Document 1).
  • Patent Document 1 As for the adhesion of ionomer resin to float glass, it is known that the adhesion to the air surface is worse than the adhesion to the tin surface.
  • Patent Literature 2 describes a method of improving adhesion to an ionomer resin sheet by using a glass sheet coated with an alcohol solution of a metal chelate.
  • Patent Document 3 describes a resin composition containing an ionomer resin and an adhesion promoter, wherein the adhesion promoter is a dialkoxysilane compound.
  • Patent Documents 4 and 5 describe a laminated molded product in which the surface of an ionomer resin sheet is subjected to oxidation treatment such as corona treatment or ozone treatment to modify the surface and improve printability or interlayer adhesion.
  • the laminated glass described in Patent Document 2 has a large variation in adhesiveness and insufficient adhesiveness to the air surface. Further, in some cases, the resin composition described in Patent Document 3 is required to have improved adhesion to the air surface. Furthermore, the laminated molded bodies described in Patent Documents 4 and 5 do not have the adhesiveness required for laminated glass. Furthermore, in recent years, the demand for laminated glass has increased, and regardless of the production conditions of laminated glass, it is required to maintain high transparency, etc. for laminated glass having a laminated glass intermediate film using an ionomer resin. has become SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a resin sheet having excellent adhesion to glass and excellent transparency.
  • a resin sheet having one or more layers containing an ionomer resin composition wherein the layer containing the ionomer resin composition forms at least one surface of the resin sheet,
  • the contact angle of the surface measured in accordance with JIS K6768 is 60 to 75 degrees
  • the ionomer resin composition contains (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B ), and an ionomer resin containing ethylene units (C), and a salt composed of a strong acid and a strong base, wherein the total content of the units (A) and the units (B) is the total content of the ionomer resin.
  • a resin sheet wherein the content of the salt is 6 to 10 mol % based on the monomer units, and the content of the salt is 1 to 400 mg/kg based on the total mass of the ionomer resin composition.
  • the layer containing the ionomer resin composition forms both surfaces of the resin sheet, and the contact angles of both surfaces measured according to JIS K6768 are 60 to 75 degrees.
  • the ionomer resin further contains (meth)acrylic acid ester units (D), and the total content of the units (A), the units (B) and the units (D) constitutes the ionomer resin.
  • the salt comprises at least one cation selected from the group consisting of sodium ions and potassium ions and at least one anion selected from the group consisting of halogen ions, nitrate ions and sulfate ions.
  • An interlayer film for laminated glass comprising the resin sheet according to any one of [1] to [5].
  • a laminated glass comprising two glass plates and the interlayer film for laminated glass according to [6] disposed between the two glass plates.
  • the resin sheet of the present invention has one or more layers containing an ionomer resin composition (hereinafter also referred to as layer (x)).
  • the layer (x) forms at least one surface of the resin sheet, and the surface has a contact angle of 60 to 75 degrees measured according to JIS K6768.
  • the layer (x) forms both surfaces of the resin sheet, and the contact angles of both surfaces measured according to JIS K6768 are 60 to 75 degrees. is.
  • the resin sheet of the present invention exhibits excellent adhesion to glass because the contact angle is 60 degrees or more and 75 degrees or less. Surprisingly, it was found that this excellent adhesion was exhibited not only to the tin surface but also to the air surface.
  • the contact angle is preferably 61 degrees or more, more preferably 62 degrees or more, and preferably 74 degrees or less, more preferably 73 degrees or less. When the contact angle is equal to or greater than the lower limit and equal to or less than the upper limit, excellent adhesiveness to glass tends to be exhibited. More specifically, the contact angle is measured by the method described in Examples.
  • the resin sheet may be surface-treated.
  • surface treatment include corona treatment, plasma treatment, flame plasma treatment, surface oxidation treatment such as ozone treatment, and primer treatment in which a mixture of a silane compound and alcohol is applied. These surface treatments may be performed singly or in combination of two or more. Corona treatment is preferred as the surface treatment.
  • the corona treatment method is not particularly limited, and either a batch method or an in-line method may be used.
  • the dose of corona treatment can be controlled by device power and/or feed rate. From the viewpoint of easily controlling the contact angle within a suitable range, the dose of corona treatment is preferably 0.01 J/cm 2 or more, more preferably 0.05 J/cm 2 or more, and still more preferably 0.1 J. /cm 2 or more, preferably 50 J/cm 2 or less, more preferably 40 J/cm 2 or less, and even more preferably 30 J/cm 2 or less.
  • the resin sheet of the present invention may be composed of only one layer (x), or may be a laminate containing at least one layer (x).
  • the structure of the laminate is not particularly limited. Examples thereof include a laminate consisting of two or more layers (x), a laminate including one or more layers (x) and one or more other layers, and the like.
  • the resin or resin composition that constitutes each layer (x) or each other layer may be the same or different.
  • a layer containing a known resin can be used as the other layer.
  • the resin include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polytetrafluoroethylene, acrylic resin, polyamide, polyacetal, polycarbonate, polyethylene terephthalate among polyesters, polybutylene terephthalate, cyclic polyolefin, polyphenylene sulfide, Examples include polysulfone, polyethersulfone, polyarylate, liquid crystal polymer, polyimide, and thermoplastic elastomer.
  • the other layer may include additives exemplified in the section [Additives] described later, as well as plasticizers, heat-shielding materials (for example, inorganic heat-shielding fine particles having infrared absorption ability or organic It may contain one or more additives such as a heat shielding material) and a functional inorganic compound.
  • additives exemplified in the section [Additives] described later, as well as plasticizers, heat-shielding materials (for example, inorganic heat-shielding fine particles having infrared absorption ability or organic It may contain one or more additives such as a heat shielding material) and a functional inorganic compound.
  • At least one surface, preferably both surfaces, of the resin sheet of the present invention is coated with a melt from the viewpoint of excellent defoaming properties when the resin sheet and glass are thermocompression bonded. It is preferable to have an uneven structure imparted by a conventionally known method such as a fracture method or an embossing method.
  • the shape of the melt fracture and emboss is not particularly limited, and conventionally known shapes may be appropriately selected.
  • the thickness of one layer (x) in the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, and particularly preferably 0.4 mm or more, Also, it is preferably 5 mm or less, more preferably 4 mm or less, even more preferably 2 mm or less, and particularly preferably 1 mm or less.
  • the thickness of each layer (x) may be the same or different.
  • the thickness of the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, even more preferably 0.4 mm or more, and particularly preferably 0.5 mm or more. More preferably 0.6 mm or more, even more preferably 0.7 mm or more, particularly preferably 0.75 mm or more, and preferably 20 mm or less, more preferably 15 mm or less, still more preferably 10 mm or less, still more preferably is 5 mm or less, particularly preferably 4 mm or less, particularly more preferably 2 mm or less, and even more preferably 1 mm or less.
  • the thickness of the resin sheet is measured using a conventionally known method, such as a contact or non-contact thickness gauge.
  • the resin sheet may be in the state of being wound into a roll, or may be in the state of individual sheets.
  • the components contained in the ionomer resin composition contained in the layer (x), that is, the ionomer resin and the salt composed of strong acid and strong base will be described.
  • the ionomer resin in the present invention contains (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and the units (A) and the units (B) is 6 to 10 mol % based on the total monomer units constituting the ionomer resin.
  • the term "unit” means a "derived structural unit", for example, a (meth)acrylic acid unit refers to a structural unit derived from (meth)acrylic acid, (meth)acrylic acid
  • the acid-neutralized unit indicates a structural unit derived from a (meth)acrylic acid-neutralized product
  • the ethylene unit indicates a structural unit derived from ethylene.
  • “(meth)acrylic acid” indicates methacrylic acid or acrylic acid.
  • the total content is 6 mol % or more, preferably 6.5 mol % or more, more preferably 6.5 mol % or more, from the viewpoint of easily improving the transparency of the ionomer resin composition (especially the transparency during slow cooling) and the adhesion to glass. is 7.0 mol% or more, more preferably 7.5 mol% or more, and from the viewpoint of easily obtaining more suitable moldability, 10 mol% or less, preferably 9.9 mol% or less, more preferably is 9.5 mol % or less.
  • the total content of the units (A) and the units (B) can be adjusted according to the preparation method of the ionomer resin. More specifically, when an ionomer resin is prepared by a method comprising an ethylene-(meth)acrylic acid ester copolymer as a raw material and a saponification reaction step and a demetallization reaction step of the copolymer, ethylene-( Saponification reaction and demetallization reaction for converting (meth)acrylic acid ester units in the meth)acrylic acid ester copolymer into (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units (B) It can be adjusted by each reactivity (conversion rate).
  • Examples of monomers constituting the (meth)acrylic acid unit (A) include acrylic acid and methacrylic acid, and methacrylic acid is preferred from the viewpoint of heat resistance and adhesion to glass.
  • the (meth)acrylic acid units may be used singly or in combination of two or more.
  • the content of the (meth)acrylic acid unit (A) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is 6 to 6 based on the total monomer units constituting the ionomer resin. There is no particular limitation as long as it is within the range of 10 mol %.
  • the content of (meth)acrylic acid units (A) in the ionomer resin is preferably 4.5 mol% or more, based on the total monomer units constituting the ionomer resin, and more Preferably 5.0 mol% or more, more preferably 5.5 mol% or more, particularly preferably 5.8 mol% or more, and preferably 9.0 mol% or less, more preferably 8.5 mol% Below, more preferably 8.0 mol % or less, particularly preferably 7.5 mol % or less.
  • the content of the unit (A) is at least the lower limit, the transparency of the ionomer resin composition and the excellent adhesion to glass are likely to be obtained. Moreover, when it is equal to or less than the above upper limit, it is easy to obtain more excellent moldability.
  • the neutralized (meth)acrylic acid unit (B) is preferably the neutralized (meth)acrylic acid unit (A).
  • the neutralized (meth)acrylic acid is obtained by replacing hydrogen ions of (meth)acrylic acid with metal ions.
  • the metal ions include ions of monovalent metals such as lithium, sodium and potassium, and ions of polyvalent metals such as magnesium, calcium, zinc, aluminum and titanium. Such metal ions may be used singly or in combination of two or more. For example, it may be a combination of one or more monovalent metal ions and one or more divalent metal ions.
  • the content of the (meth)acrylic acid neutralized unit (B) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is the total monomer units constituting the ionomer resin. As a standard, it is not particularly limited as long as it is within the range of 6 to 10 mol %. In one embodiment of the present invention, the content of (meth)acrylic acid neutralized units (B) is preferably 0.65 mol % or more, more preferably 0.65 mol % or more, based on the total monomer units constituting the ionomer resin.
  • the content of the unit (B) is at least the lower limit, it is easy to obtain better transparency and elastic modulus, and when it is at most the upper limit, an increase in melt viscosity during molding is suppressed.
  • Cheap it is easy to obtain better transparency and elastic modulus, and when it is at most the upper limit, an increase in melt viscosity during molding is suppressed.
  • Each content of the unit (A) and the unit (B) is obtained by using an ethylene-(meth)acrylic acid ester copolymer as a raw material, and ionomer by a method including a saponification reaction step and a demetallization reaction step of the copolymer.
  • the (meth)acrylic acid ester unit in the ethylene-(meth)acrylic acid ester copolymer is replaced with the (meth)acrylic acid unit (A) and the (meth)acrylic acid neutralized product unit (B ) can be adjusted by each reactivity of the saponification reaction and the demetallization reaction.
  • the content of ethylene units (C) is preferably 80 mol% or more, more preferably 85 mol% or more, still more preferably 88 mol% or more, and from the viewpoint of easily increasing the transparency of the ionomer resin composition (especially the transparency during slow cooling), preferably 94 mol % or less, more preferably 92 mol % or less.
  • ⁇ (Meth) acrylic acid ester unit (D)> The ionomer resin in the present invention, in addition to the (meth)acrylic acid unit (A), the (meth)acrylic acid neutralized unit (B), and the ethylene unit (C), from the viewpoint of easily obtaining higher transparency, Furthermore, it is preferable that the (meth)acrylic acid ester unit (D) is included.
  • the ionomer resin contains the (meth)acrylic acid ester unit (D), the total content of the unit (A), the unit (B) and the unit (D) increases the transparency (especially during slow cooling). transparency), it is preferably 6 to 10 mol % based on the total monomer units constituting the ionomer resin.
  • the ionomer resin in the present invention comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), ethylene units (C), and ( Including the meth)acrylic acid ester unit (D), the total content of the unit (A), the unit (B) and the unit (D) is 6 based on the total monomer units constituting the ionomer resin. ⁇ 10 mol%.
  • the ionomer resin contains (meth)acrylic acid ester units (D), the total content of the units (A), the units (B) and the units (D) is not more than the upper limit, the ionomer resin composition It is easy to suppress the increase in the melt viscosity during the molding process of the product, and thereby, it is easy to obtain the ionomer resin composition with better moldability. Further, when the total content is at least the lower limit, it is easy to obtain higher transparency of the ionomer resin composition (especially transparency during slow cooling).
  • the total content of the units (A), the units (B) and the units (D) provides higher transparency (especially slow cooling 6 mol% or more, preferably 6.5 mol% or more, more preferably 7.0 mol% or more, still more preferably 7.5 mol%
  • the content is 10 mol % or less, preferably 9.9 mol % or less, more preferably 9.5 mol % or less.
  • the total content of the units (A), the units (B) and the units (D) can be adjusted depending on the raw material of the ionomer resin. More specifically, when an ethylene-(meth)acrylic acid ester copolymer is used as a raw material and an ionomer resin is prepared by a method including a saponification reaction step and a demetallization reaction step of the copolymer, the ionomer resin It can be adjusted by the (meth)acrylic acid ester modification amount of the raw material ethylene-(meth)acrylic acid ester copolymer. Further, as described in US Pat. No. 8,399,096, when ethylene and (meth)acrylic acid are used as raw materials and these are polymerized to prepare an ionomer resin, ethylene and (meth)acrylic acid to be copolymerized It can be adjusted by the ratio.
  • Examples of monomers constituting the (meth)acrylate unit (D) include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and isopropyl (meth)acrylate.
  • n-butyl (meth)acrylate isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, amyl (meth)acrylate, isoamyl (meth)acrylate, ( n-hexyl meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, pentadecyl (meth)acrylate, dodecyl (meth)acrylate, isobornyl (meth)acrylate, (meth)acrylic acid Phenyl, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, glycidyl (meth)acrylate, and (meth)acrylic acid allyl and the like.
  • preferred monomers from the viewpoint of transparency or heat resistance are methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, ( n-butyl meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, and t-butyl (meth)acrylate, more preferred monomers are methyl (meth)acrylate, Ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and more preferred monomers are ( Methyl meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and a particularly preferred monomer is methyl (meth)acrylate. These monomers may be used
  • the content of the (meth)acrylic acid ester units (D) in the ionomer resin is not particularly limited.
  • the content of (meth)acrylic acid ester units (D) in the ionomer resin is preferably greater than 0 mol %, more preferably more than 0 mol %, based on the total monomer units constituting the ionomer resin. is 0.01 mol% or more, more preferably 0.05 mol% or more, particularly preferably 0.08 mol% or more, and preferably 1.0 mol% or less, more preferably 0.7 mol% or less , more preferably 0.5 mol % or less.
  • the content of the unit (D) is at least the lower limit and at most the upper limit, higher transparency of the ionomer resin composition can be easily obtained.
  • the ionomer resin contains the (meth)acrylic acid ester unit (D)
  • the content of the unit (D) is obtained by using an ethylene-(meth)acrylic acid ester copolymer as a raw material and saponifying the copolymer. and a demetallization reaction step, the (meth)acrylic acid ester unit (D) in the ethylene-(meth)acrylic acid ester copolymer is replaced with the (meth)acrylic acid unit (A ) can be adjusted by the reactivity of the saponification reaction.
  • the ionomer resin in the present invention comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and optionally included (meth)acrylic acid ester units ( It may contain monomeric units other than D).
  • Examples of other monomer units include a carboxylic acid unit (A2) other than the (meth)acrylic acid unit (A), and a neutralized carboxylic acid unit other than the (meth)acrylic acid neutralized unit (B). (B2) and the like.
  • Examples of monomers constituting the carboxylic acid unit (A2) include itaconic acid, maleic anhydride, monomethyl maleate, and monoethyl maleate, with monomethyl maleate and monoethyl maleate being preferred.
  • Examples of the monomer constituting the neutralized carboxylic acid unit (B2) include neutralized units of the neutralized carboxylic acid unit (A2).
  • the neutralized carboxylic acid is obtained by replacing hydrogen ions of carboxylic acid with metal ions.
  • Examples of the metal ions include those similar to the metal ions in the neutralized (meth)acrylic acid unit (B) described above, and the metal ions may be used singly or in combination of two or more. These other monomer units may be used singly or in combination of two or more.
  • the total content thereof for example the total content of (A2) and (B2), may be appropriately selected within a range that does not impair the effects of the present invention.
  • the total monomer units constituting the ionomer resin preferably 5 mol% or less, more preferably 3 mol% or less, still more preferably 1 mol% or less, and preferably 0.01 mol% or more, More preferably, it is 0.1 mol % or more.
  • (Meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C) in the ionomer resin in the present invention and (meth)acrylic acid ester units when included ( D) and other monomeric unit contents (e.g., unit (A2) and unit (B2)) are determined by first identifying the monomeric units in the ionomer resin by pyrolysis gas chromatography, then It can be determined by using magnetic resonance spectroscopy (NMR) and elemental analysis. More specifically, it can be determined by the method described in Examples. It can also be determined by a method combining the above analysis method with IR and/or Raman analysis. Prior to these analyses, it is preferable to remove components other than the ionomer resin by reprecipitation or Soxhlet extraction.
  • NMR magnetic resonance spectroscopy
  • the degree of branching per 1000 carbon atoms of the ionomer resin of the present invention is not particularly limited, and is preferably 5-30, more preferably 6-20.
  • the degree of branching is the temperature at which the ionomer resin is polymerized, for example, when an ethylene-(meth)acrylic acid ester copolymer is used as a raw material and the ionomer resin is synthesized by a method including a saponification reaction step of the copolymer. can be adjusted by the polymerization temperature when synthesizing the ethylene-(meth)acrylic acid ester copolymer.
  • the degree of branching per 1000 carbons can be measured by the DDMAS method using solid-state NMR.
  • the content of the ionomer resin is preferably 90% by mass or more, more preferably 90% by mass or more, based on the total mass of the ionomer resin composition, from the viewpoint of easily increasing the excellent adhesion to glass of the resulting ionomer resin composition and the transparency. is 95% by mass or more, more preferably 98% by mass or more, still more preferably 99% by mass or more, and preferably less than 100% by mass, more preferably 99.99% by mass or less.
  • the ionomer resin composition in the present invention contains a salt composed of a strong acid and a strong base (hereinafter also simply referred to as "salt") in addition to the ionomer resin.
  • the salt content is 1-400 mg/kg based on the total mass of the ionomer resin composition.
  • the present inventors have found that the resin sheet of the present invention satisfies the requirements of a contact angle of 60 to 75 degrees as described above, and the ionomer resin has the (meth)acrylic acid unit (A) and (meth)acrylic acid as described above.
  • the glass of the resin sheet (not only the tin surface but also the air In addition to high adhesion to the surface), it was found that high transparency can be achieved. On the other hand, if any one of the above three requirements is not satisfied, the resin sheet cannot achieve both high adhesion to glass and high transparency.
  • the present inventors have found that when the ionomer resin composition contains 1 to 400 mg/kg of salt, it is possible to further achieve high thermal decomposition resistance of the ionomer resin composition.
  • the ionomer resin composition contains a salt within the above range, the ionomer resin composition is excellent in thermal decomposition resistance. This is believed to be due to the fact that the action can suppress the (meth)acrylic acid unit (A) in the ionomer resin from desorbing due to heat. Surprisingly, both the adhesion to glass and the thermal decomposition resistance of the ionomer resin composition sharply decreased when the salt content was less than 1 mg/kg, which is also shown in the comparative examples described later. ing.
  • the content of the salt is preferably 3 mg/kg or more, more preferably 5 mg/kg or more, based on the total mass of the ionomer resin composition, from the viewpoint of easily improving thermal decomposition resistance.
  • the total mass of the ionomer resin composition is preferably 380 mg/kg or less, more preferably 340 mg/kg or less, and still more preferably 300 mg/kg. kg or less, particularly preferably 200 mg/kg or less.
  • the salt content in the ionomer resin composition can be measured using ion chromatography, for example, by the method described in Examples.
  • the salt is not particularly limited, and examples thereof include metal salts of alkali metals and/or alkaline earth metals composed of strong acids and strong bases. These salts may be used singly or in combination of two or more.
  • alkali metal salts include lithium salts, sodium salts, potassium salts, rubidium salts, cesium salts, and the like.
  • Preferred alkali metal salts are lithium salt, sodium salt, and potassium salt, more preferred are sodium salt and potassium salt, and still more preferred is sodium salt, from the viewpoint of easily increasing the thermal decomposition resistance of the ionomer resin composition.
  • alkaline earth metal salts include beryllium salts, magnesium salts, calcium salts, strontium salts, barium salts, and the like.
  • Preferred alkaline earth metal salts are magnesium salts and calcium salts from the viewpoint of easily increasing the thermal decomposition resistance of the ionomer resin composition.
  • more preferable salts include at least one cation selected from the group consisting of sodium ion, potassium ion, magnesium ion and calcium ion, halogen ion, sulfate ion, Salts comprising at least one anion selected from the group consisting of nitrate ions and sulfonate ions, more preferably salts comprising at least one cation selected from the group consisting of sodium ions and potassium ions, and halogen It is a salt comprising at least one anion selected from the group consisting of ions, sulfate ions and nitrate ions.
  • Examples of specific preferred salts include sodium chloride, potassium chloride, magnesium chloride, calcium chloride, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, sodium nitrate, potassium nitrate, magnesium nitrate, calcium nitrate, p-toluenesulfonic acid. Sodium, potassium p-toluenesulfonate, magnesium p-toluenesulfonate, and calcium p-toluenesulfonate.
  • More preferred salts are sodium chloride, potassium chloride, sodium sulfate, potassium sulfate, sodium nitrate, and potassium nitrate, and more preferred salts are sodium chloride, sodium sulfate, and Sodium nitrate.
  • the method of adding a salt to the ionomer resin composition is not particularly limited. ) A method of obtaining an ionomer resin composition by separately adding a salt in the ionomer resin preparation process, and (III) A method of preparing an ionomer resin containing no salt and then adding a salt to the resin to obtain an ionomer resin composition. methods and the like. Among these methods, the method (I) is preferable from the viewpoint of easily dispersing the salt uniformly in the ionomer resin composition, thereby easily improving the transparency and thermal decomposition resistance.
  • a method for adjusting the content of the salt in the ionomer resin composition can be appropriately selected according to the method for containing the salt.
  • a salt when added by the above method (I), it can be adjusted by the washing degree of the obtained resin. More specifically, the salt content in the ionomer resin composition can be adjusted by the number of washings in the step of washing the obtained resin with a washing liquid.
  • the cleaning liquid include solvents that are good solvents for salts and poor solvents for resins, such as water, alcohols such as methanol, ketones such as acetone, and mixed solvents thereof.
  • the dispersion state of the salt in the ionomer resin composition is not particularly limited, but from the viewpoint of easily improving the adhesion to glass, transparency, and thermal decomposition resistance, it is preferable that the salt is uniformly dispersed in the ionomer resin composition.
  • the ionomer resin composition in the present invention may further contain additives, if necessary.
  • additives that may optionally be included include UV absorbers, anti-aging agents, antioxidants, thermal degradation inhibitors, light stabilizers, anti-adhesive agents, lubricants, release agents, polymer processing aids, Examples include antistatic agents, flame retardants, dyes, pigments, organic dyes, matting agents, and phosphors.
  • ultraviolet absorbers, anti-aging agents, antioxidants, heat deterioration inhibitors, light stabilizers, anti-sticking agents, lubricants, release agents, polymer processing aids, and organic dyes are preferred.
  • the additives contained may be used singly or in combination of two or more.
  • a UV absorber is a compound that has the ability to absorb UV rays, and has the function of mainly converting light energy into heat energy.
  • UV absorbers include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic esters, and formamidines.
  • an ultraviolet absorber it may be used alone or in combination of two or more.
  • Benzotriazoles are preferable as UV absorbers because they are highly effective in suppressing deterioration of optical properties such as coloration due to exposure to UV light.
  • preferred benzotriazoles include 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (manufactured by BASF; trade name: TINUVIN329), 2 -(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (manufactured by BASF; trade name: TINUVIN234), 2,2'-methylenebis[6-(2H -benzotriazol-2-yl)-4-t-octylphenol] (manufactured by ADEKA Corporation; trade name: ADEKA STAB LA-31), and 2-(5-octylthio-2H-benzotriazol-2-yl)-6 -tert-butyl-4-methylphenol
  • triazine UV absorbers examples include 2,4,6-tris(2-hydroxy-4-hexyloxy-3-methylphenyl)-1,3,5-triazine (manufactured by ADEKA Corporation; trade name : Adekastab LA-F70), its analogues hydroxyphenyltriazine-based UV absorbers (manufactured by BASF; trade names: TINUVIN477 and TINUVIN460), and 2,4-diphenyl-6-(2-hydroxy-4-hexyloxy phenyl)-1,3,5-triazine and the like. When triazines are used, they may be used singly or in combination of two or more.
  • anti-aging agents examples include known agents.
  • specific anti-aging agents include hydroquinone, hydroquinone monomethyl ether, 2,5-di-t-butylphenol, 2,6-di(t-butyl)-4-methylphenol, mono (or di, or tri ) ( ⁇ -methylbenzyl)phenol and other phenolic compounds; 2,2′-methylenebis(4-ethyl-6-t-butylphenol), 4,4′-butylidenebis(3-methyl-6-t-butylphenol), bisphenol compounds such as 4,4'-thiobis (3-methyl-6-t-butylphenol); benzimidazole compounds such as 2-mercaptobenzimidazole and 2-mercaptomethylbenzimidazole; 6-ethoxy-1,2- Amine-ketone compounds such as dihydro-2,2,4-trimethylquinoline, reaction products of diphenylamine and acetone, 2,2,4-trimethyl-1,2-dihydroquinoline polymers; N-phenyl-1-na
  • Antioxidants are effective by themselves to prevent oxidative deterioration of resins in the presence of oxygen.
  • Examples thereof include phosphorus antioxidants, hindered phenol antioxidants, thioether antioxidants, and the like. When antioxidants are used, they may be used alone or in combination of two or more. From the viewpoint of the effect of preventing deterioration of optical properties due to coloring, a phosphorus antioxidant and a hindered phenol antioxidant are preferable, and a combination of a phosphorus antioxidant and a hindered phenol antioxidant is more preferable.
  • the amount of phosphorus-based antioxidant used is preferably 1:5 in mass ratio. ⁇ 2:1, more preferably 1:2 to 1:1.
  • Examples of preferred phosphorus antioxidants include 2,2-methylenebis(4,6-di-t-butylphenyl)octylphosphite (manufactured by ADEKA Corporation; trade name: ADEKA STAB HP-10), Tris (2 ,4-di-t-butylphenyl)phosphite (manufactured by BASF; trade name: IRGAFOS168), 3,9-bis(2,6-di-t-butyl-4-methylphenoxy)-2,4,8 , 10-tetraoxa-3,9-diphosphaspiro[5.5]undecane (manufactured by ADEKA Corporation; trade name: ADEKA STAB PEP-36).
  • ADEKA STAB PEP-36 When using a phosphorus-based antioxidant, it may be used alone or in combination of two or more.
  • hindered phenolic antioxidants examples include pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] (manufactured by BASF; trade name: IRGANOX1010), Octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate (manufactured by BASF; trade name: IRGANOX1076) and the like.
  • hindered phenol-based antioxidants When hindered phenol-based antioxidants are used, they may be used alone or in combination of two or more.
  • Thermal degradation inhibitors can prevent thermal degradation of resins by scavenging polymer radicals that are generated when exposed to high heat under virtually oxygen-free conditions.
  • preferred heat deterioration inhibitors include 2-t-butyl-6-(3′-t-butyl-5′-methyl-hydroxybenzyl)-4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd.; trade name : Sumilizer GM), 2,4-di-t-amyl-6-(3′,5′-di-t-amyl-2′-hydroxy- ⁇ -methylbenzyl)phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd.; trade name: Sumilizer GS) and the like.
  • the heat deterioration inhibitor When the heat deterioration inhibitor is used, it may be used alone or in combination of two or more.
  • a light stabilizer is a compound that has the function of scavenging radicals that are mainly generated by light oxidation.
  • preferred light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton. When light stabilizers are used, they may be used singly or in combination of two or more.
  • anti-adhesion agents include salts or esters of fatty acids, esters of polyhydric alcohols, inorganic salts, inorganic oxides, and particulate resins.
  • preferred anti-adhesion agents include calcium stearate, calcium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, silicon dioxide (manufactured by Evonik; trade name: Aerosil), and particulate acrylic resins.
  • an anti-tacking agent it may be used alone or in combination of two or more.
  • lubricants examples include stearic acid, behenic acid, stearamic acid, methylenebisstearamide, hydroxystearic triglyceride, paraffin wax, ketone wax, octyl alcohol, and hydrogenated oil. When a lubricant is used, it may be used alone or in combination of two or more.
  • release agents include higher alcohols such as cetyl alcohol and stearyl alcohol; glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride. When a release agent is used, it may be used alone or in combination of two or more.
  • polymer particles having a particle size of 0.05 to 0.5 ⁇ m which can be produced by an emulsion polymerization method, are usually used.
  • the polymer particles may be monolayer particles composed of a polymer having a single composition ratio and a single intrinsic viscosity, or may be multilayer particles composed of two or more polymers having different composition ratios or intrinsic viscosities. .
  • polymer processing aids they may be used alone or in combination of two or more. Among them, particles having a two-layer structure having an inner layer of a polymer layer having a low intrinsic viscosity and an outer layer of a polymer layer having a high intrinsic viscosity of 5 dl/g or more are preferred.
  • the intrinsic viscosity of the polymeric processing aid is preferably 3-6 dl/g. If the intrinsic viscosity is too low, the effect of improving the moldability tends to be low, and if the intrinsic viscosity is too high, the molding processability of the copolymer tends to deteriorate.
  • a compound that has the function of converting ultraviolet light into visible light is preferably used as the organic dye.
  • organic dyes When organic dyes are used, they may be used singly or in combination of two or more.
  • phosphors examples include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent whitening agents, and fluorescent bleaching agents. When phosphors are used, they may be used singly or in combination of two or more.
  • the content of various additives can be appropriately selected within a range that does not impair the effects of the present invention, and the total content of various additives is, with respect to the total mass of the ionomer resin composition, It is preferably 7% by mass or less, more preferably 5% by mass or less, and even more preferably 4% by mass or less.
  • Various additives may be added when manufacturing the ionomer resin composition, may be added after manufacturing the ionomer resin composition, or may be added when manufacturing the resin sheet described below.
  • the ionomer resin composition in the present invention may have a shape such as pellets in order to improve convenience during storage, transportation, or molding.
  • the pelletization can be carried out, for example, by cutting strands obtained by a melt extrusion method.
  • the temperature of the ionomer resin composition during pelletization by melt extrusion is preferably 150° C. or higher, more preferably 170° C. or higher, from the viewpoint of easily stabilizing the discharge from the extruder.
  • the temperature is preferably 250° C. or lower, more preferably 230° C. or lower, from the viewpoint of easily suppressing thermal decomposition and deterioration of the ionomer resin.
  • the ionomer resin composition of the present invention has high thermal decomposition resistance, problems such as the generation of black foreign matter due to thermal decomposition of the ionomer resin are less likely to occur when the ionomer resin composition is pelletized by the melt extrusion method.
  • the method for producing the ionomer resin composition in the present invention is not particularly limited.
  • the ionomer resin composition may be produced by any of the methods (I) to (III) described above as the method of adding a salt to the ionomer resin composition.
  • the salt is easily dispersed uniformly in the ionomer resin composition, thereby easily obtaining improved adhesion to glass, transparency and thermal decomposition resistance.
  • the method (I) is preferred, wherein a salt is formed in the process of preparing the ionomer resin to obtain an ionomer resin composition comprising the ionomer resin and the salt. This method (I) will be described in detail below.
  • an ethylene-(meth)acrylic acid ester copolymer (X) is used as a starting material, and all or part of the (meth)acrylic acid ester units in the copolymer are (meth)acrylic converted to acid units and neutralized (meth)acrylic acid units, (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), ethylene units (C) and optionally (meth )
  • a crude ionomer resin containing acrylic acid ester units (D) is prepared (step i), a poor solvent is added to the resulting solution containing the crude ionomer resin, and granules containing the crude ionomer resin (hereinafter simply “ (also referred to as "particulate matter”) is precipitated (step ii), and then the precipitated particulate matter is washed with a washing liquid (step iii).
  • Step (i)> A method of converting all or part of the (meth)acrylic acid ester units in the ethylene-(meth)acrylic acid ester copolymer (X) to (meth)acrylic acid units and neutralized (meth)acrylic acid units
  • an ethylene-(meth)acrylic acid ester copolymer (X) is saponified with a strong base to convert all or part of the (meth)acrylic acid ester units into neutralized (meth)acrylic acid units.
  • a method (hereinafter also referred to as method (1)) of demetallizing some of the neutralized (meth)acrylic acid units in the reaction mixture to convert them to (meth)acrylic acid units is exemplified.
  • Examples of methods other than method (1) include ethylene-(meth)acrylic acid neutralized copolymer obtained by saponification in method (1) or ethylene-(meth)acrylic acid ester-(meth)acrylic acid All the (meth)acrylic acid neutralized units in the hydropolymer are demetallized with a strong acid, converted to (meth)acrylic acid units, and ethylene-(meth)acrylic acid copolymers or ethylene-(meth)acrylic acid units are obtained.
  • a method of obtaining an acrylic acid ester-(meth)acrylic acid copolymer and then neutralizing a part of the (meth)acrylic acid units in the obtained copolymer with metal ions hereinafter, method (2) Also called).
  • the strong base used in the saponification reaction and the strong acid used in the demetallization reaction are neutralized to form a salt composed of a strong acid and a strong base.
  • a part of this salt is left to obtain an ionomer resin composition comprising an ionomer resin and a salt after step (iii) described below.
  • Examples of monomers constituting the (meth)acrylate units of the ethylene-(meth)acrylate copolymer (X) include methyl (meth)acrylate, ethyl (meth)acrylate, (meth)acrylate ) n-propyl acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, (meth) ) amyl acrylate, isoamyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, pentadecyl (meth)acrylate, dodecyl (meth)acrylate , isobornyl (meth)acrylate, phenyl (meth)acrylate,
  • preferred monomers are methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, ( Isobutyl meth)acrylate, sec-butyl (meth)acrylate, and t-butyl (meth)acrylate, more preferred monomers are methyl (meth)acrylate, ethyl (meth)acrylate, (meth)acrylate, ) n-propyl acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and more preferred monomers are methyl (meth)acrylate, (meth) They are n-butyl acrylate and isobutyl (meth)acrylate, and a particularly preferred monomer is methyl (meth)acrylate.
  • the monomers may be used
  • ethylene-(meth)acrylic acid ester copolymer (X) examples include ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacryl Ethyl acid copolymer, ethylene-n-propyl acrylate copolymer, ethylene-n-propyl methacrylate copolymer, ethylene-isopropyl acrylate copolymer, ethylene-isopropyl methacrylate copolymer, ethylene-acrylic acid n-butyl copolymer, ethylene-n-butyl methacrylate copolymer, ethylene-sec-butyl acrylate copolymer, ethylene-sec-butyl methacrylate copolymer and the like.
  • copolymers As these copolymers, commercially available products may be used, and those synthesized by the high-temperature, high-pressure radical polymerization method described in US2013/0274424, JP-A-2006-233059, or JP-A-2007-84743 may be used.
  • Examples of the commercially available products include "Aclift” (registered trademark) WD301F and WH401F manufactured by Sumitomo Chemical Co., Ltd., and "Rekspearl” (registered trademark) A4250 manufactured by Nippon Polyethylene Co., Ltd., and the like.
  • the content of (meth)acrylate units in the ethylene-(meth)acrylate copolymer (X) is preferably 6 mol% or more, more preferably 6.5 mol% or more, and still more preferably 7 mol. % or more, particularly preferably 7.5 mol % or more, and preferably 10 mol % or less, more preferably 9.9 mol % or less, still more preferably 9.5 mol % or less.
  • the content of (meth)acrylic acid ester units in the copolymer (X) is determined by the (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units in the resulting crude ionomer resin and ionomer resin.
  • the content of the (meth)acrylic acid ester unit in the copolymer (X) is the lower limit
  • the resulting ionomer resin composition is more suitable when the content is equal to or less than the upper limit. It is easy to obtain good moldability.
  • the content of (meth)acrylic acid ester units in the copolymer (X) can be adjusted by the copolymerization ratio of ethylene and (meth)acrylic acid ester.
  • the content is the (meth)acrylic acid unit (A), the (meth)acrylic acid neutralized product unit (B), and the ethylene unit (C) in the ionomer resin described above, and when included (meth) As well as the contents of acrylic acid ester units (D) and other monomeric units (e.g. units (A2) and units (B2)), pyrolysis gas chromatography, nuclear magnetic resonance spectroscopy (NMR) and It can be determined by elemental analysis.
  • acrylic acid ester units (D) and other monomeric units e.g. units (A2) and units (B2)
  • NMR nuclear magnetic resonance spectroscopy
  • the melt flow rate (MFR ) is preferably 5 g/10 min or more, more preferably 10 g/10 min or more, still more preferably 50 g/10 min or more, still more preferably 100 g/10 min or more, preferably 400 g/10 min or less, more It is preferably 350 g/10 minutes or less, more preferably 300 g/10 minutes or less, and even more preferably 250 g/10 minutes or less.
  • MFR of the ethylene-(meth)acrylic acid ester copolymer (X) is at least the lower limit and at most the upper limit, more suitable moldability and higher strength of the resulting ionomer resin composition are likely to be obtained. .
  • the MFR of the ethylene-(meth)acrylic acid ester copolymer (X) can be adjusted by the degree of polymerization and the content of (meth)acrylic acid ester units.
  • the MFR can be measured, for example, by the method described in Examples.
  • the weight-average molecular weight of the ethylene-(meth)acrylic acid ester copolymer (X) is preferably 15,000 g/mol or more, more It is preferably 20,000 g/mol or more, more preferably 30,000 g/mol or more, preferably 200,000 g/mol or less, more preferably 100,000 g/mol or less.
  • the number average molecular weight of the ethylene-(meth)acrylate copolymer (X) is preferably 5,000 g/mol or more, more preferably 10,000 g/mol or more, still more preferably 15 ,000 g/mol or more, preferably 100,000 g/mol or less, more preferably 50,000 g/mol or less.
  • the weight average molecular weight and number average molecular weight can be adjusted by adjusting the amount of polymerization initiator and/or chain transfer agent during polymerization.
  • the molecular weights (weight average molecular weight and number average molecular weight) of these ethylene-(meth)acrylic acid ester copolymers (X) are determined by column (TSKgel GMH HR -H(20)HT three in series) and 1,2, Using 4-trichlorobenzene as a solvent, the measurement can be performed at a column temperature of 140° C. in terms of polystyrene.
  • the degree of branching per 1000 carbon atoms of the ethylene-(meth)acrylic acid ester copolymer (X) is not particularly limited, and is preferably 5-30, more preferably 6-20.
  • the degree of branching can be adjusted by adjusting the polymerization temperature when the ethylene-(meth)acrylate copolymer (X) is polymerized.
  • the degree of branching can be measured by performing a 13 C-NMR inverse gate decoupling method using an ethylene-(meth)acrylate copolymer (X) dissolved in deuterated ortho-dichlorobenzene. .
  • alkalis used in the saponification reaction in methods (1) and (2) above include strong bases such as sodium hydroxide, potassium hydroxide, and calcium hydroxide.
  • strong bases such as sodium hydroxide, potassium hydroxide, and calcium hydroxide.
  • Sodium hydroxide and potassium hydroxide are preferred from the viewpoints of solubility in the solvent used for the saponification reaction and economic efficiency. You may use an alkali individually by 1 type or in combination of 2 or more types.
  • solvents used in the saponification reaction include ethers such as tetrahydrofuran and dioxane; halogen-containing solvents such as chloroform and dichlorobenzene; ketones having 6 or more carbon atoms such as methylbutyl ketone; mixed solvents with alcohols such as 1-propanol, 2-propanol and 1-butanol; aromatic compounds such as benzene, toluene, xylene and ethylbenzene; and mixed solvents of aromatic compounds and alcohols. These solvents may be used alone or in combination of two or more.
  • preferred solvents are mixed solvents of hydrocarbon compounds and alcohols, and mixed solvents of aromatic compounds and alcohols, and more preferred solvents are toluene and the like.
  • the ratio of the hydrocarbon compound or aromatic compound and alcohol in the mixed solvent may be appropriately selected according to the type of each solvent used.
  • the mass ratio of the hydrocarbon compound or aromatic compound and alcohol ( hydrocarbons or aromatics/alcohols) can be from 50/50 to 90/10.
  • the temperature at which the saponification reaction is performed is preferably 50° C. or higher, more preferably 60° C. or higher, from the viewpoint of reactivity and solubility of the ethylene-(meth)acrylic acid ester copolymer (X). It is preferably 70° C. or higher, particularly preferably 80° C. or higher.
  • the upper limit of the temperature is not particularly limited as long as it is lower than the temperature at which the ethylene-(meth)acrylic acid ester copolymer (X) decomposes, and is, for example, 300° C. or less.
  • the saponification reaction may be performed in the air or in an inert gas such as nitrogen gas or argon gas. Moreover, the saponification reaction may be carried out under normal pressure, under pressure, or under reduced pressure, preferably under pressure.
  • acids used for demetallization in methods (1) and (2) include strong acids such as hydrochloric acid, nitric acid, sulfuric acid, and toluenesulfonic acid.
  • strong acids such as hydrochloric acid, nitric acid, sulfuric acid, and toluenesulfonic acid.
  • inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid are preferable from the viewpoint of easy removal of salts from the ionomer resin composition after demetalization. You may use an acid individually by 1 type or in combination of 2 or more types.
  • the solvent used for the demetallization reaction the same solvents as those used for the saponification reaction described above can be selected.
  • the temperature at which the demetallization is performed is preferably 20° C. or higher, more preferably 30° C. or higher, still more preferably 40° C. or higher, and preferably 100° C. or lower, from the viewpoint of easily lowering the viscosity of the reaction solution. It is more preferably 80° C. or lower, still more preferably 60° C. or lower.
  • the demetallization may be performed in the air or in an inert gas such as nitrogen gas or argon gas.
  • the saponification reaction may be carried out under normal pressure, under pressure, or under reduced pressure, preferably under pressure.
  • the neutralizing agent used for partially neutralizing the (meth)acrylic acid units and converting them into neutralized (meth)acrylic acid units is an ionic compound containing metal ions.
  • the metal ions include alkali metal ions such as lithium, potassium and sodium; alkaline earth metal ions such as magnesium and calcium; transition metal ions such as zinc, nickel, iron and titanium; and aluminum ions. is mentioned.
  • the metal ion is sodium ion
  • examples of the neutralizing agent include sodium hydroxide and the like.
  • Step (ii)> Solution containing crude ionomer resin
  • the crude ionomer resin obtained in step (i) comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B) and ethylene units (C), wherein said units (A) and The total content of the units (B) is 6 to 10 mol % based on the total monomer units constituting the crude ionomer resin.
  • the crude ionomer resin preferably contains (meth)acrylic acid ester units (D) in addition to the units (A), (B) and (C).
  • the total content of the unit (A), the unit (B) and the unit (D) is 6 based on the total monomer units constituting the ionomer resin. It is preferably ⁇ 10 mol %.
  • the crude ionomer resin further contains carboxylic acids other than (meth)acrylic acid units. Acid units (A2) and other monomer units such as neutralized carboxylic acid units (B2) other than neutralized (meth)acrylic acid units may be included.
  • Examples of the unit (A) and the unit (B) in the crude ionomer resin, the unit (D) which may optionally be included, and other monomeric units (A2) and (B2) are Units (A), units (B), units (D), units (A2) and units (B2) contained in the ionomer resin in the invention include the same units as those described above. similar to ionomer resins.
  • the content of each unit in the crude ionomer resin, the total content of units (A) and units (B), and optionally units (A), units (B) and units when unit (D) is included The total content of (D) is also the same as the content or total content described above for the ionomer resin in the present invention, including preferred forms.
  • the solution containing the crude ionomer resin can be prepared by dissolving the crude ionomer resin obtained in step (i) in a solvent, and the reaction solution of the crude ionomer resin obtained in step (i) is used as the solution containing the crude ionomer resin. may be used.
  • the solvent in the solution containing the crude ionomer resin is not particularly limited as long as it can dissolve the crude ionomer resin, and examples thereof include the same solvents as those used in the saponification reaction. Among them, a mixed solvent of an aromatic compound such as toluene and an alcohol such as methanol is preferable from the viewpoint of solubility of the crude ionomer resin.
  • the ratio of the aromatic compound to the alcohol in the mixed solvent may be appropriately selected according to the type of each solvent used. For example, the mass ratio of the aromatic compound to the alcohol (aromatic compound/alcohol) is , 50/50 to 90/10, preferably 65/35 to 85/15.
  • the concentration of the solution containing the crude ionomer resin is preferably 30 mass from the viewpoint that it is easy to obtain granules with a small particle size and, as a result, it is easy to adjust the salt content in the ionomer resin composition described later within a predetermined range. % or less, more preferably 15 mass % or less, preferably 1 mass % or more, more preferably 5 mass % or more.
  • the temperature of the solution containing the crude ionomer resin tends to suppress aggregation or agglomeration of the precipitated particles, and the salt content in the ionomer resin composition is easily adjusted within the range of 1 to 400 mg/kg. It is preferably below the melting point of the resin, more preferably 60° C. or below, and even more preferably 50° C. or below. From the viewpoint of fluidity of the solution containing the crude ionomer resin, the temperature is more preferably 25° C. or higher, more preferably 30° C. or higher.
  • the poor solvent added to the solution containing the crude ionomer resin is not particularly limited as long as it is mixed with the solution containing the crude ionomer resin and does not dissolve the ionomer resin.
  • examples thereof include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and 1-butanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; ethers such as tetrahydrofuran; and hydrocarbon compounds such as n-hexane, cyclohexane, heptane, and the like.
  • the poor solvent may be used alone or in combination of two or more.
  • the poor solvent is preferably methanol, 2-propanol, or the like, from the viewpoint that the ionomer resin composition can be easily dried due to its low boiling point, and the salt can be dissolved in the granules so that the salt can be easily removed.
  • alcohols, water, and mixed solvents thereof more preferably alcohols such as methanol.
  • the amount of poor solvent to be added may be appropriately selected according to the concentration of the solution containing the crude ionomer resin.
  • the amount of the poor solvent to be added is preferably 30 parts by mass or more, more preferably 60 parts by mass or more, and particularly preferably 100 parts by mass or more with respect to 100 parts by mass of the solution containing the crude ionomer resin.
  • the upper limit of the amount of the poor solvent to be added is not particularly limited, and is usually 1000 parts by mass or less with respect to 100 parts by mass of the solution containing the crude ionomer resin.
  • the method of adding the poor solvent to the solution containing the crude ionomer resin is not particularly limited. may
  • the particle size of the granules tends to become smaller, which makes it easier to improve the removability of the salt in the granules, and as a result, the transparency of the ionomer resin composition tends to be improved. It is preferable to carry out in a short time, and it is more preferable to add at once.
  • the addition of the poor solvent is preferably completed within 1 hour, more preferably within 30 minutes, and even more preferably within 10 minutes.
  • the stirring speed is not particularly limited, but the faster the stirring speed, the easier it is to obtain granules with a smaller particle size.
  • the stirring time is not particularly limited, and, for example, the particles may be precipitated and the mixture of the solution containing the crude ionomer resin and the poor solvent may be stirred until it becomes slurry.
  • a specific time is preferably 1 second to 3 hours, more preferably 10 seconds to 1 hour, and even more preferably 1 minute to 30 minutes.
  • the salt content is preferably 700 ⁇ m or less, more preferably 650 ⁇ m or less, still more preferably 600 ⁇ m or less, and particularly preferably 550 ⁇ m or less, from the viewpoint of facilitating adjustment of the salt content within the range of 1 to 400 mg/kg.
  • the particle size is preferably 50 ⁇ m or more, more preferably 70 ⁇ m or more, and still more preferably 80 ⁇ m or more.
  • the peak top particle size can be measured, for example, by a laser diffraction/scattering method or a single light scattering method.
  • the peak top particle size of the particulate material precipitated by adding a poor solvent to the solution containing the crude ionomer resin can be adjusted by the concentration and temperature of the solution containing the crude ionomer resin. Specifically, when the concentration and/or temperature of the solution containing the crude ionomer resin are lowered, the peak top particle size of the precipitated particulate matter can be reduced, and when the concentration and/or temperature of the solution containing the crude ionomer resin is increased, The peak top particle size of precipitated particulates can be increased.
  • the peak top particle size of the particulate matter can also be adjusted by the method of adding the poor solvent and the stirring speed of the mixture of the solution containing the crude ionomer resin and the poor solvent.
  • washing liquid is not particularly limited as long as it does not dissolve the ionomer resin and is capable of dissolving the salt.
  • preferred washing liquids include alcohols such as methanol, ethanol, 1-propanol and 2-isopropanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; and ethers of The washing liquid may be used alone or in combination of two or more.
  • washing liquids alcohols, water, and mixed liquids thereof are preferable from the viewpoint of high solubility of salts and easy removal of salts contained in the particulate matter. Furthermore, by increasing the solubility of the salt and by making the specific gravity of the cleaning liquid smaller than that of the granular material, thereby increasing the contact area between the cleaning liquid and the granular material, the removability of the salt can be easily increased.
  • a more preferable cleaning liquid is a mixed liquid of water and alcohols from the viewpoint of facilitating removal of impurities such as organic compounds contained in the ionomer resin composition and facilitating drying of the ionomer resin composition obtained after washing.
  • Preferred alcohols are methanol and ethanol, more preferably methanol, because they are easy to dry and have high compatibility with water.
  • the ratio of water and alcohols (water/alcohols (% by mass)) in the mixture of water and alcohols is preferably 20/80 to 80/20, more preferably 30/70 to 70/30. .
  • washing the particulate matter with a washing liquid there is a method of filtering the particulate matter from the dispersion liquid of the particulate matter obtained in the step (ii), mixing the filtered particulate matter with the washing liquid, and then dewatering. mentioned. More specifically, after mixing the granules filtered from the dispersion and the washing liquid, the granules are filtered from the washing liquid (hereinafter also referred to as washing step (a)), and then the filtered granules are filtered. is mixed with a new washing liquid, and then the particulate matter is filtered out of the washing liquid (hereinafter also referred to as washing step (b)).
  • the granules are washed in a batch process, for example, in one washing step.
  • the washing step (b) is preferably performed 1 to 10 times, and the number of washing steps (b) after one washing step (a) is more preferably 1 to 6 times. It is preferably 1 to 4 times.
  • the amount of the cleaning liquid used in one cleaning step may be appropriately selected according to the amount of granular material to be cleaned.
  • the amount of the cleaning liquid used in one cleaning process is preferably 100 parts by mass to 2000 parts by mass, more preferably 200 parts by mass to 1000 parts by mass, and still more preferably 100 parts by mass of the dried granular material. is 300 parts by mass to 700 parts by mass.
  • the ionomer resin composition comprising the ionomer resin and salt obtained after step (iii) may be dried if necessary.
  • the drying temperature is preferably below the melting point of the ionomer resin, more preferably below 80°C. Drying may be performed under reduced pressure.
  • the ionomer resin composition of the present invention can exhibit high thermal decomposition resistance due to the inclusion of a specific amount of salt.
  • the ionomer resin composition in the present invention can have a higher 1% weight loss temperature (Td1) and a lower degree of coloration.
  • the 1% weight loss temperature of the ionomer resin composition of the present invention when the temperature is raised at 10°C/min in a nitrogen atmosphere is preferably 330°C or higher, more preferably 350°C or higher, still more preferably 360°C or higher, and particularly preferably 360°C or higher. 370°C or higher.
  • the 1% weight loss temperature is usually 450° C. or lower.
  • the 1% weight loss temperature of the ionomer resin composition is at least the above lower limit, foaming and/or thermal decomposition during melt molding of the ionomer resin composition is likely to be reduced, and air bubbles and/or thermal decomposition of the resin It is easy to obtain a resin sheet free from defects such as black foreign matter.
  • the 1% weight reduction temperature represents the temperature at which the weight reduction rate becomes 1% based on the weight at 200°C.
  • the 1% weight loss temperature can be measured according to JIS K7120:1987, for example, by the method described in Examples.
  • the degree of coloring of the ionomer resin composition in the present invention is small, and the ionomer resin composition in the present invention is preferably colorless.
  • the yellowness index (YI) at a sheet thickness of 0.8 mm of the ionomer resin composition of the present invention is preferably 2.0 or less, more preferably 1.8 or less, still more preferably 1.5 or less, particularly preferably 1 .0 or less.
  • the lower the yellowness, the lower the colorability of the ionomer resin composition, so the lower limit is not particularly limited, and may be 0, for example. Note that the yellowness can be measured using a colorimetric color difference meter in accordance with JIS Z8722:2009.
  • the ionomer resin composition of the present invention has high transparency due to the inclusion of a specific amount of salt.
  • the haze of the sheet of the ionomer resin composition of the present invention at a thickness of 0.8 mm is preferably 2.0% or less, more preferably 1.5% or less, still more preferably 1.0% or less. Since the transparency of the ionomer resin composition increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01%.
  • the haze of the ionomer resin composition is measured using a haze meter according to JIS K7136:2000.
  • the ionomer resin composition of the present invention has transparency, especially transparency when the ionomer resin composition absorbs water ( transparency).
  • the haze (water absorption haze) at a thickness of 0.8 mm when the sheet of the ionomer resin composition of the present invention absorbs water is preferably 9.0% or less, more preferably 5.0% or less, and still more preferably 4.0. % or less, particularly preferably 3.0% or less.
  • the water absorption haze can be measured, for example, by the method described in Examples.
  • the ionomer resin of the present invention the total content of (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units (B) in the resin is 6 mol% or more. Also, the resin is difficult to crystallize.
  • the ionomer resin composition of the present invention containing such an ionomer resin can have high transparency even in a state in which crystallization of the ionomer resin is promoted by slow cooling.
  • the haze (gradual cooling haze) of the ionomer resin composition in the present invention in a state in which crystallization of the ionomer resin is promoted by slow cooling is preferably 5.0% or less, more preferably 4.5% or less, and even more preferably 4.5% or less. is 4.0% or less, more preferably 3.0% or less, and particularly preferably 2.5% or less. Since the transparency of the ionomer resin composition increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01%.
  • Slow-cooling haze is obtained by disposing a sheet of an ionomer resin composition having a thickness of 0.8 mm between two glass plates to prepare a laminated glass, heating the laminated glass to 140 ° C., and then reducing the haze from 140 ° C.
  • the haze after slowly cooling to 23°C at a rate of 1/min can be measured by measuring with a haze meter in accordance with JIS K7136:2000.
  • the melting point of the ionomer resin composition in the present invention is preferably 50°C or higher, more preferably 60°C or higher, and still more preferably 80°C or higher, from the viewpoint of heat resistance and thermal decomposition resistance.
  • the temperature is preferably 200° C. or lower, more preferably 180° C. or lower, and still more preferably 150° C. or lower, from the viewpoint that the adhesive strength with glass is easily exhibited when producing laminated glass.
  • the melting point can be measured based on JIS K7121:2012.
  • DSC differential scanning calorimeter
  • the heat of fusion of the ionomer resin composition in the present invention is preferably 0 J/g or more and 25 J/g or less.
  • the heat of fusion can be measured based on JIS K7122:2012. Specifically, using a differential scanning calorimeter (DSC), measurement was performed under the conditions of a cooling rate of ⁇ 10° C./min and a heating rate of 10° C./min, and the area of the melting peak during the second heating was calculated. can do.
  • DSC differential scanning calorimeter
  • the melt flow rate (MFR) of the ionomer resin composition of the present invention measured under conditions of 190°C and 2.16 kg according to JIS K7210-1:2014 is preferably 0. 1 g/10 min or more, more preferably 0.3 g/10 min or more, still more preferably 0.7 g/10 min or more, even more preferably 1.0 g/10 min or more, particularly preferably 1.5 g/10 min or more , preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, and particularly preferably 10 g/10 minutes or less.
  • the MFR of the ionomer resin composition is not less than the lower limit and not more than the upper limit, it is easy to perform molding while suppressing deterioration due to heat, and it is easy to obtain a resin sheet having excellent penetration resistance.
  • the melting point, heat of fusion, and MFR of the ionomer resin composition are determined by the molecular weight of the ionomer resin, and the (meth)acrylic acid unit (A), neutralized (meth)acrylic acid unit (B), and ethylene unit (C) of the ionomer resin. ) and the content of (meth)acrylic acid ester units (D) optionally included.
  • the storage elastic modulus (E′) at 50° C. measured by dynamic viscoelasticity measurement of the ionomer resin composition in the present invention is suitable self-sustainability (i.e., high elastic modulus), In particular, from the viewpoint of self-sustainability in high-temperature environments (high elastic modulus in high-temperature environments), it is preferably 20 MPa or higher, more preferably 30 MPa or higher, even more preferably 40 MPa or higher, and particularly preferably 50 MPa or higher.
  • the upper limit of the storage modulus (E') is not particularly limited, and may be 1000 MPa.
  • Said storage modulus is determined by the molecular weight of the ionomer resin and the (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), ethylene units (C), and the optionally included (meth)acrylic acid It can be adjusted by the content of the acid ester unit (D).
  • the method for producing the resin sheet of the present invention is not particularly limited.
  • the layer (x) can be produced by a known film-forming method such as an extrusion method, a calendar method, a press method, a solution casting method, a melt casting method, or an inflation method.
  • Layer (x) may be used alone as a resin sheet.
  • two or more layers (x), or one or more layers (x) and one or more other layers are laminated by press molding or the like to obtain a laminate, or two At least one layer (x), or at least one layer (x) and at least one other layer may be formed by a coextrusion method to obtain a laminate, and this laminate may be used as a resin sheet. good.
  • the laminate includes multiple layers (x) or multiple other layers, the resin or resin composition that constitutes each layer (x) or each other layer may be the same or different.
  • a method of producing a resin sheet using an extruder is preferably used.
  • the resin temperature or the resin composition temperature during extrusion is preferably 150° C. or higher, more preferably 170° C. or higher, from the viewpoints of easily stabilizing the discharge of the resin from the extruder and easily reducing mechanical troubles.
  • the temperature is preferably 250° C. or lower, more preferably 230° C. or lower, from the viewpoint of facilitating decomposition of the resin and deterioration of the resin accompanying the decomposition.
  • the resin sheet may be subjected to surface treatment to obtain a desired contact angle, as described in the previous section [Resin sheet].
  • the resin sheet of the present invention has high transparency, high thermal decomposition resistance, and excellent adhesion to glass due to the features of the ionomer resin composition of the present invention. That is, in a preferred embodiment of the present invention, the resin sheet of the present invention has the same haze, water absorption haze, slow cooling haze, storage modulus, 1% weight reduction degree and yellowness as those of the ionomer resin composition of the present invention. can have
  • the adhesive strength between the resin sheet of the present invention and glass is measured by, for example, a compressive shear strength test described in WO1999/058334. More specifically, it is measured by the method described in Examples.
  • the compressive shear strength against the tin surface of the resin sheet of the present invention is preferably 25 MPa or higher, more preferably 27 MPa or higher, still more preferably 29 MPa or higher, and particularly preferably 31 MPa or higher.
  • the compressive shear strength against the air surface of the resin sheet of the present invention is preferably 25 MPa or more, more preferably 28 MPa or more, and particularly preferably 30 MPa or more.
  • the compressive shear strength against the tin surface or the air surface may be 50 MPa or less from the viewpoint of easily increasing the penetration resistance of the laminated glass.
  • the resin sheet of the present invention preferably has a low water content, for example, from the viewpoint that the resin sheet is less likely to foam during the production of laminated glass when the resin sheet is used as an interlayer film for laminated glass.
  • the water content of the resin sheet is preferably 1% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.02% by mass or less, and particularly preferably 0.01% by mass or less.
  • the content can be measured by a coulometric titration method.
  • the resin sheet of the present invention can be suitably used as an intermediate film for laminated glass (also simply referred to as an intermediate film). Therefore, the present invention includes a laminated glass interlayer made of the resin sheet of the present invention. The invention also includes a laminated glass comprising two glass sheets and a laminated glass interlayer of the invention arranged between the two glass sheets. Since the laminated glass of the present invention has the laminated glass intermediate film made of the resin sheet, it can have excellent transparency and excellent adhesiveness between the intermediate film and the glass.
  • Examples of the glass plate to be laminated with the interlayer film of the present invention include inorganic glass such as float glass, polished plate glass, figured glass, wired plate glass, and heat-absorbing plate glass, as well as conventionally known organic glass such as polymethyl methacrylate and polycarbonate. Glass or the like may be used. They may be either colorless or colored. These may use 1 type and may use 2 or more types together. Moreover, the thickness of one glass plate is preferably 100 mm or less, and the thickness of the two glass plates may be the same or different.
  • the laminated glass of the present invention can be produced by a conventionally known method. Examples thereof include a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll. Moreover, after crimping
  • a vacuum laminator device for example, under a reduced pressure of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 1 MPa, at 60 to 200° C., especially 80 to 160° C., a glass plate, an interlayer, and any layer (for example, adhesiveness A laminated glass can be manufactured by laminating a resin layer, etc.).
  • a method using a vacuum bag or a vacuum ring is described, for example, in EP 1235683 , wherein a glass plate and a A laminated glass can be produced by laminating the intermediate film.
  • a glass plate, an intermediate film and an arbitrary layer are laminated, degassed by rolls at a temperature below the flow start temperature of the intermediate film, and then crimped at a temperature close to the flow start temperature.
  • method of doing so Specifically, for example, after heating to 30 to 70° C. with an infrared heater or the like, degassing with rolls, further heating to 50 to 120° C., and pressing with rolls can be mentioned.
  • the operating conditions of the autoclave process are appropriately selected depending on the thickness and/or structure of the laminated glass. is preferably treated for 0.5 to 3 hours.
  • the laminated glass of the present invention Since the ionomer resin composition of the present invention has high transparency, excellent thermal decomposition resistance, and high adhesiveness to glass, the laminated glass of the present invention has excellent transparency and heat resistance, and the interlayer film and the glass in the laminated glass has high adhesion.
  • the haze of the laminated glass when the sheet thickness of the interlayer is 0.8 mm is preferably 1.0% or less, more preferably 0.8% or less, and still more preferably 0.5. % or less. Since the transparency of the laminated glass increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01%.
  • the haze of laminated glass is measured using a haze meter according to JIS K7136:2000.
  • the laminated glass of the present invention has excellent transparency even after being heated to 140°C and then slowly cooled from 140°C to 23°C at a rate of 0.1°C/min.
  • the haze is preferably is 5.0% or less, more preferably 4.5% or less, still more preferably 4.0% or less, even more preferably 3.0% or less, and particularly preferably 2.5% or less.
  • the lower limit is not particularly limited, and may be, for example, 0.01%.
  • Slow cooling haze is also measured using a haze meter in accordance with JIS K7136:2000.
  • the laminated glass of the present invention preferably has a low degree of coloring and is as colorless as possible.
  • the yellowness of the laminated glass of the present invention is preferably 2.0 or less, more preferably 1.8 or less, still more preferably 1.5 or less, and particularly preferably 1.0 or less. Since the lower the yellowness, the lower the coloring of the laminated glass, the lower limit is not particularly limited, and may be 0, for example. The yellowness is measured using a colorimetric color difference meter in accordance with JIS Z8722:2009.
  • the ionomer resin compositions or ionomer resins obtained in Examples and Comparative Examples were respectively dissolved in a mixed solvent of dehydrated toluene/dehydrated acetic acid (75/25% by mass), reacted at 100° C. for 2 hours, and then acetone/
  • the neutralized (meth)acrylic acid unit (B) was converted to the (meth)acrylic acid unit (A) by reprecipitation in a mixed solvent of water (80/20% by mass). Then, after thoroughly washing with water and drying, the following (1) to (3) were carried out.
  • the component of the monomer unit constituting the resin was analyzed by pyrolysis GC-MS.
  • the acid value of the resin was measured according to JIS K0070:1992.
  • the resin was subjected to 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) measurement.
  • the ionomer resin compositions or ionomer resins obtained in Examples and Comparative Examples were each subjected to microwave decomposition pretreatment with nitric acid, and then subjected to ICP emission spectrometry (Thermo Fisher Scientific iCAP6500Duo). , the type and amount of the metal ion of the (meth)acrylic acid neutralized product unit (B) were identified.
  • each monomer unit of the ethylene-(meth)acrylic acid ester copolymer (X) as a raw material is the same as that of the ethylene-(meth)acrylic acid ester copolymer (X) in heavy toluene or heavy THF. was dissolved and measured by 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) to calculate.
  • the calculated content of each monomer unit of each resin is It corresponds to the content of each monomer unit in the sheet.
  • Thermal decomposition resistance of the ionomer resin compositions or ionomer resins obtained in Examples and Comparative Examples was evaluated according to JIS K7120:1987. Specifically, using a simultaneous differential thermal thermogravimetric analyzer TG-DTA7200 (manufactured by Hitachi High-Tech Science Co., Ltd.), each resin composition or The weight loss rate was measured when the resin was heated from 20°C to 550°C. The 1% weight reduction temperature (Td1), which is the temperature at which the weight reduction rate reaches 1% based on the weight at 200° C., was used as an index of thermal decomposition resistance.
  • Td1 1% weight reduction temperature
  • the haze of the laminated glass after slow cooling was measured using a haze meter HZ-1 (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7136:2000.
  • the resulting test samples were evaluated by the Compressive shear strength test described in WO 1999/058334.
  • the maximum shear stress when the laminated glass was peeled was taken as an index of the adhesion to glass.
  • laminated glass is prepared so that the tin surfaces of two float glasses are in contact with both sides of the resin sheet, and the adhesiveness to the air surface of the glass is measured.
  • prepared a laminated glass so that the air surfaces of two float glasses were in contact with both sides of the resin sheet.
  • Methyl methacrylate (MMA) modified amount or ethyl acrylate (EA) modified amount of each ethylene-(meth)acrylic acid ester copolymer (X) used as a raw material for the ionomer resin in Examples and Comparative Examples, and MFR are shown in Table 1.
  • EMMA1 "Aclift” (registered trademark) WH401F manufactured by Sumitomo Chemical Co., Ltd. was used, and as EEA1, "Rexpearl” (registered trademark) A4250 manufactured by Japan Polyethylene Co., Ltd. was used.
  • Example 1 100 parts by mass of EMMA2 shown in Table 1 was introduced into a SUS pressure vessel, 233 parts by mass of toluene was added thereto, and the mixture was stirred at 60° C. under a pressure of 0.02 MPa to dissolve EMMA2. 100 parts by mass of a methanol solution of sodium hydroxide (20% by mass) was added to the resulting solution and stirred at 100°C for 4 hours to saponify EMMA2 to convert part of the methyl methacrylate units into sodium methacrylate units. Converted. Next, after cooling this solution to 50° C., 83 parts by mass of hydrochloric acid (20% by mass) is added and stirred at 50° C.
  • the resulting ionomer resin composition was melt-kneaded at 210°C, and the melt-kneaded product was compression-molded for 5 minutes under heating at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ) to obtain a thickness.
  • a resin sheet of 0.8 mm was obtained. Both surfaces of the obtained resin sheet were subjected to corona treatment at an output of 0.31 kW and a feed rate of 7.9 m/s, and the contact angles on both surfaces of the resin sheet were measured. Table 2 shows the contact angle. Subsequently, a laminated glass was produced using the obtained resin sheet and evaluated. Table 2 shows the evaluation results.
  • Example 2 EMMA3 was used instead of EMMA2, 95 parts by weight of nitric acid (30% by weight) was used instead of 83 parts by weight of hydrochloric acid (20% by weight), and the temperature of the dilute solution containing the crude ionomer resin and methanol was increased from 34°C to 37°C.
  • An ionomer resin composition was obtained, analyzed and evaluated in the same manner as in Example 1 except that the composition was changed.
  • a resin sheet was prepared in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and corona treatment was performed in the same manner as in Example 1 except that the feed speed was changed to 2.6 m/s. and measured the contact angle.
  • a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
  • Example 3 An ionomer resin composition was obtained in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2, and the temperature of the diluted solution containing the crude ionomer resin and methanol was changed from 34°C to 40°C, and analyzed and evaluated. went.
  • a resin sheet was prepared in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and corona treatment was performed in the same manner as in Example 1 except that the feed rate was changed to 1.3 m/s. and measured the contact angle. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
  • Example 4 EEA1 was used instead of EMMA2, 147 parts by weight of sulfuric acid (30% by weight) was used instead of 83 parts by weight of hydrochloric acid (20% by weight), and the temperature of the diluted solution containing the crude ionomer resin and methanol was increased from 34°C to 40°C.
  • An ionomer resin composition was obtained, analyzed and evaluated in the same manner as in Example 1 except that the composition was changed.
  • a resin sheet was prepared in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and corona treatment was performed in the same manner as in Example 1 except that the feed speed was changed to 2.6 m/s. and measured the contact angle.
  • a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
  • Example 5 Using EMMA1 instead of EMMA2, changing the amounts of methanol solution of sodium hydroxide (20% by mass) and hydrochloric acid (20% by mass) to 80 parts by mass and 66 parts by mass, respectively, the concentration of the dilute solution containing the crude ionomer resin was changed from 10% by mass to 6% by mass, and the temperature of the diluted solution containing the crude ionomer resin and methanol was changed from 34°C to 41°C to obtain an ionomer resin composition, Analyzed and evaluated. A resin sheet was produced in the same manner as in Example 1 except that the obtained ionomer resin composition was used, corona treatment was performed, and the contact angle was measured. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
  • Example 6 An ionomer resin composition was obtained in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2, and the temperature of the dilute solution containing the crude ionomer resin and methanol was changed from 34°C to 41°C, and analyzed and evaluated. went.
  • a resin sheet was prepared in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and corona treatment was performed in the same manner as in Example 1 except that the feed rate was changed to 1.3 m/s. and measured the contact angle. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
  • Example 7 EMMA3 was used instead of EMMA2, 147 parts by weight of sulfuric acid (30% by weight) was used instead of 83 parts by weight of hydrochloric acid (20% by weight), and the temperature of the diluted solution containing the crude ionomer resin and methanol was increased from 34°C to 41°C.
  • An ionomer resin composition was obtained, analyzed and evaluated in the same manner as in Example 1 except that the composition was changed.
  • a resin sheet was produced in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and the feeding speed was changed to 1.3 m / s, and the number of treatments was changed to 2 times. Corona treatment was performed in the same manner as in Example 1, and the contact angle was measured. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
  • Example 1 In the same manner as in Example 1, except that EMMA1 was used instead of EMMA2, and the amounts of sodium hydroxide methanol solution (20% by mass) and hydrochloric acid (20% by mass) were changed to 80 parts by mass and 66 parts by mass, respectively. , an ionomer resin composition was obtained and analyzed and evaluated. A resin sheet was produced in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and the contact angle was measured without corona treatment. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
  • Example 2 An ionomer resin composition was obtained in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2, and the temperature of the dilute solution containing the crude ionomer resin and methanol was changed from 34°C to 37°C, and the composition was analyzed and evaluated. went.
  • a resin sheet was produced in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and the contact angle was measured without corona treatment. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
  • EMMA4 was used in place of EMMA2, and the amounts of methanol solution of sodium hydroxide (20% by mass) and hydrochloric acid (20% by mass) were changed to 72 parts by mass and 59 parts by mass, respectively, and a dilute solution containing crude ionomer resin and methanol
  • An ionomer resin composition was obtained, analyzed and evaluated in the same manner as in Example 1, except that the temperature was changed from 34°C to 40°C.
  • a resin sheet was produced in the same manner as in Example 1 except that the obtained ionomer resin composition was used, corona treatment was performed, and the contact angle was measured. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
  • EMMA3 was used instead of EMMA2, 95 parts by weight of nitric acid (30% by weight) was used instead of 83 parts by weight of hydrochloric acid (20% by weight), and the temperature of the diluted solution containing the crude ionomer resin and methanol was increased from 34°C to 40°C.
  • An ionomer resin composition was obtained, analyzed and evaluated in the same manner as in Example 1 except that the composition was changed.
  • a resin sheet was produced in the same manner as in Example 1, except that the obtained ionomer resin composition was used. Corona treatment was performed in the same manner as in Example 1, except that the feeding speed was changed to 1.3 m/s and the number of treatments was changed to 10 times, and the contact angle was measured.
  • a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
  • Example 5 In the same manner as in Example 1, except that EMMA1 was used instead of EMMA2, and the amounts of sodium hydroxide methanol solution (20% by mass) and hydrochloric acid (20% by mass) were changed to 80 parts by mass and 66 parts by mass, respectively. , an ionomer resin composition was obtained and analyzed and evaluated. A resin sheet was produced in the same manner as in Example 1, except that the obtained ionomer resin composition was used. Corona treatment was performed in the same manner as in Example 1, except that the feeding speed was changed to 1.3 m/s and the number of treatments was changed to 5 times, and the contact angle was measured. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
  • EMMA3 was used instead of EMMA2, 147 parts by weight of sulfuric acid (30% by weight) was used instead of 83 parts by weight of hydrochloric acid (20% by weight), and the temperature of the diluted solution containing the crude ionomer resin and methanol was increased from 34°C to 43°C.
  • An ionomer resin composition was obtained, analyzed and evaluated in the same manner as in Example 1 except that the composition was changed.
  • a resin sheet was produced in the same manner as in Example 1, except that the obtained ionomer resin composition was used. Corona treatment was performed in the same manner as in Example 1, except that the feeding speed was changed to 1.3 m/s, and the contact angle was measured.
  • a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
  • the resin sheets obtained in Examples 1 to 7 had excellent transparency as well as excellent adhesiveness to glass.
  • the adhesiveness to glass is excellent not only to the tin surface but also to the air surface.
  • the resin sheets obtained in Comparative Examples 1 to 5 are inferior in adhesiveness to glass, particularly to air surfaces, and the resin sheet obtained in Comparative Example 3 is transparent when slowly cooled. It was also inferior in sex.
  • the resin sheet obtained in Comparative Example 6 was inferior in transparency when absorbing water.
  • the resin sheet obtained in Comparative Example 7 was inferior in thermal decomposition resistance, and although the contact angle satisfies the specific range of the present invention, the adhesiveness to glass, particularly to the air surface, was poor. was inferior.
  • the resin sheet of the present invention has properties of high transparency and excellent adhesion to glass, it can be used as an interlayer film for laminated glass, for example, for architectural and structural applications (for example, laminates for facades, exterior walls or roofs, panels Building materials such as doors, windows, walls, roofs, sunroofs, sound insulation walls, display windows, balconies, handrails, partition glass members for conference rooms, solar panels, etc.), or laminated glass for vehicles (for example, it can be suitably used as an intermediate film for automobile windshields, automobile side glasses, automobile sunroofs, automobile rear glasses, head-up display glasses, etc.).
  • the laminated glass of the present invention can be suitably used as laminated glass for architectural/structural use or vehicle use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a resin sheet which has one or more layers that contain an ionomer resin composition, wherein: one of the layers that contain an ionomer resin composition forms at least one surface of the resin sheet; the surface has a contact angle of 60 to 75 degrees as determined in accordance with JIS K6768; the ionomer resin composition contains an ionomer resin that has a (meth)acrylic acid unit (A), a neutralized (meth)acrylic acid unit (B) and an ethylene unit (C), and a salt that is formed of a strong acid and a strong base; the total content of the unit (A) and the unit (B) is 6 to 10% by mole based on all monomer units of the ionomer resin; and the content of the salt is 1 to 400 mg/kg based on the total mass of the ionomer resin composition.

Description

アイオノマー樹脂組成物を含んでなる層を有する樹脂シートおよび合わせガラスResin sheet and laminated glass having layer comprising ionomer resin composition
 本特許出願は日本国特許出願第2021-104270(出願日:2021年6月23日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、アイオノマー樹脂組成物を含んでなる層を1層以上有する樹脂シート、該樹脂シートからなる合わせガラス中間膜、および該合わせガラス中間膜を有する合わせガラスに関する。
This patent application claims priority under the Paris Convention of Japanese Patent Application No. 2021-104270 (filing date: June 23, 2021), and is hereby incorporated by reference in its entirety. shall be incorporated within.
TECHNICAL FIELD The present invention relates to a resin sheet having one or more layers containing an ionomer resin composition, a laminated glass intermediate film comprising the resin sheet, and a laminated glass having the laminated glass intermediate film.
 エチレン-不飽和カルボン酸共重合体の中和物であるアイオノマー樹脂は、透明性およびガラスとの接着性に優れるため、合わせガラスの中間膜に使用されている(例えば特許文献1)。アイオノマー樹脂のフロートガラスに対する接着性に関しては、スズ面との接着性に比べ、エア面との接着性が悪いことが知られている。  Ionomer resins, which are neutralized ethylene-unsaturated carboxylic acid copolymers, are used in interlayer films for laminated glass because of their excellent transparency and adhesion to glass (for example, Patent Document 1). As for the adhesion of ionomer resin to float glass, it is known that the adhesion to the air surface is worse than the adhesion to the tin surface.
 アイオノマー樹脂シートのガラスとの接着性を向上させる方法として、アイオノマー樹脂シートとガラスとの接合前に、シランまたは有機アミン(脂肪族アミン、エタノールアミン等)またはジイソシアネートタイプのカップリング剤でガラスの表面をプライミング処理することが知られている。例えば特許文献2には、金属キレートのアルコール溶液をコートしたガラスシートを用いることで、アイオノマー樹脂シートとの接着性を向上させる方法が記載されている。 As a method for improving the adhesion of the ionomer resin sheet to the glass, the surface of the glass is coated with a silane, organic amine (aliphatic amine, ethanolamine, etc.) or diisocyanate type coupling agent before joining the ionomer resin sheet and the glass. is known to prime the For example, Patent Literature 2 describes a method of improving adhesion to an ionomer resin sheet by using a glass sheet coated with an alcohol solution of a metal chelate.
 特許文献3には、アイオノマー樹脂および接着促進剤を含み、前記接着促進剤がジアルコキシシラン化合物である樹脂組成物が記載されている。 Patent Document 3 describes a resin composition containing an ionomer resin and an adhesion promoter, wherein the adhesion promoter is a dialkoxysilane compound.
 特許文献4および5には、アイオノマー樹脂のシート表面にコロナ処理またはオゾン処理等の酸化処理を施して表面を改質し、印刷性または層間接着性を改善した積層成形体が記載されている。 Patent Documents 4 and 5 describe a laminated molded product in which the surface of an ionomer resin sheet is subjected to oxidation treatment such as corona treatment or ozone treatment to modify the surface and improve printability or interlayer adhesion.
米国特許第6432522号明細書U.S. Pat. No. 6,432,522 特開平9-227177公報Japanese Patent Application Laid-Open No. 9-227177 国際公開第2019/027865号WO2019/027865 特開平4-64441公報JP-A-4-64441 特開2006-52303公報Japanese Patent Application Laid-Open No. 2006-52303
 しかし、本発明者らの検討によれば、特許文献2に記載の合わせガラスは、接着性のばらつきが大きく、エア面への接着性が不十分であることがわかった。また、特許文献3に記載の樹脂組成物については、エア面へのより向上した接着性が求められる場合があった。さらに、特許文献4および5に記載の積層成形体は、合わせガラスに求められる接着性を有していない。
 さらに、近年、合わせガラスに対する要求が高くなり、合わせガラスの製作条件によらず、アイオノマー樹脂を用いた合わせガラス中間膜を有する合わせガラスに対して、高い透明性を保持すること等が求められるようになってきた。
 従って、本発明の目的は、ガラスに対する優れた接着性に加えて透明性にも優れた樹脂シートを提供することにある。
However, according to the study of the present inventors, it was found that the laminated glass described in Patent Document 2 has a large variation in adhesiveness and insufficient adhesiveness to the air surface. Further, in some cases, the resin composition described in Patent Document 3 is required to have improved adhesion to the air surface. Furthermore, the laminated molded bodies described in Patent Documents 4 and 5 do not have the adhesiveness required for laminated glass.
Furthermore, in recent years, the demand for laminated glass has increased, and regardless of the production conditions of laminated glass, it is required to maintain high transparency, etc. for laminated glass having a laminated glass intermediate film using an ionomer resin. has become
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a resin sheet having excellent adhesion to glass and excellent transparency.
 本発明者らは、前記課題を解決するために鋭意検討した結果、本発明を完成するに至った。すなわち、本発明には、以下のものが含まれる。
[1]アイオノマー樹脂組成物を含んでなる層を1層以上有する樹脂シートであって、前記アイオノマー樹脂組成物を含んでなる層は、前記樹脂シートの少なくとも一方の表面を形成しており、前記表面の、JIS K6768に準拠して測定された接触角は60~75度であり、前記アイオノマー樹脂組成物は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)を含むアイオノマー樹脂、ならびに強酸および強塩基からなる塩を含んでなり、前記単位(A)および前記単位(B)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であり、前記塩の含有量は、前記アイオノマー樹脂組成物の総質量を基準として1~400mg/kgである、樹脂シート。
[2]前記アイオノマー樹脂組成物を含んでなる層は、前記樹脂シートの両方の表面を形成しており、前記両方の表面の、JIS K6768に準拠して測定された接触角は60~75度である、[1]に記載の樹脂シート。
[3]前記アイオノマー樹脂はさらに(メタ)アクリル酸エステル単位(D)を含み、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である、[1]または[2]に記載の樹脂シート。
[4]前記塩は、アルカリ金属および/またはアルカリ土類金属の金属塩である、[1]~[3]のいずれかに記載の樹脂シート。
[5]前記塩は、ナトリウムイオンおよびカリウムイオンからなる群から選択される少なくとも1種のカチオンと、ハロゲンイオン、硝酸イオンおよび硫酸イオンからなる群から選択される少なくとも1種のアニオンとからなる塩である、[1]~[4]のいずれかに記載の樹脂シート。
[6][1]~[5]のいずれかに記載の樹脂シートからなる合わせガラス中間膜。
[7]2つのガラス板と、該2つのガラス板の間に配置された[6]に記載の合わせガラス中間膜とを有する、合わせガラス。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, the present invention includes the following.
[1] A resin sheet having one or more layers containing an ionomer resin composition, wherein the layer containing the ionomer resin composition forms at least one surface of the resin sheet, The contact angle of the surface measured in accordance with JIS K6768 is 60 to 75 degrees, and the ionomer resin composition contains (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B ), and an ionomer resin containing ethylene units (C), and a salt composed of a strong acid and a strong base, wherein the total content of the units (A) and the units (B) is the total content of the ionomer resin. A resin sheet, wherein the content of the salt is 6 to 10 mol % based on the monomer units, and the content of the salt is 1 to 400 mg/kg based on the total mass of the ionomer resin composition.
[2] The layer containing the ionomer resin composition forms both surfaces of the resin sheet, and the contact angles of both surfaces measured according to JIS K6768 are 60 to 75 degrees. The resin sheet according to [1].
[3] The ionomer resin further contains (meth)acrylic acid ester units (D), and the total content of the units (A), the units (B) and the units (D) constitutes the ionomer resin. The resin sheet according to [1] or [2], which is 6 to 10 mol % based on the total monomer units.
[4] The resin sheet according to any one of [1] to [3], wherein the salt is a metal salt of alkali metal and/or alkaline earth metal.
[5] The salt comprises at least one cation selected from the group consisting of sodium ions and potassium ions and at least one anion selected from the group consisting of halogen ions, nitrate ions and sulfate ions. The resin sheet according to any one of [1] to [4].
[6] An interlayer film for laminated glass comprising the resin sheet according to any one of [1] to [5].
[7] A laminated glass comprising two glass plates and the interlayer film for laminated glass according to [6] disposed between the two glass plates.
 本発明によれば、ガラスに対する優れた接着性に加えて透明性にも優れた樹脂シートを提供できる。 According to the present invention, it is possible to provide a resin sheet that has excellent transparency as well as excellent adhesiveness to glass.
[樹脂シート]
 本発明の樹脂シートは、アイオノマー樹脂組成物を含んでなる層(以下、層(x)とも称する)を1層以上有する。層(x)は、樹脂シートの少なくとも一方の表面を形成しており、前記表面の、JIS K6768に準拠して測定された接触角は60~75度である。
 本発明の好適な一実施形態において、層(x)は、樹脂シートの両方の表面を形成しており、前記両方の表面の、JIS K6768に準拠して測定された接触角は60~75度である。
[Resin sheet]
The resin sheet of the present invention has one or more layers containing an ionomer resin composition (hereinafter also referred to as layer (x)). The layer (x) forms at least one surface of the resin sheet, and the surface has a contact angle of 60 to 75 degrees measured according to JIS K6768.
In a preferred embodiment of the present invention, the layer (x) forms both surfaces of the resin sheet, and the contact angles of both surfaces measured according to JIS K6768 are 60 to 75 degrees. is.
 本発明の樹脂シートは、前記接触角が60度以上、75度以下であることにより、ガラスに対する優れた接着性を示す。意外なことに、この優れた接着性は、スズ面に対してだけでなくエア面に対しても発現されることが見出された。前記接触角は、好ましくは61度以上、より好ましくは62度以上であり、また、好ましくは74度以下、より好ましくは73度以下である。接触角が前記下限値以上であり、前記上限値以下であると、ガラスに対するより優れた接着性が発現されやすい。接触角は、より具体的には、実施例に記載の方法により測定される。 The resin sheet of the present invention exhibits excellent adhesion to glass because the contact angle is 60 degrees or more and 75 degrees or less. Surprisingly, it was found that this excellent adhesion was exhibited not only to the tin surface but also to the air surface. The contact angle is preferably 61 degrees or more, more preferably 62 degrees or more, and preferably 74 degrees or less, more preferably 73 degrees or less. When the contact angle is equal to or greater than the lower limit and equal to or less than the upper limit, excellent adhesiveness to glass tends to be exhibited. More specifically, the contact angle is measured by the method described in Examples.
 所望の接触角を得るために、樹脂シートの表面処理を実施してよい。表面処理の例としては、コロナ処理、プラズマ処理、フレームプラズマ処理またはオゾン処理等の表面酸化処理、およびシラン化合物とアルコールとの混合液を塗布するプライマー処理等が挙げられる。これらの表面処理は、単独で実施してもよいし、2以上を組み合わせて実施してもよい。表面処理として、コロナ処理が好ましい。 In order to obtain the desired contact angle, the resin sheet may be surface-treated. Examples of surface treatment include corona treatment, plasma treatment, flame plasma treatment, surface oxidation treatment such as ozone treatment, and primer treatment in which a mixture of a silane compound and alcohol is applied. These surface treatments may be performed singly or in combination of two or more. Corona treatment is preferred as the surface treatment.
 コロナ処理の方法は特に制限されず、バッチ式およびインライン式のいずれの方法を用いてもよい。コロナ処理の照射量は、装置出力および/または送り速度によって制御することができる。前記接触角を好適な範囲に制御しやすい観点から、コロナ処理の照射量は、好ましくは0.01J/cm以上、より好ましくは0.05J/cm以上であり、さらに好ましくは0.1J/cm以上であり、また、好ましくは50J/cm以下、より好ましくは40J/cm以下、さらに好ましくは30J/cm以下である。 The corona treatment method is not particularly limited, and either a batch method or an in-line method may be used. The dose of corona treatment can be controlled by device power and/or feed rate. From the viewpoint of easily controlling the contact angle within a suitable range, the dose of corona treatment is preferably 0.01 J/cm 2 or more, more preferably 0.05 J/cm 2 or more, and still more preferably 0.1 J. /cm 2 or more, preferably 50 J/cm 2 or less, more preferably 40 J/cm 2 or less, and even more preferably 30 J/cm 2 or less.
 本発明の樹脂シートは、1層の層(x)のみから構成されていてもよく、少なくとも1層の層(x)を含む積層体であってもよい。前記積層体の構成は、特に限定されない。その例としては、2層以上の層(x)からなる積層体、1層以上の層(x)と1層以上の他の層とを含む積層体等が挙げられる。積層体に複数の層(x)または複数の他の層が含まれる場合、各層(x)または各他の層を構成する樹脂または樹脂組成物は、同じでも異なっていてもよい。 The resin sheet of the present invention may be composed of only one layer (x), or may be a laminate containing at least one layer (x). The structure of the laminate is not particularly limited. Examples thereof include a laminate consisting of two or more layers (x), a laminate including one or more layers (x) and one or more other layers, and the like. When the laminate includes multiple layers (x) or multiple other layers, the resin or resin composition that constitutes each layer (x) or each other layer may be the same or different.
 前記他の層としては、公知の樹脂を含む層を使用できる。該樹脂の例としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリウレタン、ポリテトラフルオロエチレン、アクリル樹脂、ポリアミド、ポリアセタール、ポリカーボネート、ポリエステルのうちポリエチレンテレフタレート、ポリブチレンテレフタレート、環状ポリオレフィン、ポリフェニレンスルファイド、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、液晶ポリマー、ポリイミド、および熱可塑性エラストマー等が挙げられる。また、前記他の層は、必要に応じて、後述する〔添加剤〕の項に例示された添加剤、ならびに、可塑剤、遮熱材料(例えば、赤外線吸収能を有する無機遮熱性微粒子または有機遮熱性材料)、機能性無機化合物等の添加剤を1以上含有してよい。 A layer containing a known resin can be used as the other layer. Examples of the resin include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polytetrafluoroethylene, acrylic resin, polyamide, polyacetal, polycarbonate, polyethylene terephthalate among polyesters, polybutylene terephthalate, cyclic polyolefin, polyphenylene sulfide, Examples include polysulfone, polyethersulfone, polyarylate, liquid crystal polymer, polyimide, and thermoplastic elastomer. In addition, if necessary, the other layer may include additives exemplified in the section [Additives] described later, as well as plasticizers, heat-shielding materials (for example, inorganic heat-shielding fine particles having infrared absorption ability or organic It may contain one or more additives such as a heat shielding material) and a functional inorganic compound.
 本発明の好ましい一実施形態において、樹脂シートとガラスとを熱圧着する際の脱泡性に優れる観点から、本発明の樹脂シートは、その少なくとも一方の表面、好ましくはその両方の表面に、メルトフラクチャー法またはエンボス加工法等の従来公知の方法により付与される凹凸構造を有することが好ましい。メルトフラクチャーおよびエンボスの形状は、特に限定されず、従来公知のものを適宜選択してよい。 In a preferred embodiment of the present invention, at least one surface, preferably both surfaces, of the resin sheet of the present invention is coated with a melt from the viewpoint of excellent defoaming properties when the resin sheet and glass are thermocompression bonded. It is preferable to have an uneven structure imparted by a conventionally known method such as a fracture method or an embossing method. The shape of the melt fracture and emboss is not particularly limited, and conventionally known shapes may be appropriately selected.
 本発明の樹脂シートにおける層(x)1層の厚さは、好ましくは0.1mm以上、より好ましくは0.2mm以上、さらに好ましくは0.3mm以上、特に好ましくは0.4mm以上であり、また、好ましくは5mm以下、より好ましくは4mm以下、さらに好ましくは2mm以下、特に好ましくは1mm以下である。樹脂シートに複数の層(x)が含まれる場合、各層(x)の厚さは同じでも異なっていてもよい。 The thickness of one layer (x) in the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, and particularly preferably 0.4 mm or more, Also, it is preferably 5 mm or less, more preferably 4 mm or less, even more preferably 2 mm or less, and particularly preferably 1 mm or less. When the resin sheet includes a plurality of layers (x), the thickness of each layer (x) may be the same or different.
 本発明の樹脂シートの厚さは、好ましくは0.1mm以上、より好ましくは0.2mm以上、さらに好ましくは0.3mm以上、さらにより好ましくは0.4mm以上、とりわけ好ましくは0.5mm以上、とりわけより好ましくは0.6mm以上、とりわけさらに好ましくは0.7mm以上、特に好ましくは0.75mm以上であり、また、好ましくは20mm以下、より好ましくは15mm以下、さらに好ましくは10mm以下、さらにより好ましくは5mm以下、とりわけ好ましくは4mm以下、とりわけより好ましくは2mm以下、とりわけさらに好ましくは1mm以下である。 The thickness of the resin sheet of the present invention is preferably 0.1 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, even more preferably 0.4 mm or more, and particularly preferably 0.5 mm or more. More preferably 0.6 mm or more, even more preferably 0.7 mm or more, particularly preferably 0.75 mm or more, and preferably 20 mm or less, more preferably 15 mm or less, still more preferably 10 mm or less, still more preferably is 5 mm or less, particularly preferably 4 mm or less, particularly more preferably 2 mm or less, and even more preferably 1 mm or less.
 樹脂シートの厚さは従来公知の方法、例えば接触式または非接触式の厚み計等を用いて測定される。樹脂シートは、ロール状に巻回された状態であっても、1枚ずつの枚葉シートの状態であってもよい。 The thickness of the resin sheet is measured using a conventionally known method, such as a contact or non-contact thickness gauge. The resin sheet may be in the state of being wound into a roll, or may be in the state of individual sheets.
 次に、層(x)に含まれるアイオノマー樹脂組成物に含まれる成分、すなわち、アイオノマー樹脂、ならびに強酸および強塩基からなる塩について説明する。 Next, the components contained in the ionomer resin composition contained in the layer (x), that is, the ionomer resin and the salt composed of strong acid and strong base will be described.
〔アイオノマー樹脂〕
 本発明におけるアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)を含み、前記単位(A)および前記単位(B)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である。
 本明細書において、「単位」とは、「由来の構成単位」を意味するものであり、例えば(メタ)アクリル酸単位とは、(メタ)アクリル酸由来の構成単位を示し、(メタ)アクリル酸中和物単位とは、(メタ)アクリル酸中和物由来の構成単位を示し、エチレン単位とはエチレン由来の構成単位を示す。また、本明細書において、「(メタ)アクリル酸」とは、メタクリル酸またはアクリル酸を示す。
[Ionomer resin]
The ionomer resin in the present invention contains (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and the units (A) and the units (B) is 6 to 10 mol % based on the total monomer units constituting the ionomer resin.
In the present specification, the term "unit" means a "derived structural unit", for example, a (meth)acrylic acid unit refers to a structural unit derived from (meth)acrylic acid, (meth)acrylic acid The acid-neutralized unit indicates a structural unit derived from a (meth)acrylic acid-neutralized product, and the ethylene unit indicates a structural unit derived from ethylene. Moreover, in this specification, "(meth)acrylic acid" indicates methacrylic acid or acrylic acid.
 前記合計含有量が前記上限値を超えると、アイオノマー樹脂組成物の成形加工時における溶融粘度の上昇を抑制しにくく、それにより、アイオノマー樹脂組成物の成形加工性が低下しやすい。さらに、前記合計含有量が前記下限値未満であると、アイオノマー樹脂組成物の透明性、特に徐冷してアイオノマー樹脂の結晶化を促進させた場合における透明性(以降、徐冷時の透明性とも称する)が低下しやすい。前記合計含有量は、アイオノマー樹脂組成物の透明性(特に徐冷時の透明性)およびガラスに対する接着性を向上しやすい観点から、6モル%以上、好ましくは6.5モル%以上、より好ましくは7.0モル%以上、さらに好ましくは7.5モル%以上であり、また、より好適な成形加工性を得やすい観点から、10モル%以下、好ましくは9.9モル%以下、より好ましくは9.5モル%以下である。 When the total content exceeds the upper limit, it is difficult to suppress the increase in the melt viscosity during molding of the ionomer resin composition, which tends to reduce the moldability of the ionomer resin composition. Furthermore, when the total content is less than the lower limit, the transparency of the ionomer resin composition, particularly the transparency when the crystallization of the ionomer resin is promoted by slow cooling (hereinafter referred to as the transparency during slow cooling also called) tends to decrease. The total content is 6 mol % or more, preferably 6.5 mol % or more, more preferably 6.5 mol % or more, from the viewpoint of easily improving the transparency of the ionomer resin composition (especially the transparency during slow cooling) and the adhesion to glass. is 7.0 mol% or more, more preferably 7.5 mol% or more, and from the viewpoint of easily obtaining more suitable moldability, 10 mol% or less, preferably 9.9 mol% or less, more preferably is 9.5 mol % or less.
 前記単位(A)および前記単位(B)の合計含有量は、アイオノマー樹脂の調製方法により調整できる。より具体的には、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属反応工程を含む方法によりアイオノマー樹脂を調製する場合には、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位を(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)に変換するけん化反応および脱金属反応の各反応度(変換割合)により調整できる。 The total content of the units (A) and the units (B) can be adjusted according to the preparation method of the ionomer resin. More specifically, when an ionomer resin is prepared by a method comprising an ethylene-(meth)acrylic acid ester copolymer as a raw material and a saponification reaction step and a demetallization reaction step of the copolymer, ethylene-( Saponification reaction and demetallization reaction for converting (meth)acrylic acid ester units in the meth)acrylic acid ester copolymer into (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units (B) It can be adjusted by each reactivity (conversion rate).
<(メタ)アクリル酸単位(A)>
 (メタ)アクリル酸単位(A)を構成する単量体の例としては、アクリル酸およびメタクリル酸が挙げられ、耐熱性およびガラスに対する接着性の観点から、メタクリル酸が好ましい。(メタ)アクリル酸単位は、1種単独でも2種以上の組み合わせでもよい。
<(Meth) acrylic acid unit (A)>
Examples of monomers constituting the (meth)acrylic acid unit (A) include acrylic acid and methacrylic acid, and methacrylic acid is preferred from the viewpoint of heat resistance and adhesion to glass. The (meth)acrylic acid units may be used singly or in combination of two or more.
 (メタ)アクリル酸単位(A)のアイオノマー樹脂中の含有量は、前記単位(A)および前記単位(B)の合計含有量が、アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%の範囲内であれば特に制限されない。本発明の一実施形態において、(メタ)アクリル酸単位(A)のアイオノマー樹脂中の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは4.5モル%以上、より好ましくは5.0モル%以上、さらに好ましくは5.5モル%以上、特に好ましくは5.8モル%以上であり、また、好ましくは9.0モル%以下、より好ましくは8.5モル%以下、さらに好ましくは8.0モル%以下、特に好ましくは7.5モル%以下である。単位(A)の前記含有量が前記下限値以上であると、アイオノマー樹脂組成物の透明性およびガラスに対するより優れた接着性を得やすい。また、前記上限値以下であると、より優れた成形加工性を得やすい。 The content of the (meth)acrylic acid unit (A) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is 6 to 6 based on the total monomer units constituting the ionomer resin. There is no particular limitation as long as it is within the range of 10 mol %. In one embodiment of the present invention, the content of (meth)acrylic acid units (A) in the ionomer resin is preferably 4.5 mol% or more, based on the total monomer units constituting the ionomer resin, and more Preferably 5.0 mol% or more, more preferably 5.5 mol% or more, particularly preferably 5.8 mol% or more, and preferably 9.0 mol% or less, more preferably 8.5 mol% Below, more preferably 8.0 mol % or less, particularly preferably 7.5 mol % or less. When the content of the unit (A) is at least the lower limit, the transparency of the ionomer resin composition and the excellent adhesion to glass are likely to be obtained. Moreover, when it is equal to or less than the above upper limit, it is easy to obtain more excellent moldability.
<(メタ)アクリル酸中和物単位(B)>
 (メタ)アクリル酸中和物単位(B)としては、前記(メタ)アクリル酸単位(A)の中和物単位が好ましい。なお、(メタ)アクリル酸中和物は、(メタ)アクリル酸の水素イオンを金属イオンで置き換えたものである。前記金属イオンの例としては、リチウム、ナトリウム、カリウム等の1価金属のイオン、マグネシウム、カルシウム、亜鉛、アルミニウム、チタン等の多価金属のイオンが挙げられる。このような金属イオンは1種単独でも2種以上の組み合わせでもよい。例えば、1種以上の1価金属イオンと1種以上の2価金属イオンとの組み合わせであってもよい。
<(Meth)acrylic acid neutralized unit (B)>
The neutralized (meth)acrylic acid unit (B) is preferably the neutralized (meth)acrylic acid unit (A). The neutralized (meth)acrylic acid is obtained by replacing hydrogen ions of (meth)acrylic acid with metal ions. Examples of the metal ions include ions of monovalent metals such as lithium, sodium and potassium, and ions of polyvalent metals such as magnesium, calcium, zinc, aluminum and titanium. Such metal ions may be used singly or in combination of two or more. For example, it may be a combination of one or more monovalent metal ions and one or more divalent metal ions.
 (メタ)アクリル酸中和物単位(B)のアイオノマー樹脂中の含有量は、前記単位(A)および前記単位(B)の合計含有量が、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%の範囲内であれば特に制限されない。本発明の一実施形態において、(メタ)アクリル酸中和物単位(B)の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは0.65モル%以上、より好ましくは1.0モル%以上、さらに好ましくは1.5モル%以上、特に好ましくは1.6モル%以上であり、また、好ましくは3.0モル%以下、より好ましくは2.7モル%以下、さらに好ましくは2.6モル%以下、特に好ましくは2.5モル%以下である。単位(B)の含有量が前記下限値以上であると、より優れた透明性およびより優れた弾性率を得やすく、前記上限値以下であると、成形加工時の溶融粘度の上昇が抑制されやすい。 The content of the (meth)acrylic acid neutralized unit (B) in the ionomer resin is such that the total content of the unit (A) and the unit (B) is the total monomer units constituting the ionomer resin. As a standard, it is not particularly limited as long as it is within the range of 6 to 10 mol %. In one embodiment of the present invention, the content of (meth)acrylic acid neutralized units (B) is preferably 0.65 mol % or more, more preferably 0.65 mol % or more, based on the total monomer units constituting the ionomer resin. is 1.0 mol% or more, more preferably 1.5 mol% or more, particularly preferably 1.6 mol% or more, and preferably 3.0 mol% or less, more preferably 2.7 mol% or less , more preferably 2.6 mol % or less, particularly preferably 2.5 mol % or less. When the content of the unit (B) is at least the lower limit, it is easy to obtain better transparency and elastic modulus, and when it is at most the upper limit, an increase in melt viscosity during molding is suppressed. Cheap.
 前記単位(A)および前記単位(B)の各含有量は、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属反応工程を含む方法によりアイオノマー樹脂を調製する場合には、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位を(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)に変換するけん化反応および脱金属反応の各反応度により調整できる。 Each content of the unit (A) and the unit (B) is obtained by using an ethylene-(meth)acrylic acid ester copolymer as a raw material, and ionomer by a method including a saponification reaction step and a demetallization reaction step of the copolymer. When preparing a resin, the (meth)acrylic acid ester unit in the ethylene-(meth)acrylic acid ester copolymer is replaced with the (meth)acrylic acid unit (A) and the (meth)acrylic acid neutralized product unit (B ) can be adjusted by each reactivity of the saponification reaction and the demetallization reaction.
<エチレン単位(C)>
 エチレン単位(C)の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、アイオノマー樹脂組成物の機械的強度(特に耐衝撃性)および成形加工性を高めやすい観点から、好ましくは80モル%以上、より好ましくは85モル%以上、さらに好ましくは88モル%以上であり、また、アイオノマー樹脂組成物の透明性(特に徐冷時の透明性)を高めやすい観点から、好ましくは94モル%以下、より好ましくは92モル%以下である。
<Ethylene unit (C)>
The content of ethylene units (C) is preferably 80 mol% or more, more preferably 85 mol% or more, still more preferably 88 mol% or more, and from the viewpoint of easily increasing the transparency of the ionomer resin composition (especially the transparency during slow cooling), preferably 94 mol % or less, more preferably 92 mol % or less.
<(メタ)アクリル酸エステル単位(D)>
 本発明におけるアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)に加えて、より高い透明性を得やすい観点から、さらに(メタ)アクリル酸エステル単位(D)を含むことが好ましい。
<(Meth) acrylic acid ester unit (D)>
The ionomer resin in the present invention, in addition to the (meth)acrylic acid unit (A), the (meth)acrylic acid neutralized unit (B), and the ethylene unit (C), from the viewpoint of easily obtaining higher transparency, Furthermore, it is preferable that the (meth)acrylic acid ester unit (D) is included.
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、より高い透明性(特に徐冷時の透明性)を得やすい観点から、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であることが好ましい。すなわち、本発明の好適な一実施形態において、本発明におけるアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)、および(メタ)アクリル酸エステル単位(D)を含み、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である。アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量が前記上限値以下であると、アイオノマー樹脂組成物の成形加工時における溶融粘度の上昇が抑制されやすく、それにより、アイオノマー樹脂組成物のより優れた成形加工性を得やすい。また、前記合計含有量が前記下限値以上であると、アイオノマー樹脂組成物のより高い透明性(特に徐冷時の透明性)を得やすい。
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合において、前記単位(A)、前記単位(B)および前記単位(D)の前記合計含有量は、より高い透明性(特に徐冷時の透明性)およびガラスに対するより高い接着性を得やすい観点から、6モル%以上、好ましくは6.5モル%以上、より好ましくは7.0モル%以上、さらに好ましくは7.5モル%以上であり、また、成形加工性の観点から、10モル%以下、好ましくは9.9モル%以下、より好ましくは9.5モル%以下である。
When the ionomer resin contains the (meth)acrylic acid ester unit (D), the total content of the unit (A), the unit (B) and the unit (D) increases the transparency (especially during slow cooling). transparency), it is preferably 6 to 10 mol % based on the total monomer units constituting the ionomer resin. That is, in a preferred embodiment of the present invention, the ionomer resin in the present invention comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), ethylene units (C), and ( Including the meth)acrylic acid ester unit (D), the total content of the unit (A), the unit (B) and the unit (D) is 6 based on the total monomer units constituting the ionomer resin. ~10 mol%. When the ionomer resin contains (meth)acrylic acid ester units (D), the total content of the units (A), the units (B) and the units (D) is not more than the upper limit, the ionomer resin composition It is easy to suppress the increase in the melt viscosity during the molding process of the product, and thereby, it is easy to obtain the ionomer resin composition with better moldability. Further, when the total content is at least the lower limit, it is easy to obtain higher transparency of the ionomer resin composition (especially transparency during slow cooling).
When the ionomer resin contains (meth)acrylic acid ester units (D), the total content of the units (A), the units (B) and the units (D) provides higher transparency (especially slow cooling 6 mol% or more, preferably 6.5 mol% or more, more preferably 7.0 mol% or more, still more preferably 7.5 mol% From the viewpoint of moldability, the content is 10 mol % or less, preferably 9.9 mol % or less, more preferably 9.5 mol % or less.
 前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、アイオノマー樹脂の原料により調整できる。より具体的には、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属反応工程を含む方法によりアイオノマー樹脂を調製する場合には、アイオノマー樹脂の原料であるエチレン-(メタ)アクリル酸エステル共重合体の(メタ)アクリル酸エステル変性量により調整できる。また、米国特許8399096号に記載されるように、エチレンおよび(メタ)アクリル酸を原料とし、これらを重合してアイオノマー樹脂を調製する場合には、共重合させるエチレンと(メタ)アクリル酸との割合により調整できる。 The total content of the units (A), the units (B) and the units (D) can be adjusted depending on the raw material of the ionomer resin. More specifically, when an ethylene-(meth)acrylic acid ester copolymer is used as a raw material and an ionomer resin is prepared by a method including a saponification reaction step and a demetallization reaction step of the copolymer, the ionomer resin It can be adjusted by the (meth)acrylic acid ester modification amount of the raw material ethylene-(meth)acrylic acid ester copolymer. Further, as described in US Pat. No. 8,399,096, when ethylene and (meth)acrylic acid are used as raw materials and these are polymerized to prepare an ionomer resin, ethylene and (meth)acrylic acid to be copolymerized It can be adjusted by the ratio.
 (メタ)アクリル酸エステル単位(D)を構成する単量体の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸グリシジル、および(メタ)アクリル酸アリル等が挙げられる。
 これらのうち、透明性または耐熱性の観点から、好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、および(メタ)アクリル酸t-ブチルであり、より好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、および(メタ)アクリル酸イソブチルであり、さらに好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸n-ブチル、および(メタ)アクリル酸イソブチルであり、特に好ましい単量体は、(メタ)アクリル酸メチルである。これら単量体は、1種単独でも2種以上の組み合わせでもよい。
Examples of monomers constituting the (meth)acrylate unit (D) include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and isopropyl (meth)acrylate. , n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, amyl (meth)acrylate, isoamyl (meth)acrylate, ( n-hexyl meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, pentadecyl (meth)acrylate, dodecyl (meth)acrylate, isobornyl (meth)acrylate, (meth)acrylic acid Phenyl, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, glycidyl (meth)acrylate, and (meth)acrylic acid allyl and the like.
Among these, preferred monomers from the viewpoint of transparency or heat resistance are methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, ( n-butyl meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, and t-butyl (meth)acrylate, more preferred monomers are methyl (meth)acrylate, Ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and more preferred monomers are ( Methyl meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and a particularly preferred monomer is methyl (meth)acrylate. These monomers may be used singly or in combination of two or more.
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、(メタ)アクリル酸エステル単位(D)のアイオノマー樹脂中の含有量は特に制限されない。本発明の一実施形態において、(メタ)アクリル酸エステル単位(D)のアイオノマー樹脂中の含有量は、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは0モル%超、より好ましくは0.01モル%以上、さらに好ましくは0.05モル%以上、特に好ましくは0.08モル%以上であり、また、好ましくは1.0モル%以下、より好ましくは0.7モル%以下、さらに好ましくは0.5モル%以下である。単位(D)の含有量が前記下限値以上、かつ前記上限値以下であると、アイオノマー樹脂組成物のより高い透明性を得やすい。 When the ionomer resin contains (meth)acrylic acid ester units (D), the content of the (meth)acrylic acid ester units (D) in the ionomer resin is not particularly limited. In one embodiment of the present invention, the content of (meth)acrylic acid ester units (D) in the ionomer resin is preferably greater than 0 mol %, more preferably more than 0 mol %, based on the total monomer units constituting the ionomer resin. is 0.01 mol% or more, more preferably 0.05 mol% or more, particularly preferably 0.08 mol% or more, and preferably 1.0 mol% or less, more preferably 0.7 mol% or less , more preferably 0.5 mol % or less. When the content of the unit (D) is at least the lower limit and at most the upper limit, higher transparency of the ionomer resin composition can be easily obtained.
 アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合の前記単位(D)の含有量は、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程および脱金属反応工程を含む方法によりアイオノマー樹脂を調製する場合には、エチレン-(メタ)アクリル酸エステル共重合体中の(メタ)アクリル酸エステル単位(D)を(メタ)アクリル酸単位(A)に変換するけん化反応の反応度により調整できる。 When the ionomer resin contains the (meth)acrylic acid ester unit (D), the content of the unit (D) is obtained by using an ethylene-(meth)acrylic acid ester copolymer as a raw material and saponifying the copolymer. and a demetallization reaction step, the (meth)acrylic acid ester unit (D) in the ethylene-(meth)acrylic acid ester copolymer is replaced with the (meth)acrylic acid unit (A ) can be adjusted by the reactivity of the saponification reaction.
<他の単量体単位>
 本発明におけるアイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに場合により含まれる(メタ)アクリル酸エステル単位(D)以外の他の単量体単位を含んでいてもよい。他の単量体単位の例としては、(メタ)アクリル酸単位(A)以外のカルボン酸単位(A2)、および(メタ)アクリル酸中和物単位(B)以外のカルボン酸中和物単位(B2)等が挙げられる。
 前記カルボン酸単位(A2)を構成する単量体の例としては、イタコン酸、無水マレイン酸、マレイン酸モノメチル、およびマレイン酸モノエチル等が挙げられ、マレイン酸モノメチル、およびマレイン酸モノエチルが好ましい。前記カルボン酸中和物単位(B2)を構成する単量体の例としては、前記カルボン酸単位(A2)の中和物単位等が挙げられる。なお、カルボン酸中和物は、カルボン酸の水素イオンを金属イオンで置き換えたものである。前記金属イオンとしては、上述した(メタ)アクリル酸中和物単位(B)における金属イオンと同様のものが挙げられ、該金属イオンは、1種単独でも2種以上の組み合わせでもよい。
 これらの他の単量体単位は、1種単独でも2種以上の組み合わせでもよい。
<Other monomer units>
The ionomer resin in the present invention comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and optionally included (meth)acrylic acid ester units ( It may contain monomeric units other than D). Examples of other monomer units include a carboxylic acid unit (A2) other than the (meth)acrylic acid unit (A), and a neutralized carboxylic acid unit other than the (meth)acrylic acid neutralized unit (B). (B2) and the like.
Examples of monomers constituting the carboxylic acid unit (A2) include itaconic acid, maleic anhydride, monomethyl maleate, and monoethyl maleate, with monomethyl maleate and monoethyl maleate being preferred. Examples of the monomer constituting the neutralized carboxylic acid unit (B2) include neutralized units of the neutralized carboxylic acid unit (A2). The neutralized carboxylic acid is obtained by replacing hydrogen ions of carboxylic acid with metal ions. Examples of the metal ions include those similar to the metal ions in the neutralized (meth)acrylic acid unit (B) described above, and the metal ions may be used singly or in combination of two or more.
These other monomer units may be used singly or in combination of two or more.
 アイオノマー樹脂が前記他の単量体単位を含む場合、その合計含有量、例えば(A2)および(B2)の合計含有量は、本発明の効果を損なわない範囲で適宜選択すればよく、例えば、アイオノマー樹脂を構成する全単量体単位を基準として、好ましくは5モル%以下、より好ましくは3モル%以下、さらに好ましくは1モル%以下であり、また、好ましくは0.01モル%以上、より好ましくは0.1モル%以上である。 When the ionomer resin contains the other monomer units, the total content thereof, for example the total content of (A2) and (B2), may be appropriately selected within a range that does not impair the effects of the present invention. Based on the total monomer units constituting the ionomer resin, preferably 5 mol% or less, more preferably 3 mol% or less, still more preferably 1 mol% or less, and preferably 0.01 mol% or more, More preferably, it is 0.1 mol % or more.
 本発明におけるアイオノマー樹脂中の(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに含まれる場合の(メタ)アクリル酸エステル単位(D)および他の単量体単位(例えば単位(A2)および単位(B2))の各含有量は、まず、アイオノマー樹脂中の単量体単位を熱分解ガスクロマトグラフィーで同定し、次いで、核磁気共鳴分光法(NMR)および元素分析を用いることによって、求めることができる。より具体的には実施例に記載の方法により求めることができる。また、前記分析方法と、IRおよび/またはラマン分析とを組合せた方法で求めることもできる。これらの分析の前に、アイオノマー樹脂以外の成分を、再沈殿法またはソックスレー抽出法にて除去しておくことが好ましい。 (Meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C) in the ionomer resin in the present invention, and (meth)acrylic acid ester units when included ( D) and other monomeric unit contents (e.g., unit (A2) and unit (B2)) are determined by first identifying the monomeric units in the ionomer resin by pyrolysis gas chromatography, then It can be determined by using magnetic resonance spectroscopy (NMR) and elemental analysis. More specifically, it can be determined by the method described in Examples. It can also be determined by a method combining the above analysis method with IR and/or Raman analysis. Prior to these analyses, it is preferable to remove components other than the ionomer resin by reprecipitation or Soxhlet extraction.
 本発明の一実施形態において、本発明におけるアイオノマー樹脂の炭素1000個当たりの分岐度は、特に制限されず、好ましくは5~30、より好ましくは6~20である。前記分岐度は、アイオノマー樹脂を重合する際の温度、例えば、エチレン-(メタ)アクリル酸エステル共重合体を原料とし、該共重合体のけん化反応工程を含む方法によりアイオノマー樹脂を合成する場合には、エチレン-(メタ)アクリル酸エステル共重合体を合成する際の重合温度により調整できる。炭素1000個当たりの分岐度は、固体NMRを用いてDDMAS法にて測定できる。 In one embodiment of the present invention, the degree of branching per 1000 carbon atoms of the ionomer resin of the present invention is not particularly limited, and is preferably 5-30, more preferably 6-20. The degree of branching is the temperature at which the ionomer resin is polymerized, for example, when an ethylene-(meth)acrylic acid ester copolymer is used as a raw material and the ionomer resin is synthesized by a method including a saponification reaction step of the copolymer. can be adjusted by the polymerization temperature when synthesizing the ethylene-(meth)acrylic acid ester copolymer. The degree of branching per 1000 carbons can be measured by the DDMAS method using solid-state NMR.
 アイオノマー樹脂の含有量は、得られるアイオノマー樹脂組成物のガラスに対する優れた接着性、および透明性を高めやすい観点から、アイオノマー樹脂組成物の総質量に対して、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、さらにより好ましくは99質量%以上であり、また、好ましくは100質量%未満、より好ましくは99.99質量%以下である。 The content of the ionomer resin is preferably 90% by mass or more, more preferably 90% by mass or more, based on the total mass of the ionomer resin composition, from the viewpoint of easily increasing the excellent adhesion to glass of the resulting ionomer resin composition and the transparency. is 95% by mass or more, more preferably 98% by mass or more, still more preferably 99% by mass or more, and preferably less than 100% by mass, more preferably 99.99% by mass or less.
〔強酸および強塩基からなる塩〕
 本発明におけるアイオノマー樹脂組成物は、アイオノマー樹脂に加えて、強酸および強塩基からなる塩(以下、単に「塩」とも称する)を含んでなる。塩の含有量は、前記アイオノマー樹脂組成物の総質量を基準として1~400mg/kgである。本発明者らは、本発明の樹脂シートが上述した通りの接触角60~75度の要件を満たし、アイオノマー樹脂が上述した通りの(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)の合計含有量6~10モル%の要件を満たし、かつ、アイオノマー樹脂組成物が塩1~400mg/kgの要件を満たす場合、樹脂シートのガラス(スズ面だけでなくエア面)に対する高い接着性に加えて、高い透明性を達成できることを見出した。一方、前記3つの要件のいずれかを充足しない場合、樹脂シートはガラスに対する高い接着性および高い透明性を両立できない。また、本発明者らは、アイオノマー樹脂組成物が塩を1~400mg/kg含有する場合、さらに、アイオノマー樹脂組成物の高い耐熱分解性も達成できることを見出した。アイオノマー樹脂組成物が前記範囲内の塩を含有することにより、アイオノマー樹脂組成物が耐熱分解性に優れる理由は明らかでないが、塩とアイオノマー樹脂中の(メタ)アクリル酸単位(A)との相互作用により、アイオノマー樹脂中の(メタ)アクリル酸単位(A)が熱によって脱離することを抑制できるためと考えられる。意外なことに、アイオノマー樹脂組成物のガラスに対する接着性および耐熱分解性はいずれも、塩の含有量が1mg/kg未満であると急激に低下し、このことは、後述の比較例でも示されている。
[Salts Consisting of Strong Acids and Strong Bases]
The ionomer resin composition in the present invention contains a salt composed of a strong acid and a strong base (hereinafter also simply referred to as "salt") in addition to the ionomer resin. The salt content is 1-400 mg/kg based on the total mass of the ionomer resin composition. The present inventors have found that the resin sheet of the present invention satisfies the requirements of a contact angle of 60 to 75 degrees as described above, and the ionomer resin has the (meth)acrylic acid unit (A) and (meth)acrylic acid as described above. When the total content of hydrated units (B) satisfies the requirement of 6 to 10 mol% and the ionomer resin composition satisfies the requirement of salt 1 to 400 mg/kg, the glass of the resin sheet (not only the tin surface but also the air In addition to high adhesion to the surface), it was found that high transparency can be achieved. On the other hand, if any one of the above three requirements is not satisfied, the resin sheet cannot achieve both high adhesion to glass and high transparency. In addition, the present inventors have found that when the ionomer resin composition contains 1 to 400 mg/kg of salt, it is possible to further achieve high thermal decomposition resistance of the ionomer resin composition. Although it is not clear why the ionomer resin composition contains a salt within the above range, the ionomer resin composition is excellent in thermal decomposition resistance. This is believed to be due to the fact that the action can suppress the (meth)acrylic acid unit (A) in the ionomer resin from desorbing due to heat. Surprisingly, both the adhesion to glass and the thermal decomposition resistance of the ionomer resin composition sharply decreased when the salt content was less than 1 mg/kg, which is also shown in the comparative examples described later. ing.
 前記塩の含有量が前記上限値を超えるとアイオノマー樹脂組成物の透明性が低下しやすくなる。前記塩の含有量が前記下限値未満であると、耐熱分解性が低下して、例えば成形加工時等の際にアイオノマー樹脂組成物が熱分解しやすくなり、また、ガラス(特にエア面)に対する接着性が低下する。前記塩の含有量は、耐熱分解性を向上しやすい観点から、アイオノマー樹脂組成物の総質量を基準として、好ましくは3mg/kg以上、より好ましくは5mg/kg以上である。また、透明性(特に吸水時の透明性)を向上しやすい観点から、アイオノマー樹脂組成物の総質量を基準として、好ましくは380mg/kg以下、より好ましくは340mg/kg以下、さらに好ましくは300mg/kg以下、特に好ましくは200mg/kg以下である。アイオノマー樹脂組成物中の塩の含有量は、イオンクロマトグラフを用いて測定でき、例えば実施例に記載の方法で測定できる。 When the content of the salt exceeds the upper limit, the transparency of the ionomer resin composition tends to be lowered. If the content of the salt is less than the lower limit, the thermal decomposition resistance is lowered, and the ionomer resin composition is likely to be thermally decomposed during, for example, molding processing. Reduced adhesion. The content of the salt is preferably 3 mg/kg or more, more preferably 5 mg/kg or more, based on the total mass of the ionomer resin composition, from the viewpoint of easily improving thermal decomposition resistance. In addition, from the viewpoint of easily improving transparency (especially transparency at the time of water absorption), the total mass of the ionomer resin composition is preferably 380 mg/kg or less, more preferably 340 mg/kg or less, and still more preferably 300 mg/kg. kg or less, particularly preferably 200 mg/kg or less. The salt content in the ionomer resin composition can be measured using ion chromatography, for example, by the method described in Examples.
 前記塩としては、特に制限されず、例えば強酸および強塩基からなるアルカリ金属および/またはアルカリ土類金属の金属塩が挙げられる。これらの塩は1種単独でも2種以上の組み合わせでもよい。アルカリ金属塩の例としては、リチウム塩、ナトリウム塩、カリウム塩、ルビジウム塩、およびセシウム塩等が挙げられる。アイオノマー樹脂組成物の耐熱分解性を高めやすい観点から、好ましいアルカリ金属塩は、リチウム塩、ナトリウム塩、およびカリウム塩、より好ましくはナトリウム塩、およびカリウム塩であり、さらに好ましくはナトリウム塩である。アルカリ土類金属塩の例としては、ベリリウム塩、マグネシウム塩、カルシウム塩、ストロンチウム塩、およびバリウム塩等が挙げられる。アイオノマー樹脂組成物の耐熱分解性を高めやすい観点から、好ましいアルカリ土類金属塩はマグネシウム塩、およびカルシウム塩である。 The salt is not particularly limited, and examples thereof include metal salts of alkali metals and/or alkaline earth metals composed of strong acids and strong bases. These salts may be used singly or in combination of two or more. Examples of alkali metal salts include lithium salts, sodium salts, potassium salts, rubidium salts, cesium salts, and the like. Preferred alkali metal salts are lithium salt, sodium salt, and potassium salt, more preferred are sodium salt and potassium salt, and still more preferred is sodium salt, from the viewpoint of easily increasing the thermal decomposition resistance of the ionomer resin composition. Examples of alkaline earth metal salts include beryllium salts, magnesium salts, calcium salts, strontium salts, barium salts, and the like. Preferred alkaline earth metal salts are magnesium salts and calcium salts from the viewpoint of easily increasing the thermal decomposition resistance of the ionomer resin composition.
 アイオノマー樹脂組成物の耐熱分解性を高めやすい観点から、より好ましい塩は、ナトリウムイオン、カリウムイオン、マグネシウムイオンおよびカルシウムイオンからなる群から選択される少なくとも1種のカチオンと、ハロゲンイオン、硫酸イオン、硝酸イオンおよびスルホン酸イオンからなる群から選択される少なくとも1種のアニオンとからなる塩であり、さらに好ましい塩は、ナトリウムイオンおよびカリウムイオンからなる群から選択される少なくとも1種のカチオンと、ハロゲンイオン、硫酸イオンおよび硝酸イオンからなる群から選択される少なくとも1種のアニオンとからなる塩である。 From the viewpoint of easily increasing the thermal decomposition resistance of the ionomer resin composition, more preferable salts include at least one cation selected from the group consisting of sodium ion, potassium ion, magnesium ion and calcium ion, halogen ion, sulfate ion, Salts comprising at least one anion selected from the group consisting of nitrate ions and sulfonate ions, more preferably salts comprising at least one cation selected from the group consisting of sodium ions and potassium ions, and halogen It is a salt comprising at least one anion selected from the group consisting of ions, sulfate ions and nitrate ions.
 具体的な好ましい塩の例としては、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硝酸ナトリウム、硝酸カリウム、硝酸マグネシウム、硝酸カルシウム、p-トルエンスルホン酸ナトリウム、p-トルエンスルホン酸カリウム、p-トルエンスルホン酸マグネシウム、およびp-トルエンスルホン酸カルシウムが挙げられる。透明性および耐熱分解性を向上させやすい観点から、より好ましい塩は、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、硫酸カリウム、硝酸ナトリウム、および硝酸カリウムであり、さらに好ましくい塩は塩化ナトリウム、硫酸ナトリウム、および硝酸ナトリウムである。 Examples of specific preferred salts include sodium chloride, potassium chloride, magnesium chloride, calcium chloride, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, sodium nitrate, potassium nitrate, magnesium nitrate, calcium nitrate, p-toluenesulfonic acid. Sodium, potassium p-toluenesulfonate, magnesium p-toluenesulfonate, and calcium p-toluenesulfonate. More preferred salts are sodium chloride, potassium chloride, sodium sulfate, potassium sulfate, sodium nitrate, and potassium nitrate, and more preferred salts are sodium chloride, sodium sulfate, and Sodium nitrate.
 アイオノマー樹脂組成物に塩を含有させる方法は特に制限されず、例えば、(I)アイオノマー樹脂の調製工程において塩を生成させてアイオノマー樹脂および塩を含んでなるアイオノマー樹脂組成物を得る方法、(II)アイオノマー樹脂の調製工程において塩を別添してアイオノマー樹脂組成物を得る方法、および(III)塩を含まないアイオノマー樹脂を調製し、該樹脂に塩を後添加してアイオノマー樹脂組成物を得る方法等が挙げられる。これらの方法のうち、塩をアイオノマー樹脂組成物中に均一に分散しやすく、これにより透明性および耐熱分解性を向上させやすい観点から、前記方法(I)が好ましい。 The method of adding a salt to the ionomer resin composition is not particularly limited. ) A method of obtaining an ionomer resin composition by separately adding a salt in the ionomer resin preparation process, and (III) A method of preparing an ionomer resin containing no salt and then adding a salt to the resin to obtain an ionomer resin composition. methods and the like. Among these methods, the method (I) is preferable from the viewpoint of easily dispersing the salt uniformly in the ionomer resin composition, thereby easily improving the transparency and thermal decomposition resistance.
 アイオノマー樹脂組成物中の塩の含有量の調整方法は、前記の塩を含有させる方法に応じて適宜選択され得る。例えば、前記方法(I)により塩を含有させる場合、得られた樹脂の洗浄度により調整できる。より具体的には、得られた樹脂を洗浄液で洗浄する工程における洗浄回数により、アイオノマー樹脂組成物中の塩の含有量を調整できる。前記洗浄液の例としては、塩の良溶媒であり、かつ、樹脂の貧溶媒である溶媒、例えば、水、メタノール等のアルコール類、アセトン等のケトン類、およびこれらの混合溶媒等が挙げられる。前記方法(II)および(III)により塩を含有させる場合には、別添する塩の量および後添加する塩の量により、アイオノマー樹脂組成物中の塩の含有量をそれぞれ調整できる。 A method for adjusting the content of the salt in the ionomer resin composition can be appropriately selected according to the method for containing the salt. For example, when a salt is added by the above method (I), it can be adjusted by the washing degree of the obtained resin. More specifically, the salt content in the ionomer resin composition can be adjusted by the number of washings in the step of washing the obtained resin with a washing liquid. Examples of the cleaning liquid include solvents that are good solvents for salts and poor solvents for resins, such as water, alcohols such as methanol, ketones such as acetone, and mixed solvents thereof. When the salt is added by the above methods (II) and (III), the salt content in the ionomer resin composition can be adjusted by adjusting the amount of the separately added salt and the amount of the post-added salt.
 アイオノマー樹脂組成物中の塩の分散状態は特に制限されないが、ガラスに対する接着性、透明性および耐熱分解性を向上しやすい観点から、アイオノマー樹脂組成物中に均一に分散していることが好ましい。 The dispersion state of the salt in the ionomer resin composition is not particularly limited, but from the viewpoint of easily improving the adhesion to glass, transparency, and thermal decomposition resistance, it is preferable that the salt is uniformly dispersed in the ionomer resin composition.
〔添加剤〕
 本発明におけるアイオノマー樹脂組成物は、必要に応じて、添加剤をさらに含んでもよい。
 場合より含まれてよい添加剤の例としては、紫外線吸収剤、老化防止剤、酸化防止剤、熱劣化防止剤、光安定剤、膠着防止剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染料、顔料、有機色素、艶消し剤、および蛍光体等が挙げられる。これらの添加剤のなかでも、紫外線吸収剤、老化防止剤、酸化防止剤、熱劣化防止剤、光安定剤、膠着防止剤、滑剤、離型剤、高分子加工助剤、および有機色素が好ましい。アイオノマー樹脂組成物が添加剤を含む場合、含まれる添加剤は1種単独でも2種以上の組み合わせでもよい。
〔Additive〕
The ionomer resin composition in the present invention may further contain additives, if necessary.
Examples of additives that may optionally be included include UV absorbers, anti-aging agents, antioxidants, thermal degradation inhibitors, light stabilizers, anti-adhesive agents, lubricants, release agents, polymer processing aids, Examples include antistatic agents, flame retardants, dyes, pigments, organic dyes, matting agents, and phosphors. Among these additives, ultraviolet absorbers, anti-aging agents, antioxidants, heat deterioration inhibitors, light stabilizers, anti-sticking agents, lubricants, release agents, polymer processing aids, and organic dyes are preferred. . When the ionomer resin composition contains additives, the additives contained may be used singly or in combination of two or more.
 紫外線吸収剤は、紫外線を吸収する能力を有する化合物であり、主に光エネルギーを熱エネルギーに変換する機能を有する。紫外線吸収剤の例としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、およびホルムアミジン類等が挙げられる。紫外線吸収剤を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。 A UV absorber is a compound that has the ability to absorb UV rays, and has the function of mainly converting light energy into heat energy. Examples of UV absorbers include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic esters, and formamidines. When using an ultraviolet absorber, it may be used alone or in combination of two or more.
 ベンゾトリアゾール類は、紫外線被照による着色等の光学特性低下を抑制する効果が高いため、紫外線吸収剤として好ましい。好ましいベンゾトリアゾール類の例としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF社製;商品名:TINUVIN329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製;商品名:TINUVIN234)、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-t-オクチルフェノール]((株)ADEKA製;商品名:アデカスタブLA-31)、および2-(5-オクチルチオ-2H-ベンゾトリアゾール-2-イル)-6-tert-ブチル-4-メチルフェノール等が挙げられる。ベンゾトリアゾール類を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。 Benzotriazoles are preferable as UV absorbers because they are highly effective in suppressing deterioration of optical properties such as coloration due to exposure to UV light. Examples of preferred benzotriazoles include 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (manufactured by BASF; trade name: TINUVIN329), 2 -(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (manufactured by BASF; trade name: TINUVIN234), 2,2'-methylenebis[6-(2H -benzotriazol-2-yl)-4-t-octylphenol] (manufactured by ADEKA Corporation; trade name: ADEKA STAB LA-31), and 2-(5-octylthio-2H-benzotriazol-2-yl)-6 -tert-butyl-4-methylphenol and the like. When benzotriazoles are used, they may be used alone or in combination of two or more.
 トリアジン類の紫外線吸収剤の例としては、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン((株)ADEKA製;商品名:アデカスタブLA-F70)、その類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASF社製;商品名:TINUVIN477およびTINUVIN460)、および2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン等が挙げられる。トリアジン類を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。 Examples of triazine UV absorbers include 2,4,6-tris(2-hydroxy-4-hexyloxy-3-methylphenyl)-1,3,5-triazine (manufactured by ADEKA Corporation; trade name : Adekastab LA-F70), its analogues hydroxyphenyltriazine-based UV absorbers (manufactured by BASF; trade names: TINUVIN477 and TINUVIN460), and 2,4-diphenyl-6-(2-hydroxy-4-hexyloxy phenyl)-1,3,5-triazine and the like. When triazines are used, they may be used singly or in combination of two or more.
 老化防止剤としては、公知の剤が例示される。具体的な老化防止剤の例としては、ヒドロキノン、ヒドロキノンモノメチルエーテル、2,5-ジ-t-ブチルフェノール、2,6-ジ(t-ブチル)-4-メチルフェノール、モノ(またはジ、またはトリ)(α-メチルベンジル)フェノール等のフェノール系化合物;2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)等のビスフェノール系化合物;2-メルカプトベンズイミダゾール、2-メルカプトメチルベンズイミダゾール等のベンズイミダゾール系化合物;6-エトキシ-1,2-ジヒドロ-2,2,4-トリメチルキノリン、ジフェニルアミンとアセトンの反応物、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体等のアミン-ケトン系化合物;N-フェニル-1-ナフチルアミン、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン等の芳香族二級アミン系化合物;1,3-ビス(ジメチルアミノプロピル)-2-チオ尿素、トリブチルチオ尿素等のチオウレア系化合物等が挙げられる。老化防止剤を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。 Examples of anti-aging agents include known agents. Examples of specific anti-aging agents include hydroquinone, hydroquinone monomethyl ether, 2,5-di-t-butylphenol, 2,6-di(t-butyl)-4-methylphenol, mono (or di, or tri ) (α-methylbenzyl)phenol and other phenolic compounds; 2,2′-methylenebis(4-ethyl-6-t-butylphenol), 4,4′-butylidenebis(3-methyl-6-t-butylphenol), bisphenol compounds such as 4,4'-thiobis (3-methyl-6-t-butylphenol); benzimidazole compounds such as 2-mercaptobenzimidazole and 2-mercaptomethylbenzimidazole; 6-ethoxy-1,2- Amine-ketone compounds such as dihydro-2,2,4-trimethylquinoline, reaction products of diphenylamine and acetone, 2,2,4-trimethyl-1,2-dihydroquinoline polymers; N-phenyl-1-naphthylamine, Aromatics such as alkylated diphenylamine, octylated diphenylamine, 4,4′-bis(α,α-dimethylbenzyl)diphenylamine, p-(p-toluenesulfonylamido)diphenylamine, N,N′-diphenyl-p-phenylenediamine Secondary amine compounds; thiourea compounds such as 1,3-bis(dimethylaminopropyl)-2-thiourea and tributylthiourea; When an anti-aging agent is used, it may be used alone or in combination of two or more.
 酸化防止剤は、酸素存在下においてそれ単体で樹脂の酸化劣化防止に効果を有するものである。その例としては、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、およびチオエーテル系酸化防止剤等が挙げられる。酸化防止剤を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤、およびヒンダードフェノール系酸化防止剤が好ましく、リン系酸化防止剤とヒンダードフェノール系酸化防止剤との組み合わせがより好ましい。  Antioxidants are effective by themselves to prevent oxidative deterioration of resins in the presence of oxygen. Examples thereof include phosphorus antioxidants, hindered phenol antioxidants, thioether antioxidants, and the like. When antioxidants are used, they may be used alone or in combination of two or more. From the viewpoint of the effect of preventing deterioration of optical properties due to coloring, a phosphorus antioxidant and a hindered phenol antioxidant are preferable, and a combination of a phosphorus antioxidant and a hindered phenol antioxidant is more preferable.
 リン系酸化防止剤とヒンダードフェノール系酸化防止剤との組み合わせを用いる場合、リン系酸化防止剤の使用量:ヒンダードフェノール系酸化防止剤の使用量は、質量比で、好ましくは1:5~2:1、より好ましくは1:2~1:1である。 When a combination of a phosphorus-based antioxidant and a hindered phenol-based antioxidant is used, the amount of phosphorus-based antioxidant used: the amount of hindered phenol-based antioxidant used is preferably 1:5 in mass ratio. ~2:1, more preferably 1:2 to 1:1.
 好ましいリン系酸化防止剤の例としては、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト((株)ADEKA製;商品名:アデカスタブHP-10)、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASF社製;商品名:IRGAFOS168)、3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン((株)ADEKA製;商品名:アデカスタブPEP-36)等が挙げられる。リン系酸化防止剤を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。 Examples of preferred phosphorus antioxidants include 2,2-methylenebis(4,6-di-t-butylphenyl)octylphosphite (manufactured by ADEKA Corporation; trade name: ADEKA STAB HP-10), Tris (2 ,4-di-t-butylphenyl)phosphite (manufactured by BASF; trade name: IRGAFOS168), 3,9-bis(2,6-di-t-butyl-4-methylphenoxy)-2,4,8 , 10-tetraoxa-3,9-diphosphaspiro[5.5]undecane (manufactured by ADEKA Corporation; trade name: ADEKA STAB PEP-36). When using a phosphorus-based antioxidant, it may be used alone or in combination of two or more.
 好ましいヒンダードフェノール系酸化防止剤の例としては、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](BASF社製;商品名:IRGANOX1010)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(BASF社製;商品名:IRGANOX1076)等が挙げられる。ヒンダードフェノール系酸化防止剤を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。 Examples of preferred hindered phenolic antioxidants include pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] (manufactured by BASF; trade name: IRGANOX1010), Octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate (manufactured by BASF; trade name: IRGANOX1076) and the like. When hindered phenol-based antioxidants are used, they may be used alone or in combination of two or more.
 熱劣化防止剤は、実質上無酸素の状態下で高熱にさらされたときに生じるポリマーラジカルを捕捉することによって樹脂の熱劣化を防止できるものである。好ましい熱劣化防止剤の例としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学(株)製;商品名:スミライザーGM)、2,4-ジ-t-アミル-6-(3’,5’-ジ-t-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学(株)製;商品名:スミライザーGS)等が挙げられる。熱劣化防止剤を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。 Thermal degradation inhibitors can prevent thermal degradation of resins by scavenging polymer radicals that are generated when exposed to high heat under virtually oxygen-free conditions. Examples of preferred heat deterioration inhibitors include 2-t-butyl-6-(3′-t-butyl-5′-methyl-hydroxybenzyl)-4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd.; trade name : Sumilizer GM), 2,4-di-t-amyl-6-(3′,5′-di-t-amyl-2′-hydroxy-α-methylbenzyl)phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd.; trade name: Sumilizer GS) and the like. When the heat deterioration inhibitor is used, it may be used alone or in combination of two or more.
 光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有する化合物である。好ましい光安定剤の例としては、2,2,6,6-テトラアルキルピペリジン骨格を持つ化合物等のヒンダードアミン類が挙げられる。光安定剤を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。 A light stabilizer is a compound that has the function of scavenging radicals that are mainly generated by light oxidation. Examples of preferred light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton. When light stabilizers are used, they may be used singly or in combination of two or more.
 膠着防止剤の例としては、脂肪酸の塩またはエステル、多価アルコールのエステル、無機塩、無機酸化物、および粒子状の樹脂が挙げられる。好ましい膠着防止剤の例としては、ステアリン酸カルシウム、炭酸カルシウム、硫酸カルシウム、硫酸マグネシウム、硫酸バリウム、二酸化ケイ素(エボニック社製;商品名:アエロジル)、および粒子状のアクリル樹脂等が挙げられる。膠着防止剤を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。 Examples of anti-adhesion agents include salts or esters of fatty acids, esters of polyhydric alcohols, inorganic salts, inorganic oxides, and particulate resins. Examples of preferred anti-adhesion agents include calcium stearate, calcium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, silicon dioxide (manufactured by Evonik; trade name: Aerosil), and particulate acrylic resins. When an anti-tacking agent is used, it may be used alone or in combination of two or more.
 滑剤の例としては、ステアリン酸、ベヘニン酸、ステアロアミド酸、メチレンビスステアロアミド、ヒドロキシステアリン酸トリグリセリド、パラフィンワックス、ケトンワックス、オクチルアルコール、および硬化油等が挙げられる。滑剤を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。 Examples of lubricants include stearic acid, behenic acid, stearamic acid, methylenebisstearamide, hydroxystearic triglyceride, paraffin wax, ketone wax, octyl alcohol, and hydrogenated oil. When a lubricant is used, it may be used alone or in combination of two or more.
 離型剤の例としては、セチルアルコール、ステアリルアルコール等の高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライド等のグリセリン高級脂肪酸エステル等が挙げられる。離型剤を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。 Examples of release agents include higher alcohols such as cetyl alcohol and stearyl alcohol; glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride. When a release agent is used, it may be used alone or in combination of two or more.
 高分子加工助剤としては通常、乳化重合法によって製造できる、0.05~0.5μmの粒子径を有する重合体粒子が用いられる。該重合体粒子は、単一組成比および単一極限粘度の重合体からなる単層粒子であってもよく、組成比または極限粘度の異なる2以上の重合体からなる多層粒子であってもよい。高分子加工助剤を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。なかでも、内層に低い極限粘度を有する重合体層を有し、外層に5dl/g以上の高い極限粘度を有する重合体層を有する2層構造の粒子が好ましい。高分子加工助剤の極限粘度は好ましくは3~6dl/gである。極限粘度が小さすぎると成形性の改善効果が低い傾向があり、極限粘度が大きすぎると共重合体の成形加工性の低下を招く傾向がある。 As the polymer processing aid, polymer particles having a particle size of 0.05 to 0.5 μm, which can be produced by an emulsion polymerization method, are usually used. The polymer particles may be monolayer particles composed of a polymer having a single composition ratio and a single intrinsic viscosity, or may be multilayer particles composed of two or more polymers having different composition ratios or intrinsic viscosities. . When polymer processing aids are used, they may be used alone or in combination of two or more. Among them, particles having a two-layer structure having an inner layer of a polymer layer having a low intrinsic viscosity and an outer layer of a polymer layer having a high intrinsic viscosity of 5 dl/g or more are preferred. The intrinsic viscosity of the polymeric processing aid is preferably 3-6 dl/g. If the intrinsic viscosity is too low, the effect of improving the moldability tends to be low, and if the intrinsic viscosity is too high, the molding processability of the copolymer tends to deteriorate.
 有機色素としては、紫外線を可視光線に変換する機能を有する化合物が好ましく用いられる。有機色素を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。 A compound that has the function of converting ultraviolet light into visible light is preferably used as the organic dye. When organic dyes are used, they may be used singly or in combination of two or more.
 蛍光体の例としては、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、および蛍光漂白剤等が挙げられる。蛍光体を用いる場合、単独で用いてもよいし、2以上の組み合わせとして用いてもよい。 Examples of phosphors include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent whitening agents, and fluorescent bleaching agents. When phosphors are used, they may be used singly or in combination of two or more.
 これらの添加剤を添加する場合、各種添加剤の含有量は、本発明の効果を損なわない範囲で適宜選択でき、各種添加剤の合計含有量は、アイオノマー樹脂組成物の総質量に対して、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。 When these additives are added, the content of various additives can be appropriately selected within a range that does not impair the effects of the present invention, and the total content of various additives is, with respect to the total mass of the ionomer resin composition, It is preferably 7% by mass or less, more preferably 5% by mass or less, and even more preferably 4% by mass or less.
 各種の添加剤は、アイオノマー樹脂組成物を製造する際に添加してもよく、アイオノマー樹脂組成物の製造後に添加してもよく、後述の樹脂シートの製造時に添加してもよい。 Various additives may be added when manufacturing the ionomer resin composition, may be added after manufacturing the ionomer resin composition, or may be added when manufacturing the resin sheet described below.
 本発明におけるアイオノマー樹脂組成物は、保存、運搬、または成形時の利便性を高めるために、ペレット等の形状を有してよい。アイオノマー樹脂組成物をペレット化する場合は、例えば、溶融押出法にて得られるストランドをカットすることによりペレット化を実施できる。溶融押出法によってペレット化する場合における溶融押出時のアイオノマー樹脂組成物の温度は、押出機からの吐出を安定化しやすい観点から、好ましくは150℃以上、より好ましくは170℃以上である。また、前記温度は、アイオノマー樹脂が熱分解して劣化することを抑制しやすい観点から、好ましくは250℃以下、より好ましくは230℃以下である。本発明におけるアイオノマー樹脂組成物は耐熱分解性が高いため、このように溶融押出法によりペレット化する際に、アイオノマー樹脂が熱分解して黒色異物が生じる等の問題が起こりにくい。 The ionomer resin composition in the present invention may have a shape such as pellets in order to improve convenience during storage, transportation, or molding. When pelletizing the ionomer resin composition, the pelletization can be carried out, for example, by cutting strands obtained by a melt extrusion method. The temperature of the ionomer resin composition during pelletization by melt extrusion is preferably 150° C. or higher, more preferably 170° C. or higher, from the viewpoint of easily stabilizing the discharge from the extruder. In addition, the temperature is preferably 250° C. or lower, more preferably 230° C. or lower, from the viewpoint of easily suppressing thermal decomposition and deterioration of the ionomer resin. Since the ionomer resin composition of the present invention has high thermal decomposition resistance, problems such as the generation of black foreign matter due to thermal decomposition of the ionomer resin are less likely to occur when the ionomer resin composition is pelletized by the melt extrusion method.
〔アイオノマー樹脂組成物の製造方法〕
 本発明におけるアイオノマー樹脂組成物の製造方法は特に制限されない。アイオノマー樹脂組成物は、例えば、上述のアイオノマー樹脂組成物に塩を含有させる方法として記載したように、前記(I)~(III)のいずれの方法で製造してもよい。前記(I)~(III)の方法のうち、塩をアイオノマー樹脂組成物中に均一に分散しやすく、これにより、より向上したガラスに対する接着性、透明性および耐熱分解性を得やすい観点から、アイオノマー樹脂の調製工程において塩を生成させてアイオノマー樹脂および塩を含んでなるアイオノマー樹脂組成物を得る前記方法(I)が好ましい。以下、この方法(I)について詳述する。
[Method for producing ionomer resin composition]
The method for producing the ionomer resin composition in the present invention is not particularly limited. The ionomer resin composition may be produced by any of the methods (I) to (III) described above as the method of adding a salt to the ionomer resin composition. Among the methods (I) to (III), the salt is easily dispersed uniformly in the ionomer resin composition, thereby easily obtaining improved adhesion to glass, transparency and thermal decomposition resistance. The method (I) is preferred, wherein a salt is formed in the process of preparing the ionomer resin to obtain an ionomer resin composition comprising the ionomer resin and the salt. This method (I) will be described in detail below.
 方法(I)の例としては、エチレン-(メタ)アクリル酸エステル共重合体(X)を原料とし、該共重合体中の(メタ)アクリル酸エステル単位の全部または一部を(メタ)アクリル酸単位および(メタ)アクリル酸中和物単位に変換して、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)および場合により(メタ)アクリル酸エステル単位(D)を含む粗アイオノマー樹脂を調製し(工程i)、得られた粗アイオノマー樹脂を含む溶液に貧溶媒を添加して、粗アイオノマー樹脂を含む粒状物(以下、単に「粒状物」とも称する)を析出させ(工程ii)、次いで析出した粒状物を洗浄液で洗浄する(工程iii)方法が挙げられる。 As an example of method (I), an ethylene-(meth)acrylic acid ester copolymer (X) is used as a starting material, and all or part of the (meth)acrylic acid ester units in the copolymer are (meth)acrylic converted to acid units and neutralized (meth)acrylic acid units, (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), ethylene units (C) and optionally (meth ) A crude ionomer resin containing acrylic acid ester units (D) is prepared (step i), a poor solvent is added to the resulting solution containing the crude ionomer resin, and granules containing the crude ionomer resin (hereinafter simply “ (also referred to as "particulate matter") is precipitated (step ii), and then the precipitated particulate matter is washed with a washing liquid (step iii).
<工程(i)>
 エチレン-(メタ)アクリル酸エステル共重合体(X)中の(メタ)アクリル酸エステル単位の全部または一部を(メタ)アクリル酸単位および(メタ)アクリル酸中和物単位に変換する方法の例としては、エチレン-(メタ)アクリル酸エステル共重合体(X)を、強塩基によってけん化することにより、(メタ)アクリル酸エステル単位の全部または一部を(メタ)アクリル酸中和物単位に変換して、エチレン-(メタ)アクリル酸中和物共重合体またはエチレン-(メタ)アクリル酸エステル-(メタ)アクリル酸中和物共重合体を得、次いで、得られた共重合体中の(メタ)アクリル酸中和物単位の一部を強酸によって脱金属化して(メタ)アクリル酸単位に変換する方法(以下、方法(1)とも称する)が挙げられる。
 方法(1)以外の方法の例としては、方法(1)におけるけん化によって得られるエチレン-(メタ)アクリル酸中和物共重合体またはエチレン-(メタ)アクリル酸エステル-(メタ)アクリル酸中和物共重合体中の(メタ)アクリル酸中和物単位を全て強酸によって脱金属化して、(メタ)アクリル酸単位に変換し、エチレン-(メタ)アクリル酸共重合体またはエチレン-(メタ)アクリル酸エステル-(メタ)アクリル酸共重合体を得、次いで、得られた共重合体中の(メタ)アクリル酸単位の一部を金属イオンによって中和する方法(以下、方法(2)とも称する)が挙げられる。
 前記方法(1)および(2)において、けん化反応に用いる強塩基と脱金属反応に用いる強酸との中和反応により、強酸および強塩基からなる塩が生成する。方法(I)では、この塩の一部が残留させることにより、後述の工程(iii)の後に、アイオノマー樹脂および塩を含んでなるアイオノマー樹脂組成物が得られる。
<Step (i)>
A method of converting all or part of the (meth)acrylic acid ester units in the ethylene-(meth)acrylic acid ester copolymer (X) to (meth)acrylic acid units and neutralized (meth)acrylic acid units For example, an ethylene-(meth)acrylic acid ester copolymer (X) is saponified with a strong base to convert all or part of the (meth)acrylic acid ester units into neutralized (meth)acrylic acid units. to obtain an ethylene-(meth)acrylic acid neutralized copolymer or ethylene-(meth)acrylic acid ester-(meth)acrylic acid neutralized copolymer, and then the obtained copolymer A method (hereinafter also referred to as method (1)) of demetallizing some of the neutralized (meth)acrylic acid units in the reaction mixture to convert them to (meth)acrylic acid units is exemplified.
Examples of methods other than method (1) include ethylene-(meth)acrylic acid neutralized copolymer obtained by saponification in method (1) or ethylene-(meth)acrylic acid ester-(meth)acrylic acid All the (meth)acrylic acid neutralized units in the hydropolymer are demetallized with a strong acid, converted to (meth)acrylic acid units, and ethylene-(meth)acrylic acid copolymers or ethylene-(meth)acrylic acid units are obtained. ) A method of obtaining an acrylic acid ester-(meth)acrylic acid copolymer and then neutralizing a part of the (meth)acrylic acid units in the obtained copolymer with metal ions (hereinafter, method (2) Also called).
In the methods (1) and (2), the strong base used in the saponification reaction and the strong acid used in the demetallization reaction are neutralized to form a salt composed of a strong acid and a strong base. In method (I), a part of this salt is left to obtain an ionomer resin composition comprising an ionomer resin and a salt after step (iii) described below.
 前記エチレン-(メタ)アクリル酸エステル共重合体(X)の(メタ)アクリル酸エステル単位を構成する単量体の例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸グリシジル、および(メタ)アクリル酸アリル等が挙げられる。これらのうち、好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、および(メタ)アクリル酸t-ブチルであり、より好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、および(メタ)アクリル酸イソブチルであり、さらに好ましい単量体は、(メタ)アクリル酸メチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチルであり、特に好ましい単量体は(メタ)アクリル酸メチルである。前記単量体は、1種単独であっても2種以上の組み合わせであってもよい。 Examples of monomers constituting the (meth)acrylate units of the ethylene-(meth)acrylate copolymer (X) include methyl (meth)acrylate, ethyl (meth)acrylate, (meth)acrylate ) n-propyl acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, t-butyl (meth)acrylate, (meth) ) amyl acrylate, isoamyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, pentadecyl (meth)acrylate, dodecyl (meth)acrylate , isobornyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, Examples include glycidyl (meth)acrylate and allyl (meth)acrylate. Among these, preferred monomers are methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, ( Isobutyl meth)acrylate, sec-butyl (meth)acrylate, and t-butyl (meth)acrylate, more preferred monomers are methyl (meth)acrylate, ethyl (meth)acrylate, (meth)acrylate, ) n-propyl acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate, and more preferred monomers are methyl (meth)acrylate, (meth) They are n-butyl acrylate and isobutyl (meth)acrylate, and a particularly preferred monomer is methyl (meth)acrylate. The monomers may be used alone or in combination of two or more.
 エチレン-(メタ)アクリル酸エステル共重合体(X)の具体例としては、エチレン-アクリル酸メチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-アクリル酸n-プロピル共重合体、エチレン-メタクリル酸n-プロピル共重合体、エチレン-アクリル酸イソプロピル共重合体、エチレン-メタクリル酸イソプロピル共重合体、エチレン-アクリル酸n-ブチル共重合体、エチレン-メタクリル酸n-ブチル共重合体、エチレン-アクリル酸sec-ブチル共重合体、およびエチレン-メタクリル酸sec-ブチル共重合体等が挙げられる。
 これらの共重合体として、市販品を用いてもよく、US2013/0274424、特開2006-233059または特開2007-84743に記載の高温高圧ラジカル重合法によって合成したものを用いてもよい。前記市販品の例としては、住友化学(株)製「アクリフト」(登録商標)WD301FおよびWH401F、ならびに日本ポリエチレン(株)製「レクスパール」(登録商標)A4250等が挙げられる。
Specific examples of the ethylene-(meth)acrylic acid ester copolymer (X) include ethylene-methyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacryl Ethyl acid copolymer, ethylene-n-propyl acrylate copolymer, ethylene-n-propyl methacrylate copolymer, ethylene-isopropyl acrylate copolymer, ethylene-isopropyl methacrylate copolymer, ethylene-acrylic acid n-butyl copolymer, ethylene-n-butyl methacrylate copolymer, ethylene-sec-butyl acrylate copolymer, ethylene-sec-butyl methacrylate copolymer and the like.
As these copolymers, commercially available products may be used, and those synthesized by the high-temperature, high-pressure radical polymerization method described in US2013/0274424, JP-A-2006-233059, or JP-A-2007-84743 may be used. Examples of the commercially available products include "Aclift" (registered trademark) WD301F and WH401F manufactured by Sumitomo Chemical Co., Ltd., and "Rekspearl" (registered trademark) A4250 manufactured by Nippon Polyethylene Co., Ltd., and the like.
 エチレン-(メタ)アクリル酸エステル共重合体(X)中の(メタ)アクリル酸エステル単位の含有量は、好ましくは6モル%以上、より好ましくは6.5モル%以上、さらに好ましくは7モル%以上、特に好ましくは7.5モル%以上であり、また、好ましくは10モル%以下、より好ましくは9.9モル%以下、さらに好ましくは9.5モル%以下である。共重合体(X)中の(メタ)アクリル酸エステル単位の含有量は、得られる粗アイオノマー樹脂およびアイオノマー樹脂中の(メタ)アクリル酸単位(A)、および(メタ)アクリル酸中和物単位(B)、ならびに、含まれる場合の(メタ)アクリル酸エステル単位(D)の合計含有量と対応するため、共重合体(X)中の(メタ)アクリル酸エステル単位の含有量が前記下限値以上であると、アイオノマー樹脂組成物のより高い透明性、特に徐冷時の透明性を得やすく、また、前記含有量が前記上限値以下であると、得られるアイオノマー樹脂組成物のより好適な成形加工性を得やすい。
 共重合体(X)中の(メタ)アクリル酸エステル単位の含有量は、エチレンと(メタ)アクリル酸エステルとの共重合比により調整できる。なお、前記含有量は、上述したアイオノマー樹脂中の(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに含まれる場合(メタ)アクリル酸エステル単位(D)、および他の単量体単位(例えば単位(A2)および単位(B2))の各含有量と同様に、熱分解ガスクロマトグラフィー、核磁気共鳴分光法(NMR)および元素分析によって求めることができる。
The content of (meth)acrylate units in the ethylene-(meth)acrylate copolymer (X) is preferably 6 mol% or more, more preferably 6.5 mol% or more, and still more preferably 7 mol. % or more, particularly preferably 7.5 mol % or more, and preferably 10 mol % or less, more preferably 9.9 mol % or less, still more preferably 9.5 mol % or less. The content of (meth)acrylic acid ester units in the copolymer (X) is determined by the (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units in the resulting crude ionomer resin and ionomer resin. (B), and, when included, the (meth)acrylic acid ester unit (D) corresponding to the total content, so the content of the (meth)acrylic acid ester unit in the copolymer (X) is the lower limit When the content is equal to or more than the upper limit, the resulting ionomer resin composition is more suitable when the content is equal to or less than the upper limit. It is easy to obtain good moldability.
The content of (meth)acrylic acid ester units in the copolymer (X) can be adjusted by the copolymerization ratio of ethylene and (meth)acrylic acid ester. In addition, the content is the (meth)acrylic acid unit (A), the (meth)acrylic acid neutralized product unit (B), and the ethylene unit (C) in the ionomer resin described above, and when included (meth) As well as the contents of acrylic acid ester units (D) and other monomeric units (e.g. units (A2) and units (B2)), pyrolysis gas chromatography, nuclear magnetic resonance spectroscopy (NMR) and It can be determined by elemental analysis.
 本発明の一実施形態において、JIS K7210-1:2014に準拠し、190℃、2.16Kgの条件で測定されるエチレン-(メタ)アクリル酸エステル共重合体(X)のメルトフローレート(MFR)は、好ましくは5g/10分以上、より好ましくは10g/10分以上、さらに好ましくは50g/10分以上、さらにより好ましくは100g/10分以上であり、好ましくは400g/10分以下、より好ましくは350g/10分以下、さらに好ましくは300g/10分以下、さらにより好ましくは250g/10分以下である。エチレン-(メタ)アクリル酸エステル共重合体(X)のMFRが前記下限値以上かつ前記上限値以下であると、得られるアイオノマー樹脂組成物のより好適な成形加工性およびより高い強度を得やすい。エチレン-(メタ)アクリル酸エステル共重合体(X)のMFRは、重合度および(メタ)アクリル酸エステル単位の含有量により調整できる。前記MFRは、例えば実施例に記載の方法で測定できる。 In one embodiment of the present invention, the melt flow rate (MFR ) is preferably 5 g/10 min or more, more preferably 10 g/10 min or more, still more preferably 50 g/10 min or more, still more preferably 100 g/10 min or more, preferably 400 g/10 min or less, more It is preferably 350 g/10 minutes or less, more preferably 300 g/10 minutes or less, and even more preferably 250 g/10 minutes or less. When the MFR of the ethylene-(meth)acrylic acid ester copolymer (X) is at least the lower limit and at most the upper limit, more suitable moldability and higher strength of the resulting ionomer resin composition are likely to be obtained. . The MFR of the ethylene-(meth)acrylic acid ester copolymer (X) can be adjusted by the degree of polymerization and the content of (meth)acrylic acid ester units. The MFR can be measured, for example, by the method described in Examples.
 エチレン-(メタ)アクリル酸エステル共重合体(X)の重量平均分子量は、得られるアイオノマー樹脂組成物の成形加工性および強度をより向上しやすい観点から、好ましくは15,000g/モル以上、より好ましくは20,000g/モル以上、さらに好ましくは30,000g/モル以上であり、好ましくは200,000g/モル以下、より好ましくは100,000g/モル以下である。また、同様の観点から、エチレン-(メタ)アクリル酸エステル共重合体(X)の数平均分子量は、好ましくは5,000g/モル以上、より好ましくは10,000g/モル以上、さらに好ましくは15,000g/モル以上であり、好ましくは100,000g/モル以下、より好ましくは50,000g/モル以下である。前記重量平均分子量および数平均分子量は、重合時の重合開始剤および/または連鎖移動剤の量により調整できる。これらのエチレン-(メタ)アクリル酸エステル共重合体(X)の分子量(重量平均分子量および数平均分子量)は、カラム(TSKgel GMHHR-H(20)HTの3本直列)および1,2,4-トリクロロベンゼン溶媒を用いて、カラム温度140℃の条件で、ポリスチレン換算で測定できる。 The weight-average molecular weight of the ethylene-(meth)acrylic acid ester copolymer (X) is preferably 15,000 g/mol or more, more It is preferably 20,000 g/mol or more, more preferably 30,000 g/mol or more, preferably 200,000 g/mol or less, more preferably 100,000 g/mol or less. From the same point of view, the number average molecular weight of the ethylene-(meth)acrylate copolymer (X) is preferably 5,000 g/mol or more, more preferably 10,000 g/mol or more, still more preferably 15 ,000 g/mol or more, preferably 100,000 g/mol or less, more preferably 50,000 g/mol or less. The weight average molecular weight and number average molecular weight can be adjusted by adjusting the amount of polymerization initiator and/or chain transfer agent during polymerization. The molecular weights (weight average molecular weight and number average molecular weight) of these ethylene-(meth)acrylic acid ester copolymers (X) are determined by column (TSKgel GMH HR -H(20)HT three in series) and 1,2, Using 4-trichlorobenzene as a solvent, the measurement can be performed at a column temperature of 140° C. in terms of polystyrene.
 エチレン-(メタ)アクリル酸エステル共重合体(X)の炭素1000個当たりの分岐度は、特に制限されず、好ましくは5~30、より好ましくは6~20である。前記分岐度は、前記エチレン-(メタ)アクリル酸エステル共重合体(X)を重合する際の重合温度により調整できる。前記分岐度は、重水素化オルトジクロロベンゼンに溶解させたエチレン-(メタ)アクリル酸エステル共重合体(X)を用いて、13C-NMRのインバースゲートデカップリング法を実施することにより測定できる。 The degree of branching per 1000 carbon atoms of the ethylene-(meth)acrylic acid ester copolymer (X) is not particularly limited, and is preferably 5-30, more preferably 6-20. The degree of branching can be adjusted by adjusting the polymerization temperature when the ethylene-(meth)acrylate copolymer (X) is polymerized. The degree of branching can be measured by performing a 13 C-NMR inverse gate decoupling method using an ethylene-(meth)acrylate copolymer (X) dissolved in deuterated ortho-dichlorobenzene. .
 前記方法(1)および(2)におけるけん化反応に用いるアルカリの例としては、水酸化ナトリウム、水酸化カリウム、および水酸化カルシウム等の強塩基が挙げられる。けん化反応に使用する溶媒への溶解性および経済性の観点から、水酸化ナトリウムおよび水酸化カリウムが好ましい。アルカリは1種単独で、または2種以上を組み合わせて使用してよい。 Examples of alkalis used in the saponification reaction in methods (1) and (2) above include strong bases such as sodium hydroxide, potassium hydroxide, and calcium hydroxide. Sodium hydroxide and potassium hydroxide are preferred from the viewpoints of solubility in the solvent used for the saponification reaction and economic efficiency. You may use an alkali individually by 1 type or in combination of 2 or more types.
 前記けん化反応に用いる溶媒の例としては、テトラヒドロフラン、ジオキサン等のエーテル類;クロロホルム、ジクロロベンゼン等のハロゲン含有溶媒;メチルブチルケトン等の炭素数6以上のケトン類;炭化水素化合物とメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール類との混合溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族化合物;芳香族化合物とアルコール類との混合溶媒等が挙げられる。これらの溶媒は単独で、または2以上組み合わせて使用してもよい。
 これらのうち、けん化反応前後の樹脂の溶解性の観点から、好ましい溶媒は炭化水素化合物とアルコール類との混合溶媒、および芳香族化合物とアルコール類との混合溶媒であり、より好ましい溶媒はトルエン等の芳香族化合物とメタノール等のアルコール類との混合溶媒である。前記混合溶媒における炭化水素化合物または芳香族化合物とアルコール類との割合は、用いる各溶媒の種類に応じて適宜選択すればよく、例えば、炭化水素化合物または芳香族化合物とアルコール類との質量割合(炭化水素化合物または芳香族化合物/アルコール類)は、50/50~90/10であってよい。
Examples of solvents used in the saponification reaction include ethers such as tetrahydrofuran and dioxane; halogen-containing solvents such as chloroform and dichlorobenzene; ketones having 6 or more carbon atoms such as methylbutyl ketone; mixed solvents with alcohols such as 1-propanol, 2-propanol and 1-butanol; aromatic compounds such as benzene, toluene, xylene and ethylbenzene; and mixed solvents of aromatic compounds and alcohols. These solvents may be used alone or in combination of two or more.
Among these, from the viewpoint of the solubility of the resin before and after the saponification reaction, preferred solvents are mixed solvents of hydrocarbon compounds and alcohols, and mixed solvents of aromatic compounds and alcohols, and more preferred solvents are toluene and the like. is a mixed solvent of an aromatic compound and an alcohol such as methanol. The ratio of the hydrocarbon compound or aromatic compound and alcohol in the mixed solvent may be appropriately selected according to the type of each solvent used. For example, the mass ratio of the hydrocarbon compound or aromatic compound and alcohol ( hydrocarbons or aromatics/alcohols) can be from 50/50 to 90/10.
 前記けん化反応を行う際の温度としては、その反応性およびエチレン-(メタ)アクリル酸エステル共重合体(X)の溶解性の観点から、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上、特に好ましくは80℃以上である。該温度の上限は、エチレン-(メタ)アクリル酸エステル共重合体(X)が分解する温度未満であれば特に制限されず、例えば300℃以下である。 The temperature at which the saponification reaction is performed is preferably 50° C. or higher, more preferably 60° C. or higher, from the viewpoint of reactivity and solubility of the ethylene-(meth)acrylic acid ester copolymer (X). It is preferably 70° C. or higher, particularly preferably 80° C. or higher. The upper limit of the temperature is not particularly limited as long as it is lower than the temperature at which the ethylene-(meth)acrylic acid ester copolymer (X) decomposes, and is, for example, 300° C. or less.
 前記けん化反応は、空気中で行っても、窒素ガス、アルゴンガス等の不活性ガス中で行ってもよい。また、前記けん化反応は、常圧下、加圧下、または減圧下のいずれで行ってもよく、好ましくは加圧下で行われる。 The saponification reaction may be performed in the air or in an inert gas such as nitrogen gas or argon gas. Moreover, the saponification reaction may be carried out under normal pressure, under pressure, or under reduced pressure, preferably under pressure.
 前記方法(1)および(2)における脱金属化に用いる酸の例としては、塩酸、硝酸、硫酸、およびトルエンスルホン酸等の強酸が挙げられる。これらのうち、脱金属化後に、アイオノマー樹脂組成物から塩を除去しやすい観点から、好ましい酸は、塩酸、硝酸、および硫酸等の無機酸である。酸は1種単独で、または2種以上を組み合わせて使用してよい。脱金属反応に用いる溶媒としては、上述したけん化反応に用いる溶媒と同様の溶媒を選択できる。 Examples of acids used for demetallization in methods (1) and (2) include strong acids such as hydrochloric acid, nitric acid, sulfuric acid, and toluenesulfonic acid. Among these, inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid are preferable from the viewpoint of easy removal of salts from the ionomer resin composition after demetalization. You may use an acid individually by 1 type or in combination of 2 or more types. As the solvent used for the demetallization reaction, the same solvents as those used for the saponification reaction described above can be selected.
 前記脱金属化を行う際の温度は、反応溶液の粘度を低くしやすい観点から、好ましくは20℃以上、より好ましくは30℃以上、さらに好ましくは40℃以上であり、好ましくは100℃以下、より好ましくは80℃以下、さらに好ましくは60℃以下である。 The temperature at which the demetallization is performed is preferably 20° C. or higher, more preferably 30° C. or higher, still more preferably 40° C. or higher, and preferably 100° C. or lower, from the viewpoint of easily lowering the viscosity of the reaction solution. It is more preferably 80° C. or lower, still more preferably 60° C. or lower.
 前記脱金属化は、空気中で行っても、窒素ガス、アルゴンガス等の不活性ガス中で行ってもよい。また、前記けん化反応は、常圧下、加圧下、または減圧下のいずれで行ってもよく、好ましくは加圧下で行われる。 The demetallization may be performed in the air or in an inert gas such as nitrogen gas or argon gas. Moreover, the saponification reaction may be carried out under normal pressure, under pressure, or under reduced pressure, preferably under pressure.
 前記方法(2)において、(メタ)アクリル酸単位の一部を中和して(メタ)アクリル酸中和物単位に変換する際に用いる中和剤は、金属イオンを含有するイオン性化合物であれば特に制限されない。前記金属イオンの例としては、リチウム、カリウム、ナトリウム等のアルカリ金属のイオン、マグネシウム、カルシウム等のアルカリ土類金属のイオン、亜鉛、ニッケル、鉄、チタン等の遷移金属のイオン、およびアルミニウムイオン等が挙げられる。例えば金属イオンがナトリウムイオンである場合、中和剤の例としては、水酸化ナトリウム等が挙げられる。 In the method (2), the neutralizing agent used for partially neutralizing the (meth)acrylic acid units and converting them into neutralized (meth)acrylic acid units is an ionic compound containing metal ions. There is no particular limitation if any. Examples of the metal ions include alkali metal ions such as lithium, potassium and sodium; alkaline earth metal ions such as magnesium and calcium; transition metal ions such as zinc, nickel, iron and titanium; and aluminum ions. is mentioned. For example, when the metal ion is sodium ion, examples of the neutralizing agent include sodium hydroxide and the like.
<工程(ii)>
(粗アイオノマー樹脂を含む溶液)
 工程(i)において得られた粗アイオノマー樹脂は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)およびエチレン単位(C)を含み、前記単位(A)および前記単位(B)の合計含有量は、前記粗アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である。また、前記粗アイオノマー樹脂は、前記単位(A)、前記単位(B)および前記単位(C)に加えて、(メタ)アクリル酸エステル単位(D)を含むことが好ましく、アイオノマー樹脂が(メタ)アクリル酸エステル単位(D)を含む場合、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であることが好ましい。さらに、前記粗アイオノマー樹脂は、前記単位(A)、前記単位(B)、および前記単位(C)、ならびに場合により前記単位(D)に加えて、さらに、(メタ)アクリル酸単位以外のカルボン酸単位(A2)、(メタ)アクリル酸中和物単位以外のカルボン酸中和物単位(B2)等の他の単量体単位を含んでいてもよい。
<Step (ii)>
(Solution containing crude ionomer resin)
The crude ionomer resin obtained in step (i) comprises (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B) and ethylene units (C), wherein said units (A) and The total content of the units (B) is 6 to 10 mol % based on the total monomer units constituting the crude ionomer resin. In addition, the crude ionomer resin preferably contains (meth)acrylic acid ester units (D) in addition to the units (A), (B) and (C). ) When the acrylic acid ester unit (D) is included, the total content of the unit (A), the unit (B) and the unit (D) is 6 based on the total monomer units constituting the ionomer resin. It is preferably ~10 mol %. In addition to the units (A), (B), and (C), and optionally the units (D), the crude ionomer resin further contains carboxylic acids other than (meth)acrylic acid units. Acid units (A2) and other monomer units such as neutralized carboxylic acid units (B2) other than neutralized (meth)acrylic acid units may be included.
 粗アイオノマー樹脂における前記単位(A)および前記単位(B)、ならびに、場合により含んでいてもよい前記単位(D)、他の単量体単位(A2)および(B2)の例としては、本発明におけるアイオノマー樹脂に含まれる単位(A)、単位(B)、単位(D)、単位(A2)および単位(B2)として上述した単位と同様のものがそれぞれ挙げられ、好ましい形態についても、上述したアイオノマー樹脂と同様である。また、粗アイオノマー樹脂中の各単位の含有量、単位(A)および単位(B)の合計含有量、ならびに場合により単位(D)を含む場合には単位(A)、単位(B)および単位(D)の合計含有量も、本発明におけるアイオノマー樹脂について上述した含有量または合計含有量と、好ましい形態を含めて同様である。 Examples of the unit (A) and the unit (B) in the crude ionomer resin, the unit (D) which may optionally be included, and other monomeric units (A2) and (B2) are Units (A), units (B), units (D), units (A2) and units (B2) contained in the ionomer resin in the invention include the same units as those described above. similar to ionomer resins. In addition, the content of each unit in the crude ionomer resin, the total content of units (A) and units (B), and optionally units (A), units (B) and units when unit (D) is included The total content of (D) is also the same as the content or total content described above for the ionomer resin in the present invention, including preferred forms.
 粗アイオノマー樹脂を含む溶液は、工程(i)により得られた粗アイオノマー樹脂を溶媒に溶解させることにより調製でき、工程(i)により得られる粗アイオノマー樹脂の反応溶液を粗アイオノマー樹脂を含む溶液として用いてもよい。 The solution containing the crude ionomer resin can be prepared by dissolving the crude ionomer resin obtained in step (i) in a solvent, and the reaction solution of the crude ionomer resin obtained in step (i) is used as the solution containing the crude ionomer resin. may be used.
 粗アイオノマー樹脂を含む溶液における溶媒は、粗アイオノマー樹脂を溶解可能な溶媒であれば特に制限されず、その例としては、前記けん化反応に用いる溶媒と同様の溶媒が挙げられる。なかでも、粗アイオノマー樹脂の溶解性の観点から、トルエン等の芳香族化合物とメタノール等のアルコール類との混合溶媒が好ましい。前記混合溶媒における芳香族化合物とアルコール類との割合は、用いる各溶媒の種類に応じて適宜選択すればよく、例えば、芳香族化合物とアルコール類との質量割合(芳香族化合物/アルコール類)は、50/50~90/10、好ましくは65/35~85/15であってよい。 The solvent in the solution containing the crude ionomer resin is not particularly limited as long as it can dissolve the crude ionomer resin, and examples thereof include the same solvents as those used in the saponification reaction. Among them, a mixed solvent of an aromatic compound such as toluene and an alcohol such as methanol is preferable from the viewpoint of solubility of the crude ionomer resin. The ratio of the aromatic compound to the alcohol in the mixed solvent may be appropriately selected according to the type of each solvent used. For example, the mass ratio of the aromatic compound to the alcohol (aromatic compound/alcohol) is , 50/50 to 90/10, preferably 65/35 to 85/15.
 粗アイオノマー樹脂を含む溶液の濃度は、粒子径の小さな粒状物を得やすく、その結果、後述するアイオノマー樹脂組成物中の塩の含有量を所定の範囲に調整しやすい観点から、好ましくは30質量%以下、より好ましくは15質量%以下であり、また、好ましくは1質量%以上、より好ましくは5質量%以上である。 The concentration of the solution containing the crude ionomer resin is preferably 30 mass from the viewpoint that it is easy to obtain granules with a small particle size and, as a result, it is easy to adjust the salt content in the ionomer resin composition described later within a predetermined range. % or less, more preferably 15 mass % or less, preferably 1 mass % or more, more preferably 5 mass % or more.
 粗アイオノマー樹脂を含む溶液の温度は、析出する粒状物の凝集または膠着を抑制しやすく、アイオノマー樹脂組成物中の塩の含有量を1~400mg/kgの範囲内に調整しやすい観点から、アイオノマー樹脂の融点以下であることが好ましく、より好ましくは60℃以下、さらに好ましくは50℃以下である。また、粗アイオノマー樹脂を含む溶液の流動性の観点から、前記温度は、より好ましくは25℃以上、さらに好ましくは30℃以上である。 The temperature of the solution containing the crude ionomer resin tends to suppress aggregation or agglomeration of the precipitated particles, and the salt content in the ionomer resin composition is easily adjusted within the range of 1 to 400 mg/kg. It is preferably below the melting point of the resin, more preferably 60° C. or below, and even more preferably 50° C. or below. From the viewpoint of fluidity of the solution containing the crude ionomer resin, the temperature is more preferably 25° C. or higher, more preferably 30° C. or higher.
(貧溶媒)
 粗アイオノマー樹脂を含む溶液に添加する貧溶媒としては、粗アイオノマー樹脂を含む溶液と混合し、アイオノマー樹脂が溶解しない溶媒であれば特に制限されない。その例としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール類;水;アセトン、メチルエチルケトン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類;n-ヘキサン、シクロヘキサン、ヘプタン等の炭化水素化合物等が挙げられる。貧溶媒は、単独で使用しても、2以上を組合せて使用してもよい。なかでも、沸点が低いためアイオノマー樹脂組成物を乾燥しやすく、また、塩を溶解可能であるため粒状物中の塩を除去しやすい観点から、前記貧溶媒は、好ましくはメタノール、2-プロパノール等のアルコール類、水、およびこれらの混合溶媒、より好ましくはメタノール等のアルコール類である。
(poor solvent)
The poor solvent added to the solution containing the crude ionomer resin is not particularly limited as long as it is mixed with the solution containing the crude ionomer resin and does not dissolve the ionomer resin. Examples thereof include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and 1-butanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; ethers such as tetrahydrofuran; and hydrocarbon compounds such as n-hexane, cyclohexane, heptane, and the like. The poor solvent may be used alone or in combination of two or more. Among them, the poor solvent is preferably methanol, 2-propanol, or the like, from the viewpoint that the ionomer resin composition can be easily dried due to its low boiling point, and the salt can be dissolved in the granules so that the salt can be easily removed. alcohols, water, and mixed solvents thereof, more preferably alcohols such as methanol.
 貧溶媒の添加量は、粗アイオノマー樹脂を含む溶液の濃度に応じて適宜選択してよい。例えば、貧溶媒の添加量は、粗アイオノマー樹脂を含む溶液100質量部に対して、好ましくは30質量部以上、より好ましくは60質量部以上であり、特に好ましくは100質量部以上である。貧溶媒の添加量の上限値は特に制限されず、粗アイオノマー樹脂を含む溶液100質量部に対して、通常1000質量部以下である。 The amount of poor solvent to be added may be appropriately selected according to the concentration of the solution containing the crude ionomer resin. For example, the amount of the poor solvent to be added is preferably 30 parts by mass or more, more preferably 60 parts by mass or more, and particularly preferably 100 parts by mass or more with respect to 100 parts by mass of the solution containing the crude ionomer resin. The upper limit of the amount of the poor solvent to be added is not particularly limited, and is usually 1000 parts by mass or less with respect to 100 parts by mass of the solution containing the crude ionomer resin.
 粗アイオノマー樹脂を含む溶液に貧溶媒を添加する方法は特に制限されず、例えば、粗アイオノマー樹脂を含む溶液に貧溶媒を一度に添加してもよく、滴加等により複数回に分けて添加してもよい。粒状物の粒子径が小さくなりやすくなり、それにより粒状物中の塩の除去性を向上しやすく、その結果、アイオノマー樹脂組成物の透明性を向上しやすい観点から、貧溶媒の添加は比較的短時間で行うことが好ましく、一度に添加することがより好ましい。貧溶媒を複数回に分けて添加する場合には、貧溶媒の添加を1時間以内、より好ましくは30分間以内、さらに好ましくは10分間以内に完了することが好ましい。 The method of adding the poor solvent to the solution containing the crude ionomer resin is not particularly limited. may The particle size of the granules tends to become smaller, which makes it easier to improve the removability of the salt in the granules, and as a result, the transparency of the ionomer resin composition tends to be improved. It is preferable to carry out in a short time, and it is more preferable to add at once. When the poor solvent is added in multiple portions, the addition of the poor solvent is preferably completed within 1 hour, more preferably within 30 minutes, and even more preferably within 10 minutes.
 粗アイオノマー樹脂を含む溶液に貧溶媒を添加した後、粗アイオノマー樹脂を含む溶液と貧溶媒との混合液を撹拌することが好ましい。撹拌速度は特に制限されないが、撹拌速度が速いほど、粒子径の小さな粒状物を得やすくなる。撹拌時間は特に制限されず、例えば、粒状物が析出して、粗アイオノマー樹脂を含む溶液と貧溶媒との混合液がスラリー状になるまで撹拌すればよい。具体的な時間は、好ましくは1秒間以上3時間以下、より好ましくは10秒間以上1時間以下、さらに好ましくは1分間以上30分間以下である。 After adding the poor solvent to the solution containing the crude ionomer resin, it is preferable to stir the mixture of the solution containing the crude ionomer resin and the poor solvent. The stirring speed is not particularly limited, but the faster the stirring speed, the easier it is to obtain granules with a smaller particle size. The stirring time is not particularly limited, and, for example, the particles may be precipitated and the mixture of the solution containing the crude ionomer resin and the poor solvent may be stirred until it becomes slurry. A specific time is preferably 1 second to 3 hours, more preferably 10 seconds to 1 hour, and even more preferably 1 minute to 30 minutes.
(粒状物)
 粗アイオノマー樹脂を含む溶液に貧溶媒を添加して析出させる粒状物のピークトップ粒子径は、粒状物の比表面積を大きくすることにより粒状物中の塩の含有量が低減しやすくなり、その結果、塩の含有量が1~400mg/kgの範囲内に調整しやすくなる観点から、好ましくは700μm以下、より好ましくは650μm以下、さらに好ましくは600μm以下、特に好ましくは550μm以下である。また、粒状物の好適な濾過性を得やすく、アイオノマー樹脂の製造効率を向上しやすい観点から、好ましくは50μm以上、より好ましくは70μm以上、さらに好ましくは80μm以上である。ピークトップ粒子径は、例えばレーザー回折/散乱法または単一光散乱法等により測定できる。
(particulate matter)
The peak top particle size of the granules precipitated by adding a poor solvent to the solution containing the crude ionomer resin becomes easy to reduce the salt content in the granules by increasing the specific surface area of the granules. , the salt content is preferably 700 μm or less, more preferably 650 μm or less, still more preferably 600 μm or less, and particularly preferably 550 μm or less, from the viewpoint of facilitating adjustment of the salt content within the range of 1 to 400 mg/kg. Further, from the viewpoint of easily obtaining suitable filterability of the particulate matter and easily improving the production efficiency of the ionomer resin, the particle size is preferably 50 μm or more, more preferably 70 μm or more, and still more preferably 80 μm or more. The peak top particle size can be measured, for example, by a laser diffraction/scattering method or a single light scattering method.
 粗アイオノマー樹脂を含む溶液に貧溶媒を添加して析出させる粒状物のピークトップ粒子径は、粗アイオノマー樹脂を含む溶液の濃度および温度により調整できる。具体的には、粗アイオノマー樹脂を含む溶液の濃度および/または温度を低くすると、析出する粒状物のピークトップ粒子径を小さくでき、粗アイオノマー樹脂を含む溶液の濃度および/または温度を高くすると、析出する粒状物のピークトップ粒子径を大きくできる。また、粒状物のピークトップ粒子径は、貧溶媒の添加方法および粗アイオノマー樹脂を含む溶液と貧溶媒との混合液の撹拌速度によっても調整できる。 The peak top particle size of the particulate material precipitated by adding a poor solvent to the solution containing the crude ionomer resin can be adjusted by the concentration and temperature of the solution containing the crude ionomer resin. Specifically, when the concentration and/or temperature of the solution containing the crude ionomer resin are lowered, the peak top particle size of the precipitated particulate matter can be reduced, and when the concentration and/or temperature of the solution containing the crude ionomer resin is increased, The peak top particle size of precipitated particulates can be increased. The peak top particle size of the particulate matter can also be adjusted by the method of adding the poor solvent and the stirring speed of the mixture of the solution containing the crude ionomer resin and the poor solvent.
<工程(iii)>
(洗浄液)
 工程(iii)における洗浄液としては、アイオノマー樹脂が溶解せず、かつ、塩を溶解可能な溶媒であれば特に制限されない。好ましい洗浄液の例としては、メタノール、エタノール、1-プロパノール、2-イソプロパノール等のアルコール類;水;アセトン、メチルエチルケトン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類が挙げられる。洗浄液は単独で使用しても、2以上を組合せて使用してもよい。
<Step (iii)>
(washing liquid)
The washing liquid in step (iii) is not particularly limited as long as it does not dissolve the ionomer resin and is capable of dissolving the salt. Examples of preferred washing liquids include alcohols such as methanol, ethanol, 1-propanol and 2-isopropanol; water; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; and ethers of The washing liquid may be used alone or in combination of two or more.
 これらの洗浄液のなかでも、塩の溶解性が高く、粒状物に含まれる塩を除去しやすい観点から、アルコール類、水、およびこれらの混合液が好ましい。さらに、塩の溶解性を高めること、および洗浄液の比重を粒状物よりも小さくすることにより洗浄液と粒状物との接触面積を増大させることによって、塩の除去性を高めやすく、また、粒状物中に含まれる有機化合物等の不純物を除去しやすい観点、および洗浄後に得られるアイオノマー樹脂組成物を乾燥しやすくする観点から、より好ましい洗浄液は、水とアルコール類との混合液である。好ましいアルコール類は、乾燥しやすいこと、および水との相溶性が高いことから、メタノールおよびエタノールであり、より好ましくはメタノールである。
 水とアルコール類との混合液における水とアルコール類との割合(水/アルコール類(質量%))は、好ましくは20/80~80/20、より好ましくは30/70~70/30である。
Among these washing liquids, alcohols, water, and mixed liquids thereof are preferable from the viewpoint of high solubility of salts and easy removal of salts contained in the particulate matter. Furthermore, by increasing the solubility of the salt and by making the specific gravity of the cleaning liquid smaller than that of the granular material, thereby increasing the contact area between the cleaning liquid and the granular material, the removability of the salt can be easily increased. A more preferable cleaning liquid is a mixed liquid of water and alcohols from the viewpoint of facilitating removal of impurities such as organic compounds contained in the ionomer resin composition and facilitating drying of the ionomer resin composition obtained after washing. Preferred alcohols are methanol and ethanol, more preferably methanol, because they are easy to dry and have high compatibility with water.
The ratio of water and alcohols (water/alcohols (% by mass)) in the mixture of water and alcohols is preferably 20/80 to 80/20, more preferably 30/70 to 70/30. .
 粒状物を洗浄液で洗浄する方法の例としては、工程(ii)において得た粒状物の分散液から粒状物を濾取し、濾取した粒状物を洗浄液と混合した後、脱液する方法が挙げられる。より具体的には、前記分散液から濾取した粒状物と洗浄液とを混合した後、洗浄液から粒状物を濾取し(以下、洗浄工程(a)とも称する)、次いで、濾取した粒状物を新たな洗浄液と混合した後、洗浄液から粒状物を濾取する(以下、洗浄工程(b)とも称する)ことにより、洗浄する方法が挙げられる。粒状物に含まれる塩の含有量を1~400mg/kgの範囲内に調整しやすい観点およびアイオノマー樹脂の製造効率の観点から、粒状物の洗浄は、バッチプロセスの場合、例えば1回の洗浄工程(a)の後、洗浄工程(b)を1~10回行うことが好ましく、1回の洗浄工程(a)の後の洗浄工程(b)の回数は、より好ましくは1~6回、さらに好ましくは1~4回である。 As an example of the method of washing the particulate matter with a washing liquid, there is a method of filtering the particulate matter from the dispersion liquid of the particulate matter obtained in the step (ii), mixing the filtered particulate matter with the washing liquid, and then dewatering. mentioned. More specifically, after mixing the granules filtered from the dispersion and the washing liquid, the granules are filtered from the washing liquid (hereinafter also referred to as washing step (a)), and then the filtered granules are filtered. is mixed with a new washing liquid, and then the particulate matter is filtered out of the washing liquid (hereinafter also referred to as washing step (b)). From the viewpoint of easy adjustment of the salt content in the granules within the range of 1 to 400 mg/kg and the production efficiency of the ionomer resin, the granules are washed in a batch process, for example, in one washing step. After (a), the washing step (b) is preferably performed 1 to 10 times, and the number of washing steps (b) after one washing step (a) is more preferably 1 to 6 times. It is preferably 1 to 4 times.
 1回の洗浄工程あたりの前記洗浄液の使用量は、洗浄する粒状物の量に応じて適宜選択してよい。例えば、1回の洗浄工程あたりの前記洗浄液の使用量は乾燥時の粒状物100質量部に対して、好ましくは100質量部~2000質量部、より好ましくは200質量部~1000質量部、さらに好ましくは300質量部~700質量部である。 The amount of the cleaning liquid used in one cleaning step may be appropriately selected according to the amount of granular material to be cleaned. For example, the amount of the cleaning liquid used in one cleaning process is preferably 100 parts by mass to 2000 parts by mass, more preferably 200 parts by mass to 1000 parts by mass, and still more preferably 100 parts by mass of the dried granular material. is 300 parts by mass to 700 parts by mass.
 工程(iii)の後に得られた、アイオノマー樹脂および塩を含んでなるアイオノマー樹脂組成物は、必要に応じて乾燥してもよい。乾燥温度は、好ましくはアイオノマー樹脂の融点以下であり、より好ましくは80℃以下である。乾燥は減圧下で行ってもよい。 The ionomer resin composition comprising the ionomer resin and salt obtained after step (iii) may be dried if necessary. The drying temperature is preferably below the melting point of the ionomer resin, more preferably below 80°C. Drying may be performed under reduced pressure.
<アイオノマー樹脂組成物の特性>
 先に述べた通り、本発明におけるアイオノマー樹脂組成物は、特定の量の塩を含むことに起因して、高い耐熱分解性を発現することができる。その結果、本発明におけるアイオノマー樹脂組成物は、より高い1%重量減少温度(Td1)およびより小さい着色度を有することができる。
 本発明におけるアイオノマー樹脂組成物の窒素雰囲気下、10℃/分昇温時の1%重量減少温度は、好ましくは330℃以上、より好ましくは350℃以上、さらに好ましくは360℃以上、特に好ましくは370℃以上である。前記1%重量減少温度は、通常450℃以下である。アイオノマー樹脂組成物の1%重量減少温度が前記下限値以上であると、アイオノマー樹脂組成物の溶融成形時等の発泡および/または熱分解を低減しやすく、気泡、および/または樹脂の熱分解によって生じる黒色異物等の欠点を有さない樹脂シートを得やすい。なお、本明細書中において、1%重量減少温度は、200℃時点の重量を基準として、重量減少率が1%となる際の温度を表す。前記1%重量減少温度はJIS K7120:1987に従って測定でき、例えば実施例に記載の方法で測定できる。
 本発明におけるアイオノマー樹脂組成物の着色度は小さく、本発明におけるアイオノマー樹脂組成物は好ましくは無色である。本発明におけるアイオノマー樹脂組成物のシートの厚さ0.8mmにおける黄色度(YI)は、好ましくは2.0以下、より好ましくは1.8以下、さらに好ましくは1.5以下、特に好ましくは1.0以下である。黄色度が小さいほどアイオノマー樹脂組成物の着色性が小さくなるため、下限値は特に制限されず、例えば0であってよい。なお、黄色度は測色色差計を用い、JIS Z8722:2009に準拠して測定できる。
<Characteristics of ionomer resin composition>
As described above, the ionomer resin composition of the present invention can exhibit high thermal decomposition resistance due to the inclusion of a specific amount of salt. As a result, the ionomer resin composition in the present invention can have a higher 1% weight loss temperature (Td1) and a lower degree of coloration.
The 1% weight loss temperature of the ionomer resin composition of the present invention when the temperature is raised at 10°C/min in a nitrogen atmosphere is preferably 330°C or higher, more preferably 350°C or higher, still more preferably 360°C or higher, and particularly preferably 360°C or higher. 370°C or higher. The 1% weight loss temperature is usually 450° C. or lower. When the 1% weight loss temperature of the ionomer resin composition is at least the above lower limit, foaming and/or thermal decomposition during melt molding of the ionomer resin composition is likely to be reduced, and air bubbles and/or thermal decomposition of the resin It is easy to obtain a resin sheet free from defects such as black foreign matter. In this specification, the 1% weight reduction temperature represents the temperature at which the weight reduction rate becomes 1% based on the weight at 200°C. The 1% weight loss temperature can be measured according to JIS K7120:1987, for example, by the method described in Examples.
The degree of coloring of the ionomer resin composition in the present invention is small, and the ionomer resin composition in the present invention is preferably colorless. The yellowness index (YI) at a sheet thickness of 0.8 mm of the ionomer resin composition of the present invention is preferably 2.0 or less, more preferably 1.8 or less, still more preferably 1.5 or less, particularly preferably 1 .0 or less. The lower the yellowness, the lower the colorability of the ionomer resin composition, so the lower limit is not particularly limited, and may be 0, for example. Note that the yellowness can be measured using a colorimetric color difference meter in accordance with JIS Z8722:2009.
 先に述べた通り、本発明におけるアイオノマー樹脂組成物は、特定の量の塩を含むことに起因して、高い透明性を有する。本発明におけるアイオノマー樹脂組成物のシートの厚さ0.8mmにおけるヘイズは、好ましくは2.0%以下、より好ましくは1.5%以下、さらに好ましくは1.0%以下である。ヘイズが小さいほどアイオノマー樹脂組成物の透明性が高まるため、下限値は特に制限されず、例えば0.01%であってもよい。なお、アイオノマー樹脂組成物のヘイズは、ヘイズメーターを用いてJIS K7136:2000に準拠して測定される。 As mentioned above, the ionomer resin composition of the present invention has high transparency due to the inclusion of a specific amount of salt. The haze of the sheet of the ionomer resin composition of the present invention at a thickness of 0.8 mm is preferably 2.0% or less, more preferably 1.5% or less, still more preferably 1.0% or less. Since the transparency of the ionomer resin composition increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01%. The haze of the ionomer resin composition is measured using a haze meter according to JIS K7136:2000.
 また、先に述べた通り、本発明におけるアイオノマー樹脂組成物は、特定の量の塩を含むことに起因して、透明性、とりわけ、アイオノマー樹脂組成物が吸水した状態における透明性(吸水時の透明性)にも優れる。本発明におけるアイオノマー樹脂組成物のシートが吸水した状態の厚さ0.8mmにおけるヘイズ(吸水ヘイズ)は、好ましくは9.0%以下、より好ましくは5.0%以下、さらに好ましくは4.0%以下、特に好ましくは3.0%以下である。吸水ヘイズが小さいほどアイオノマー樹脂組成物の吸水した状態における透明性が高まるため、下限値は特に制限されず、例えば0.01%であってもよい。吸水ヘイズは、例えば実施例に記載の方法で測定できる。 In addition, as described above, the ionomer resin composition of the present invention has transparency, especially transparency when the ionomer resin composition absorbs water ( transparency). The haze (water absorption haze) at a thickness of 0.8 mm when the sheet of the ionomer resin composition of the present invention absorbs water is preferably 9.0% or less, more preferably 5.0% or less, and still more preferably 4.0. % or less, particularly preferably 3.0% or less. The lower the water absorption haze, the higher the transparency of the ionomer resin composition after absorbing water. The water absorption haze can be measured, for example, by the method described in Examples.
 本発明者らの検討によれば、アイオノマー樹脂の結晶性が高すぎるとアイオノマー樹脂は白化しやすい傾向にある。従って、通常、アイオノマー樹脂を徐冷して該樹脂の結晶化を促進させると、アイオノマー樹脂の透明性(徐冷時の透明性)は低下しやすい。しかし、本発明におけるアイオノマー樹脂は、樹脂中の(メタ)アクリル酸単位(A)および(メタ)アクリル酸中和物単位(B)の合計含有量が6モル%以上であるため、徐冷時においても樹脂が結晶化しにくい。その結果、そのようなアイオノマー樹脂を含んでなる本発明におけるアイオノマー樹脂組成物は、徐冷によりアイオノマー樹脂の結晶化を促進させた状態であっても高い透明性を有することができる。
 本発明におけるアイオノマー樹脂組成物の、徐冷によりアイオノマー樹脂の結晶化を促進させた状態のヘイズ(徐冷ヘイズ)は、好ましくは5.0%以下、より好ましくは4.5%以下、さらに好ましくは4.0%以下、さらにより好ましくは3.0%以下、特に好ましくは2.5%以下である。ヘイズが小さいほどアイオノマー樹脂組成物の透明性が高まるため、下限値は特に制限されず、例えば0.01%であってもよい。徐冷ヘイズは、厚さ0.8mmのアイオノマー樹脂組成物のシートを2つのガラス板の間に配置して合わせガラスを作製し、該合わせガラスを140℃まで加熱した後、140℃から0.1℃/分の速度で23℃まで徐冷した後のヘイズを、ヘイズメーターでJIS K7136:2000に準拠して測定することによって測定できる。
According to studies by the present inventors, when the crystallinity of the ionomer resin is too high, the ionomer resin tends to whiten easily. Therefore, when the ionomer resin is slowly cooled to accelerate the crystallization of the resin, the transparency of the ionomer resin (transparency during slow cooling) tends to decrease. However, in the ionomer resin of the present invention, the total content of (meth)acrylic acid units (A) and (meth)acrylic acid neutralized units (B) in the resin is 6 mol% or more. Also, the resin is difficult to crystallize. As a result, the ionomer resin composition of the present invention containing such an ionomer resin can have high transparency even in a state in which crystallization of the ionomer resin is promoted by slow cooling.
The haze (gradual cooling haze) of the ionomer resin composition in the present invention in a state in which crystallization of the ionomer resin is promoted by slow cooling is preferably 5.0% or less, more preferably 4.5% or less, and even more preferably 4.5% or less. is 4.0% or less, more preferably 3.0% or less, and particularly preferably 2.5% or less. Since the transparency of the ionomer resin composition increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01%. Slow-cooling haze is obtained by disposing a sheet of an ionomer resin composition having a thickness of 0.8 mm between two glass plates to prepare a laminated glass, heating the laminated glass to 140 ° C., and then reducing the haze from 140 ° C. The haze after slowly cooling to 23°C at a rate of 1/min can be measured by measuring with a haze meter in accordance with JIS K7136:2000.
 本発明の一実施形態において、本発明におけるアイオノマー樹脂組成物の融点は、耐熱性および耐熱分解性の観点から、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは80℃以上であり、また、合わせガラスを作製する際、ガラスとの接着力が発現しやすいという観点から、好ましくは200℃以下、より好ましくは180℃以下、さらに好ましくは150℃以下である。前記融点は、JIS K7121:2012に基づき測定できる。具体的には、示差走査熱量計(DSC)を用いて、冷却速度-10℃/分、昇温速度10℃/分の条件で測定し、2回目の昇温の融解ピークのピックトップ温度から求めることができる。 In one embodiment of the present invention, the melting point of the ionomer resin composition in the present invention is preferably 50°C or higher, more preferably 60°C or higher, and still more preferably 80°C or higher, from the viewpoint of heat resistance and thermal decomposition resistance. In addition, the temperature is preferably 200° C. or lower, more preferably 180° C. or lower, and still more preferably 150° C. or lower, from the viewpoint that the adhesive strength with glass is easily exhibited when producing laminated glass. The melting point can be measured based on JIS K7121:2012. Specifically, using a differential scanning calorimeter (DSC), measurement was performed under the conditions of a cooling rate of −10° C./min and a heating rate of 10° C./min, and from the pick-top temperature of the melting peak of the second heating can ask.
 本発明の一実施形態において、本発明におけるアイオノマー樹脂組成物の融解熱は、好ましくは0J/g以上、25J/g以下である。前記融解熱は、JIS K7122:2012に基づき測定できる。具体的には、示差走査熱量計(DSC)を用いて、冷却速度-10℃/分、昇温速度10℃/分の条件で測定し、2回目の昇温時の融解ピークの面積から算出することができる。 In one embodiment of the present invention, the heat of fusion of the ionomer resin composition in the present invention is preferably 0 J/g or more and 25 J/g or less. The heat of fusion can be measured based on JIS K7122:2012. Specifically, using a differential scanning calorimeter (DSC), measurement was performed under the conditions of a cooling rate of −10° C./min and a heating rate of 10° C./min, and the area of the melting peak during the second heating was calculated. can do.
 本発明の一実施形態において、JIS K7210-1:2014に準拠し、190℃、2.16Kgの条件で測定される本発明におけるアイオノマー樹脂組成物のメルトフローレート(MFR)は、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.7g/10分以上、さらにより好ましくは1.0g/10分以上、特に好ましくは1.5g/10分以上であり、好ましくは50g/10分以下、より好ましくは30g/10分以下、特に好ましくは10g/10分以下である。アイオノマー樹脂組成物のMFRが前記下限値以上かつ上限値以下であると、熱による劣化を抑えた成形加工がしやすく、耐貫通性に優れる樹脂シートを得やすい。 In one embodiment of the present invention, the melt flow rate (MFR) of the ionomer resin composition of the present invention measured under conditions of 190°C and 2.16 kg according to JIS K7210-1:2014 is preferably 0. 1 g/10 min or more, more preferably 0.3 g/10 min or more, still more preferably 0.7 g/10 min or more, even more preferably 1.0 g/10 min or more, particularly preferably 1.5 g/10 min or more , preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, and particularly preferably 10 g/10 minutes or less. When the MFR of the ionomer resin composition is not less than the lower limit and not more than the upper limit, it is easy to perform molding while suppressing deterioration due to heat, and it is easy to obtain a resin sheet having excellent penetration resistance.
 アイオノマー樹脂組成物の融点、融解熱およびMFRは、アイオノマー樹脂の分子量、ならびにアイオノマー樹脂の(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)、ならびに場合により含まれる(メタ)アクリル酸エステル単位(D)の含有量により調整できる。 The melting point, heat of fusion, and MFR of the ionomer resin composition are determined by the molecular weight of the ionomer resin, and the (meth)acrylic acid unit (A), neutralized (meth)acrylic acid unit (B), and ethylene unit (C) of the ionomer resin. ) and the content of (meth)acrylic acid ester units (D) optionally included.
 本発明の一実施形態において、本発明におけるアイオノマー樹脂組成物の動的粘弾性測定で測定される50℃での貯蔵弾性率(E’)は、好適な自立性(すなわち、高い弾性率)、特に高温環境下における自立性(高温環境下における高い弾性率)の観点から、好ましくは20MPa以上、より好ましくは30MPa以上、さらに好ましくは40MPa以上、特に好ましくは50MPa以上である。貯蔵弾性率(E’)の上限値は特に制限されず、1000MPaであってよい。前記貯蔵弾性率は、アイオノマー樹脂の分子量、ならびに(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)、および場合により含まれる(メタ)アクリル酸エステル単位(D)の含有量により調整できる。 In one embodiment of the present invention, the storage elastic modulus (E′) at 50° C. measured by dynamic viscoelasticity measurement of the ionomer resin composition in the present invention is suitable self-sustainability (i.e., high elastic modulus), In particular, from the viewpoint of self-sustainability in high-temperature environments (high elastic modulus in high-temperature environments), it is preferably 20 MPa or higher, more preferably 30 MPa or higher, even more preferably 40 MPa or higher, and particularly preferably 50 MPa or higher. The upper limit of the storage modulus (E') is not particularly limited, and may be 1000 MPa. Said storage modulus is determined by the molecular weight of the ionomer resin and the (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), ethylene units (C), and the optionally included (meth)acrylic acid It can be adjusted by the content of the acid ester unit (D).
[樹脂シートの製造方法]
 本発明の樹脂シートの製造方法は特に限定されない。例えば、本発明におけるアイオノマー樹脂組成物を均一に混練した後、押出法、カレンダー法、プレス法、溶液キャスト法、溶融キャスト法、インフレーション法等の公知の製膜方法により層(x)を製造できる。層(x)は、単独で樹脂シートとして使用してよい。また、必要に応じて、2層以上の層(x)、もしくは1層以上の層(x)と1層以上の他の層とをプレス成形等で積層させて積層体を得るか、または2層以上の層(x)、もしくは1層以上の層(x)と1層以上の他の層とを共押出法により成形して積層体を得、この積層体を樹脂シートとして使用してもよい。積層体に複数の層(x)または複数の他の層が含まれる場合、各層(x)または各他の層を構成する樹脂または樹脂組成物は、同じでも異なっていてもよい。
[Method for manufacturing resin sheet]
The method for producing the resin sheet of the present invention is not particularly limited. For example, after uniformly kneading the ionomer resin composition of the present invention, the layer (x) can be produced by a known film-forming method such as an extrusion method, a calendar method, a press method, a solution casting method, a melt casting method, or an inflation method. . Layer (x) may be used alone as a resin sheet. In addition, if necessary, two or more layers (x), or one or more layers (x) and one or more other layers are laminated by press molding or the like to obtain a laminate, or two At least one layer (x), or at least one layer (x) and at least one other layer may be formed by a coextrusion method to obtain a laminate, and this laminate may be used as a resin sheet. good. When the laminate includes multiple layers (x) or multiple other layers, the resin or resin composition that constitutes each layer (x) or each other layer may be the same or different.
 公知の製膜方法のなかでも、押出機を用いて樹脂シートを製造する方法が好適に用いられる。押出時の樹脂温度または樹脂組成物温度は、押出機からの樹脂の吐出を安定化しやすく、機械トラブルを低減しやすい観点から、好ましくは150℃以上、より好ましくは170℃以上である。前記温度は、樹脂の分解および分解に伴う樹脂の劣化を低減しやすい観点から、好ましくは250℃以下、より好ましくは230℃以下である。また、揮発性物質を効率的に除去するために、減圧によって押出機のベント口から、揮発性物質を除去することが好ましい。
 公知の製膜方法により樹脂シートを製造した後、先の[樹脂シート]の項で述べたように、所望の接触角を得るために、樹脂シートの表面処理を実施してもよい。
Among known film forming methods, a method of producing a resin sheet using an extruder is preferably used. The resin temperature or the resin composition temperature during extrusion is preferably 150° C. or higher, more preferably 170° C. or higher, from the viewpoints of easily stabilizing the discharge of the resin from the extruder and easily reducing mechanical troubles. The temperature is preferably 250° C. or lower, more preferably 230° C. or lower, from the viewpoint of facilitating decomposition of the resin and deterioration of the resin accompanying the decomposition. Moreover, in order to remove the volatile substances efficiently, it is preferable to remove the volatile substances from the vent port of the extruder by reducing the pressure.
After the resin sheet is produced by a known film-forming method, the resin sheet may be subjected to surface treatment to obtain a desired contact angle, as described in the previous section [Resin sheet].
 本発明の樹脂シートは、本発明におけるアイオノマー樹脂組成物の特長に起因して、高い透明性、高い耐熱分解性、およびガラスに対する優れた接着性を有する。
 即ち、本発明の好適な実施形態において、本発明の樹脂シートは、本発明におけるアイオノマー樹脂組成物と同等のヘイズ、吸水ヘイズ、徐冷ヘイズ、貯蔵弾性率、1%重量減少度および黄色度を有し得る。
The resin sheet of the present invention has high transparency, high thermal decomposition resistance, and excellent adhesion to glass due to the features of the ionomer resin composition of the present invention.
That is, in a preferred embodiment of the present invention, the resin sheet of the present invention has the same haze, water absorption haze, slow cooling haze, storage modulus, 1% weight reduction degree and yellowness as those of the ionomer resin composition of the present invention. can have
 本発明の樹脂シートとガラスとの接着力は、例えば、WO1999/058334号公報に記載の圧縮剪断強度試験(Compressive shear strength test)により測定される。より具体的には、実施例に記載の方法により測定される。
 本発明の樹脂シートのスズ面に対する圧縮剪断強度は、好ましくは25MPa以上、より好ましくは27MPa以上、さらに好ましくは29MPa以上、特に好ましくは31MPa以上である。本発明の樹脂シートのエア面に対する圧縮剪断強度は、好ましくは25MPa以上、より好ましくは28MPa以上、特に好ましくは30MPa以上である。また、スズ面またはエア面に対する圧縮剪断強度は、合わせガラスの耐貫通性を高めやすい観点から、50MPa以下であってよい。
The adhesive strength between the resin sheet of the present invention and glass is measured by, for example, a compressive shear strength test described in WO1999/058334. More specifically, it is measured by the method described in Examples.
The compressive shear strength against the tin surface of the resin sheet of the present invention is preferably 25 MPa or higher, more preferably 27 MPa or higher, still more preferably 29 MPa or higher, and particularly preferably 31 MPa or higher. The compressive shear strength against the air surface of the resin sheet of the present invention is preferably 25 MPa or more, more preferably 28 MPa or more, and particularly preferably 30 MPa or more. Moreover, the compressive shear strength against the tin surface or the air surface may be 50 MPa or less from the viewpoint of easily increasing the penetration resistance of the laminated glass.
 本発明の樹脂シートは、例えば樹脂シートを合わせガラス中間膜として使用する場合の合わせガラスの製造時に樹脂シートが発泡しにくいという観点から、含水量が少ない方が好ましい。樹脂シートの含水量は、好ましくは1質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.02質量%以下、特に好ましくは0.01質量%以下である。前記含有量は、電量滴定法により測定できる。 The resin sheet of the present invention preferably has a low water content, for example, from the viewpoint that the resin sheet is less likely to foam during the production of laminated glass when the resin sheet is used as an interlayer film for laminated glass. The water content of the resin sheet is preferably 1% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.02% by mass or less, and particularly preferably 0.01% by mass or less. The content can be measured by a coulometric titration method.
[合わせガラス中間膜および合わせガラス]
 本発明の樹脂シートは、合わせガラス中間膜(単に中間膜とも称する)として好適に使用できる。従って、本発明は、本発明の樹脂シートからなる合わせガラス中間膜を包含する。また、本発明は、2つのガラス板と、該2つのガラス板の間に配置された本発明の合わせガラス中間膜とを有する、合わせガラスも包含する。本発明の合わせガラスは、前記樹脂シートからなる合わせガラス中間膜を有するため、優れた透明性を有することができ、中間膜とガラスとの接着性に優れる。
[Laminated glass intermediate film and laminated glass]
The resin sheet of the present invention can be suitably used as an intermediate film for laminated glass (also simply referred to as an intermediate film). Therefore, the present invention includes a laminated glass interlayer made of the resin sheet of the present invention. The invention also includes a laminated glass comprising two glass sheets and a laminated glass interlayer of the invention arranged between the two glass sheets. Since the laminated glass of the present invention has the laminated glass intermediate film made of the resin sheet, it can have excellent transparency and excellent adhesiveness between the intermediate film and the glass.
 本発明の中間膜と積層させるガラス板としては、例えば、フロートガラス、磨き板ガラス、型板ガラス、網入り板ガラス、熱線吸収板ガラス等の無機ガラスのほか、ポリメタクリル酸メチル、ポリカーボネート等の従来公知の有機ガラス等を使用してよい。これらは無色または有色のいずれであってもよい。これらは1種を使用してもよく、2種以上を併用してもよい。また、1枚のガラス板の厚さは、100mm以下であることが好ましく、2枚のガラス板の厚さは同じでも異なっていてもよい。 Examples of the glass plate to be laminated with the interlayer film of the present invention include inorganic glass such as float glass, polished plate glass, figured glass, wired plate glass, and heat-absorbing plate glass, as well as conventionally known organic glass such as polymethyl methacrylate and polycarbonate. Glass or the like may be used. They may be either colorless or colored. These may use 1 type and may use 2 or more types together. Moreover, the thickness of one glass plate is preferably 100 mm or less, and the thickness of the two glass plates may be the same or different.
 本発明の合わせガラスは、従来公知の方法で製造できる。その例としては、真空ラミネーター装置を用いる方法、真空バッグを用いる方法、真空リングを用いる方法、およびニップロールを用いる方法等が挙げられる。また、前記方法により圧着した後に、オートクレーブに投入してさらに接着する方法も挙げられる。 The laminated glass of the present invention can be produced by a conventionally known method. Examples thereof include a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll. Moreover, after crimping|bonding by the said method, the method of putting into an autoclave and further adhering is also mentioned.
 真空ラミネーター装置を用いる場合、例えば、1×10-6~1×10-1MPaの減圧下、60~200℃、特に80~160℃でガラス板、中間膜、および任意の層(例えば接着性樹脂層等)をラミネートすることにより、合わせガラスを製造できる。真空バッグまたは真空リングを用いる方法は、例えば欧州特許第1235683号明細書に記載されており、約2×10-2~3×10-2MPa程度の減圧下、100~160℃でガラス板および中間膜をラミネートすることにより、合わせガラスを製造できる。 When using a vacuum laminator device, for example, under a reduced pressure of 1×10 −6 to 1×10 −1 MPa, at 60 to 200° C., especially 80 to 160° C., a glass plate, an interlayer, and any layer (for example, adhesiveness A laminated glass can be manufactured by laminating a resin layer, etc.). A method using a vacuum bag or a vacuum ring is described, for example, in EP 1235683 , wherein a glass plate and a A laminated glass can be produced by laminating the intermediate film.
 ニップロールを用いる製造方法の例としては、ガラス板、中間膜および任意の層を積層し、中間膜の流動開始温度以下の温度でロールにより脱気した後、さらに流動開始温度に近い温度で圧着を行う方法が挙げられる。具体的には、例えば赤外線ヒーター等で30~70℃に加熱した後、ロールで脱気し、さらに50~120℃に加熱した後ロールで圧着させる方法が挙げられる。 As an example of a manufacturing method using nip rolls, a glass plate, an intermediate film and an arbitrary layer are laminated, degassed by rolls at a temperature below the flow start temperature of the intermediate film, and then crimped at a temperature close to the flow start temperature. method of doing so. Specifically, for example, after heating to 30 to 70° C. with an infrared heater or the like, degassing with rolls, further heating to 50 to 120° C., and pressing with rolls can be mentioned.
 オートクレーブに投入してさらに圧着を行う場合、オートクレーブ工程の運転条件は、合わせガラスの厚さおよび/または構成により適宜選択されるが、例えば0.5~1.5MPaの圧力下、100~160℃にて0.5~3時間処理することが好ましい。 When the laminated glass is put into an autoclave and further pressure-bonded, the operating conditions of the autoclave process are appropriately selected depending on the thickness and/or structure of the laminated glass. is preferably treated for 0.5 to 3 hours.
 本発明におけるアイオノマー樹脂組成物が高い透明性、優れた耐熱分解性、およびガラスに対する高い接着性を有するため、本発明の合わせガラスは透明性および耐熱性に優れ、合わせガラスにおいて中間膜とガラスとの接着性は高い。
 本発明の一実施形態において、中間膜のシート厚さが0.8mmの場合の合わせガラスのヘイズは、好ましくは1.0%以下、より好ましくは0.8%以下、さらに好ましくは0.5%以下である。ヘイズが小さいほど合わせガラスの透明性が高まるため、下限値は特に制限されず、例えば0.01%であってもよい。なお、合わせガラスのヘイズは、ヘイズメーターを用いてJIS K7136:2000に準拠して測定される。
Since the ionomer resin composition of the present invention has high transparency, excellent thermal decomposition resistance, and high adhesiveness to glass, the laminated glass of the present invention has excellent transparency and heat resistance, and the interlayer film and the glass in the laminated glass has high adhesion.
In one embodiment of the present invention, the haze of the laminated glass when the sheet thickness of the interlayer is 0.8 mm is preferably 1.0% or less, more preferably 0.8% or less, and still more preferably 0.5. % or less. Since the transparency of the laminated glass increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01%. The haze of laminated glass is measured using a haze meter according to JIS K7136:2000.
 本発明の一実施形態において、本発明の合わせガラスは、140℃まで加熱した後、140℃から0.1℃/分の速度で23℃まで徐冷した後においても透明性に優れる。中間膜のシート厚さが0.8mmの合わせガラスを140℃まで加熱した後、140℃から0.1℃/分の速度で23℃まで徐冷した後のヘイズ(徐冷ヘイズ)は、好ましくは5.0%以下、より好ましくは4.5%以下、さらに好ましくは4.0%以下、さらにより好ましくは3.0%以下、特に好ましくは2.5%以下である。ヘイズが小さいほど合わせガラスの透明性が高まるため、下限値は特に制限されず、例えば0.01%であってもよい。徐冷ヘイズもまた、ヘイズメーターを用いてJIS K7136:2000に準拠して測定される。 In one embodiment of the present invention, the laminated glass of the present invention has excellent transparency even after being heated to 140°C and then slowly cooled from 140°C to 23°C at a rate of 0.1°C/min. After heating a laminated glass having an interlayer sheet thickness of 0.8 mm to 140° C. and slowly cooling it from 140° C. to 23° C. at a rate of 0.1° C./min, the haze (slow cooling haze) is preferably is 5.0% or less, more preferably 4.5% or less, still more preferably 4.0% or less, even more preferably 3.0% or less, and particularly preferably 2.5% or less. Since the transparency of the laminated glass increases as the haze decreases, the lower limit is not particularly limited, and may be, for example, 0.01%. Slow cooling haze is also measured using a haze meter in accordance with JIS K7136:2000.
 本発明の一実施形態において、本発明の合わせガラスは着色度が小さく、可能な限り無色であることが好ましい。本発明の合わせガラスの黄色度は、中間膜のシート厚さが0.8mmである場合、好ましくは2.0以下、より好ましくは1.8以下、さらに好ましくは1.5以下、特に好ましくは1.0以下である。黄色度が小さいほど合わせガラスの着色性が小さくなるため、下限値は特に制限されず、例えば0であってよい。なお、黄色度は測色色差計を用い、JIS Z8722:2009に準拠して測定される。 In one embodiment of the present invention, the laminated glass of the present invention preferably has a low degree of coloring and is as colorless as possible. When the sheet thickness of the interlayer film is 0.8 mm, the yellowness of the laminated glass of the present invention is preferably 2.0 or less, more preferably 1.8 or less, still more preferably 1.5 or less, and particularly preferably 1.0 or less. Since the lower the yellowness, the lower the coloring of the laminated glass, the lower limit is not particularly limited, and may be 0, for example. The yellowness is measured using a colorimetric color difference meter in accordance with JIS Z8722:2009.
 以下、実施例および比較例によって本発明を具体的に説明するが、本発明は下記実施例に限定されない。 The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples.
[実施例および比較例における樹脂の単量体単位の含有量]
 実施例および比較例で得られたアイオノマー樹脂組成物またはアイオノマー樹脂について、アイオノマー樹脂における(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、エチレン単位(C)、および(メタ)アクリル酸エステル単位(D)の含有量の分析を、以下のようにして行った。
[Content of monomer unit of resin in Examples and Comparative Examples]
For the ionomer resin compositions or ionomer resins obtained in Examples and Comparative Examples, the (meth)acrylic acid unit (A), the neutralized (meth)acrylic acid unit (B), the ethylene unit (C), and (meth)acrylic acid ester unit (D) content was analyzed as follows.
 実施例および比較例で得られたアイオノマー樹脂組成物またはアイオノマー樹脂をそれぞれ脱水トルエン/脱水酢酸(75/25質量%)の混合溶媒に溶解し、100℃にて2時間反応させた後、アセトン/水(80/20質量%)の混合溶媒に再沈殿させることで、(メタ)アクリル酸中和物単位(B)を(メタ)アクリル酸単位(A)に変換した。次いで、水での十分な洗浄、および乾燥を実施した後、下記(1)~(3)を行った。
 (1)熱分解GC-MSにより、樹脂を構成する単量体単位の成分を分析した。
 (2)JIS K0070:1992に準じて、樹脂の酸価を測定した。
 (3)重水素化トルエンと重水素化メタノールとの混合溶媒を用いて、樹脂のH-NMR(400MHz、日本電子(株)製)測定を行った。
 (4)また、実施例および比較例で得られたアイオノマー樹脂組成物またはアイオノマー樹脂を、それぞれ、硝酸によるマイクロ波分解前処理に付した後、ICP発光分析(Thermo Fisher Scientific iCAP6500Duo)に付すことにより、(メタ)アクリル酸中和物単位(B)の金属イオンの種類と量を同定した。
 前記(1)から、(メタ)アクリル酸エステル単位(D)および(メタ)アクリル酸単位(A)の種類と構造を同定した。その情報、ならびに前記(2)および(3)の情報から、エチレン単位(C)/(メタ)アクリル酸エステル単位(D)/((メタ)アクリル酸単位(A)と(メタ)アクリル酸中和物単位(B)の合計)の比率を算出した。さらに、前記(4)の情報からエチレン単位(C)/(メタ)アクリル酸エステル単位(D)/(メタ)アクリル酸単位(A)/(メタ)アクリル酸中和物単位(B)の比率を算出した。
 また、原料であるエチレン-(メタ)アクリル酸エステル共重合体(X)の各単量体単位の含有量は、重トルエンまたは重THFにエチレン-(メタ)アクリル酸エステル共重合体(X)を溶解させ、H-NMR(400MHz、日本電子(株)製)にて測定を行い、算出した。
 なお、アイオノマー樹脂組成物またはアイオノマー樹脂から樹脂シートを作製する過程で樹脂の単量体単位の含有量は変わらないため、算出した各樹脂の各単量体単位の含有量は、対応する各樹脂シートの各単量体単位の含有量に相当する。
The ionomer resin compositions or ionomer resins obtained in Examples and Comparative Examples were respectively dissolved in a mixed solvent of dehydrated toluene/dehydrated acetic acid (75/25% by mass), reacted at 100° C. for 2 hours, and then acetone/ The neutralized (meth)acrylic acid unit (B) was converted to the (meth)acrylic acid unit (A) by reprecipitation in a mixed solvent of water (80/20% by mass). Then, after thoroughly washing with water and drying, the following (1) to (3) were carried out.
(1) The component of the monomer unit constituting the resin was analyzed by pyrolysis GC-MS.
(2) The acid value of the resin was measured according to JIS K0070:1992.
(3) Using a mixed solvent of deuterated toluene and deuterated methanol, the resin was subjected to 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) measurement.
(4) In addition, the ionomer resin compositions or ionomer resins obtained in Examples and Comparative Examples were each subjected to microwave decomposition pretreatment with nitric acid, and then subjected to ICP emission spectrometry (Thermo Fisher Scientific iCAP6500Duo). , the type and amount of the metal ion of the (meth)acrylic acid neutralized product unit (B) were identified.
From the above (1), the types and structures of the (meth)acrylic acid ester unit (D) and the (meth)acrylic acid unit (A) were identified. From that information and the information in (2) and (3) above, ethylene unit (C) / (meth) acrylic acid ester unit (D) / ((meth) acrylic acid unit (A) and (meth) acrylic acid The ratio of the sum of hydrate units (B)) was calculated. Furthermore, from the information in (4) above, the ratio of ethylene units (C) / (meth)acrylic acid ester units (D) / (meth)acrylic acid units (A) / (meth)acrylic acid neutralized units (B) was calculated.
In addition, the content of each monomer unit of the ethylene-(meth)acrylic acid ester copolymer (X) as a raw material is the same as that of the ethylene-(meth)acrylic acid ester copolymer (X) in heavy toluene or heavy THF. was dissolved and measured by 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) to calculate.
In addition, since the content of the monomer units of the resin does not change during the process of producing the resin sheet from the ionomer resin composition or the ionomer resin, the calculated content of each monomer unit of each resin is It corresponds to the content of each monomer unit in the sheet.
[強酸および強塩基からなる塩の含有量]
 実施例および比較例で得られたアイオノマー樹脂組成物またはアイオノマー樹脂を0.1g秤取し、超純水10mLを加え、90℃で1時間加温した。その後放冷し、目開き0.45μmのフィルターで濾過した。濾過して得た濾液をサンプル液とし、イオンクロマトグラフ((株)島津製作所製)を用いて、下記条件にて測定した。測定で得られたピーク面積から塩素イオンまたは硫酸イオンを定量し、該塩素イオンまたは硫酸イオンの量をナトリウム塩の量に換算し、塩の含有量を求めた。
(測定条件)
 溶離液:炭酸ナトリウム水溶液(0.6mmol/L)と炭酸水素ナトリウム水溶液(12mmol/L)との混合溶液;
 流速:1.0mL/分;
 カラム温度:40℃;
 カラム:IC-SA2(250L×4.0)
 なお、アイオノマー樹脂組成物またはアイオノマー樹脂から樹脂シートを作製する過程で塩の含有量は変わらないため、算出した各アイオノマー樹脂組成物または各アイオノマー樹脂の塩の含有量は、対応する各樹脂シートの塩の含有量に相当する。
[Content of Salt Consisting of Strong Acid and Strong Base]
0.1 g of the ionomer resin composition or ionomer resin obtained in Examples and Comparative Examples was weighed, added with 10 mL of ultrapure water, and heated at 90° C. for 1 hour. After that, it was allowed to cool and filtered through a filter with an opening of 0.45 μm. The filtrate obtained by filtration was used as a sample liquid, and measured under the following conditions using an ion chromatograph (manufactured by Shimadzu Corporation). Chloride ions or sulfate ions were quantified from the peak area obtained by the measurement, and the amount of the chloride ions or sulfate ions was converted to the amount of sodium salt to determine the salt content.
(Measurement condition)
Eluent: mixed solution of sodium carbonate aqueous solution (0.6 mmol/L) and sodium hydrogencarbonate aqueous solution (12 mmol/L);
Flow rate: 1.0 mL/min;
Column temperature: 40°C;
Column: IC-SA2 (250L×4.0)
Since the salt content does not change in the process of producing a resin sheet from the ionomer resin composition or ionomer resin, the calculated salt content of each ionomer resin composition or ionomer resin is the same as that of each corresponding resin sheet. Corresponds to the salt content.
[流動性(メルトフローレート(MFR))]
 JIS K7210-1:2014に準拠して、実施例および比較例で用いた原料樹脂、ならびに実施例および比較例で得られたアイオノマー樹脂組成物またはアイオノマー樹脂のMFRを測定した。具体的には、各樹脂組成物または各樹脂をシリンダ内で溶融し、190℃、2.16kg荷重条件の下で、シリンダ底部に設置された公称孔径2.095mmのダイから押し出し、10分間あたりに押し出される樹脂組成物量または樹脂量(g/10分)を測定した。
[Fluidity (melt flow rate (MFR))]
In accordance with JIS K7210-1:2014, the MFR of the raw material resins used in Examples and Comparative Examples and the ionomer resin compositions or ionomer resins obtained in Examples and Comparative Examples were measured. Specifically, each resin composition or each resin is melted in a cylinder and extruded from a die with a nominal hole diameter of 2.095 mm installed at the bottom of the cylinder under 190 ° C. and a 2.16 kg load. The amount of resin composition or resin extruded (g/10 min) was measured.
[耐熱分解性]
 JIS K7120:1987に準拠して、実施例および比較例で得られたアイオノマー樹脂組成物またはアイオノマー樹脂の耐熱分解性を評価した。具体的には、示差熱熱重量同時測定装置TG-DTA7200((株)日立ハイテクサイエンス製)を用い、昇温速度10℃/分、流量50mL/分の窒素雰囲気下で、各樹脂組成物または樹脂を20℃~550℃まで加熱した際の重量減少率を測定した。200℃時点の重量を基準に重量減少率が1%となる際の温度である1%重量減少温度(Td1)を耐熱分解性の指標とした。
[Heat decomposition resistance]
Thermal decomposition resistance of the ionomer resin compositions or ionomer resins obtained in Examples and Comparative Examples was evaluated according to JIS K7120:1987. Specifically, using a simultaneous differential thermal thermogravimetric analyzer TG-DTA7200 (manufactured by Hitachi High-Tech Science Co., Ltd.), each resin composition or The weight loss rate was measured when the resin was heated from 20°C to 550°C. The 1% weight reduction temperature (Td1), which is the temperature at which the weight reduction rate reaches 1% based on the weight at 200° C., was used as an index of thermal decomposition resistance.
[吸水時の透明性(吸水ヘイズ)]
 実施例および比較例で得られた樹脂シートを50mm四方に切り出し、切り出したサンプルを23℃のイオン交換水に浸漬させた状態で300時間保持し、吸水サンプルを得た。イオン交換水から取出した吸水サンプルの表面に付着した水分を拭き取った後、吸水サンプルのヘイズをヘイズメーターHZ-1(スガ試験機(株)製)を用いてJIS K7136:2000に準拠して測定した。
[Transparency at the time of water absorption (water absorption haze)]
The resin sheets obtained in Examples and Comparative Examples were cut into 50 mm squares, and the cut samples were immersed in deionized water at 23° C. and held for 300 hours to obtain water-absorbing samples. After wiping off the water adhering to the surface of the water-absorbing sample taken out of the deionized water, the haze of the water-absorbing sample was measured using a haze meter HZ-1 (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7136:2000. did.
[樹脂シートの黄色度(YI)]
 実施例および比較例で得られた各樹脂シートについて、測色色差計「ZE-2000」(日本電色工業株式会社製社製)を用い、JIS Z8722:2009に準拠して黄色度を測定した。
[Yellowness index (YI) of resin sheet]
For each resin sheet obtained in Examples and Comparative Examples, a colorimetric color difference meter "ZE-2000" (manufactured by Nippon Denshoku Industries Co., Ltd.) was used to measure the yellowness according to JIS Z8722: 2009. .
[樹脂シートの接触角]
 実施例および比較例で得られた各樹脂シートを50mm四方に切り出し、コロナ処理機(春日電機社製、卓上テーブル式処理装置(ワイヤー電極)、および高周波電源AGF-B10S)にてコロナ処理を実施した。JIS K6768に準拠し、温度23℃、相対湿度50%の標準室内にて、接触角計(協和界面科学社製、DropMaster500)を用い、蒸留水の接触角を測定した。比較例1および2については、コロナ処理を実施せずに接触角を測定した。
[Contact angle of resin sheet]
Each resin sheet obtained in Examples and Comparative Examples was cut into 50 mm squares, and corona treatment was performed using a corona treatment machine (manufactured by Kasuga Denki Co., Ltd., tabletop table type treatment device (wire electrode) and high frequency power source AGF-B10S). did. In accordance with JIS K6768, the contact angle of distilled water was measured in a standard room at a temperature of 23° C. and a relative humidity of 50% using a contact angle meter (Kyowa Interface Science Co., Ltd., DropMaster 500). For Comparative Examples 1 and 2, contact angles were measured without corona treatment.
[徐冷時の透明性(徐冷ヘイズ)]
 実施例および比較例で得られた各樹脂シートを100mm四方に切り出し、100mm四方で厚さ2.7mmのフロートガラス2枚に挟み、真空ラミネーター(日清紡メカトロニクス(株)製 1522N)に投入した。100℃で真空ラミネーター内を1分間減圧し、減圧度および温度を保持したまま30kPaで5分間プレスして、仮接着体を得た。得られた仮接着体をオートクレーブに投入し、140℃、1.2MPaで30分間処理して、合わせガラスを得た。
 得られた合わせガラスを140℃まで加熱した後、0.1℃/分の速度で23℃まで徐冷した。徐冷操作後の合わせガラスのヘイズをヘイズメーターHZ-1(スガ試験機(株)製)を用いてJIS K7136:2000に準拠して測定した。
[Transparency during slow cooling (slow cooling haze)]
Each resin sheet obtained in Examples and Comparative Examples was cut into a 100 mm square, sandwiched between two float glass sheets of 100 mm square and 2.7 mm thick, and placed in a vacuum laminator (1522N manufactured by Nisshinbo Mechatronics Co., Ltd.). The vacuum laminator was evacuated at 100° C. for 1 minute, and pressed at 30 kPa for 5 minutes while maintaining the degree of vacuum and temperature to obtain a temporary bonded body. The obtained temporarily bonded body was put into an autoclave and treated at 140° C. and 1.2 MPa for 30 minutes to obtain laminated glass.
After heating the obtained laminated glass to 140° C., it was gradually cooled to 23° C. at a rate of 0.1° C./min. The haze of the laminated glass after slow cooling was measured using a haze meter HZ-1 (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7136:2000.
[ガラスとの接着性]
 実施例および比較例で得られた樹脂シートを厚さ2.7mmのフロートガラス2枚に挟み、真空ラミネーター(日清紡メカトロニクス(株)製 1522N)に投入した。100℃で真空ラミネーター内を1分間減圧し、減圧度および温度を保持したまま30kPaで5分間プレスして、仮接着体を得た。得られた仮接着体をオートクレーブに投入し、140℃、1.2MPaで30分間処理して、合わせガラスを得た。
 次いで、得られた合わせガラスを25mm×25mmの大きさに切断して試験サンプルを得た。得られた試験サンプルを国際公開第1999/058334号公報に記載の圧縮剪断強度試験(Compressive shear strength test)により評価した。合わせガラスが剥離した際の最大剪断応力を、ガラスに対する接着性の指標とした。
 なお、ガラスのスズ面との接着性を測定する際は、樹脂シートの両面に2枚のフロートガラスのスズ面が接するよう合わせガラスを作製し、ガラスのエア面との接着性を測定する際は、樹脂シートの両面に2枚のフロートガラスのエア面が接するよう合わせガラスを作製した。
[Adhesion to glass]
The resin sheets obtained in Examples and Comparative Examples were sandwiched between two sheets of float glass having a thickness of 2.7 mm, and placed in a vacuum laminator (1522N manufactured by Nisshinbo Mechatronics Co., Ltd.). The vacuum laminator was evacuated at 100° C. for 1 minute, and pressed at 30 kPa for 5 minutes while maintaining the degree of vacuum and temperature to obtain a temporary bonded body. The obtained temporarily bonded body was put into an autoclave and treated at 140° C. and 1.2 MPa for 30 minutes to obtain laminated glass.
Then, the obtained laminated glass was cut into a size of 25 mm×25 mm to obtain a test sample. The resulting test samples were evaluated by the Compressive shear strength test described in WO 1999/058334. The maximum shear stress when the laminated glass was peeled was taken as an index of the adhesion to glass.
In addition, when measuring the adhesiveness to the tin surface of the glass, laminated glass is prepared so that the tin surfaces of two float glasses are in contact with both sides of the resin sheet, and the adhesiveness to the air surface of the glass is measured. prepared a laminated glass so that the air surfaces of two float glasses were in contact with both sides of the resin sheet.
[原料樹脂]
 実施例および比較例において、アイオノマー樹脂の原料として用いた各エチレン-(メタ)アクリル酸エステル共重合体(X)のメタクリル酸メチル(MMA)変性量またはアクリル酸エチル(EA)変性量、およびMFRを表1に示す。
 EMMA1としては住友化学(株)製「アクリフト」(登録商標)WH401Fを用い、EEA1としては日本ポリエチレン(株)製「レクスパール」(登録商標)A4250を用いた。
[Raw material resin]
Methyl methacrylate (MMA) modified amount or ethyl acrylate (EA) modified amount of each ethylene-(meth)acrylic acid ester copolymer (X) used as a raw material for the ionomer resin in Examples and Comparative Examples, and MFR are shown in Table 1.
As EMMA1, "Aclift" (registered trademark) WH401F manufactured by Sumitomo Chemical Co., Ltd. was used, and as EEA1, "Rexpearl" (registered trademark) A4250 manufactured by Japan Polyethylene Co., Ltd. was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 SUS製の耐圧容器に、表1に記載のEMMA2、100質量部を導入し、そこにトルエン233質量部を加えて、0.02MPa加圧下、60℃で撹拌し、EMMA2を溶解させた。得られた溶液に水酸化ナトリウムのメタノール溶液(20質量%)100質量部を添加し、100℃で4時間撹拌し、EMMA2をけん化して、メタクリル酸メチル単位の一部をメタクリル酸ナトリウム単位に変換した。次いで、この溶液を50℃まで冷却した後に、塩酸(20質量%)83質量部を添加し、50℃で1時間撹拌して、メタクリル酸ナトリウム単位の一部をメタクリル酸に変換し、粗アイオノマー樹脂を含む溶液を得た。
 得られた溶液にトルエン/メタノール(75/25質量%)の混合溶媒を粗アイオノマー樹脂濃度が10質量%となるように添加して、該溶液を希釈した。次いで、得られた粗アイオノマー樹脂を含む希釈溶液を34℃に調整した後、前記希釈溶液に34℃のメタノールを、粗アイオノマー樹脂を含む溶液100質量部に対して430質量部添加して、粗アイオノマー樹脂を含む粒状物を析出させた。次いで、得られた粒状物を濾取した後、濾取した粒状物100質量部と水/メタノール(50/50質量%)の混合溶媒600質量部とを混合した。前記混合により得られたスラリーを40℃で1時間撹拌し、その後、粒状物を室温にて濾取した。水/メタノール(50/50質量%)の混合溶媒による粒状物の洗浄をさらに3回行った後、8時間以上真空乾燥した。このようにして得た、アイオノマー樹脂および塩を含んでなる粒状のアイオノマー樹脂組成物を分析し、その特性を評価した。分析結果および評価結果を表2に示す。
 次いで、得られたアイオノマー樹脂組成物を210℃で溶融混練し、その溶融混練物を210℃での加熱下、4.9MPa(50kgf/cm)の圧力にて5分間圧縮成形し、厚さ0.8mmの樹脂シートを得た。得られた樹脂シートの両面に出力0.31kW、送り速度7.9m/sにてコロナ処理を行い、樹脂シートの両面の接触角を測定したところ、それらの接触角は同一であった。その接触角を表2に示す。
 続いて、得られた樹脂シートを用いて合わせガラスを作製し、評価した。その評価結果を表2に示す。
[Example 1]
100 parts by mass of EMMA2 shown in Table 1 was introduced into a SUS pressure vessel, 233 parts by mass of toluene was added thereto, and the mixture was stirred at 60° C. under a pressure of 0.02 MPa to dissolve EMMA2. 100 parts by mass of a methanol solution of sodium hydroxide (20% by mass) was added to the resulting solution and stirred at 100°C for 4 hours to saponify EMMA2 to convert part of the methyl methacrylate units into sodium methacrylate units. Converted. Next, after cooling this solution to 50° C., 83 parts by mass of hydrochloric acid (20% by mass) is added and stirred at 50° C. for 1 hour to convert a part of the sodium methacrylate units to methacrylic acid, resulting in a crude ionomer. A solution containing the resin was obtained.
A mixed solvent of toluene/methanol (75/25 mass %) was added to the obtained solution so that the concentration of the crude ionomer resin was 10 mass % to dilute the solution. Next, after adjusting the diluted solution containing the obtained crude ionomer resin to 34° C., 430 parts by mass of methanol at 34° C. is added to the diluted solution with respect to 100 parts by mass of the solution containing the crude ionomer resin, Granules containing ionomer resin were precipitated. Next, after filtering the obtained granular material, 100 parts by mass of the filtered granular material and 600 parts by mass of a mixed solvent of water/methanol (50/50% by mass) were mixed. The slurry obtained by the above mixing was stirred at 40° C. for 1 hour, after which the granules were collected by filtration at room temperature. After washing the granules with a mixed solvent of water/methanol (50/50% by mass) three more times, the granules were vacuum-dried for 8 hours or longer. The particulate ionomer resin composition comprising ionomer resin and salt thus obtained was analyzed and its properties were evaluated. Table 2 shows the analysis results and evaluation results.
Next, the resulting ionomer resin composition was melt-kneaded at 210°C, and the melt-kneaded product was compression-molded for 5 minutes under heating at 210°C under a pressure of 4.9 MPa (50 kgf/cm 2 ) to obtain a thickness. A resin sheet of 0.8 mm was obtained. Both surfaces of the obtained resin sheet were subjected to corona treatment at an output of 0.31 kW and a feed rate of 7.9 m/s, and the contact angles on both surfaces of the resin sheet were measured. Table 2 shows the contact angle.
Subsequently, a laminated glass was produced using the obtained resin sheet and evaluated. Table 2 shows the evaluation results.
[実施例2]
 EMMA2に代えてEMMA3を用い、塩酸(20質量%)83質量部に代えて硝酸(30質量%)95質量部を用い、粗アイオノマー樹脂を含む希釈溶液およびメタノールの温度を34℃から37℃に変更したこと以外は実施例1と同様にして、アイオノマー樹脂組成物を得、分析および評価を行った。得られたアイオノマー樹脂組成物を用いたこと以外は実施例1と同様にして、樹脂シートを作製し、送り速度を2.6m/sに変更したこと以外は実施例1と同様にしてコロナ処理を行い、接触角を測定した。さらに、得られた樹脂シートを用いたこと以外は実施例1と同様にして、合わせガラスを作製し、評価した。それらの結果を表2に示す。
[Example 2]
EMMA3 was used instead of EMMA2, 95 parts by weight of nitric acid (30% by weight) was used instead of 83 parts by weight of hydrochloric acid (20% by weight), and the temperature of the dilute solution containing the crude ionomer resin and methanol was increased from 34°C to 37°C. An ionomer resin composition was obtained, analyzed and evaluated in the same manner as in Example 1 except that the composition was changed. A resin sheet was prepared in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and corona treatment was performed in the same manner as in Example 1 except that the feed speed was changed to 2.6 m/s. and measured the contact angle. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
[実施例3]
 EMMA2に代えてEMMA3を用い、粗アイオノマー樹脂を含む希釈溶液およびメタノールの温度を34℃から40℃に変更したこと以外は実施例1と同様にして、アイオノマー樹脂組成物を得、分析および評価を行った。得られたアイオノマー樹脂組成物を用いたこと以外は実施例1と同様にして、樹脂シートを作製し、送り速度を1.3m/sに変更したこと以外は実施例1と同様にしてコロナ処理を行い、接触角を測定した。さらに、得られた樹脂シートを用いたこと以外は実施例1と同様にして、合わせガラスを作製し、評価した。それらの結果を表2に示す。
[Example 3]
An ionomer resin composition was obtained in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2, and the temperature of the diluted solution containing the crude ionomer resin and methanol was changed from 34°C to 40°C, and analyzed and evaluated. went. A resin sheet was prepared in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and corona treatment was performed in the same manner as in Example 1 except that the feed rate was changed to 1.3 m/s. and measured the contact angle. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
[実施例4]
 EMMA2に代えてEEA1を用い、塩酸(20質量%)83質量部に代えて硫酸(30質量%)147質量部を用い、粗アイオノマー樹脂を含む希釈溶液およびメタノールの温度を34℃から40℃に変更したこと以外は実施例1と同様にして、アイオノマー樹脂組成物を得、分析および評価を行った。得られたアイオノマー樹脂組成物を用いたこと以外は実施例1と同様にして、樹脂シートを作製し、送り速度を2.6m/sに変更したこと以外は実施例1と同様にしてコロナ処理を行い、接触角を測定した。さらに、得られた樹脂シートを用いたこと以外は実施例1と同様にして、合わせガラスを作製し、評価した。それらの結果を表2に示す。
[Example 4]
EEA1 was used instead of EMMA2, 147 parts by weight of sulfuric acid (30% by weight) was used instead of 83 parts by weight of hydrochloric acid (20% by weight), and the temperature of the diluted solution containing the crude ionomer resin and methanol was increased from 34°C to 40°C. An ionomer resin composition was obtained, analyzed and evaluated in the same manner as in Example 1 except that the composition was changed. A resin sheet was prepared in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and corona treatment was performed in the same manner as in Example 1 except that the feed speed was changed to 2.6 m/s. and measured the contact angle. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
[実施例5]
 EMMA2に代えてEMMA1を用い、水酸化ナトリウムのメタノール溶液(20質量%)および塩酸(20質量%)の量を80質量部および66質量部にそれぞれ変更し、粗アイオノマー樹脂を含む希釈溶液の濃度を10質量%から6質量%に変更し、粗アイオノマー樹脂を含む希釈溶液およびメタノールの温度を34℃から41℃に変更したこと以外は実施例1と同様にして、アイオノマー樹脂組成物を得、分析および評価を行った。得られたアイオノマー樹脂組成物を用いたこと以外は実施例1と同様にして、樹脂シートを作製し、コロナ処理を行い、接触角を測定した。さらに、得られた樹脂シートを用いたこと以外は実施例1と同様にして、合わせガラスを作製し、評価した。それらの結果を表2に示す。
[Example 5]
Using EMMA1 instead of EMMA2, changing the amounts of methanol solution of sodium hydroxide (20% by mass) and hydrochloric acid (20% by mass) to 80 parts by mass and 66 parts by mass, respectively, the concentration of the dilute solution containing the crude ionomer resin was changed from 10% by mass to 6% by mass, and the temperature of the diluted solution containing the crude ionomer resin and methanol was changed from 34°C to 41°C to obtain an ionomer resin composition, Analyzed and evaluated. A resin sheet was produced in the same manner as in Example 1 except that the obtained ionomer resin composition was used, corona treatment was performed, and the contact angle was measured. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
[実施例6]
 EMMA2に代えてEMMA3を用い、粗アイオノマー樹脂を含む希釈溶液およびメタノールの温度を34℃から41℃に変更したこと以外は実施例1と同様にして、アイオノマー樹脂組成物を得、分析および評価を行った。得られたアイオノマー樹脂組成物を用いたこと以外は実施例1と同様にして、樹脂シートを作製し、送り速度を1.3m/sに変更したこと以外は実施例1と同様にしてコロナ処理を行い、接触角を測定した。さらに、得られた樹脂シートを用いたこと以外は実施例1と同様にして、合わせガラスを作製し、評価した。それらの結果を表2に示す。
[Example 6]
An ionomer resin composition was obtained in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2, and the temperature of the dilute solution containing the crude ionomer resin and methanol was changed from 34°C to 41°C, and analyzed and evaluated. went. A resin sheet was prepared in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and corona treatment was performed in the same manner as in Example 1 except that the feed rate was changed to 1.3 m/s. and measured the contact angle. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
[実施例7]
 EMMA2に代えてEMMA3を用い、塩酸(20質量%)83質量部に代えて硫酸(30質量%)147質量部を用い、粗アイオノマー樹脂を含む希釈溶液およびメタノールの温度を34℃から41℃に変更したこと以外は実施例1と同様にして、アイオノマー樹脂組成物を得、分析および評価を行った。得られたアイオノマー樹脂組成物を用いたこと以外は実施例1と同様にして、樹脂シートを作製し、送り速度を1.3m/sに変更し、処理回数を2回に変更したこと以外は実施例1と同様にしてコロナ処理を行い、接触角を測定した。さらに、得られた樹脂シートを用いたこと以外は実施例1と同様にして、合わせガラスを作製し、評価した。それらの結果を表2に示す。
[Example 7]
EMMA3 was used instead of EMMA2, 147 parts by weight of sulfuric acid (30% by weight) was used instead of 83 parts by weight of hydrochloric acid (20% by weight), and the temperature of the diluted solution containing the crude ionomer resin and methanol was increased from 34°C to 41°C. An ionomer resin composition was obtained, analyzed and evaluated in the same manner as in Example 1 except that the composition was changed. A resin sheet was produced in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and the feeding speed was changed to 1.3 m / s, and the number of treatments was changed to 2 times. Corona treatment was performed in the same manner as in Example 1, and the contact angle was measured. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
[比較例1]
 EMMA2に代えてEMMA1を用い、水酸化ナトリウムのメタノール溶液(20質量%)および塩酸(20質量%)の量を80質量部および66質量部にそれぞれ変更したこと以外は実施例1と同様にして、アイオノマー樹脂組成物を得、分析および評価を行った。得られたアイオノマー樹脂組成物を用いたこと以外は実施例1と同様にして、樹脂シートを作製し、コロナ処理を行わずに接触角を測定した。さらに、得られた樹脂シートを用いたこと以外は実施例1と同様にして、合わせガラスを作製し、評価した。それらの結果を表2に示す。
[Comparative Example 1]
In the same manner as in Example 1, except that EMMA1 was used instead of EMMA2, and the amounts of sodium hydroxide methanol solution (20% by mass) and hydrochloric acid (20% by mass) were changed to 80 parts by mass and 66 parts by mass, respectively. , an ionomer resin composition was obtained and analyzed and evaluated. A resin sheet was produced in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and the contact angle was measured without corona treatment. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
[比較例2]
 EMMA2に代えてEMMA3を用い、粗アイオノマー樹脂を含む希釈溶液およびメタノールの温度を34℃から37℃に変更したこと以外は実施例1と同様にして、アイオノマー樹脂組成物を得、分析および評価を行った。得られたアイオノマー樹脂組成物を用いたこと以外は実施例1と同様にして、樹脂シートを作製し、コロナ処理を行わずに接触角を測定した。さらに、得られた樹脂シートを用いたこと以外は実施例1と同様にして、合わせガラスを作製し、評価した。それらの結果を表2に示す。
[Comparative Example 2]
An ionomer resin composition was obtained in the same manner as in Example 1, except that EMMA3 was used instead of EMMA2, and the temperature of the dilute solution containing the crude ionomer resin and methanol was changed from 34°C to 37°C, and the composition was analyzed and evaluated. went. A resin sheet was produced in the same manner as in Example 1 except that the obtained ionomer resin composition was used, and the contact angle was measured without corona treatment. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
[比較例3]
 EMMA2に代えてEMMA4を用い、水酸化ナトリウムのメタノール溶液(20質量%)および塩酸(20質量%)の量を72質量部および59質量部にそれぞれ変更し、粗アイオノマー樹脂を含む希釈溶液およびメタノールの温度を34℃から40℃に変更したこと以外は実施例1と同様にして、アイオノマー樹脂組成物を得、分析および評価を行った。得られたアイオノマー樹脂組成物を用いたこと以外は実施例1と同様にして、樹脂シートを作製し、コロナ処理を行い、接触角を測定した。さらに、得られた樹脂シートを用いたこと以外は実施例1と同様にして、合わせガラスを作製し、評価した。それらの結果を表2に示す。
[Comparative Example 3]
EMMA4 was used in place of EMMA2, and the amounts of methanol solution of sodium hydroxide (20% by mass) and hydrochloric acid (20% by mass) were changed to 72 parts by mass and 59 parts by mass, respectively, and a dilute solution containing crude ionomer resin and methanol An ionomer resin composition was obtained, analyzed and evaluated in the same manner as in Example 1, except that the temperature was changed from 34°C to 40°C. A resin sheet was produced in the same manner as in Example 1 except that the obtained ionomer resin composition was used, corona treatment was performed, and the contact angle was measured. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
[比較例4]
 EMMA2に代えてEMMA3を用い、塩酸(20質量%)83質量部に代えて硝酸(30質量%)95質量部を用い、粗アイオノマー樹脂を含む希釈溶液およびメタノールの温度を34℃から40℃に変更したこと以外は実施例1と同様にして、アイオノマー樹脂組成物を得、分析および評価を行った。得られたアイオノマー樹脂組成物を用いたこと以外は実施例1と同様にして、樹脂シートを作製した。送り速度を1.3m/sに変更し、処理回数を10回に変更したこと以外は実施例1と同様にしてコロナ処理を行い、接触角を測定した。さらに、得られた樹脂シートを用いたこと以外は実施例1と同様にして、合わせガラスを作製し、評価した。それらの結果を表2に示す。
[Comparative Example 4]
EMMA3 was used instead of EMMA2, 95 parts by weight of nitric acid (30% by weight) was used instead of 83 parts by weight of hydrochloric acid (20% by weight), and the temperature of the diluted solution containing the crude ionomer resin and methanol was increased from 34°C to 40°C. An ionomer resin composition was obtained, analyzed and evaluated in the same manner as in Example 1 except that the composition was changed. A resin sheet was produced in the same manner as in Example 1, except that the obtained ionomer resin composition was used. Corona treatment was performed in the same manner as in Example 1, except that the feeding speed was changed to 1.3 m/s and the number of treatments was changed to 10 times, and the contact angle was measured. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
[比較例5]
 EMMA2に代えてEMMA1を用い、水酸化ナトリウムのメタノール溶液(20質量%)および塩酸(20質量%)の量を80質量部および66質量部にそれぞれ変更したこと以外は実施例1と同様にして、アイオノマー樹脂組成物を得、分析および評価を行った。得られたアイオノマー樹脂組成物を用いたこと以外は実施例1と同様にして、樹脂シートを作製した。送り速度を1.3m/sに変更し、処理回数を5回に変更したこと以外は実施例1と同様にしてコロナ処理を行い、接触角を測定した。さらに、得られた樹脂シートを用いたこと以外は実施例1と同様にして、合わせガラスを作製し、評価した。それらの結果を表2に示す。
[Comparative Example 5]
In the same manner as in Example 1, except that EMMA1 was used instead of EMMA2, and the amounts of sodium hydroxide methanol solution (20% by mass) and hydrochloric acid (20% by mass) were changed to 80 parts by mass and 66 parts by mass, respectively. , an ionomer resin composition was obtained and analyzed and evaluated. A resin sheet was produced in the same manner as in Example 1, except that the obtained ionomer resin composition was used. Corona treatment was performed in the same manner as in Example 1, except that the feeding speed was changed to 1.3 m/s and the number of treatments was changed to 5 times, and the contact angle was measured. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
[比較例6]
 EMMA2に代えてEMMA3を用い、塩酸(20質量%)83質量部に代えて硫酸(30質量%)147質量部を用い、粗アイオノマー樹脂を含む希釈溶液およびメタノールの温度を34℃から43℃に変更したこと以外は実施例1と同様にして、アイオノマー樹脂組成物を得、分析および評価を行った。得られたアイオノマー樹脂組成物を用いたこと以外は実施例1と同様にして、樹脂シートを作製した。送り速度を1.3m/sに変更したこと以外は実施例1と同様にしてコロナ処理を行い、接触角を測定した。さらに、得られた樹脂シートを用いたこと以外は実施例1と同様にして、合わせガラスを作製し、評価した。それらの結果を表2に示す。
[Comparative Example 6]
EMMA3 was used instead of EMMA2, 147 parts by weight of sulfuric acid (30% by weight) was used instead of 83 parts by weight of hydrochloric acid (20% by weight), and the temperature of the diluted solution containing the crude ionomer resin and methanol was increased from 34°C to 43°C. An ionomer resin composition was obtained, analyzed and evaluated in the same manner as in Example 1 except that the composition was changed. A resin sheet was produced in the same manner as in Example 1, except that the obtained ionomer resin composition was used. Corona treatment was performed in the same manner as in Example 1, except that the feeding speed was changed to 1.3 m/s, and the contact angle was measured. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2.
[比較例7]
 EMMA2に代えてEMMA3を用い、塩酸(20質量%)83質量部に代えて硝酸(30質量%)95質量部を用い、水/メタノール(50/50質量%)の混合溶媒による粒状物の洗浄を6回行ったこと以外は実施例1と同様にして、アイオノマー樹脂組成物を得、分析および評価を行った。得られたアイオノマー樹脂組成物を用いたこと以外は実施例1と同様にして、樹脂シートを作製した。送り速度を2.6m/sに変更したこと以外は実施例1と同様にしてコロナ処理を行い、接触角を測定した。さらに、得られた樹脂シートを用いたこと以外は実施例1と同様にして、合わせガラスを作製し、評価した。それらの結果を表2に示す。なお、表2中の「N.D.」は検出されなかったことを意味しており、塩の含有量は1mg/kgより小さかった。 
[Comparative Example 7]
Using EMMA3 instead of EMMA2, using 95 parts by mass of nitric acid (30% by mass) instead of 83 parts by mass of hydrochloric acid (20% by mass), and washing the granules with a mixed solvent of water/methanol (50/50% by mass). An ionomer resin composition was obtained, analyzed and evaluated in the same manner as in Example 1 except that the above was performed 6 times. A resin sheet was produced in the same manner as in Example 1, except that the obtained ionomer resin composition was used. Corona treatment was performed in the same manner as in Example 1, except that the feed speed was changed to 2.6 m/s, and the contact angle was measured. Furthermore, a laminated glass was produced and evaluated in the same manner as in Example 1 except that the obtained resin sheet was used. Those results are shown in Table 2. In addition, "N.D." in Table 2 means that it was not detected, and the salt content was less than 1 mg/kg.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されているように、実施例1~7で得られた樹脂シートは、ガラスに対する優れた接着性に加えて、優れた透明性を有することが確認された。また、ガラスに対する接着性については、スズ面に対する接着性だけでなくエア面に対する接着性も優れていることが確認された。
 これに対して、比較例1~5で得られた樹脂シートは、ガラスに対する接着性、特にエア面に対する接着性に劣っており、比較例3で得られた樹脂シートは、徐冷時の透明性にも劣っていた。比較例6で得られた樹脂シートは、吸水時の透明性に劣っていた。比較例7で得られた樹脂シートは、耐熱分解性に劣っており、また、接触角が本発明における特定の範囲を充足するにもかかわらず、ガラスに対する接着性、特にエア面に対する接着性に劣っていた。
As shown in Table 2, it was confirmed that the resin sheets obtained in Examples 1 to 7 had excellent transparency as well as excellent adhesiveness to glass. In addition, it was confirmed that the adhesiveness to glass is excellent not only to the tin surface but also to the air surface.
On the other hand, the resin sheets obtained in Comparative Examples 1 to 5 are inferior in adhesiveness to glass, particularly to air surfaces, and the resin sheet obtained in Comparative Example 3 is transparent when slowly cooled. It was also inferior in sex. The resin sheet obtained in Comparative Example 6 was inferior in transparency when absorbing water. The resin sheet obtained in Comparative Example 7 was inferior in thermal decomposition resistance, and although the contact angle satisfies the specific range of the present invention, the adhesiveness to glass, particularly to the air surface, was poor. was inferior.
 本発明の樹脂シートは、高い透明性およびガラスとの優れた接着性という特性を有するため、合わせガラス中間膜として、例えば、建築・構造用途(例えば、ファサード、外壁若しくは屋根のためのラミネート、パネル、ドア、窓、壁、屋根、サンルーフ、遮音壁、表示窓、バルコニー、手摺壁等の建材、会議室の仕切りガラス部材、ソーラーパネル等)の合わせガラスの中間膜として、または乗物用途の合わせガラス(例えば、自動車用フロントガラス、自動車用サイドガラス、自動車用サンルーフ、自動車用リアガラス、ヘッドアップディスプレイ用ガラス等)の中間膜として、好適に使用できる。また、本発明の合わせガラスは、建築・構造用途または乗物用途の合わせガラスとして、好適に使用できる。 Since the resin sheet of the present invention has properties of high transparency and excellent adhesion to glass, it can be used as an interlayer film for laminated glass, for example, for architectural and structural applications (for example, laminates for facades, exterior walls or roofs, panels Building materials such as doors, windows, walls, roofs, sunroofs, sound insulation walls, display windows, balconies, handrails, partition glass members for conference rooms, solar panels, etc.), or laminated glass for vehicles ( For example, it can be suitably used as an intermediate film for automobile windshields, automobile side glasses, automobile sunroofs, automobile rear glasses, head-up display glasses, etc.). In addition, the laminated glass of the present invention can be suitably used as laminated glass for architectural/structural use or vehicle use.

Claims (7)

  1.  アイオノマー樹脂組成物を含んでなる層を1層以上有する樹脂シートであって、
     前記アイオノマー樹脂組成物を含んでなる層は、前記樹脂シートの少なくとも一方の表面を形成しており、
     前記表面の、JIS K6768に準拠して測定された接触角は60~75度であり、
     前記アイオノマー樹脂組成物は、(メタ)アクリル酸単位(A)、(メタ)アクリル酸中和物単位(B)、およびエチレン単位(C)を含むアイオノマー樹脂、ならびに強酸および強塩基からなる塩を含んでなり、
     前記単位(A)および前記単位(B)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%であり、
     前記塩の含有量は、前記アイオノマー樹脂組成物の総質量を基準として1~400mg/kgである、樹脂シート。
    A resin sheet having one or more layers comprising an ionomer resin composition,
    The layer containing the ionomer resin composition forms at least one surface of the resin sheet,
    The contact angle of the surface measured in accordance with JIS K6768 is 60 to 75 degrees,
    The ionomer resin composition comprises an ionomer resin containing (meth)acrylic acid units (A), (meth)acrylic acid neutralized units (B), and ethylene units (C), and a salt composed of a strong acid and a strong base. comprising
    The total content of the units (A) and the units (B) is 6 to 10 mol% based on the total monomer units constituting the ionomer resin,
    The resin sheet, wherein the content of the salt is 1 to 400 mg/kg based on the total mass of the ionomer resin composition.
  2.  前記アイオノマー樹脂組成物を含んでなる層は、前記樹脂シートの両方の表面を形成しており、
     前記両方の表面の、JIS K6768に準拠して測定された接触角は60~75度である、
    請求項1に記載の樹脂シート。
    The layer comprising the ionomer resin composition forms both surfaces of the resin sheet,
    The contact angles of both surfaces measured in accordance with JIS K6768 are 60 to 75 degrees.
    The resin sheet according to claim 1.
  3.  前記アイオノマー樹脂はさらに(メタ)アクリル酸エステル単位(D)を含み、前記単位(A)、前記単位(B)および前記単位(D)の合計含有量は、前記アイオノマー樹脂を構成する全単量体単位を基準として6~10モル%である、請求項1または2に記載の樹脂シート。 The ionomer resin further contains (meth)acrylic acid ester units (D), and the total content of the units (A), the units (B) and the units (D) is the total amount of monomers constituting the ionomer resin. 3. The resin sheet according to claim 1, which is 6 to 10 mol % based on the body unit.
  4.  前記塩は、アルカリ金属および/またはアルカリ土類金属の金属塩である、請求項1~3のいずれかに記載の樹脂シート。 The resin sheet according to any one of claims 1 to 3, wherein the salt is a metal salt of alkali metal and/or alkaline earth metal.
  5.  前記塩は、ナトリウムイオンおよびカリウムイオンからなる群から選択される少なくとも1種のカチオンと、ハロゲンイオン、硝酸イオンおよび硫酸イオンからなる群から選択される少なくとも1種のアニオンとからなる塩である、請求項1~4のいずれかに記載の樹脂シート。 The salt is a salt comprising at least one cation selected from the group consisting of sodium ions and potassium ions and at least one anion selected from the group consisting of halogen ions, nitrate ions and sulfate ions. The resin sheet according to any one of claims 1 to 4.
  6.  請求項1~5のいずれかに記載の樹脂シートからなる合わせガラス中間膜。 A laminated glass intermediate film made of the resin sheet according to any one of claims 1 to 5.
  7.  2つのガラス板と、該2つのガラス板の間に配置された請求項6に記載の合わせガラス中間膜とを有する、合わせガラス。 A laminated glass comprising two glass plates and the laminated glass intermediate film according to claim 6 arranged between the two glass plates.
PCT/JP2022/024892 2021-06-23 2022-06-22 Resin sheet having layer that contains ionomer resin composition, and laminated glass WO2022270540A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023530091A JPWO2022270540A1 (en) 2021-06-23 2022-06-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021104270 2021-06-23
JP2021-104270 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022270540A1 true WO2022270540A1 (en) 2022-12-29

Family

ID=84545775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024892 WO2022270540A1 (en) 2021-06-23 2022-06-22 Resin sheet having layer that contains ionomer resin composition, and laminated glass

Country Status (2)

Country Link
JP (1) JPWO2022270540A1 (en)
WO (1) WO2022270540A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507278A (en) * 2007-12-14 2011-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー TERIONOMER FILM OR SHEET AND SOLAR CELL MODULE CONTAINING THE SAME
WO2012105150A1 (en) * 2011-02-02 2012-08-09 株式会社クレハ Resin composition and use thereof
WO2020189335A1 (en) * 2019-03-20 2020-09-24 三井・ダウポリケミカル株式会社 Resin composition for laminated glass interlayer, laminated glass interlayer, and laminated glass
WO2020241515A1 (en) * 2019-05-31 2020-12-03 株式会社クラレ Ionomer, resin sheet, and laminated glass
WO2021124951A1 (en) * 2019-12-19 2021-06-24 株式会社クラレ Ionomer resin, resin sheet, and laminated glass
WO2021124950A1 (en) * 2019-12-19 2021-06-24 株式会社クラレ Method for producing ionomer resin
WO2022071065A1 (en) * 2020-09-29 2022-04-07 株式会社クラレ Ionomer resin, resin sheet, and laminated glass
WO2022113906A1 (en) * 2020-11-27 2022-06-02 株式会社クラレ Ionomer resin

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507278A (en) * 2007-12-14 2011-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー TERIONOMER FILM OR SHEET AND SOLAR CELL MODULE CONTAINING THE SAME
WO2012105150A1 (en) * 2011-02-02 2012-08-09 株式会社クレハ Resin composition and use thereof
WO2020189335A1 (en) * 2019-03-20 2020-09-24 三井・ダウポリケミカル株式会社 Resin composition for laminated glass interlayer, laminated glass interlayer, and laminated glass
WO2020241515A1 (en) * 2019-05-31 2020-12-03 株式会社クラレ Ionomer, resin sheet, and laminated glass
WO2021124951A1 (en) * 2019-12-19 2021-06-24 株式会社クラレ Ionomer resin, resin sheet, and laminated glass
WO2021124950A1 (en) * 2019-12-19 2021-06-24 株式会社クラレ Method for producing ionomer resin
WO2022071065A1 (en) * 2020-09-29 2022-04-07 株式会社クラレ Ionomer resin, resin sheet, and laminated glass
WO2022113906A1 (en) * 2020-11-27 2022-06-02 株式会社クラレ Ionomer resin

Also Published As

Publication number Publication date
JPWO2022270540A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP6913264B1 (en) Ionomer resin, resin sheet and laminated glass
WO2020241515A1 (en) Ionomer, resin sheet, and laminated glass
EP3181602A1 (en) Copolymer and molded article
JP6370683B2 (en) Thermoplastic resin film and method for producing the same, decorative film, laminated film, and laminated body
WO2021124950A1 (en) Method for producing ionomer resin
WO2021079886A1 (en) Resin sheet and method for producing same
JP7124246B1 (en) ionomer resin
JP7186329B2 (en) Ionomer resin, resin sheet and laminated glass
JP7322002B2 (en) (Meth)acrylic resin composition, film and method for producing the same
WO2022270540A1 (en) Resin sheet having layer that contains ionomer resin composition, and laminated glass
WO2023008485A1 (en) Ionomer resin particulate production method
WO2022270545A1 (en) Ionomer resin composition, resin sheet, and laminated glass
WO2022270542A1 (en) Resin composition formed by containing ionomer resin, resin sheet, and laminated glass
JP2018053210A (en) Multi-layered body and manufacturing method thereof, and composite body and method for manufacturing the same
WO2023032909A1 (en) Ionomer resin composition, resin sheet, and laminated glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828456

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530091

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE