WO2021079886A1 - Resin sheet and method for producing same - Google Patents

Resin sheet and method for producing same Download PDF

Info

Publication number
WO2021079886A1
WO2021079886A1 PCT/JP2020/039442 JP2020039442W WO2021079886A1 WO 2021079886 A1 WO2021079886 A1 WO 2021079886A1 JP 2020039442 W JP2020039442 W JP 2020039442W WO 2021079886 A1 WO2021079886 A1 WO 2021079886A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
carboxylic acid
resin
unit
laminated glass
Prior art date
Application number
PCT/JP2020/039442
Other languages
French (fr)
Japanese (ja)
Inventor
卓郎 新村
淳裕 中原
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2021079886A1 publication Critical patent/WO2021079886A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a resin sheet that can be used as an interlayer film for laminated glass and a method for producing the same, an interlayer film for laminated glass made of the resin sheet, and a laminated glass having the interlayer film for laminated glass.
  • Ionomer which is a neutralized product of an ethylene / unsaturated carboxylic acid copolymer, is often used as an interlayer film of laminated glass because of its high elastic modulus, transparency, and adhesiveness to glass (for example, Patent Documents). 1).
  • Patent Documents Patent Documents 1
  • the required performance for laminated glass has increased, and even for ionomers, it maintains high transparency regardless of the manufacturing conditions of laminated glass, maintains a high elastic modulus even at high temperatures, and does not reduce the strength of laminated glass.
  • Patent Document 2 describes an interlayer film for laminated glass obtained by irradiating a neutralized product of an ethylene / unsaturated carboxylic acid copolymer with ionizing radiation after film molding.
  • Patent Document 3 is a laminated film composed of an ionomer layer of an ethylene / unsaturated carboxylic acid copolymer and a thermosetting resin layer, wherein the ionomer layer is crosslinked with an electron beam. A skin film is described.
  • the interlayer film for laminated glass as in Patent Document 2 does not have sufficient transparency, independence in a high temperature environment, and adhesion to glass. Further, it was found that the laminated film as in Patent Document 3 has a small thickness, so that sufficient strength cannot be obtained, and the degree of cross-linking is too high, so that the adhesive processability at the time of producing laminated glass is inferior.
  • an object of the present invention is a resin sheet having excellent transparency, strength, self-supporting property in a high temperature environment, and adhesive processability, a method for producing the same, an interlayer film for laminated glass made of the resin sheet, and the laminated glass. It is an object of the present invention to provide a laminated glass having an interlayer film for use.
  • a resin sheet containing a resin containing a carboxylic acid unit, a carboxylic acid neutralized product unit, and an ethylene unit contains a carboxylic acid unit and a carboxylic acid.
  • [7] A laminated glass having two glass plates and an interlayer film for laminated glass according to [6] arranged between the two glass plates.
  • [8] The laminated glass according to [7], wherein the laminated glass has a haze of 5.0% or less after heating to 140 ° C. and then slowly cooling to 23 ° C. at a rate of 0.1 ° C./min.
  • the resin sheet of the present invention is excellent in transparency, strength, independence in a high temperature environment, and adhesive processability. Therefore, it can be suitably used as an interlayer film for laminated glass.
  • the resin sheet of the present invention contains a resin (also referred to as ionomer or resin (x)) containing a carboxylic acid unit (A), a carboxylic acid neutralized product unit (B), and an ethylene unit (C).
  • the "unit” means a "constituent unit of origin", for example, the carboxylic acid unit indicates a structural unit derived from carboxylic acid, and the carboxylic acid neutralized product unit is in carboxylic acid.
  • a structural unit derived from Japanese products is shown, and an ethylene unit indicates a structural unit derived from ethylene.
  • Examples of the monomer constituting the carboxylic acid unit (A) include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic anhydride, monomethyl maleate, and monoethyl maleate. Among these, acrylic acid, methacrylic acid, monomethyl maleate, and monoethyl maleate are preferable, acrylic acid and methacrylic acid are more preferable, and methacrylic acid is even more preferable.
  • the carboxylic acid unit can be used alone or in combination of two or more.
  • the content of the carboxylic acid unit (A) is 2.0 to 9.0 mol% based on all the monomer units constituting the resin. If the content of the carboxylic acid unit (A) is less than 2.0 mol%, the transparency tends to decrease, and if the content exceeds 9.0 mol%, the strength tends to decrease. Therefore, when the content of the carboxylic acid unit (A) is in the above range, transparency and strength can be improved.
  • the content of the carboxylic acid unit (A) is preferably 2.5 mol% or more, more preferably 3.0 mol% or more, still more preferably 4.0 mol% or more, and particularly preferably 5.0 mol% or more. Yes, preferably 8.5 mol% or less, more preferably 8.0 mol% or less. When the content of the carboxylic acid unit (A) is at least the above lower limit, the transparency is more likely to be improved, and when the content is at least the above upper limit, the strength is more likely to be improved.
  • a neutralized product of the monomer constituting the carboxylic acid unit (A) is preferable.
  • the carboxylic acid neutralized product is obtained by replacing the hydrogen ion of the carboxylic acid with a metal ion.
  • the metal ion include monovalent metals such as lithium, sodium and potassium; and ions of polyvalent metals such as magnesium, calcium, zinc, aluminum and titanium. These metal ions can be used alone or in combination of two or more. For example, it may be a combination of one or more monovalent metal ions and one or more divalent metal ions.
  • the content of the carboxylic acid neutralized product unit (B) is 1.0 to 3.0 mol% based on all the monomer units constituting the resin. If the content of the carboxylic acid neutralized product unit (B) is less than 1.0 mol%, the transparency and independence in a high temperature environment tend to decrease, and the content is 3.0 mol%. If it exceeds, the melt viscosity during the molding process becomes high, and there is a tendency for coloring. Therefore, when the content of the carboxylic acid neutralized product unit (B) is in the above range, transparency and independence in a high temperature environment can be improved.
  • the content of the carboxylic acid neutralized product unit (B) is preferably 1.5 mol% or more, preferably 2.5 mol% or less.
  • the content of the carboxylic acid neutralized substance unit (B) is at least the above lower limit, transparency and independence in a high temperature environment are more likely to be improved, and when the content is at least the above upper limit, coloring is performed. It is easy to reduce the degree.
  • the content of the ethylene unit (C) is preferably 80 mol% or more, more preferably 85 mol% or more, still more preferably 88 mol% or more, based on all the monomer units constituting the resin, and is preferable. Is less than 97 mol%.
  • the content of the ethylene unit (C) is at least the above lower limit, the strength and molding processability of the resin sheet are likely to be improved, and when the content is at least the above upper limit, the resin sheet is transparent and under a high temperature environment. It is easy to improve independence and adhesive processability.
  • the resin sheet of the present invention may contain a structural unit other than the carboxylic acid unit (A), the carboxylic acid neutralized product unit (B), and the ethylene unit (C).
  • Examples of other constituent units include a carboxylic acid ester unit (D) and the like.
  • Examples of the monomer constituting the carboxylic acid ester unit include unsaturated carboxylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and isopropyl (meth) acrylate.
  • Examples thereof include (meth) acrylic acid ester, dimethyl itacone, dimethyl maleate, and diethyl maleate.
  • (meth) acrylic acid ester especially methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate.
  • the methacrylic acid ester is preferable because it is excellent in heat decomposition and low coloring property.
  • These (meth) acrylic acid esters can be used alone or in combination of two or more.
  • “(meth) acrylic acid” means methacrylic acid or acrylic acid.
  • the content of the carboxylic acid ester unit (D) is preferably 2.0 mol% or less, more preferably 1.0 mol% or less, based on all the monomer units constituting the resin.
  • the lower limit of the content of the carboxylic acid ester unit (D) is 0 mol% or more, and when the resin contains the carboxylic acid ester unit (D), it is preferably 0.05 mol% or more.
  • the content of the carboxylic acid ester unit (D) is in the above range, it is advantageous in terms of transparency.
  • the content of the carboxylic acid unit, the carboxylic acid neutralized product unit, the ethylene unit, and optionally the carboxylic acid ester unit in the resin (x) contained in the resin sheet of the present invention can be analyzed by the following procedure. is there.
  • the structural units in the resin can be identified by pyrolysis gas chromatography (pyrolysis GC-MS), and then their contents can be evaluated by using nuclear magnetic resonance spectroscopy (NMR) and elemental analysis. It is also possible to combine IR and Raman analysis. Prior to these analyzes, it is preferable to remove components other than the resin by a reprecipitation method or a Soxhlet extraction method.
  • the ratio of the constituent units of the resin contained in the resin sheet is almost the same as the ratio of the raw material resin
  • the ratio of each constituent unit of the raw material resin may be analyzed and obtained by the above method. For example, it can be obtained by the method described in Examples.
  • the melting point of the resin (x) is preferably 50 to 200 ° C., more preferably 60 to 180 ° C., and even more preferably 80 to 150 ° C. from the viewpoint of transparency and processability.
  • the melting point for example, referring to the method described in JIS K7121: 2012, using differential scanning calorimetry (DSC), the cooling rate is -10 ° C / min, the heating rate is 10 ° C / min, and the melting of the second temperature rise is performed. It can be obtained from the peak picktop temperature.
  • the heat of fusion of the resin (x) is preferably 0 J / g to 25 J / g from the viewpoint of transparency.
  • the cooling rate is -10 ° C / min
  • the heating rate is 10 ° C / min. It can be calculated from the area of the melting peak of.
  • the melt flow rate (MFR) of the resin (x) measured under the conditions of 190 ° C. and 2.16 kgf is preferably 0.3 g / 10 minutes or more, more preferably 0.7 g / 10. Minutes or more, more preferably 1.0 g / 10 minutes or more, particularly preferably 2.0 g / 10 minutes or more, preferably 50 g / 10 minutes or less, more preferably 30 g / 10 minutes or less.
  • the MFR of the resin can be adjusted by the molecular weight and the content of the carboxylic acid unit (A), the carboxylic acid neutralized product unit (B) and the carboxylic acid ester unit (D).
  • the degree of branching of the resin (x) per 1000 carbon atoms is not particularly limited, but is preferably 5 to 30, more preferably 6 to 20.
  • the analysis of the degree of branching per 1000 carbons can be performed by the DDMAS method using, for example, solid-state NMR.
  • the amount is 5 to 90% by mass. Therefore, the resin sheet of the present invention is excellent in transparency, strength, independence in a high temperature environment, and adhesive processability. In addition, the resin sheet of the present invention can also have excellent roll-windability and low coloration.
  • the self-supporting property in a high temperature environment means that when a resin sheet is used as an interlayer film for laminated glass for laminated glass, even if the glass is broken in a high temperature environment, the broken glass.
  • the resin sheet does not easily penetrate the resin sheet (laminated glass interlayer film) or the resin sheet does not easily drip.
  • the adhesive processability means a property that the glass and the resin sheet are easily adhered to each other when the laminated glass is produced by using the resin sheet as an interlayer film for laminated glass.
  • the degree of coloring indicates the degree of coloring and can be evaluated by, for example, the degree of yellowness (YI).
  • the transparency means that both the transparency of the resin sheet itself and the transparency of the laminated glass formed by using the resin sheet as an interlayer film are included.
  • the insoluble matter in the mixed solvent (A) may be referred to as toluene / acetic acid insoluble matter.
  • the resin sheet of the present invention has an insoluble content of 5 to 90% by mass in the mixed solvent (A).
  • the resin constituting the resin sheet of the present invention dissolves in the mixed solvent (A) when it is not crosslinked by the electron beam, and as the degree of cross-linking by the electron beam increases, the solubility in the mixed solvent (A) decreases and it is insoluble. The amount becomes large. On the contrary, as the degree of cross-linking by the electron beam decreases, the amount of insoluble matter decreases. Therefore, the amount of insoluble matter in the mixed solvent (A) is an index of the degree of cross-linking of the resin sheet by the electron beam (also referred to as the degree of electron beam cross-linking).
  • the amount of the insoluble matter in the mixed solvent (A) of the resin sheet is less than 5% by mass, the degree of electron beam cross-linking is too low, so that crystallization is promoted when the resin sheet is slowly cooled after being prepared as a laminated glass as an interlayer film. It is not possible to obtain sufficient transparency. Further, if the insoluble content of the resin sheet in the mixed solvent (A) exceeds 90% by mass, the elastic modulus at 140 ° C. becomes too high, and sufficient adhesive processability cannot be obtained at the time of producing laminated glass.
  • the resin sheet of the present invention has an insoluble content of 5 to 90% by mass in the mixed solvent (A), and the degree of cross-linking of the resin by an electron beam is adjusted to an appropriate range, so that the resin sheet has sufficient transparency and adhesive processability. Can have.
  • the amount of insoluble matter can be set within a predetermined range by appropriately adjusting the acceleration voltage and irradiation dose of the electron beam in the irradiation step of the resin sheet, for example. As the acceleration voltage and irradiation dose of the electron beam increase, the degree of electron beam cross-linking increases, so that the amount of insoluble matter tends to increase.
  • the insoluble content of the resin sheet in the mixed solvent (A) is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, preferably 85% by mass or less, and more preferably 75% by mass. % Or less, more preferably 65% by mass or less.
  • the mass of the insoluble matter is obtained by mixing the resin sheet with the mixed solvent, separating the solid and liquid, taking out the solid layer, vacuum-drying until there is no change in mass, and then measuring the mass.
  • the resin sheet of the present invention has a carboxylic acid unit content of a (mol%) and an insoluble content of b (mass%).
  • the resin sheet of the present invention tends to exhibit excellent transparency. Specifically, in the resin sheet of the present invention, if the content of the carboxylic acid unit is large, crystallization is likely to be suppressed when the laminated glass using the resin sheet as an interlayer film is manufactured and then slowly cooled, so that the degree of cross-linking is high.
  • the formula (2) is a formula that optimizes the relationship between the content of the carboxylic acid unit (a mol%) and the insoluble content (b mass%) corresponding to the degree of cross-linking. Further, when the resin sheet of the present invention satisfies the formulas (1) and (2), the optimum amount of carboxylic acid unit and the degree of cross-linking can be balanced in order to exhibit the effect of the present invention. Adhesive processability and independence in a high temperature environment are also likely to improve.
  • the thickness of the resin sheet of the present invention is 0.2 mm or more and less than 3 mm. If the thickness of the resin sheet is less than 0.2 mm, the strength is not sufficient, and the degree of cross-linking tends to be too high depending on the acceleration voltage of the electron beam, so that sufficient adhesive workability tends not to be obtained. It is in. Further, when the thickness of the resin sheet is 3 mm or more, the transparency and roll winding property of the resin sheet are not sufficient, and the degree of coloring tends to be high. In addition, since irradiation unevenness in the thickness direction tends to occur depending on the acceleration voltage of the electron beam, the degree of electron beam cross-linking tends to vary, and the transparency of the resin sheet and partial coloring tend to occur due to this. There is a tendency. Since the resin sheet of the present invention has a thickness of 0.2 mm or more and less than 3 mm, it can have sufficient transparency, strength, adhesive processability, roll-up property, and low coloring degree.
  • the thickness of the resin sheet of the present invention is preferably 0.3 mm or more, more preferably 0.5 mm or more, further preferably 0.8 mm or more, preferably 2.5 mm or less, and more preferably 2.0 mm or less. ..
  • the thickness of the resin sheet is at least the above lower limit, the strength and adhesive processability of the resin sheet are likely to be improved, and when the thickness is at least the above upper limit, the transparency of the resin sheet and the rollability of the roll are improved. In addition to being easy, it is easy to reduce the degree of coloring, and it is easy to suppress variations in transparency and partial coloring.
  • the thickness of the resin sheet can be measured by using, for example, a contact type or non-contact type thickness gauge, and can be measured by, for example, the method described in Examples.
  • the resin sheet of the present invention has a storage elastic modulus at 50 ° C. of preferably 50 MPa or more, more preferably 70 MPa or more, still more preferably 100 MPa or more, preferably 300 MPa or less, more preferably 250 MPa or less, still more preferably 200 MPa or less. It is as follows. When the storage elastic modulus at 50 ° C. is in the above range, excellent independence in a high temperature environment (for example, about 50 ° C.) is likely to be exhibited.
  • the storage elasticity at 50 ° C. is, for example, the ratio of the carboxylic acid unit (A) and the carboxylic acid neutralized product unit (B) of the resin contained in the resin sheet, particularly the ratio of the carboxylic acid neutralized product unit (B).
  • the resin sheet of the present invention has a storage elastic modulus at 140 ° C., preferably 0.1 MPa or more, more preferably 0.3 MPa or more, still more preferably 0.5 MPa or more, preferably 2.5 MPa or less, more preferably. Is 2.0 MPa or less, more preferably 1.5 MPa or less, and particularly preferably 1.3 MPa or less.
  • the storage elastic modulus can be measured using a dynamic viscoelasticity measuring device under the conditions of a measurement temperature of 50 ° C. or 140 ° C. and a frequency of 1 Hz, and can be measured, for example, by the method described in Examples.
  • the storage elastic modulus at 140 ° C. can be set within a predetermined range by appropriately adjusting the acceleration voltage and irradiation dose of the electron beam in the irradiation step of the resin sheet, for example. As the acceleration voltage and irradiation dose of the electron beam become smaller, the degree of electron beam cross-linking is reduced, so that the storage elastic modulus at 140 ° C. tends to be lower.
  • the resin sheet of the present invention has a low degree of coloring and is preferably colorless.
  • the yellowness (YI) of the resin sheet of the present invention is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.5 or less. When the yellowness (YI) is not more than the above upper limit, it tends to have a low degree of coloring.
  • the lower limit of yellowness (YI) is 0 or more.
  • the yellowness (YI) can be measured in accordance with JIS K7373 based on the value measured in accordance with JIS Z8722 using a colorimetric color difference meter, and can be calculated, for example, by the method described in Examples.
  • the resin sheet of the present invention is excellent not only in the transparency of the sheet itself, but also in the transparency of the laminated glass formed by using the resin sheet as an interlayer film.
  • the transparency of the laminated glass containing the resin sheet of the present invention as an interlayer film is, for example, the haze (slow cooling) after heating the laminated glass to 140 ° C. and then slowly cooling the laminated glass to 23 ° C. at a rate of 0.1 ° C./min.
  • the slow-cooling haze can be evaluated by (also referred to as a haze), and the slow-cooling haze is the same as the haze described in the section [Interlayer film for laminated glass and laminated glass] described later.
  • the resin sheet of the present invention preferably has a low water content from the viewpoint of adhesiveness to glass.
  • the water content is preferably 1% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.02% by mass or less, and particularly preferably 0.% by mass, based on the mass of the resin sheet. It is 01% by mass or less.
  • the content of the resin (x) contained in the resin sheet of the present invention is preferably 95% by mass or more, more preferably 97% by mass or more, still more preferably 99% by mass or more, based on the mass of the resin sheet. ..
  • the content of the resin (x) is at least the above lower limit, transparency, strength, independence in a high temperature environment and adhesive processability can be easily improved, and the degree of coloring can be easily reduced.
  • the upper limit of the content of the resin is 100% by mass or less.
  • the resin sheet of the present invention contains an ultraviolet absorber, a silane coupling agent, an antioxidant, an antioxidant, a heat deterioration inhibitor, a light stabilizer, an anti-glue agent, a lubricant, a mold release agent, a polymer processing aid, and a charge. It may contain additives such as inhibitors, flame retardants, dyes and pigments, organic dyes, matting agents and phosphors. Among these, at least one selected from the group consisting of an ultraviolet absorber and a silane coupling agent is preferable.
  • the ultraviolet absorber is a compound having a function of absorbing ultraviolet rays.
  • UV absorber examples include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic acid esters, formamidines and the like. These UV absorbers can be used alone or in combination of two or more.
  • Benzotriazoles are preferable as UV absorbers because they have a high effect of suppressing deterioration of optical properties such as coloring due to UV exposure.
  • benzotriazoles include 2- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2- (2H-).
  • Benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234), 2,2'-methylenebis [6- (2H-benzotriazole-2) -Il) -4-t-octylphenol] (manufactured by ADEKA Co., Ltd .; LA-31), 2- (5-octylthio-2H-benzotriazole-2-yl) -6-tert-butyl-4-methylphenol, etc. Can be mentioned.
  • UV absorber for triazines, 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA Co., Ltd .; LA-) F70) and its analogs, hydroxyphenyltriazine-based ultraviolet absorbers (manufactured by BASF; TINUVIN477 and TINUVIN460), 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3, 5-Triazine and the like can be mentioned.
  • silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyldiethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, and N- (2). -Aminoethyl) -3-aminopropyldiethoxysilane and the like. These silane coupling agents can be used alone or in combination of two or more.
  • a known material can be used as the anti-aging agent. Specifically, hydroquinone, hydroquinone monomethyl ether, 2,5-di-t-butylphenol, 2,6-di (t-butyl) -4-methylphenol, mono (or di or tri) ( ⁇ -methylbenzyl).
  • Phenolic compounds such as phenol; 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 4,4'-thiobis Bisphenol compounds such as (3-methyl-6-t-butylphenol); benzimidazole compounds such as 2-mercaptobenzimidazole and 2-mercaptomethylbenzimidazole; 6-ethoxy-1,2-dihydro-2,2, Amine-ketone compounds such as 4-trimethylquinolin, a reaction product of diphenylamine and acetone, 2,2,4-trimethyl-1,2-dihydroquinolin polymer; N-phenyl-1-naphthylamine, alkylated diphenylamine, octylation Aromatic secondary amine compounds such as diphenylamine, 4,4'-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, p- (p-toluenes
  • the antioxidant is effective in preventing oxidative deterioration of the resin by itself in the presence of oxygen.
  • phosphorus-based antioxidants hindered phenol-based antioxidants, thioether-based antioxidants, and the like can be mentioned. These antioxidants can be used alone or in combination of two or more. Among them, phosphorus-based antioxidants and hindered phenol-based antioxidants are preferable, and the combined use of phosphorus-based antioxidants and hindered phenol-based antioxidants is more preferable, from the viewpoint of the effect of preventing deterioration of optical properties due to coloring.
  • the amount of the phosphorus-based antioxidant used is (1: 5) to mass ratio. (2: 1) is preferable, and (1: 2) to (1: 1) are more preferable.
  • phosphorus-based antioxidants 2,2-methylenebis (4,6-di-t-butylphenyl) octylphosphite (manufactured by ADEKA Corporation; trade name: ADEKA STAB HP-10), Tris (2,4-) Di-t-butylphenyl) phosphite (manufactured by BASF; trade name: IRGAFOS168), 3,9-bis (2,6-di-t-butyl-4-methylphenoxy) -2,4,8,10- Tetraoxa 3,9-diphosphaspiro [5.5] undecane (manufactured by ADEKA Corporation; trade name: ADEKA STAB PEP-36) and the like are preferable.
  • pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF; trade name IRGANOX1010), octadecyl-3- (3,5-Di-t-Butyl-4-hydroxyphenyl) propionate (manufactured by BASF; trade name IRGANOX1076) and the like are preferable.
  • the heat deterioration inhibitor can prevent the heat deterioration of the resin by capturing the polymer radicals generated when exposed to high heat under a substantially anoxic state.
  • the heat deterioration inhibitor 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenylacrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name: Sumilyzer GM) ), 2,4-di-t-amyl-6- (3', 5'-di-t-amyl-2'-hydroxy- ⁇ -methylbenzyl) phenylacrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilizer) GS) and the like are preferable.
  • the light stabilizer is a compound having a function of capturing radicals mainly generated by oxidation by light.
  • Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.
  • fatty acid salts or esters are preferable.
  • polyhydric alcohol esters include calcium stearate, calcium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, silicon dioxide (manufactured by Ebonic; trade name Aerosil), and particulate acrylic resin.
  • lubricant examples include stearic acid, behenic acid, stearoamic acid, methylene bisstearoamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, and hydrogenated oil.
  • the release agent examples include higher alcohols such as cetyl alcohol and stearyl alcohol; and glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride.
  • polymer particles having a particle size of 0.05 to 0.5 ⁇ m which can be usually produced by an emulsion polymerization method, can be used.
  • the polymer particles may be single-layer particles made of a polymer having a single composition ratio and a single extreme viscosity, or may be multilayer particles made of two or more kinds of polymers having different composition ratios or extreme viscosities. You may. Among these, particles having a two-layer structure having a polymer layer having a low ultimate viscosity in the inner layer and a polymer layer having a high ultimate viscosity of 5 dl / g or more in the outer layer are preferable.
  • the polymer processing aid preferably has an ultimate viscosity of 3 to 6 dl / g. If the ultimate viscosity is too small, the effect of improving moldability tends to be low. If the ultimate viscosity is too large, the moldability of the copolymer tends to be deteriorated.
  • organic dye a compound having a function of converting ultraviolet rays into visible light is preferably used.
  • fluorescent substance examples include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent whitening agents, and fluorescent bleaching agents.
  • the content of these additives can be appropriately determined within a range that does not impair the effects of the present invention, and is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 1% by mass or less. Further, the lower limit of the content of the additive is 0% by mass or more.
  • the resin sheet of the present invention may be composed of only a layer (also referred to as a layer (x)) containing a resin and optionally an additive, or may be a laminate containing at least one layer (x). ..
  • the laminated body is not particularly limited, and for example, a two-layer body in which a layer (x) and another layer are laminated, a laminated body in which another layer is arranged between the two layers (x), and the like are used. Can be mentioned.
  • Examples of the other layer include a layer containing a known resin.
  • the resin include polyethylene terephthalate, polybutylene terephthalate, cyclic polyolefin, and polyphenylene sulfide among polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polytetrafluoroethylene, acrylic resin, polyamide, polyacetal, polycarbonate, and polyester.
  • Polytetrafluoroethylene, polysulfone, polyether sulfone, polyarylate, liquid crystal polymer, polyimide, thermoplastic elastomer and the like can be used.
  • other layers may also contain the additive, if necessary.
  • the method for producing the resin sheet of the present invention is not particularly limited, and for example, a raw material sheet containing a resin containing a carboxylic acid unit, a carboxylic acid neutralizer unit, and an ethylene unit has an acceleration voltage of 200 to 5000 kV and an acceleration voltage of 200 to 5000 kV.
  • a method including a step of irradiating an electron beam having an irradiation dose of 10 to 500 kGy (hereinafter, also referred to as an irradiation step) is preferable.
  • the resin contained in the raw material sheet (also referred to as the raw material resin) is the one before the resin (x) of the present invention is electron-beam crosslinked. Therefore, the constituent units constituting the raw material resin are the same as the constituent units contained in the resin (x), except that they are not crosslinked with an electron beam. That is, the raw material resin may contain the carboxylic acid unit, the carboxylic acid neutralized product unit, the ethylene unit, and optionally the other structural unit (for example, the carboxylic acid ester unit (D)).
  • the ratio of each structural unit of the raw material resin (x) is, for example, the ratio of the above-mentioned structural units of the resin (x). You can select from the same range as.
  • the method for producing the raw material resin is not particularly limited, but for example, after copolymerizing ethylene and a carboxylic acid ester at high temperature and high humidity to obtain an ethylene-carboxylic acid ester copolymer (X), the carboxylic acid ester thereof is obtained.
  • Examples include a method of converting all or part of the units into carboxylic acid units and carboxylic acid neutralized units.
  • As a method for converting all or part of the carboxylic acid ester unit into the carboxylic acid unit and the carboxylic acid neutralized product unit all or part of the carboxylic acid ester unit is saponified with an alkali such as sodium hydroxide.
  • the carboxylic acid neutralized product unit After converting to a carboxylic acid neutralized product unit to obtain an ethylene-carboxylic acid neutralized product copolymer or an ethylene-carboxylic acid ester-carboxylic acid neutralized product copolymer, the carboxylic acid neutralized product unit A method of demetallizing a part of the above with an acid to convert it into a carboxylic acid unit (hereinafter, also referred to as method (1)) can be mentioned.
  • the carboxylic acid unit is obtained by converting all or part of the carboxylic acid ester unit into a carboxylic acid neutralized product unit by the above-mentioned saponification, and then demetallizing all the carboxylic acid neutralized product units with an acid.
  • a method of neutralizing a part thereof with an alkali metal or an alkaline earth metal (hereinafter, also referred to as method (2)) can be mentioned.
  • the carboxylic acid ester units of the ethylene-carboxylic acid ester copolymer (X) are converted into carboxylic acid units and carboxylic acid neutralized product units, the ethylene unit, carboxylic acid unit, and carboxylic acid neutralized product unit
  • a part of the carboxylic acid ester unit is converted into a carboxylic acid unit and a carboxylic acid neutralized product unit, an ethylene unit, a carboxylic acid unit, a carboxylic acid neutralized product unit, and a carboxylic acid ester can be produced.
  • a raw material resin having a unit can be produced.
  • the above-mentioned unsaturated carboxylic acid ester which is the raw material of the above-mentioned production method
  • the above-mentioned unsaturated carboxylic acid ester can be used.
  • methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, Sep-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate are preferable, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate and the like.
  • (Meta) acrylic acid ester is more preferable. Comparing the methacrylic acid ester and the acrylic acid ester, the methacrylic acid ester is preferable because it is excellent in heat-resistant decomposition and low colorability of the obtained resin.
  • the carboxylic acid ester can be used alone or in combination of two or more.
  • ethylene-carboxylic acid ester copolymer (X) examples include an ethylene-methyl acrylate copolymer, an ethylene-methyl methacrylate copolymer, an ethylene-ethyl acrylate copolymer, and an ethylene-ethyl methacrylate copolymer.
  • Polymer ethylene-propyl methacrylate copolymer, n-propyl methacrylate copolymer, ethylene-isopropyl methacrylate copolymer, isopropyl methacrylate copolymer, n-butyl ethylene-acrylate
  • examples thereof include a copolymer, an ethylene-n-butyl methacrylate copolymer, a sec-butyl copolymer of ethylene-acrylate, a sec-butyl copolymer of ethylene-methacrylate, and the like.
  • Commercially available copolymers may be used, or these copolymers may be synthesized with reference to US Patent Application Publication No. 2013/0274424, JP-A-2006-23309, or JP-A-2007-84743. You may.
  • the content of the carboxylic acid ester unit in the ethylene-carboxylic acid ester copolymer (X) is preferably 3.0 mol% or more, more preferably 3.5 mol% or more, still more preferably 4.0 mol%.
  • the above is preferably 12 mol% or less, more preferably 11 mol% or less, still more preferably 10 mol% or less.
  • the melt flow rate (MFR) of the ethylene-carboxylic acid ester copolymer (X) measured at 190 ° C. and 2.16 kgf is preferably 90 g / 10 minutes or more, more preferably. It is 100 g / 10 minutes or more, more preferably 150 g / 10 minutes or more, preferably 400 g / 10 minutes or less, more preferably 350 g / 10 minutes or less, still more preferably 330 g / 10 minutes or less.
  • the MFR of the ethylene-carboxylic acid ester copolymer (X) can be adjusted by the degree of polymerization of the copolymer and the content of the carboxylic acid ester unit.
  • the weight average molecular weight (Mw) of the ethylene-carboxylic acid ester copolymer (X) is preferably 15,000 g / mol or more, more preferably 20,000 g / mol or more in terms of polystyrene. More preferably, it is 30,000 g / mol or more, preferably 200,000 g / mol or less, and more preferably 100,000 g / mol or less.
  • the number average molecular weight (Mn) of the ethylene-carboxylic acid ester copolymer (X) is preferably 5,000 g / mol or more, more preferably 10,000 g / mol or more, and further preferably 15,000 g / mol or more.
  • the molding processability, strength and independence of the obtained resin in a high temperature environment can be easily improved.
  • the weight average molecular weight and the number average molecular weight can be measured using, for example, a column (three series of TSKgel GMH HR- H (20) HT) at a column temperature of 140 ° C. and a 1,2,4-trichlorobenzene solvent. .. Further, the weight average molecular weight (Mw) of the raw material resin can be selected from the same range as the Mw of the ethylene-carboxylic acid ester copolymer (X).
  • the degree of branching of the ethylene-carboxylic acid ester copolymer (X) per 1000 carbons is not particularly limited, but is preferably 5 to 30, more preferably 6 to 20.
  • the degree of branching per 1000 carbons can be analyzed, for example, by dissolving an ethylene-carboxylic acid ester copolymer in deuterated orthodichlorobenzene and using the inverse gate decoupling method of 13 C-NMR.
  • an ether solvent such as tetrahydrofuran and dioxane
  • a halogen-containing solvent such as chloroform and dichlorobenzene
  • carbon such as methylbutylketone.
  • Hydrocarbon-based solvents such as ketones, n-hexane, cyclohexane, etc. with a number of 6 or more
  • alcohol-based solvents such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol
  • aromatics such as benzene, toluene, xylene, ethylbenzene, etc.
  • groups include group solvents. These solvents can be used alone or in combination of two or more, and when two or more solvents are used, for example, a mixed solvent of a hydrocarbon solvent and an alcohol solvent, or an aromatic solvent and an alcohol solvent. A mixed solvent or the like may be used.
  • the temperature at which the saponification reaction is carried out with an alkali is 50 ° C. or higher from the viewpoint of its reactivity and the solubility of the ethylene-carboxylic acid ester copolymer (X).
  • 60 ° C. or higher is more preferable, 70 ° C. or higher is further preferable, and 80 ° C. or higher is most preferable.
  • the upper limit of the temperature is not particularly limited, but a temperature at which the ethylene-carboxylic acid ester copolymer (X) does not decompose is preferable, for example, 300 ° C. or lower.
  • known organic acids or inorganic acids such as acetic acid, hydrochloric acid, nitric acid, and sulfuric acid can be used as the acid used for demetallization.
  • the solvent used for demetallization the same solvent as in the saponification reaction can be selected.
  • the neutralizing agent used for neutralization is not particularly limited as long as it is an ionic compound containing the above-mentioned metal ion.
  • the metal ion include alkali metal ions such as lithium, potassium and sodium, alkaline earth metal ions such as magnesium and calcium, transition metal ions such as zinc, nickel, iron and titanium, and aluminum ions.
  • examples of the neutralizing agent when the metal ion is a sodium cation include sodium hydroxide, sodium acetate, sodium hydrogencarbonate and the like.
  • a polymer such as ionomer containing a sodium carboxylate unit can also be used as a neutralizing agent.
  • Examples of the method for producing the raw material resin include, in addition to the above method, a method of copolymerizing ethylene, the carboxylic acid and the carboxylic acid ester at high temperature and high pressure, and then neutralizing a part of the carboxylic acid unit.
  • a method of copolymerizing ethylene, the carboxylic acid and the carboxylic acid ester at high temperature and high pressure and then neutralizing a part of the carboxylic acid unit.
  • the method for producing a resin in JP-A-59-133217, US Pat. No. 6,518,365, and US Pat. No. 8,939,906 can be referred to.
  • the method for producing the raw material sheet of the present invention is not particularly limited, and for example, the raw material resin or the resin composition obtained by adding an additive to the raw material resin as needed is uniformly kneaded, preferably melt-kneaded, and then extruded. It can be obtained by forming a layer by a known film forming method such as a method, a calendar method, a compression molding method, a pressing method, a solution casting method, a melt casting method, or an inflation method.
  • the layer and another layer may be molded by a coextrusion method to obtain a laminated resin sheet.
  • the raw material resin may be kneaded, preferably the additive may be added during melt kneading.
  • a method for producing a resin sheet using a compression molding method or an extrusion method is particularly preferably used.
  • the resin temperature during compression molding or extrusion is preferably 150 ° C. or higher, more preferably 170 ° C. or higher, preferably 250 ° C. or lower, and more preferably 230 ° C. or lower.
  • the resin temperature is not more than the above upper limit, it is easy to suppress the decomposition and deterioration of the resin.
  • the resin temperature is equal to or higher than the above lower limit, the moldability of the resin is likely to be improved.
  • an extruder in order to efficiently remove the volatile substance, it is preferable to remove the volatile substance by reducing the pressure from the vent port of the extruder.
  • the resin sheet of the present invention can be obtained by a method including a step of irradiating the raw material sheet with an electron beam having an acceleration voltage of 200 to 5000 kV and an irradiation dose of 10 to 500 kGy.
  • the degree of electron beam cross-linking of the resin sheet can be adjusted by the magnitude of the acceleration voltage and irradiation dose of the electron beam, and as the acceleration voltage and irradiation dose increase, the degree of electron beam cross-linking of the resin sheet tends to increase. On the contrary, as the acceleration voltage and the irradiation dose become smaller, the degree of electron beam cross-linking of the resin sheet tends to become smaller.
  • the acceleration voltage of the electron beam can be appropriately selected according to the thickness of the resin sheet, and is preferably 500 kV or more, more preferably 1000 kV or more, still more preferably 1500 kV or more, preferably 4500 kV or less, more preferably 3500 kV or less, still more preferably. Is 2500 kV or less.
  • the acceleration voltage is equal to or higher than the above lower limit, the transparency of the resin sheet is likely to be improved. Further, since it is easy to crosslink to the deep part of the resin sheet, uneven irradiation in the thickness direction is unlikely to occur, and it is easy to suppress the variation in transparency and partial coloring of the resin sheet due to this. On the contrary, when the acceleration voltage is not more than the above upper limit, it is easy to suppress excessive cross-linking, and it is easy to improve the adhesive processability at the time of producing the laminated glass.
  • the irradiation dose of the electron beam can be appropriately selected according to the amount of the carboxylic acid unit of the raw material resin, and is preferably 15 kGy or more, more preferably 20 kGy or more, preferably 400 kGy or less, more preferably 300 kGy or less, still more preferably 250 kGy. It is as follows. When the irradiation dose of the electron beam is equal to or higher than the above lower limit, the transparency of the resin sheet is likely to be improved. Further, when the irradiation dose of the electron beam is not more than the above upper limit, the adhesive processability of the resin sheet is easily improved and coloring is easily suppressed.
  • Equation (3) optimizes the thickness range of the raw material sheet with respect to the acceleration voltage V.
  • the upper limit of the thickness t (mm) of the raw material sheet is preferably less than 3 mm.
  • the content of the carboxylic acid unit of the raw material sheet is a'(mol%) and the irradiation dose is c (kGy).
  • the formula (5) is an optimized range of the irradiation dose c of the electron beam with respect to the content of the carboxylic acid unit.
  • the degree of cross-linking with respect to the content of the carboxylic acid unit is satisfied. Since it is easy to adjust the (insoluble content) to a suitable range, it is easy to improve the transparency, strength, adhesive processability and independence of the obtained resin sheet in a high temperature environment.
  • the method of irradiating the electron beam is not particularly limited as long as the raw material sheet can be irradiated with the predetermined electron beam.
  • a resin sheet is placed on the support material, and the predetermined electron beam is applied to the sheet surface by an electron beam irradiator or the like.
  • the irradiation angle of the electron beam on the sheet surface is not particularly limited, but it is preferable to irradiate the sheet surface from a direction perpendicular to the sheet surface.
  • the resin sheet of the present invention may be subjected to surface treatment such as corona treatment, plasma treatment, frame treatment, ultraviolet ozone treatment, etc. before or after electron beam irradiation for the purpose of controlling surface energy.
  • surface treatment such as corona treatment, plasma treatment, frame treatment, ultraviolet ozone treatment, etc. before or after electron beam irradiation for the purpose of controlling surface energy.
  • the present invention includes an interlayer film for laminated glass (also simply referred to as an interlayer film) made of the resin sheet of the present invention.
  • the present invention also includes a laminated glass having two glass plates and an interlayer film for the laminated glass arranged between the two glass plates.
  • the laminated glass of the present invention has an interlayer film for laminated glass made of the resin sheet, it is excellent in transparency, strength, independence in a high temperature environment, and adhesive processability between the interlayer film and the glass plate during manufacturing. ing.
  • the glass plate laminated with the interlayer film of the present invention includes, for example, inorganic glass such as float plate glass, polished plate glass, template glass, meshed plate glass, and heat ray absorbing plate glass, as well as conventionally known organic glass such as polymethyl methacrylate and polycarbonate. Etc. can be used. These may be either colorless or colored. One of these may be used, or two or more thereof may be used in combination.
  • the thickness of the glass is preferably 100 mm or less.
  • the laminated glass formed by sandwiching the resin sheet of the present invention between two sheets of glass can be produced by a conventionally known method.
  • a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, a method using a nip roll, and the like can be mentioned.
  • a glass plate, an interlayer film, and optionally an adhesive resin layer or the like can be formed at 60 to 200 ° C., particularly 80 to 160 ° C. It will be laminated.
  • a method using a vacuum bag or a vacuum ring is described, for example, in European Patent No. 1235683, where it is laminated at 100-160 ° C. under a pressure of about 2 ⁇ 10 -2 to 3 ⁇ 10 -2 MPa. ..
  • a method of degassing with a roll at a temperature equal to or lower than the flow start temperature of the interlayer film and then crimping at a temperature closer to the flow start temperature there is a method of heating to 30 to 70 ° C. with an infrared heater or the like, degassing with a roll, further heating to 50 to 120 ° C., and then crimping with a roll can be mentioned.
  • the operating conditions of the autoclave process are appropriately selected depending on the thickness and composition of the laminated glass, and the pressure is, for example, 0.5 to 1.5 MPa. Underneath, it is preferable to treat at 100 to 160 ° C. for 0.5 to 3 hours.
  • the laminated glass of the present invention has excellent transparency.
  • the haze (slow cooling haze) after heating the laminated glass of the present invention to 140 ° C. and then slowly cooling to 23 ° C. at a rate of 0.1 ° C./min is preferably 5.0% or less, more preferably. It is 4.5% or less, more preferably 4.0% or less, particularly preferably 3.5% or less, and even more preferably 3.0% or less.
  • the lower limit of the slow cooling haze of the laminated glass is not particularly limited, but is usually 0.01% or more.
  • the slow-cooling haze of the laminated glass is based on JIS K7136: 2000 using a haze meter after heating the laminated glass to 140 ° C. and then slowly cooling it to 23 ° C. at a rate of 0.1 ° C./min. It can be measured, for example, by the method described in Examples.
  • the laminated glass of the present invention is less colored and is preferably colorless as much as possible.
  • the yellowness (YI) of the laminated glass of the present invention is preferably 2.0 or less, more preferably 1.8 or less, still more preferably 1.5 or less, particularly preferably 1.0 or less, and even more preferably 0. It is 5 or less.
  • the lower limit of the yellowness of the laminated glass of the present invention is not particularly limited, but is usually 0 or more.
  • the laminated glass of the present invention and the interlayer film have a high adhesive force.
  • the value evaluated by the compression shear strength test described in International Publication No. 1999/058334 is preferably 15 MPa or more, more preferably 20 MPa or more, and most preferably 25 MPa or more.
  • the upper limit is not particularly specified, but is 100 MPa or less.
  • the resin sheet of the present invention is useful as an interlayer film for laminated glass.
  • the laminated glass interlayer film is particularly preferable as a laminated glass interlayer film for structural materials because it is excellent in transparency, strength, self-supporting property in a high temperature environment, and adhesive processability during manufacturing. Further, it is suitable not only as an interlayer film for laminated glass for structural materials but also as an interlayer film for laminated glass in various applications such as moving bodies such as automobiles, buildings, and solar cells, but is limited to these applications. is not it.
  • the resin used as a raw material for the resin sheet was dissolved in a mixed solvent of dehydrated toluene / dehydrated acetic acid (75/25 (mass ratio)), reacted at 100 ° C. for 2 hours, and then acetone /.
  • the methacrylic acid neutralized product was converted into methacrylic acid units by reprecipitation in a mixed solvent of water (80/20 (mass ratio)).
  • the obtained resin was sufficiently washed with water and then dried to obtain a resin.
  • the components of the polymerization units constituting the obtained resin were analyzed by thermal decomposition GC-MS.
  • the acid value of the obtained resin was measured according to JIS K0070-1992.
  • the type and structure of the methacrylic acid unit are identified, and based on the information, from the information of (2) and (3), the ethylene unit / (the total of the methacrylic acid unit and the methacrylic acid neutralized product unit). ) was calculated. Furthermore, from the information in (4), the ratio of ethylene unit / methacrylic acid unit / methacrylic acid neutralized product unit was calculated.
  • a test piece having a length of 60 mm and a width of 60 mm was cut out from the resin sheets obtained in Examples and Comparative Examples, and the measurement temperature was 23 ° C. using a drop weight type impact tester (CEAST9350 manufactured by Instron) in accordance with ASTM D3763.
  • the test was conducted under the conditions of a load of 2 kg and a collision speed of 9 m / sec, and when the test piece was penetrated, it penetrated from the moment when the tip of the striker touched the test piece (sensed the test force) (the test force returned to zero).
  • the penetration energy (J) was calculated from the area of the SS curve up to).
  • [Storage modulus] A test piece having a length of 40 mm and a width of 5 mm was cut out from the resin sheets obtained in Examples and Comparative Examples, and stored under the conditions of a measurement temperature of 50 ° C. and a frequency of 1 Hz using a dynamic viscoelasticity measuring device manufactured by UBM Co., Ltd. The elastic modulus (E') was measured. When the storage elastic modulus at the measurement temperature of 50 ° C. is in the range of 50 to 300 MPa, the self-supporting property of the resin sheet (laminated glass interlayer film) in a high temperature environment becomes good.
  • the storage elastic modulus (E') was measured under the conditions of a measurement temperature of 140 ° C. and a frequency of 1 Hz.
  • the storage elastic modulus at the measurement temperature of 140 ° C. is 0.1 to 2.5 MPa, the adhesive processability becomes good when the laminated glass is produced using the resin sheet (interlayer film for laminated glass).
  • Mass fraction of toluene / acetic acid insoluble Ma / Mc ⁇ 100 (6) [In the formula, Mc is the mass (g) of the resin sheet, and Ma is the mass (g) of the toluene / acetic acid insoluble matter].
  • the laminated glass obtained by the above method was heated to 140 ° C. and then slowly cooled to 23 ° C. at a rate of 0.1 ° C./min.
  • the haze of the laminated glass after the slow cooling operation was measured using a haze meter HZ-1 (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7136: 2000.
  • the resins (IO1 to IO9) used as raw materials for the resin sheets obtained in Examples and Comparative Examples are methacrylic acid unit or acrylic acid unit (carboxylic acid unit), methacrylic acid neutralized product unit or acrylic acid neutralized product unit. (Carboxylic acid neutralized product unit) and an ionomer having an ethylene unit, and the carboxylic acid species, the content thereof, and the metal species of the neutralized product unit are shown in Table 1.
  • Example 1 50 g of IO1 (“Himilan 1707”, manufactured by Mitsui Dow Polychemical Co., Ltd.) shown in Table 1 is melted by melt-kneading at 200 ° C. and 100 rpm for 3 minutes using a lab plast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.). Obtained a kneaded product. The obtained melt-kneaded product was compression-molded at a pressure of 50 kgf / cm 2 for 5 minutes under heating at 200 ° C. to obtain a raw material sheet having a thickness of 0.8 mm.
  • the obtained raw material sheet is fixed on a support material installed in a movable cart, and a total is used under the conditions of an acceleration voltage of 2000 kV and a current of 20 mA using an electron beam irradiation device (Dyamitron type electron accelerator manufactured by RDI).
  • the electron beam was irradiated from the direction perpendicular to the sheet surface so that the irradiation dose was 200 kGy.
  • the obtained resin sheet was analyzed and its characteristics were evaluated.
  • the film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet.
  • the aspect of the first embodiment satisfies the relational expression of the formulas (1) to (5).
  • Example 2 A resin sheet was obtained in the same manner as in Example 1 except that the irradiation dose of the electron beam was changed to 120 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet.
  • the aspect of the second embodiment satisfies the relational expression of the formulas (1) to (5).
  • Example 3 A resin sheet was obtained in the same manner as in Example 1 except that IO2 shown in Table 1 was used as a raw material resin and the irradiation dose of the electron beam was changed to 30 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Example 3 satisfies the relational expression of the formulas (1) to (5).
  • Example 4 IO2 shown in Table 1 is used as a raw material resin, 0.015 g of 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyldiethoxysilane are added as a silane coupling agent at the time of melt-kneading, and irradiation with an electron beam is performed.
  • a resin sheet was obtained in the same manner as in Example 1 except that the dose was changed to 20 kGy.
  • the obtained resin sheet was analyzed and its characteristics were evaluated.
  • the film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet.
  • the aspect of the fourth embodiment satisfies the relational expression of the formulas (1) to (5).
  • Example 5 0.2 g of 2- (2H-benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234) was added as an ultraviolet absorber during melt-kneading.
  • a resin sheet was obtained in the same manner as in Example 1 except that the irradiation dose of the electron beam was changed to 150 kGy.
  • the obtained resin sheet was analyzed and its characteristics were evaluated.
  • the film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet.
  • the aspect of Example 5 satisfies the relational expression of the formulas (1) to (5).
  • Example 6 A resin sheet was obtained in the same manner as in Example 1 except that IO8 shown in Table 1 was used as a raw material resin and the irradiation dose of the electron beam was changed to 60 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Example 6 satisfies the relational expression of the formulas (1) to (5).
  • Example 7 A resin sheet was obtained in the same manner as in Example 1 except that IO9 shown in Table 1 was used as a raw material resin and the irradiation dose of the electron beam was changed to 200 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Example 7 satisfies the relational expression of the formulas (1) to (5).
  • Comparative Example 1 A resin sheet was obtained in the same manner as in Example 1 except that IO3 (Himilan 1601, manufactured by Mitsui Dow Polychemical Co., Ltd.) shown in Table 1 was used as a raw material resin. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet.
  • the aspect of Comparative Example 1 satisfies the formulas (3) and (5), but does not satisfy the formulas (1), (2) and (4).
  • Comparative Example 2 A resin sheet was obtained in the same manner as in Example 1 except that IO4 shown in Table 1 was used as a raw material resin and the irradiation dose of the electron beam was changed to 30 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet.
  • the aspect of Comparative Example 2 satisfies the formulas (2) and (5), but does not satisfy the formulas (1) and (4).
  • Comparative Example 3 A resin sheet was obtained in the same manner as in Example 1 except that IO5 shown in Table 1 was used as the raw material resin. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Comparative Example 3 satisfies the relational expression of the formulas (1) to (5).
  • Comparative Example 4 A resin sheet was obtained in the same manner as in Example 1 except that the irradiation dose of the electron beam was changed to 1000 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Comparative Example 4 satisfies the formulas (1) and (4), but does not satisfy the formulas (2) and (5).
  • Comparative Example 5 The same as in Example 1 except that IO6 shown in Table 1 was used as the raw material resin, the thickness of the obtained resin sheet was 3.0 mm, the acceleration voltage of the electron beam was changed to 500 kV, and the irradiation dose was changed to 120 kGy. A resin sheet was obtained by the method. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Comparative Example 5 satisfies the relational expression of the formulas (1) to (5).
  • Comparative Example 6 IO7 (Himilan 1650, manufactured by Mitsui Dow Polychemical Co., Ltd.) shown in Table 1 is used as a raw material resin, the thickness of the obtained resin sheet is 0.1 mm, the acceleration voltage of the electron beam is 150 kV, and the irradiation dose is 120 kGy.
  • a resin sheet was obtained in the same manner as in Example 1 except that the resin sheet was changed to. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet.
  • the aspect of Comparative Example 6 does not satisfy the formula (2), but satisfies the formulas (1) and (3) to (5).
  • Comparative Example 7 A resin sheet was obtained in the same manner as in Example 1 except that the acceleration voltage of the electron beam was changed to 200 kV and the irradiation dose was changed to 180 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet.
  • the aspect of Comparative Example 6 does not satisfy the formulas (2) and (3), but satisfies the formulas (1), (4) and (5).
  • the resin sheets obtained in Examples 1 to 7 have a high penetration energy (J), a storage elastic modulus in the range of 50 to 300 MPa at 50 ° C., and a storage elastic modulus at 140 ° C. It was confirmed that the range was 0.1 to 2.5 MPa, the YI was low, the roll take-up property evaluation result was A, and the slow cooling haze of the laminated glass was low.
  • the resin sheets obtained in Comparative Examples 1 to 7 were defective in at least one of the penetration energy (J), the storage elastic modulus at 50 ° C., the storage elastic modulus at 140 ° C., and the slow cooling haze. The result was In Comparative Example 5, YI and roll take-up property were also poor.
  • the resin sheets obtained in Examples 1 to 7 are excellent in transparency, strength, independence in a high temperature environment, adhesive processability at the time of producing laminated glass, and roll winding property, and have low coloring property. I understood it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A resin sheet which contains a resin that comprises from 2.0% by mole to 9.0% by mole of a carboxylic acid unit, from 1.0% by mole to 3.0% by mole of a neutralized carboxylic acid unit and an ethylene unit based on all monomer units constituting the resin, while having a thickness of 0.2 mm or more but less than 3 mm, wherein the insoluble fraction in a mixed solvent having a toluene/acetic acid mass ratio of 75/25 is from 5% by mass to 90% by mass.

Description

樹脂シート及びその製造方法Resin sheet and its manufacturing method
 本発明は、合わせガラス用中間膜等として使用可能な樹脂シート及びその製造方法、該樹脂シートからなる合わせガラス用中間膜、並びに該合わせガラス用中間膜を有する合わせガラスに関する。 The present invention relates to a resin sheet that can be used as an interlayer film for laminated glass and a method for producing the same, an interlayer film for laminated glass made of the resin sheet, and a laminated glass having the interlayer film for laminated glass.
 エチレン・不飽和カルボン酸共重合体の中和物であるアイオノマーは、弾性率、透明性、ガラスとの接着性等が高いため、合わせガラスの中間膜に多く使用されている(例えば、特許文献1)。近年、合わせガラスに対する要求性能が高くなり、アイオノマーに対しても、合わせガラスの製作条件によらず高い透明性を保持すること、高温においても高い弾性率を維持し、合わせガラスの強度を低下させないこと、さらには、より着色が少なく外観が優れること等が求められるようになってきた。 Ionomer, which is a neutralized product of an ethylene / unsaturated carboxylic acid copolymer, is often used as an interlayer film of laminated glass because of its high elastic modulus, transparency, and adhesiveness to glass (for example, Patent Documents). 1). In recent years, the required performance for laminated glass has increased, and even for ionomers, it maintains high transparency regardless of the manufacturing conditions of laminated glass, maintains a high elastic modulus even at high temperatures, and does not reduce the strength of laminated glass. In addition, there is a growing demand for less coloring and better appearance.
 特許文献2には、エチレン・不飽和カルボン酸共重合体の中和物をフィルム成型後に電離性放射線を照射することによって得られる合わせガラス用中間膜が記載されている。また、特許文献3には、エチレン・不飽和カルボン酸共重合体のアイオノマー層と熱接着性樹脂層とからなる積層フィルムであって、該アイオノマー層が電子線架橋されていることを特徴とする表皮用フィルムが記載されている。 Patent Document 2 describes an interlayer film for laminated glass obtained by irradiating a neutralized product of an ethylene / unsaturated carboxylic acid copolymer with ionizing radiation after film molding. Further, Patent Document 3 is a laminated film composed of an ionomer layer of an ethylene / unsaturated carboxylic acid copolymer and a thermosetting resin layer, wherein the ionomer layer is crosslinked with an electron beam. A skin film is described.
米国特許第6432522号明細書U.S. Pat. No. 6432522 特開昭60-86057号公報Japanese Unexamined Patent Publication No. 60-86057 特開2000-85062号公報Japanese Unexamined Patent Publication No. 2000-85062
 しかしながら、本発明者の検討によれば、特許文献2のような合わせガラス用中間膜は、透明性、高温環境下での自立性、ガラスとの密着性が十分でないことがわかった。また、特許文献3のような積層フィルムは厚みが小さいため、十分な強度が得られず、さらに架橋度が高すぎるため、合わせガラス作製時の接着加工性に劣ることがわかった。 However, according to the study by the present inventor, it has been found that the interlayer film for laminated glass as in Patent Document 2 does not have sufficient transparency, independence in a high temperature environment, and adhesion to glass. Further, it was found that the laminated film as in Patent Document 3 has a small thickness, so that sufficient strength cannot be obtained, and the degree of cross-linking is too high, so that the adhesive processability at the time of producing laminated glass is inferior.
 従って、本発明の目的は、透明性、強度、高温環境下での自立性、及び接着加工性に優れた樹脂シート及びその製造方法、該樹脂シートからなる合わせガラス用中間膜、並びに該合わせガラス用中間膜を有する合わせガラスを提供することにある。 Therefore, an object of the present invention is a resin sheet having excellent transparency, strength, self-supporting property in a high temperature environment, and adhesive processability, a method for producing the same, an interlayer film for laminated glass made of the resin sheet, and the laminated glass. It is an object of the present invention to provide a laminated glass having an interlayer film for use.
 本発明者は、上記課題を解決するために鋭意検討した結果、カルボン酸単位、カルボン酸中和物単位、及びエチレン単位を含有する樹脂を含んでなる樹脂シートにおいて、カルボン酸単位及びカルボン酸中和物単位の含有量がそれぞれ2.0~9.0モル%及び1.0~3.0モル%であり、該樹脂シートの厚みが0.2mm以上3mm未満であり、かつトルエン/酢酸(質量比)=75/25の混合溶媒における不溶分量が5~90質量%であると、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明には、以下のものが含まれる。 As a result of diligent studies to solve the above problems, the present inventor has found that a resin sheet containing a resin containing a carboxylic acid unit, a carboxylic acid neutralized product unit, and an ethylene unit contains a carboxylic acid unit and a carboxylic acid. The content of the Japanese product unit is 2.0 to 9.0 mol% and 1.0 to 3.0 mol%, respectively, the thickness of the resin sheet is 0.2 mm or more and less than 3 mm, and toluene / acetic acid ( It has been found that the above problems can be solved when the insoluble content in the mixed solvent of (mass ratio) = 75/25 is 5 to 90% by mass, and the present invention has been completed. That is, the present invention includes the following.
[1]樹脂を構成する全単量体単位を基準にして2.0~9.0モル%のカルボン酸単位、1.0~3.0モル%のカルボン酸中和物単位、及びエチレン単位を含有する樹脂を含んでなり、厚み0.2mm以上3mm未満であり、かつトルエン/酢酸(質量比)=75/25の混合溶媒における不溶分量が5~90質量%である、樹脂シート。
[2]50℃での貯蔵弾性率が50~300MPaであり、かつ140℃での貯蔵弾性率が0.1~2.5MPaである、[1]に記載の樹脂シート。
[3]樹脂シートのカルボン酸単位の含有量をa(モル%)、不溶分量をb(質量%)とした場合に、
下記式(1)及び(2):
 2≦a≦9      (1)
-7.8×a+96≦b≦90   (2)
を満たす、[1]又は[2]に記載の樹脂シート。
[4]紫外線吸収剤及びシランカップリング剤からなる群から選択される少なくとも1つを含む、[1]~[3]のいずれかに記載の樹脂シート。
[5]前記樹脂の含有量が、前記樹脂シートの質量に対して、95質量%以上である、[1]~[4]のいずれかに記載の樹脂シート。
[6][1]~[5]のいずれかに記載の樹脂シートからなる合わせガラス用中間膜。
[7]2つのガラス板と、該2つのガラス板の間に配置された[6]に記載の合わせガラス用中間膜とを有する、合わせガラス。
[8]前記合わせガラスを140℃まで加熱後、0.1℃/分の速度で23℃に徐冷した後のヘーズが5.0%以下である、[7]に記載の合わせガラス。
[9]カルボン酸単位、カルボン酸中和物単位、及びエチレン単位を含有する樹脂を含んでなる原料シートに、加速電圧が200~5000kVかつ照射線量が10~500kGyの電子線を照射する工程を含む、[1]~[5]のいずれかに記載の樹脂シートの製造方法。
[10]原料シートの厚みをt(mm)、前記加速電圧をV(kV)、及び原料シートの比重をρ(g/m)とした場合に、
下記式(3):
 33.4×V5/3÷ρ≧t   (3)
を満たす、[9]に記載の方法。
[11]原料シートのカルボン酸単位の含有量をa’(モル%)、及び前記照射線量をc(kGy)とした場合に、
下記式(4)及び(5):
 2≦a’≦9      (4)
 -15×a’+115≦c≦500   (5)
を満たす、[9]又は[10]に記載の方法。
[1] 2.0 to 9.0 mol% of carboxylic acid unit, 1.0 to 3.0 mol% of carboxylic acid neutralized product unit, and ethylene unit based on all the monomer units constituting the resin. A resin sheet containing a resin containing the above, having a thickness of 0.2 mm or more and less than 3 mm, and having an insoluble content of 5 to 90% by mass in a mixed solvent of toluene / acetic acid (mass ratio) = 75/25.
[2] The resin sheet according to [1], wherein the storage elastic modulus at 50 ° C. is 50 to 300 MPa, and the storage elastic modulus at 140 ° C. is 0.1 to 2.5 MPa.
[3] When the content of the carboxylic acid unit of the resin sheet is a (mol%) and the insoluble content is b (mass%),
The following equations (1) and (2):
2 ≦ a ≦ 9 (1)
-7.8 × a + 96 ≦ b ≦ 90 (2)
The resin sheet according to [1] or [2], which satisfies the above conditions.
[4] The resin sheet according to any one of [1] to [3], which comprises at least one selected from the group consisting of an ultraviolet absorber and a silane coupling agent.
[5] The resin sheet according to any one of [1] to [4], wherein the content of the resin is 95% by mass or more with respect to the mass of the resin sheet.
[6] An interlayer film for laminated glass made of the resin sheet according to any one of [1] to [5].
[7] A laminated glass having two glass plates and an interlayer film for laminated glass according to [6] arranged between the two glass plates.
[8] The laminated glass according to [7], wherein the laminated glass has a haze of 5.0% or less after heating to 140 ° C. and then slowly cooling to 23 ° C. at a rate of 0.1 ° C./min.
[9] A step of irradiating a raw material sheet containing a resin containing a carboxylic acid unit, a carboxylic acid neutralized product unit, and an ethylene unit with an electron beam having an acceleration voltage of 200 to 5000 kV and an irradiation dose of 10 to 500 kGy. The method for producing a resin sheet according to any one of [1] to [5], which comprises.
[10] When the thickness of the raw material sheet is t (mm), the acceleration voltage is V (kV), and the specific gravity of the raw material sheet is ρ (g / m 3 ).
The following formula (3):
33.4 × V 5/3 ÷ ρ ≧ t (3)
The method according to [9], which satisfies the above conditions.
[11] When the content of the carboxylic acid unit of the raw material sheet is a'(mol%) and the irradiation dose is c (kGy),
The following equations (4) and (5):
2 ≤ a'≤ 9 (4)
-15 × a'+ 115 ≦ c ≦ 500 (5)
The method according to [9] or [10], which satisfies the above conditions.
 本発明の樹脂シートは、透明性、強度、高温環境下での自立性、及び接着加工性に優れている。そのため、合わせガラス用中間膜として好適に使用できる。 The resin sheet of the present invention is excellent in transparency, strength, independence in a high temperature environment, and adhesive processability. Therefore, it can be suitably used as an interlayer film for laminated glass.
[樹脂シート]
 本発明の樹脂シートは、カルボン酸単位(A)、カルボン酸中和物単位(B)、及びエチレン単位(C)を含有する樹脂(アイオノマー又は樹脂(x)ともいう)を含んでなる。本明細書において、「単位」とは、「由来の構成単位」を意味するものであり、例えばカルボン酸単位とはカルボン酸由来の構成単位を示し、カルボン酸中和物単位とはカルボン酸中和物由来の構成単位を示し、エチレン単位とはエチレン由来の構成単位を示す。
[Resin sheet]
The resin sheet of the present invention contains a resin (also referred to as ionomer or resin (x)) containing a carboxylic acid unit (A), a carboxylic acid neutralized product unit (B), and an ethylene unit (C). In the present specification, the "unit" means a "constituent unit of origin", for example, the carboxylic acid unit indicates a structural unit derived from carboxylic acid, and the carboxylic acid neutralized product unit is in carboxylic acid. A structural unit derived from Japanese products is shown, and an ethylene unit indicates a structural unit derived from ethylene.
 <樹脂>
 カルボン酸単位(A)を構成する単量体としては、不飽和カルボン酸、例えばアクリル酸、メタクリル酸、イタコン酸、無水マレイン酸、マレイン酸モノメチル、マレイン酸モノエチル等が挙げられる。これらの中でも、アクリル酸、メタクリル酸、マレイン酸モノメチル、マレイン酸モノエチルが好ましく、アクリル酸、メタクリル酸がより好ましく、メタクリル酸がさらに好ましい。カルボン酸単位は単独又は2種以上組み合わせて使用できる。
<Resin>
Examples of the monomer constituting the carboxylic acid unit (A) include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic anhydride, monomethyl maleate, and monoethyl maleate. Among these, acrylic acid, methacrylic acid, monomethyl maleate, and monoethyl maleate are preferable, acrylic acid and methacrylic acid are more preferable, and methacrylic acid is even more preferable. The carboxylic acid unit can be used alone or in combination of two or more.
 カルボン酸単位(A)の含有量は、樹脂を構成する全単量体単位を基準にして、2.0~9.0モル%である。カルボン酸単位(A)の含有量が2.0モル%未満であると、透明性が低下する傾向があり、該含有量が9.0モル%を超えると、強度が低下する傾向がある。そのため、カルボン酸単位(A)の含有量が上記範囲であることで、透明性及び強度を向上することができる。カルボン酸単位(A)の含有量は、好ましくは2.5モル%以上、より好ましくは3.0モル%以上、さらに好ましくは4.0モル%以上、特に好ましくは5.0モル%以上であり、好ましくは8.5モル%以下、より好ましくは8.0モル%以下である。カルボン酸単位(A)の含有量が上記の下限以上であると、透明性をより向上しやすく、該含有量が上記の上限以下であると、強度をより向上しやすい。 The content of the carboxylic acid unit (A) is 2.0 to 9.0 mol% based on all the monomer units constituting the resin. If the content of the carboxylic acid unit (A) is less than 2.0 mol%, the transparency tends to decrease, and if the content exceeds 9.0 mol%, the strength tends to decrease. Therefore, when the content of the carboxylic acid unit (A) is in the above range, transparency and strength can be improved. The content of the carboxylic acid unit (A) is preferably 2.5 mol% or more, more preferably 3.0 mol% or more, still more preferably 4.0 mol% or more, and particularly preferably 5.0 mol% or more. Yes, preferably 8.5 mol% or less, more preferably 8.0 mol% or less. When the content of the carboxylic acid unit (A) is at least the above lower limit, the transparency is more likely to be improved, and when the content is at least the above upper limit, the strength is more likely to be improved.
 カルボン酸中和物単位(B)を構成する単量体としては、カルボン酸単位(A)を構成する単量体の中和物が好ましい。該カルボン酸中和物は、カルボン酸の水素イオンを金属イオンで置き換えたものである。金属イオンとしては、リチウム、ナトリウム、カリウム等の1価金属;マグネシウム、カルシウム、亜鉛、アルミニウム、チタン等の多価金属のイオンが挙げられる。これらの金属イオンは、単独又は2種以上併用することができる。例えば、1価金属イオンの1種以上と2価金属イオンの1種以上の組み合わせであってもよい。 As the monomer constituting the carboxylic acid neutralized product unit (B), a neutralized product of the monomer constituting the carboxylic acid unit (A) is preferable. The carboxylic acid neutralized product is obtained by replacing the hydrogen ion of the carboxylic acid with a metal ion. Examples of the metal ion include monovalent metals such as lithium, sodium and potassium; and ions of polyvalent metals such as magnesium, calcium, zinc, aluminum and titanium. These metal ions can be used alone or in combination of two or more. For example, it may be a combination of one or more monovalent metal ions and one or more divalent metal ions.
 カルボン酸中和物単位(B)の含有量は、樹脂を構成する全単量体単位を基準にして、1.0~3.0モル%である。カルボン酸中和物単位(B)の含有量が1.0モル%未満であると、透明性及び高温環境下での自立性が低下する傾向があり、該含有量が3.0モル%を超えると、成形加工時の溶融粘度が高くなり、着色する傾向がある。そのため、カルボン酸中和物単位(B)の含有量が上記範囲であることで、透明性及び高温環境下での自立性を向上することができる。カルボン酸中和物単位(B)の含有量は、好ましくは1.5モル%以上であり、好ましくは2.5モル%以下である。カルボン酸中和物単位(B)の含有量が上記の下限以上であると、透明性及び高温環境下での自立性をより向上しやすく、該含有量が上記の上限以下であると、着色度を低減しやすい。 The content of the carboxylic acid neutralized product unit (B) is 1.0 to 3.0 mol% based on all the monomer units constituting the resin. If the content of the carboxylic acid neutralized product unit (B) is less than 1.0 mol%, the transparency and independence in a high temperature environment tend to decrease, and the content is 3.0 mol%. If it exceeds, the melt viscosity during the molding process becomes high, and there is a tendency for coloring. Therefore, when the content of the carboxylic acid neutralized product unit (B) is in the above range, transparency and independence in a high temperature environment can be improved. The content of the carboxylic acid neutralized product unit (B) is preferably 1.5 mol% or more, preferably 2.5 mol% or less. When the content of the carboxylic acid neutralized substance unit (B) is at least the above lower limit, transparency and independence in a high temperature environment are more likely to be improved, and when the content is at least the above upper limit, coloring is performed. It is easy to reduce the degree.
 エチレン単位(C)の含有量は、樹脂を構成する全単量体単位を基準にして、好ましくは80モル%以上、より好ましくは85モル%以上、さらに好ましくは88モル%以上であり、好ましくは97モル%以下である。エチレン単位(C)の含有量が上記の下限以上であると、樹脂シートの強度及び成形加工性を向上しやすく、該含有量が上記の上限以下であると、透明性、高温環境下での自立性及び接着加工性を向上しやすい。 The content of the ethylene unit (C) is preferably 80 mol% or more, more preferably 85 mol% or more, still more preferably 88 mol% or more, based on all the monomer units constituting the resin, and is preferable. Is less than 97 mol%. When the content of the ethylene unit (C) is at least the above lower limit, the strength and molding processability of the resin sheet are likely to be improved, and when the content is at least the above upper limit, the resin sheet is transparent and under a high temperature environment. It is easy to improve independence and adhesive processability.
 本発明の樹脂シートは、カルボン酸単位(A)、カルボン酸中和物単位(B)、及びエチレン単位(C)以外の他の構成単位を含有していてもよい。他の構成単位としては、例えばカルボン酸エステル単位(D)などが挙げられる。カルボン酸エステル単位を構成する単量体としては、不飽和カルボン酸エステル、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸アリル等の(メタ)アクリル酸エステル、イタコン酸ジメチル、マレイン酸ジメチル、マレイン酸ジエチルなどが挙げられる。これらの中でも、(メタ)アクリル酸エステル、特に(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸t-ブチルが好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチルがより好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチルがさらに好ましく、(メタ)アクリル酸メチルが最も好ましい。メタクリル酸エステルとアクリル酸エステルでは、メタクリル酸エステルの方が、耐熱分解、低着色性に優れるため好ましい。これら(メタ)アクリル酸エステルは、単独又は2種以上組み合わせて使用できる。なお、本明細書において、「(メタ)アクリル酸」とは、メタクリル酸又はアクリル酸を示す。 The resin sheet of the present invention may contain a structural unit other than the carboxylic acid unit (A), the carboxylic acid neutralized product unit (B), and the ethylene unit (C). Examples of other constituent units include a carboxylic acid ester unit (D) and the like. Examples of the monomer constituting the carboxylic acid ester unit include unsaturated carboxylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and isopropyl (meth) acrylate. N-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, amyl (meth) acrylate, isoamyl (meth) acrylate, (meth) ) N-hexyl acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, pentadecyl (meth) acrylate, dodecyl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate , (Meta) benzyl acrylate, (meth) phenoxyethyl acrylate, (meth) 2-hydroxyethyl acrylate, 2-methoxyethyl (meth) acrylate, glycidyl (meth) acrylate, allyl (meth) acrylate, etc. Examples thereof include (meth) acrylic acid ester, dimethyl itacone, dimethyl maleate, and diethyl maleate. Among these, (meth) acrylic acid ester, especially methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate. , (Meta) acrylate isobutyl, (meth) acrylate sec-butyl, (meth) acrylate t-butyl, (meth) acrylate methyl, (meth) acrylate ethyl, (meth) acrylate n-propyl , (Meta) isopropyl acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate are more preferred, methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate. More preferably, methyl (meth) acrylate is most preferred. Of the methacrylic acid ester and the acrylic acid ester, the methacrylic acid ester is preferable because it is excellent in heat decomposition and low coloring property. These (meth) acrylic acid esters can be used alone or in combination of two or more. In addition, in this specification, "(meth) acrylic acid" means methacrylic acid or acrylic acid.
 カルボン酸エステル単位(D)の含有量は、樹脂を構成する全単量体単位を基準にして、好ましくは2.0モル%以下、より好ましくは1.0モル%以下である。カルボン酸エステル単位(D)の含有量の下限は0モル%以上であり、樹脂がカルボン酸エステル単位(D)を含む場合は、好ましくは0.05モル%以上である。カルボン酸エステル単位(D)の含有量が上記範囲であると、透明性の点で有利である。 The content of the carboxylic acid ester unit (D) is preferably 2.0 mol% or less, more preferably 1.0 mol% or less, based on all the monomer units constituting the resin. The lower limit of the content of the carboxylic acid ester unit (D) is 0 mol% or more, and when the resin contains the carboxylic acid ester unit (D), it is preferably 0.05 mol% or more. When the content of the carboxylic acid ester unit (D) is in the above range, it is advantageous in terms of transparency.
 本発明の樹脂シートに含まれる樹脂(x)中のカルボン酸単位、カルボン酸中和物単位、エチレン単位、及び任意にカルボン酸エステル単位の含有量は、以下の手順で分析することが可能である。まず、樹脂中の構成単位を熱分解ガスクロマトグラフィー(熱分解GC-MS)で同定した後、核磁気共鳴分光法(NMR)と元素分析を用いてそれぞれの含有量を評価することができる。また、IRやラマン分析を組み合わせることもできる。これらの分析の前に樹脂以外の成分を、再沈澱法やソックスレー抽出法にて除去しておくことが好ましい。なお、樹脂シートに含まれる樹脂の構成単位の比率は、原料樹脂の比率とほとんど変わらないため、上記方法により原料樹脂の各構成単位の比率を分析して求めてもよい。例えば実施例に記載の方法により求めることができる。 The content of the carboxylic acid unit, the carboxylic acid neutralized product unit, the ethylene unit, and optionally the carboxylic acid ester unit in the resin (x) contained in the resin sheet of the present invention can be analyzed by the following procedure. is there. First, the structural units in the resin can be identified by pyrolysis gas chromatography (pyrolysis GC-MS), and then their contents can be evaluated by using nuclear magnetic resonance spectroscopy (NMR) and elemental analysis. It is also possible to combine IR and Raman analysis. Prior to these analyzes, it is preferable to remove components other than the resin by a reprecipitation method or a Soxhlet extraction method. Since the ratio of the constituent units of the resin contained in the resin sheet is almost the same as the ratio of the raw material resin, the ratio of each constituent unit of the raw material resin may be analyzed and obtained by the above method. For example, it can be obtained by the method described in Examples.
 本発明の一実施態様において、樹脂(x)の融点は、透明性及び加工性の観点から、50~200℃が好ましく、60~180℃がより好ましく、80~150℃がさらに好ましい。融点は、例えばJIS K7121:2012に記載の方法を参考に、示差走査熱量測定(DSC)を用いて、冷却速度-10℃/分、昇温速度10℃/分、2回目の昇温の融解ピークのピックトップ温度から求めることができる。 In one embodiment of the present invention, the melting point of the resin (x) is preferably 50 to 200 ° C., more preferably 60 to 180 ° C., and even more preferably 80 to 150 ° C. from the viewpoint of transparency and processability. For the melting point, for example, referring to the method described in JIS K7121: 2012, using differential scanning calorimetry (DSC), the cooling rate is -10 ° C / min, the heating rate is 10 ° C / min, and the melting of the second temperature rise is performed. It can be obtained from the peak picktop temperature.
 本発明の一実施態様において、樹脂(x)の融解熱は、透明性の観点から、0J/g~25J/gが好ましい。融解熱は、例えばJIS K7122:2012に記載の方法を参考に、示差走査熱量測定(DSC)を用いて、冷却速度-10℃/分、昇温速度10℃/分、2回目の昇温時の融解ピークの面積から算出することができる。 In one embodiment of the present invention, the heat of fusion of the resin (x) is preferably 0 J / g to 25 J / g from the viewpoint of transparency. For the heat of fusion, for example, referring to the method described in JIS K7122: 2012, using differential scanning calorimetry (DSC), the cooling rate is -10 ° C / min, and the heating rate is 10 ° C / min. It can be calculated from the area of the melting peak of.
 本発明の一実施態様において、樹脂(x)の190℃、2.16Kgfの条件で測定したメルトフローレート(MFR)は、好ましくは0.3g/10分以上、より好ましくは0.7g/10分以上、さらに好ましくは1.0g/10分以上、特に好ましくは2.0g/10分以上であり、好ましくは50g/10分以下、より好ましくは30g/10分以下である。樹脂のMFRが上記範囲であることで、熱による劣化を抑えた成形加工が容易になりやすい。樹脂のMFRは、分子量、並びにカルボン酸単位(A)、カルボン酸中和物単位(B)及びカルボン酸エステル単位(D)の含有率により調整し得る。 In one embodiment of the present invention, the melt flow rate (MFR) of the resin (x) measured under the conditions of 190 ° C. and 2.16 kgf is preferably 0.3 g / 10 minutes or more, more preferably 0.7 g / 10. Minutes or more, more preferably 1.0 g / 10 minutes or more, particularly preferably 2.0 g / 10 minutes or more, preferably 50 g / 10 minutes or less, more preferably 30 g / 10 minutes or less. When the MFR of the resin is in the above range, it is easy to facilitate the molding process in which deterioration due to heat is suppressed. The MFR of the resin can be adjusted by the molecular weight and the content of the carboxylic acid unit (A), the carboxylic acid neutralized product unit (B) and the carboxylic acid ester unit (D).
 本発明の一実施態様において、樹脂(x)の炭素1000個当たりの分岐度は、特に限定されないが、5~30が好ましく、6~20がより好ましい。炭素1000個当たりの分岐度の分析は、例えば固体NMRを用いてDDMAS法にて行うことができる。 In one embodiment of the present invention, the degree of branching of the resin (x) per 1000 carbon atoms is not particularly limited, but is preferably 5 to 30, more preferably 6 to 20. The analysis of the degree of branching per 1000 carbons can be performed by the DDMAS method using, for example, solid-state NMR.
 <樹脂シート>
 本発明の樹脂シートは、前記樹脂を含んでなり、厚み0.2mm以上3mm未満であり、かつトルエン/酢酸(質量比)=75/25の混合溶媒(混合溶媒(A)ともいう)における不溶分量が5~90質量%である。そのため、本発明の樹脂シートは、透明性、強度、高温環境下での自立性及び接着加工性に優れている。また、本発明の樹脂シートは、優れたロール巻取り性及び低着色度を有することもできる。本明細書において、高温環境下での自立性とは、樹脂シートを合わせガラス用中間膜として合わせガラスに使用した場合に、高温環境下においてガラスが破損した状態になったとしても、破損したガラスが樹脂シート(合わせガラス用中間膜)を貫通しにくい特性又は樹脂シートが垂れにくい特性などを意味する。また、接着加工性とは、樹脂シートを合わせガラス用中間膜として用いて合わせガラスを作製する際に、ガラスと樹脂シートとが接着しやすい特性を意味する。また、着色度とは、着色の度合いを示し、例えば黄色度(YI)等により評価できる。さらに、透明性とは、樹脂シート自体の透明性、及び、該樹脂シートを中間膜として形成した合わせガラスの透明性の両方を含む意味である。なお、混合溶媒(A)における不溶分をトルエン/酢酸不溶分ということがある。
<Resin sheet>
The resin sheet of the present invention contains the resin, has a thickness of 0.2 mm or more and less than 3 mm, and is insoluble in a mixed solvent of toluene / acetic acid (mass ratio) = 75/25 (also referred to as mixed solvent (A)). The amount is 5 to 90% by mass. Therefore, the resin sheet of the present invention is excellent in transparency, strength, independence in a high temperature environment, and adhesive processability. In addition, the resin sheet of the present invention can also have excellent roll-windability and low coloration. In the present specification, the self-supporting property in a high temperature environment means that when a resin sheet is used as an interlayer film for laminated glass for laminated glass, even if the glass is broken in a high temperature environment, the broken glass. Means that the resin sheet does not easily penetrate the resin sheet (laminated glass interlayer film) or the resin sheet does not easily drip. Further, the adhesive processability means a property that the glass and the resin sheet are easily adhered to each other when the laminated glass is produced by using the resin sheet as an interlayer film for laminated glass. Further, the degree of coloring indicates the degree of coloring and can be evaluated by, for example, the degree of yellowness (YI). Further, the transparency means that both the transparency of the resin sheet itself and the transparency of the laminated glass formed by using the resin sheet as an interlayer film are included. The insoluble matter in the mixed solvent (A) may be referred to as toluene / acetic acid insoluble matter.
 本発明の樹脂シートは、混合溶媒(A)における不溶分量が5~90質量%である。本発明の樹脂シートを構成する樹脂は、電子線により架橋されていない状態では混合溶媒(A)に溶解し、電子線による架橋度が大きくなるにつれて混合溶媒(A)に対する溶解度が低下し、不溶分量が大きくなる。逆に電子線による架橋度が小さくなるにつれて不溶分量が小さくなる。そのため、混合溶媒(A)における不溶分量は、樹脂シートの電子線による架橋度(電子線架橋度ともいう)の指標となる。 The resin sheet of the present invention has an insoluble content of 5 to 90% by mass in the mixed solvent (A). The resin constituting the resin sheet of the present invention dissolves in the mixed solvent (A) when it is not crosslinked by the electron beam, and as the degree of cross-linking by the electron beam increases, the solubility in the mixed solvent (A) decreases and it is insoluble. The amount becomes large. On the contrary, as the degree of cross-linking by the electron beam decreases, the amount of insoluble matter decreases. Therefore, the amount of insoluble matter in the mixed solvent (A) is an index of the degree of cross-linking of the resin sheet by the electron beam (also referred to as the degree of electron beam cross-linking).
 樹脂シートの混合溶媒(A)における不溶分量が5質量%未満であると、電子線架橋度が低すぎるため、樹脂シートを中間膜とする合わせガラス作製後に徐冷した際、結晶化が促進されて十分な透明性が得られない。また、樹脂シートの混合溶媒(A)における不溶分量が90質量%を超えると、140℃における弾性率が高くなりすぎて、合わせガラス作製時に十分な接着加工性が得られない。本発明の樹脂シートは、混合溶媒(A)における不溶分量が5~90質量%であり、樹脂の電子線による架橋度が適切な範囲に調整されているため、十分な透明性及び接着加工性を有することができる。なお、不溶分量は、例えば樹脂シートの照射工程における電子線の加速電圧や照射線量を適宜調整することにより、所定範囲にすることができる。電子線の加速電圧及び照射線量が大きくなるほど、電子線架橋度が大きくなるため、不溶分量が多くなる傾向にある。 If the amount of the insoluble matter in the mixed solvent (A) of the resin sheet is less than 5% by mass, the degree of electron beam cross-linking is too low, so that crystallization is promoted when the resin sheet is slowly cooled after being prepared as a laminated glass as an interlayer film. It is not possible to obtain sufficient transparency. Further, if the insoluble content of the resin sheet in the mixed solvent (A) exceeds 90% by mass, the elastic modulus at 140 ° C. becomes too high, and sufficient adhesive processability cannot be obtained at the time of producing laminated glass. The resin sheet of the present invention has an insoluble content of 5 to 90% by mass in the mixed solvent (A), and the degree of cross-linking of the resin by an electron beam is adjusted to an appropriate range, so that the resin sheet has sufficient transparency and adhesive processability. Can have. The amount of insoluble matter can be set within a predetermined range by appropriately adjusting the acceleration voltage and irradiation dose of the electron beam in the irradiation step of the resin sheet, for example. As the acceleration voltage and irradiation dose of the electron beam increase, the degree of electron beam cross-linking increases, so that the amount of insoluble matter tends to increase.
 樹脂シートの混合溶媒(A)における不溶分量は、好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%以上であり、好ましくは85質量%以下、より好ましくは75質量%以下、さらに好ましくは65質量%以下である。樹脂シートの混合溶媒(A)における不溶分量が上記の下限以上であると、透明性を向上しやすく、該不溶分量が上記の上限以下であると、接着加工性を向上しやすい。なお、不溶分の質量は、樹脂シートを混合溶媒に混合させた後、固液分離し、固層を取り出し、質量変化がなくなるまで真空乾燥を行った後に質量を測定することで得られ、その割合である不溶分量(質量%)は、以下の式(6):
  トルエン/酢酸不溶分の質量分率=Ma/Mc×100 (6)
 [式中、Mcは樹脂シートの質量(g)であり、Maはトルエン/酢酸不溶分の質量(g)]
に従って算出でき、より詳細には実施例に記載の方法により算出できる。
The insoluble content of the resin sheet in the mixed solvent (A) is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, preferably 85% by mass or less, and more preferably 75% by mass. % Or less, more preferably 65% by mass or less. When the amount of the insoluble content in the mixed solvent (A) of the resin sheet is at least the above lower limit, the transparency is likely to be improved, and when the amount of the insoluble content is at least the above upper limit, the adhesive processability is likely to be improved. The mass of the insoluble matter is obtained by mixing the resin sheet with the mixed solvent, separating the solid and liquid, taking out the solid layer, vacuum-drying until there is no change in mass, and then measuring the mass. The insoluble content (mass%), which is a ratio, is calculated by the following formula (6):
Mass fraction of toluene / acetic acid insoluble = Ma / Mc × 100 (6)
[In the formula, Mc is the mass (g) of the resin sheet, and Ma is the mass (g) of the toluene / acetic acid insoluble matter].
It can be calculated according to the above, and more specifically, it can be calculated by the method described in the examples.
 本発明の一実施態様において、本発明の樹脂シートは、カルボン酸単位の含有量をa(モル%)、不溶分量をb(質量%)とした場合に、
下記式(1)及び(2):
 2≦a≦9      (1)
-7.8×a+96≦b≦90   (2)
を満たすことが好ましい。式(1)及び式(2)を満たすと、本発明の樹脂シートは優れた透明性を発現しやすい。具体的には、本発明の樹脂シートにおいて、カルボン酸単位の含有量が大きければ、樹脂シートを中間膜とする合わせガラス作製後に徐冷した際、結晶化が抑制されやすくなるため、架橋度が比較的小さくても透明性を担保しやすい。逆に架橋度が大きければ、該結晶化が抑制されやすいため、カルボン酸単位の含有量が小さくても透明性を担保しやすい。そのため、カルボン酸単位の含有量に応じて架橋度を最適化することができる。式(2)はカルボン酸単位(aモル%)の含有量と、架橋度に対応する不溶分量(b質量%)との関係を最適化した式である。さらに、本発明の樹脂シートが式(1)及び式(2)を満たすと、本発明の効果を発現するために最適なカルボン酸単位量と架橋度とをバランス良く有し得るため、強度、接着加工性及び高温環境下での自立性も向上しやすい。
In one embodiment of the present invention, the resin sheet of the present invention has a carboxylic acid unit content of a (mol%) and an insoluble content of b (mass%).
The following equations (1) and (2):
2 ≦ a ≦ 9 (1)
-7.8 × a + 96 ≦ b ≦ 90 (2)
It is preferable to satisfy. When the formulas (1) and (2) are satisfied, the resin sheet of the present invention tends to exhibit excellent transparency. Specifically, in the resin sheet of the present invention, if the content of the carboxylic acid unit is large, crystallization is likely to be suppressed when the laminated glass using the resin sheet as an interlayer film is manufactured and then slowly cooled, so that the degree of cross-linking is high. Even if it is relatively small, it is easy to ensure transparency. On the contrary, if the degree of cross-linking is large, the crystallization is likely to be suppressed, so that transparency can be easily ensured even if the content of the carboxylic acid unit is small. Therefore, the degree of cross-linking can be optimized according to the content of the carboxylic acid unit. The formula (2) is a formula that optimizes the relationship between the content of the carboxylic acid unit (a mol%) and the insoluble content (b mass%) corresponding to the degree of cross-linking. Further, when the resin sheet of the present invention satisfies the formulas (1) and (2), the optimum amount of carboxylic acid unit and the degree of cross-linking can be balanced in order to exhibit the effect of the present invention. Adhesive processability and independence in a high temperature environment are also likely to improve.
 本発明の樹脂シートの厚みは0.2mm以上3mm未満である。樹脂シートの厚みが0.2mm未満であると、強度が十分でなく、また電子線の加速電圧にもよるが架橋度が高くなりすぎる傾向にあるため、十分な接着加工性が得られない傾向にある。また、樹脂シートの厚みが3mm以上であると、樹脂シートの透明性及びロール巻取り性が十分でなく、かつ着色度が高くなる傾向にある。また、電子線の加速電圧にもよるが厚み方向の照射ムラが生じやすい傾向にあるため、電子線架橋度のバラツキが生じ、これによる樹脂シートの透明度のバラツキや部分的な着色が発生しやすい傾向にある。本発明の樹脂シートは、厚みが0.2mm以上3mm未満であるため、十分な透明性、強度、接着加工性及びロール巻取り性、並びに低着色度を有することができる。 The thickness of the resin sheet of the present invention is 0.2 mm or more and less than 3 mm. If the thickness of the resin sheet is less than 0.2 mm, the strength is not sufficient, and the degree of cross-linking tends to be too high depending on the acceleration voltage of the electron beam, so that sufficient adhesive workability tends not to be obtained. It is in. Further, when the thickness of the resin sheet is 3 mm or more, the transparency and roll winding property of the resin sheet are not sufficient, and the degree of coloring tends to be high. In addition, since irradiation unevenness in the thickness direction tends to occur depending on the acceleration voltage of the electron beam, the degree of electron beam cross-linking tends to vary, and the transparency of the resin sheet and partial coloring tend to occur due to this. There is a tendency. Since the resin sheet of the present invention has a thickness of 0.2 mm or more and less than 3 mm, it can have sufficient transparency, strength, adhesive processability, roll-up property, and low coloring degree.
 本発明の樹脂シートの厚みは、好ましくは0.3mm以上、より好ましくは0.5mm以上、さらに好ましくは0.8mm以上であり、好ましくは2.5mm以下、より好ましくは2.0mm以下である。樹脂シートの厚みが上記の下限以上であると、樹脂シートの強度及び接着加工性を向上しやすく、該厚みが上記の上限以下であると、樹脂シートの透明性及びロールの巻取り性を高めやすいとともに、着色度を低減しやすく、かつ透明性のバラツキや部分的な着色を抑制しやすい。なお、樹脂シートの厚さは、例えば接触式又は非接触式の厚み計などを用いて測定でき、例えば実施例に記載の方法により測定できる。 The thickness of the resin sheet of the present invention is preferably 0.3 mm or more, more preferably 0.5 mm or more, further preferably 0.8 mm or more, preferably 2.5 mm or less, and more preferably 2.0 mm or less. .. When the thickness of the resin sheet is at least the above lower limit, the strength and adhesive processability of the resin sheet are likely to be improved, and when the thickness is at least the above upper limit, the transparency of the resin sheet and the rollability of the roll are improved. In addition to being easy, it is easy to reduce the degree of coloring, and it is easy to suppress variations in transparency and partial coloring. The thickness of the resin sheet can be measured by using, for example, a contact type or non-contact type thickness gauge, and can be measured by, for example, the method described in Examples.
 本発明の樹脂シートは、50℃での貯蔵弾性率が、好ましくは50MPa以上、より好ましくは70MPa以上、さらに好ましくは100MPa以上であり、好ましくは300MPa以下、より好ましくは250MPa以下、さらに好ましくは200MPa以下である。50℃での貯蔵弾性率が上記範囲であると、高温環境下(例えば50℃程度)における優れた自立性を発現しやすい。なお、50℃における貯蔵弾性率は、例えば樹脂シートに含まれる樹脂のカルボン酸単位(A)及びカルボン酸中和物単位(B)の比率、特にカルボン酸中和物単位(B)の比率を適宜変更することにより、所定範囲にすることができる。樹脂のカルボン酸単位(A)及びカルボン酸中和物単位(B)の比率、特にカルボン酸中和物単位(B)の比率が大きくなるほど、50℃における貯蔵弾性率が高くなる傾向にある。 The resin sheet of the present invention has a storage elastic modulus at 50 ° C. of preferably 50 MPa or more, more preferably 70 MPa or more, still more preferably 100 MPa or more, preferably 300 MPa or less, more preferably 250 MPa or less, still more preferably 200 MPa or less. It is as follows. When the storage elastic modulus at 50 ° C. is in the above range, excellent independence in a high temperature environment (for example, about 50 ° C.) is likely to be exhibited. The storage elasticity at 50 ° C. is, for example, the ratio of the carboxylic acid unit (A) and the carboxylic acid neutralized product unit (B) of the resin contained in the resin sheet, particularly the ratio of the carboxylic acid neutralized product unit (B). By appropriately changing it, it can be within a predetermined range. The larger the ratio of the carboxylic acid unit (A) and the carboxylic acid neutralized product unit (B) of the resin, particularly the ratio of the carboxylic acid neutralized product unit (B), the higher the storage elastic modulus at 50 ° C. tends to be.
 本発明の樹脂シートは、140℃での貯蔵弾性率が、好ましくは0.1MPa以上、より好ましくは0.3MPa以上、さらに好ましくは0.5MPa以上であり、好ましくは2.5MPa以下、より好ましくは2.0MPa以下、さらに好ましくは1.5MPa以下、特に好ましくは1.3MPa以下である。140℃での貯蔵弾性率が上記範囲であると、合わせガラス作製時の優れた接着加工性を発現しやすい。貯蔵弾性率は、動的粘弾性測定装置を用いて、測定温度50℃又は140℃、周波数1Hzの条件で測定することができ、例えば実施例に記載の方法により測定できる。なお、140℃における貯蔵弾性率は、例えば樹脂シートの照射工程における電子線の加速電圧や照射線量を適宜調整することにより、所定範囲にすることができる。電子線の加速電圧及び照射線量が小さくなるほど、電子線架橋度が低減されるため、140℃における貯蔵弾性率が低くなる傾向がある。 The resin sheet of the present invention has a storage elastic modulus at 140 ° C., preferably 0.1 MPa or more, more preferably 0.3 MPa or more, still more preferably 0.5 MPa or more, preferably 2.5 MPa or less, more preferably. Is 2.0 MPa or less, more preferably 1.5 MPa or less, and particularly preferably 1.3 MPa or less. When the storage elastic modulus at 140 ° C. is in the above range, excellent adhesive processability at the time of producing laminated glass is likely to be exhibited. The storage elastic modulus can be measured using a dynamic viscoelasticity measuring device under the conditions of a measurement temperature of 50 ° C. or 140 ° C. and a frequency of 1 Hz, and can be measured, for example, by the method described in Examples. The storage elastic modulus at 140 ° C. can be set within a predetermined range by appropriately adjusting the acceleration voltage and irradiation dose of the electron beam in the irradiation step of the resin sheet, for example. As the acceleration voltage and irradiation dose of the electron beam become smaller, the degree of electron beam cross-linking is reduced, so that the storage elastic modulus at 140 ° C. tends to be lower.
 本発明の一実施態様において、本発明の樹脂シートは着色度が小さく、好ましくは無色である。本発明の樹脂シートの黄色度(YI)は好ましくは1.0以下、より好ましくは0.8以下、さらに好ましくは0.5以下である。黄色度(YI)が上記の上限以下であると、低着色度を有しやすい。黄色度(YI)の下限は0以上である。なお、黄色度(YI)は測色色差計を用い、JIS Z8722に準拠して測定した値を基に、JIS K7373に準拠して測定でき、例えば実施例に記載の方法により算出できる。 In one embodiment of the present invention, the resin sheet of the present invention has a low degree of coloring and is preferably colorless. The yellowness (YI) of the resin sheet of the present invention is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.5 or less. When the yellowness (YI) is not more than the above upper limit, it tends to have a low degree of coloring. The lower limit of yellowness (YI) is 0 or more. The yellowness (YI) can be measured in accordance with JIS K7373 based on the value measured in accordance with JIS Z8722 using a colorimetric color difference meter, and can be calculated, for example, by the method described in Examples.
 本発明の樹脂シートは、シート自体の透明性に優れるとともに、該樹脂シートを中間膜として形成した合わせガラスの透明性にも優れる。本発明の樹脂シートを中間膜として含む合わせガラスの透明性は、例えば、該合わせガラスを140℃まで加熱後、0.1℃/分の速度で23℃に徐冷した後のヘーズ(徐冷ヘーズともいう)で評価することができ、該徐冷ヘーズは、後述の[合わせガラス用中間膜及び合わせガラス]の項に記載のヘーズと同じである。 The resin sheet of the present invention is excellent not only in the transparency of the sheet itself, but also in the transparency of the laminated glass formed by using the resin sheet as an interlayer film. The transparency of the laminated glass containing the resin sheet of the present invention as an interlayer film is, for example, the haze (slow cooling) after heating the laminated glass to 140 ° C. and then slowly cooling the laminated glass to 23 ° C. at a rate of 0.1 ° C./min. The slow-cooling haze can be evaluated by (also referred to as a haze), and the slow-cooling haze is the same as the haze described in the section [Interlayer film for laminated glass and laminated glass] described later.
 本発明の樹脂シートは、ガラスとの接着性の観点から、含水量が少ない方が好ましい。含水量は、樹脂シートの質量に対して、好ましくは1質量%以下であり、より好ましくは0.5質量%以下であり、さらに好ましくは0.02質量%以下であり、特に好ましくは0.01質量%以下である。 The resin sheet of the present invention preferably has a low water content from the viewpoint of adhesiveness to glass. The water content is preferably 1% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.02% by mass or less, and particularly preferably 0.% by mass, based on the mass of the resin sheet. It is 01% by mass or less.
 本発明の樹脂シートに含まれる樹脂(x)の含有量は、該樹脂シートの質量に対して、好ましくは95質量%以上、より好ましくは97質量%以上、さらに好ましくは99質量%以上である。樹脂(x)の含有量が上記の下限以上であると、透明性、強度、高温環境下での自立性及び接着加工性を向上しやすく、かつ着色度を低減しやすい。また、該樹脂の含有量の上限は100質量%以下である。 The content of the resin (x) contained in the resin sheet of the present invention is preferably 95% by mass or more, more preferably 97% by mass or more, still more preferably 99% by mass or more, based on the mass of the resin sheet. .. When the content of the resin (x) is at least the above lower limit, transparency, strength, independence in a high temperature environment and adhesive processability can be easily improved, and the degree of coloring can be easily reduced. The upper limit of the content of the resin is 100% by mass or less.
 本発明の樹脂シートは、紫外線吸収剤、シランカップリング剤、老化防止剤、酸化防止剤、熱劣化防止剤、光安定剤、膠着防止剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、有機色素、艶消し剤、蛍光体などの添加剤を含んでいてもよい。これらの中でも、紫外線吸収剤及びシランカップリング剤からなる群から選択される少なくとも1つが好ましい。 The resin sheet of the present invention contains an ultraviolet absorber, a silane coupling agent, an antioxidant, an antioxidant, a heat deterioration inhibitor, a light stabilizer, an anti-glue agent, a lubricant, a mold release agent, a polymer processing aid, and a charge. It may contain additives such as inhibitors, flame retardants, dyes and pigments, organic dyes, matting agents and phosphors. Among these, at least one selected from the group consisting of an ultraviolet absorber and a silane coupling agent is preferable.
 紫外線吸収剤は、紫外線を吸収する機能を有する化合物である。 The ultraviolet absorber is a compound having a function of absorbing ultraviolet rays.
 紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類などが挙げられる。これらの紫外線吸収剤は単独又は2種以上組み合わせて使用できる。 Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, oxalic acid anilides, malonic acid esters, formamidines and the like. These UV absorbers can be used alone or in combination of two or more.
 ベンゾトリアゾール類は紫外線被照による着色などの光学特性低下を抑制する効果が高いため、紫外線吸収剤として好ましい。ベンゾトリアゾール類としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(BASF社製;商品名TINUVIN329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製;商品名TINUVIN234)、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-t-オクチルフェノール]((株)ADEKA製;LA-31)、2-(5-オクチルチオ-2H-ベンゾトリアゾール-2-イル)-6-tert-ブチル-4-メチルフェノールなどが挙げられる。 Benzotriazoles are preferable as UV absorbers because they have a high effect of suppressing deterioration of optical properties such as coloring due to UV exposure. Examples of benzotriazoles include 2- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2- (2H-). Benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234), 2,2'-methylenebis [6- (2H-benzotriazole-2) -Il) -4-t-octylphenol] (manufactured by ADEKA Co., Ltd .; LA-31), 2- (5-octylthio-2H-benzotriazole-2-yl) -6-tert-butyl-4-methylphenol, etc. Can be mentioned.
 また、トリアジン類の紫外線吸収剤としては、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン((株)ADEKA製;LA-F70)や、その類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASF社製;TINUVIN477やTINUVIN460)、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジンなどが挙げられる。 As an ultraviolet absorber for triazines, 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA Co., Ltd .; LA-) F70) and its analogs, hydroxyphenyltriazine-based ultraviolet absorbers (manufactured by BASF; TINUVIN477 and TINUVIN460), 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3, 5-Triazine and the like can be mentioned.
 シランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルジエトキシシランなどが挙げられる。これらのシランカップリング剤は単独又は2種以上組み合わせて使用できる。 Examples of the silane coupling agent include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyldiethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, and N- (2). -Aminoethyl) -3-aminopropyldiethoxysilane and the like. These silane coupling agents can be used alone or in combination of two or more.
 老化防止剤としては、公知の材料を使用することができる。具体的には、ヒドロキノン、ヒドロキノンモノメチルエーテル、2,5-ジ-t-ブチルフェノール、2,6-ジ(t-ブチル)-4-メチルフェノール、モノ(又はジ、又はトリ)(α-メチルベンジル)フェノール等のフェノール系化合物;2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)等のビスフェノール系化合物;2-メルカプトベンズイミダゾール、2-メルカプトメチルベンズイミダゾール等のベンズイミダゾール系化合物;6-エトキシ-1,2-ジヒドロ-2,2,4-トリメチルキノリン、ジフェニルアミンとアセトンの反応物、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体等のアミン-ケトン系化合物;N-フェニル-1-ナフチルアミン、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン等の芳香族二級アミン系化合物;1,3-ビス(ジメチルアミノプロピル)-2-チオ尿素、トリブチルチオ尿素等のチオウレア系化合物などが挙げられる。これらの老化防止剤は単独又は2種以上組み合わせ使用できる。 A known material can be used as the anti-aging agent. Specifically, hydroquinone, hydroquinone monomethyl ether, 2,5-di-t-butylphenol, 2,6-di (t-butyl) -4-methylphenol, mono (or di or tri) (α-methylbenzyl). ) Phenolic compounds such as phenol; 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 4,4'-thiobis Bisphenol compounds such as (3-methyl-6-t-butylphenol); benzimidazole compounds such as 2-mercaptobenzimidazole and 2-mercaptomethylbenzimidazole; 6-ethoxy-1,2-dihydro-2,2, Amine-ketone compounds such as 4-trimethylquinolin, a reaction product of diphenylamine and acetone, 2,2,4-trimethyl-1,2-dihydroquinolin polymer; N-phenyl-1-naphthylamine, alkylated diphenylamine, octylation Aromatic secondary amine compounds such as diphenylamine, 4,4'-bis (α, α-dimethylbenzyl) diphenylamine, p- (p-toluenesulfonylamide) diphenylamine, N, N'-diphenyl-p-phenylenediamine; Examples thereof include thiourea compounds such as 1,3-bis (dimethylaminopropyl) -2-thiourea and tributylthiourea. These antioxidants can be used alone or in combination of two or more.
 酸化防止剤は、酸素存在下においてそれ単体で樹脂の酸化劣化防止に効果を有するものである。例えば、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤などが挙げられる。これらの酸化防止剤は単独又は2種以上組み合わせ使用できる。中でも、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤やヒンダードフェノール系酸化防止剤が好ましく、リン系酸化防止剤とヒンダードフェノール系酸化防止剤との併用がより好ましい。 The antioxidant is effective in preventing oxidative deterioration of the resin by itself in the presence of oxygen. For example, phosphorus-based antioxidants, hindered phenol-based antioxidants, thioether-based antioxidants, and the like can be mentioned. These antioxidants can be used alone or in combination of two or more. Among them, phosphorus-based antioxidants and hindered phenol-based antioxidants are preferable, and the combined use of phosphorus-based antioxidants and hindered phenol-based antioxidants is more preferable, from the viewpoint of the effect of preventing deterioration of optical properties due to coloring.
 リン系酸化防止剤とヒンダードフェノール系酸化防止剤とを併用する場合、リン系酸化防止剤の使用量:ヒンダードフェノール系酸化防止剤の使用量は、質量比で、(1:5)~(2:1)が好ましく、(1:2)~(1:1)がより好ましい。 When a phosphorus-based antioxidant and a hindered phenol-based antioxidant are used in combination, the amount of the phosphorus-based antioxidant used: the amount of the hindered phenol-based antioxidant used is (1: 5) to mass ratio. (2: 1) is preferable, and (1: 2) to (1: 1) are more preferable.
 リン系酸化防止剤としては、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト((株)ADEKA製;商品名:アデカスタブHP-10)、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASF社製;商品名:IRGAFOS168)、3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサー3,9-ジホスファスピロ[5.5]ウンデカン((株)ADEKA製;商品名:アデカスタブPEP-36)などが好ましい。 As phosphorus-based antioxidants, 2,2-methylenebis (4,6-di-t-butylphenyl) octylphosphite (manufactured by ADEKA Corporation; trade name: ADEKA STAB HP-10), Tris (2,4-) Di-t-butylphenyl) phosphite (manufactured by BASF; trade name: IRGAFOS168), 3,9-bis (2,6-di-t-butyl-4-methylphenoxy) -2,4,8,10- Tetraoxa 3,9-diphosphaspiro [5.5] undecane (manufactured by ADEKA Corporation; trade name: ADEKA STAB PEP-36) and the like are preferable.
 ヒンダードフェノール系酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(BASF社製;商品名IRGANOX1010)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(BASF社製;商品名IRGANOX1076)などが好ましい。 As hindered phenolic antioxidants, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF; trade name IRGANOX1010), octadecyl-3- (3,5-Di-t-Butyl-4-hydroxyphenyl) propionate (manufactured by BASF; trade name IRGANOX1076) and the like are preferable.
 熱劣化防止剤は、実質上無酸素の状態下で高熱にさらされたときに生じるポリマーラジカルを捕捉することによって樹脂の熱劣化を防止できるものである。該熱劣化防止剤としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学(株)製;商品名スミライザーGM)、2,4-ジ-t-アミル-6-(3’,5’-ジ-t-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学(株)製;商品名スミライザーGS)などが好ましい。 The heat deterioration inhibitor can prevent the heat deterioration of the resin by capturing the polymer radicals generated when exposed to high heat under a substantially anoxic state. As the heat deterioration inhibitor, 2-t-butyl-6- (3'-t-butyl-5'-methyl-hydroxybenzyl) -4-methylphenylacrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name: Sumilyzer GM) ), 2,4-di-t-amyl-6- (3', 5'-di-t-amyl-2'-hydroxy-α-methylbenzyl) phenylacrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilizer) GS) and the like are preferable.
 光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有する化合物である。好適な光安定剤としては、2,2,6,6-テトラアルキルピペリジン骨格を持つ化合物等のヒンダードアミン類が挙げられる。 The light stabilizer is a compound having a function of capturing radicals mainly generated by oxidation by light. Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.
 膠着防止剤としては、脂肪酸の塩もしくはエステル、多価アルコールのエステル、無機塩、無機酸化物、粒子状の樹脂が好ましい。具体例としては、ステアリン酸カルシウム、炭酸カルシウム、硫酸カルシウム、硫酸マグネシウム、硫酸バリウム、二酸化ケイ素(エボニック社製;商品名アエロジル)、粒子状のアクリル樹脂などが挙げられる。 As the anti-adhesion agent, fatty acid salts or esters, polyhydric alcohol esters, inorganic salts, inorganic oxides, and particulate resins are preferable. Specific examples include calcium stearate, calcium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, silicon dioxide (manufactured by Ebonic; trade name Aerosil), and particulate acrylic resin.
 滑剤としては、例えば、ステアリン酸、ベヘニン酸、ステアロアミド酸、メチレンビスステアロアミド、ヒドロキシステアリン酸トリグリセリド、パラフィンワックス、ケトンワックス、オクチルアルコール、硬化油などが挙げられる。 Examples of the lubricant include stearic acid, behenic acid, stearoamic acid, methylene bisstearoamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, and hydrogenated oil.
 離型剤としては、例えば、セチルアルコール、ステアリルアルコール等の高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライド等のグリセリン高級脂肪酸エステルなどが挙げられる。 Examples of the release agent include higher alcohols such as cetyl alcohol and stearyl alcohol; and glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride.
 高分子加工助剤としては、通常、乳化重合法によって製造できる、0.05~0.5μmの粒子径を有する重合体粒子を用いることができる。該重合体粒子は、単一組成比及び単一極限粘度の重合体からなる単層粒子であってもよいし、また組成比又は極限粘度の異なる2種以上の重合体からなる多層粒子であってもよい。この中でも、内層に低い極限粘度を有する重合体層を有し、外層に5dl/g以上の高い極限粘度を有する重合体層を有する2層構造の粒子が好ましいものとして挙げられる。高分子加工助剤は、極限粘度が3~6dl/gであることが好ましい。極限粘度が小さすぎると成形性の改善効果が低い傾向がある。極限粘度が大きすぎると共重合体の成形加工性の低下を招く傾向がある。 As the polymer processing aid, polymer particles having a particle size of 0.05 to 0.5 μm, which can be usually produced by an emulsion polymerization method, can be used. The polymer particles may be single-layer particles made of a polymer having a single composition ratio and a single extreme viscosity, or may be multilayer particles made of two or more kinds of polymers having different composition ratios or extreme viscosities. You may. Among these, particles having a two-layer structure having a polymer layer having a low ultimate viscosity in the inner layer and a polymer layer having a high ultimate viscosity of 5 dl / g or more in the outer layer are preferable. The polymer processing aid preferably has an ultimate viscosity of 3 to 6 dl / g. If the ultimate viscosity is too small, the effect of improving moldability tends to be low. If the ultimate viscosity is too large, the moldability of the copolymer tends to be deteriorated.
 有機色素としては、紫外線を可視光線に変換する機能を有する化合物が好ましく用いられる。 As the organic dye, a compound having a function of converting ultraviolet rays into visible light is preferably used.
 蛍光体としては、例えば蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、蛍光漂白剤などが挙げられる。 Examples of the fluorescent substance include fluorescent pigments, fluorescent dyes, fluorescent white dyes, fluorescent whitening agents, and fluorescent bleaching agents.
 これらの添加剤の含有量は、本発明の効果を損なわない範囲で適宜決定でき、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。また、添加剤の含有量の下限は0質量%以上である。 The content of these additives can be appropriately determined within a range that does not impair the effects of the present invention, and is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 1% by mass or less. Further, the lower limit of the content of the additive is 0% by mass or more.
 本発明の樹脂シートは、樹脂及び任意に添加剤を含んでなる層(層(x)ともいう)のみ構成されていてもよく、層(x)を少なくとも1層含む積層体であってもよい。前記積層体としては、特に限定されないが、例えば、層(x)と他の層が積層した2層体や、2つの層(x)の間に他の層が配置されている積層体などが挙げられる。 The resin sheet of the present invention may be composed of only a layer (also referred to as a layer (x)) containing a resin and optionally an additive, or may be a laminate containing at least one layer (x). .. The laminated body is not particularly limited, and for example, a two-layer body in which a layer (x) and another layer are laminated, a laminated body in which another layer is arranged between the two layers (x), and the like are used. Can be mentioned.
 前記他の層としては、公知の樹脂を含む層が挙げられる。該樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリウレタン、ポリテトラフルオロエチレン、アクリル樹脂、ポリアミド、ポリアセタール、ポリカーボネート、ポリエステルのうちポリエチレンテレフタレート、ポリブチレンテレフタレート、環状ポリオレフィン、ポリフェニレンスルファイド、ポリテトラフロロエチレン、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、液晶ポリマー、ポリイミド、熱可塑性エラストマーなどを用いることができる。また、他の層も、必要に応じて、前記添加剤を含んでいてもよい。 Examples of the other layer include a layer containing a known resin. Examples of the resin include polyethylene terephthalate, polybutylene terephthalate, cyclic polyolefin, and polyphenylene sulfide among polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polytetrafluoroethylene, acrylic resin, polyamide, polyacetal, polycarbonate, and polyester. Polytetrafluoroethylene, polysulfone, polyether sulfone, polyarylate, liquid crystal polymer, polyimide, thermoplastic elastomer and the like can be used. In addition, other layers may also contain the additive, if necessary.
[樹脂シートの製造方法]
 本発明の樹脂シートの製造方法は、特に限定されないが、例えば、カルボン酸単位、カルボン酸中和物単位、及びエチレン単位を含有する樹脂を含んでなる原料シートに、加速電圧が200~5000kVかつ照射線量が10~500kGyの電子線を照射する工程(以下、照射工程ともいう)を含む方法であることが好ましい。
[Manufacturing method of resin sheet]
The method for producing the resin sheet of the present invention is not particularly limited, and for example, a raw material sheet containing a resin containing a carboxylic acid unit, a carboxylic acid neutralizer unit, and an ethylene unit has an acceleration voltage of 200 to 5000 kV and an acceleration voltage of 200 to 5000 kV. A method including a step of irradiating an electron beam having an irradiation dose of 10 to 500 kGy (hereinafter, also referred to as an irradiation step) is preferable.
 <原料樹脂の製造>
 原料シートに含まれる樹脂(原料樹脂ともいう)は、本発明の樹脂(x)が電子線架橋される前のものである。そのため、原料樹脂を構成する構成単位は、電子線架橋されていないこと以外は、それぞれ、樹脂(x)に含まれる構成単位と同じである。すなわち、原料樹脂は、前記カルボン酸単位、前記カルボン酸中和物単位、前記エチレン単位、及び任意に前記他の構成単位(例えばカルボン酸エステル単位(D))を含有していてもよい。また、電子線架橋前後で、樹脂を構成する構成単位の比率はほとんど変化し得ないことから、原料樹脂(x)の各構成単位の比率は、例えば樹脂(x)の上記各構成単位の比率と同じ範囲から選択できる。
<Manufacturing of raw material resin>
The resin contained in the raw material sheet (also referred to as the raw material resin) is the one before the resin (x) of the present invention is electron-beam crosslinked. Therefore, the constituent units constituting the raw material resin are the same as the constituent units contained in the resin (x), except that they are not crosslinked with an electron beam. That is, the raw material resin may contain the carboxylic acid unit, the carboxylic acid neutralized product unit, the ethylene unit, and optionally the other structural unit (for example, the carboxylic acid ester unit (D)). Further, since the ratio of the structural units constituting the resin can hardly change before and after the electron beam cross-linking, the ratio of each structural unit of the raw material resin (x) is, for example, the ratio of the above-mentioned structural units of the resin (x). You can select from the same range as.
 原料樹脂の製造方法としては、特に限定されないが、例えばエチレン及びカルボン酸エステルを高温・高湿下で共重合してエチレン-カルボン酸エステル共重合体(X)を得た後、そのカルボン酸エステル単位の全部又は一部をカルボン酸単位及びカルボン酸中和物単位に変換する方法が挙げられる。
 カルボン酸エステル単位の全部又は一部をカルボン酸単位及びカルボン酸中和物単位に変換する方法としては、アルカリ、例えば水酸化ナトリウム等を用いてカルボン酸エステル単位の全部又は一部をけん化し、カルボン酸中和物単位に変換することで、エチレン-カルボン酸中和物共重合体、又はエチレン-カルボン酸エステル-カルボン酸中和物共重合体を得た後、該カルボン酸中和物単位の一部を酸により脱金属してカルボン酸単位に変換する方法(以下、方法(1)ともいう)が挙げられる。別の方法としては、上記けん化により、カルボン酸エステル単位の全部又は一部をカルボン酸中和物単位に変換した後、該カルボン酸中和物単位のすべてを酸により脱金属してカルボン酸単位に変換した後、さらにその一部をアルカリ金属又はアルカリ土類金属にて中和する方法(以下、方法(2)ともいう)が挙げられる。
 なお、エチレン-カルボン酸エステル共重合体(X)のカルボン酸エステル単位の全部をカルボン酸単位及びカルボン酸中和物単位に変換した場合、エチレン単位、カルボン酸単位、及びカルボン酸中和物単位を有する原料樹脂を製造でき、該カルボン酸エステル単位の一部をカルボン酸単位及びカルボン酸中和物単位に変換した場合、エチレン単位、カルボン酸単位、カルボン酸中和物単位、及びカルボン酸エステル単位を有する原料樹脂を製造できる。
The method for producing the raw material resin is not particularly limited, but for example, after copolymerizing ethylene and a carboxylic acid ester at high temperature and high humidity to obtain an ethylene-carboxylic acid ester copolymer (X), the carboxylic acid ester thereof is obtained. Examples include a method of converting all or part of the units into carboxylic acid units and carboxylic acid neutralized units.
As a method for converting all or part of the carboxylic acid ester unit into the carboxylic acid unit and the carboxylic acid neutralized product unit, all or part of the carboxylic acid ester unit is saponified with an alkali such as sodium hydroxide. After converting to a carboxylic acid neutralized product unit to obtain an ethylene-carboxylic acid neutralized product copolymer or an ethylene-carboxylic acid ester-carboxylic acid neutralized product copolymer, the carboxylic acid neutralized product unit A method of demetallizing a part of the above with an acid to convert it into a carboxylic acid unit (hereinafter, also referred to as method (1)) can be mentioned. Alternatively, the carboxylic acid unit is obtained by converting all or part of the carboxylic acid ester unit into a carboxylic acid neutralized product unit by the above-mentioned saponification, and then demetallizing all the carboxylic acid neutralized product units with an acid. After conversion to, a method of neutralizing a part thereof with an alkali metal or an alkaline earth metal (hereinafter, also referred to as method (2)) can be mentioned.
When all the carboxylic acid ester units of the ethylene-carboxylic acid ester copolymer (X) are converted into carboxylic acid units and carboxylic acid neutralized product units, the ethylene unit, carboxylic acid unit, and carboxylic acid neutralized product unit When a part of the carboxylic acid ester unit is converted into a carboxylic acid unit and a carboxylic acid neutralized product unit, an ethylene unit, a carboxylic acid unit, a carboxylic acid neutralized product unit, and a carboxylic acid ester can be produced. A raw material resin having a unit can be produced.
 上記製造方法の原料であるカルボン酸エステルとしては、例えば、上述の不飽和カルボン酸エステルを用いることができる。これらの中でも、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸2-エチルヘキシルが好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル等の(メタ)アクリル酸エステルがより好ましい。メタクリル酸エステルとアクリル酸エステルとを比較すると、得られる樹脂の耐熱分解、低着色性に優れるため、メタクリル酸エステルの方が好ましい。カルボン酸エステルは、単独又は2種以上組み合わせて使用できる。 As the carboxylic acid ester which is the raw material of the above-mentioned production method, for example, the above-mentioned unsaturated carboxylic acid ester can be used. Among these, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, Sep-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate are preferable, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate and the like. (Meta) acrylic acid ester is more preferable. Comparing the methacrylic acid ester and the acrylic acid ester, the methacrylic acid ester is preferable because it is excellent in heat-resistant decomposition and low colorability of the obtained resin. The carboxylic acid ester can be used alone or in combination of two or more.
 エチレン―カルボン酸エステル共重合体(X)の具体例としては、エチレン―アクリル酸メチル共重合体、エチレン―メタクリル酸メチル共重合体、エチレン―アクリル酸エチル共重合体、エチレン―メタクリル酸エチル共重合体、エチレン―アクリル酸n-プロピル共重合体、エチレン―メタクリル酸n-プロピル共重合体、エチレン―アクリル酸イソプロピル共重合体、エチレン―メタクリル酸イソプロピル共重合体、エチレン―アクリル酸n-ブチル共重合体、エチレン―メタクリル酸n-ブチル共重合体、エチレン―アクリル酸sec-ブチル共重合体、エチレン―メタクリル酸sec-ブチル共重合体等が挙げられる。これらの共重合体は、市販のものを用いてもよいし、米国特許出願公開第2013/0274424号明細書、特開2006-233059号公報、又は特開2007-84743号公報を参考に合成してもよい。 Specific examples of the ethylene-carboxylic acid ester copolymer (X) include an ethylene-methyl acrylate copolymer, an ethylene-methyl methacrylate copolymer, an ethylene-ethyl acrylate copolymer, and an ethylene-ethyl methacrylate copolymer. Polymer, ethylene-propyl methacrylate copolymer, n-propyl methacrylate copolymer, ethylene-isopropyl methacrylate copolymer, isopropyl methacrylate copolymer, n-butyl ethylene-acrylate Examples thereof include a copolymer, an ethylene-n-butyl methacrylate copolymer, a sec-butyl copolymer of ethylene-acrylate, a sec-butyl copolymer of ethylene-methacrylate, and the like. Commercially available copolymers may be used, or these copolymers may be synthesized with reference to US Patent Application Publication No. 2013/0274424, JP-A-2006-23309, or JP-A-2007-84743. You may.
 エチレン―カルボン酸エステル共重合体(X)中のカルボン酸エステル単位の含有量としては、好ましくは3.0モル%以上、より好ましくは3.5モル%以上、さらに好ましくは4.0モル%以上であり、好ましくは12モル%以下、より好ましくは11モル%以下、さらに好ましくは10モル%以下である。カルボン酸エステル単位の含有量が上記範囲であると、得られる樹脂のカルボン酸単位及びカルボン酸中和物単位の含有量を好適な範囲に調整しやすい。 The content of the carboxylic acid ester unit in the ethylene-carboxylic acid ester copolymer (X) is preferably 3.0 mol% or more, more preferably 3.5 mol% or more, still more preferably 4.0 mol%. The above is preferably 12 mol% or less, more preferably 11 mol% or less, still more preferably 10 mol% or less. When the content of the carboxylic acid ester unit is in the above range, the content of the carboxylic acid unit and the carboxylic acid neutralized product unit of the obtained resin can be easily adjusted to a suitable range.
 本発明の一実施態様において、エチレン―カルボン酸エステル共重合体(X)の190℃、2.16Kgfの条件で測定したメルトフローレート(MFR)は、好ましくは90g/10分以上、より好ましくは100g/10分以上、さらに好ましくは150g/10分以上であり、好ましくは400g/10分以下、より好ましくは350g/10分以下、さらに好ましくは330g/10分以下である。エチレン-カルボン酸エステル共重合体(X)のMFRを上記範囲にすることで、得られる樹脂の成形加工性と強度を両立しやすい。エチレン-カルボン酸エステル共重合体(X)のMFRは、該共重合体の重合度とカルボン酸エステル単位の含有率により調整し得る。 In one embodiment of the present invention, the melt flow rate (MFR) of the ethylene-carboxylic acid ester copolymer (X) measured at 190 ° C. and 2.16 kgf is preferably 90 g / 10 minutes or more, more preferably. It is 100 g / 10 minutes or more, more preferably 150 g / 10 minutes or more, preferably 400 g / 10 minutes or less, more preferably 350 g / 10 minutes or less, still more preferably 330 g / 10 minutes or less. By setting the MFR of the ethylene-carboxylic acid ester copolymer (X) in the above range, it is easy to achieve both moldability and strength of the obtained resin. The MFR of the ethylene-carboxylic acid ester copolymer (X) can be adjusted by the degree of polymerization of the copolymer and the content of the carboxylic acid ester unit.
 本発明の一実施態様において、エチレン-カルボン酸エステル共重合体(X)の重量平均分子量(Mw)は、ポリスチレン換算で、好ましくは15,000g/モル以上、より好ましくは20,000g/モル以上、さらに好ましくは30,000g/モル以上であり、好ましくは200,000g/モル以下、より好ましくは100,000g/モル以下である。また、エチレン-カルボン酸エステル共重合体(X)の数平均分子量(Mn)は、好ましくは5,000g/モル以上、より好ましくは10,000g/モル以上、さらに好ましくは15,000g/モル以上であり、好ましくは100,000g/モル以下、より好ましくは50,000g/モル以下である。エチレン-カルボン酸エステル共重合体(X)のMw及びMnが上記範囲であると、得られる樹脂の成形加工性、強度及び高温環境下での自立性を向上しやすい。なお、重量平均分子量及び数平均分子量は、例えば、カラム(TSKgel GMHHR-H(20)HTの3本直列)を用いて、カラム温度140℃及び1,2,4-トリクロロベンゼン溶媒で測定できる。また、原料樹脂の重量平均分子量(Mw)は、エチレン-カルボン酸エステル共重合体(X)のMwと同じ範囲から選択できる。 In one embodiment of the present invention, the weight average molecular weight (Mw) of the ethylene-carboxylic acid ester copolymer (X) is preferably 15,000 g / mol or more, more preferably 20,000 g / mol or more in terms of polystyrene. More preferably, it is 30,000 g / mol or more, preferably 200,000 g / mol or less, and more preferably 100,000 g / mol or less. The number average molecular weight (Mn) of the ethylene-carboxylic acid ester copolymer (X) is preferably 5,000 g / mol or more, more preferably 10,000 g / mol or more, and further preferably 15,000 g / mol or more. It is preferably 100,000 g / mol or less, and more preferably 50,000 g / mol or less. When the Mw and Mn of the ethylene-carboxylic acid ester copolymer (X) are in the above ranges, the molding processability, strength and independence of the obtained resin in a high temperature environment can be easily improved. The weight average molecular weight and the number average molecular weight can be measured using, for example, a column (three series of TSKgel GMH HR- H (20) HT) at a column temperature of 140 ° C. and a 1,2,4-trichlorobenzene solvent. .. Further, the weight average molecular weight (Mw) of the raw material resin can be selected from the same range as the Mw of the ethylene-carboxylic acid ester copolymer (X).
 本発明の一実施態様において、エチレン-カルボン酸エステル共重合体(X)の炭素1000個当たりの分岐度は、特に制限はないが、好ましくは5~30、より好ましくは6~20である。炭素1000個当たりの分岐度の分析は、例えばエチレン-カルボン酸エステル共重合体を重水素化オルトジクロロベンゼンに溶解させ、13C-NMRのインバースゲートデカップリング法を用いて行うことができる。 In one embodiment of the present invention, the degree of branching of the ethylene-carboxylic acid ester copolymer (X) per 1000 carbons is not particularly limited, but is preferably 5 to 30, more preferably 6 to 20. The degree of branching per 1000 carbons can be analyzed, for example, by dissolving an ethylene-carboxylic acid ester copolymer in deuterated orthodichlorobenzene and using the inverse gate decoupling method of 13 C-NMR.
 上記方法(1)及び(2)において、アルカリにてけん化反応を行う際の溶媒としては、例えばテトラヒドロフラン、ジオキサン等のエーテル系溶媒;クロロホルム、ジクロロベンゼン等のハロゲン含有溶媒;メチルブチルケトン等の炭素数が6以上のケトン、n-ヘキサン、シクロヘキサン等の炭化水素系溶媒;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族系溶媒などが挙げられる。これらの溶媒は単独又は2種以上組み合わせて使用することができ、溶媒を2種以上用いる場合、例えば炭化水素系溶媒とアルコール系溶媒との混合溶媒や、芳香族系溶媒とアルコール系溶媒との混合溶媒などを使用してもよい。 In the above methods (1) and (2), as the solvent for carrying out the saponification reaction with alkali, for example, an ether solvent such as tetrahydrofuran and dioxane; a halogen-containing solvent such as chloroform and dichlorobenzene; and carbon such as methylbutylketone. Hydrocarbon-based solvents such as ketones, n-hexane, cyclohexane, etc. with a number of 6 or more; alcohol-based solvents such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol; aromatics such as benzene, toluene, xylene, ethylbenzene, etc. Examples include group solvents. These solvents can be used alone or in combination of two or more, and when two or more solvents are used, for example, a mixed solvent of a hydrocarbon solvent and an alcohol solvent, or an aromatic solvent and an alcohol solvent. A mixed solvent or the like may be used.
 上記方法(1)及び(2)において、アルカリにてけん化反応を行う際の温度としては、その反応性及びエチレン-カルボン酸エステル共重合体(X)の溶解性の観点から、50℃以上が好ましく、60℃以上がより好ましく、70℃以上がさらに好ましく、80℃以上が最も好ましい。該温度の上限は特に制限されないが、エチレン-カルボン酸エステル共重合体(X)が分解しない温度が好ましく、例えば300℃以下である。 In the above methods (1) and (2), the temperature at which the saponification reaction is carried out with an alkali is 50 ° C. or higher from the viewpoint of its reactivity and the solubility of the ethylene-carboxylic acid ester copolymer (X). Preferably, 60 ° C. or higher is more preferable, 70 ° C. or higher is further preferable, and 80 ° C. or higher is most preferable. The upper limit of the temperature is not particularly limited, but a temperature at which the ethylene-carboxylic acid ester copolymer (X) does not decompose is preferable, for example, 300 ° C. or lower.
 上記方法(1)及び(2)において、脱金属化に用いる酸としては、例えば酢酸、塩酸、硝酸、硫酸など公知の有機酸又は無機酸を用いることができる。脱金属化に用いる溶媒としては、けん化反応を行う際と同様の溶媒を選択することができる。 In the above methods (1) and (2), known organic acids or inorganic acids such as acetic acid, hydrochloric acid, nitric acid, and sulfuric acid can be used as the acid used for demetallization. As the solvent used for demetallization, the same solvent as in the saponification reaction can be selected.
 方法(2)において、中和の際に用いる中和剤としては、上述の金属イオンを含有するイオン性の化合物であれば特に限定はない。金属イオンとしては、リチウム、カリウム、ナトリウム等のアルカリ金属イオンや、マグネシウム、カルシウム等のアルカリ土類金属イオンや、亜鉛、ニッケル、鉄、チタン等の遷移金属イオン、アルミニウムイオンなどが挙げられる。例えば、金属イオンがナトリウムカチオンの場合の中和剤としては、水酸化ナトリウム、酢酸ナトリウム、炭酸水素ナトリウム等が挙げられる。また、カルボン酸ナトリウム単位を含有するアイオノマー等の重合体も中和剤として用いることができる。 In the method (2), the neutralizing agent used for neutralization is not particularly limited as long as it is an ionic compound containing the above-mentioned metal ion. Examples of the metal ion include alkali metal ions such as lithium, potassium and sodium, alkaline earth metal ions such as magnesium and calcium, transition metal ions such as zinc, nickel, iron and titanium, and aluminum ions. For example, examples of the neutralizing agent when the metal ion is a sodium cation include sodium hydroxide, sodium acetate, sodium hydrogencarbonate and the like. Further, a polymer such as ionomer containing a sodium carboxylate unit can also be used as a neutralizing agent.
 原料樹脂の製造方法としては、上記の方法の他、エチレン、前記カルボン酸及び前記カルボン酸エステルを高温・高圧にて共重合した後、カルボン酸単位の一部を中和する方法などが挙げられ、例えば、特開昭59-133217号公報、米国特許第6518365号明細書、米国特許第8399096号明細書における樹脂の製造方法を参照することができる。 Examples of the method for producing the raw material resin include, in addition to the above method, a method of copolymerizing ethylene, the carboxylic acid and the carboxylic acid ester at high temperature and high pressure, and then neutralizing a part of the carboxylic acid unit. For example, the method for producing a resin in JP-A-59-133217, US Pat. No. 6,518,365, and US Pat. No. 8,939,906 can be referred to.
 <原料シートの製造>
 本発明の原料シートの製造方法は、特に限定されず、例えば、原料樹脂、又は、原料樹脂に必要に応じて添加剤を添加した樹脂組成物を均一に混練、好ましくは溶融混練した後、押出法、カレンダー法、圧縮成形法、プレス法、溶液キャスト法、溶融キャスト法、インフレーション法等の公知の製膜方法により層を形成することで得ることができる。原料シートが積層体である場合、該層と他の層とを共押出法により成形して積層樹脂シートとしてもよい。なお、原料樹脂を混練、好ましくは溶融混練中に前記添加剤を添加してもよい。
<Manufacturing of raw material sheet>
The method for producing the raw material sheet of the present invention is not particularly limited, and for example, the raw material resin or the resin composition obtained by adding an additive to the raw material resin as needed is uniformly kneaded, preferably melt-kneaded, and then extruded. It can be obtained by forming a layer by a known film forming method such as a method, a calendar method, a compression molding method, a pressing method, a solution casting method, a melt casting method, or an inflation method. When the raw material sheet is a laminated body, the layer and another layer may be molded by a coextrusion method to obtain a laminated resin sheet. The raw material resin may be kneaded, preferably the additive may be added during melt kneading.
 公知の製膜方法の中でも、特に圧縮成形法や押出法を用いた樹脂シートの製造方法が好ましく用いられる。圧縮成形時や押出時の樹脂温度は、好ましくは150℃以上、より好ましくは170℃以上であり、好ましくは250℃以下、より好ましくは230℃以下である。樹脂温度が上記の上限以下であると、樹脂の分解や劣化を抑制しやすい。逆に樹脂温度が上記の下限以上であると、樹脂の成形性を向上しやすい。また、例えば押出機を使用する場合、揮発性物質を効率的に除去するためには、押出機のベント口から減圧により、揮発性物質を除去することが好ましい。 Among the known film-forming methods, a method for producing a resin sheet using a compression molding method or an extrusion method is particularly preferably used. The resin temperature during compression molding or extrusion is preferably 150 ° C. or higher, more preferably 170 ° C. or higher, preferably 250 ° C. or lower, and more preferably 230 ° C. or lower. When the resin temperature is not more than the above upper limit, it is easy to suppress the decomposition and deterioration of the resin. On the contrary, when the resin temperature is equal to or higher than the above lower limit, the moldability of the resin is likely to be improved. Further, for example, when an extruder is used, in order to efficiently remove the volatile substance, it is preferable to remove the volatile substance by reducing the pressure from the vent port of the extruder.
 <照射工程>
 本発明の樹脂シートは、前記原料シートに、加速電圧が200~5000kVかつ照射線量が10~500kGyの電子線を照射する工程を含む方法により得ることができる。
<Irradiation process>
The resin sheet of the present invention can be obtained by a method including a step of irradiating the raw material sheet with an electron beam having an acceleration voltage of 200 to 5000 kV and an irradiation dose of 10 to 500 kGy.
 樹脂シートの電子線架橋度は、電子線の加速電圧及び照射線量の大きさにより調整することができ、加速電圧及び照射線量が大きくなるにつれて、樹脂シートの電子線架橋度が大きくなる傾向があり、逆に加速電圧及び照射線量が小さくなるにつれて、樹脂シートの電子線架橋度が小さくなる傾向にある。 The degree of electron beam cross-linking of the resin sheet can be adjusted by the magnitude of the acceleration voltage and irradiation dose of the electron beam, and as the acceleration voltage and irradiation dose increase, the degree of electron beam cross-linking of the resin sheet tends to increase. On the contrary, as the acceleration voltage and the irradiation dose become smaller, the degree of electron beam cross-linking of the resin sheet tends to become smaller.
 電子線の加速電圧は、樹脂シートの厚みに応じて適宜選択でき、好ましくは500kV以上、より好ましくは1000kV以上、さらに好ましくは1500kV以上であり、好ましくは4500kV以下、より好ましくは3500kV以下、さらに好ましくは2500kV以下である。加速電圧が上記の下限以上であると、樹脂シートの透明性を向上しやすい。また樹脂シートの深部まで架橋しやすいため、厚み方向の照射ムラが生じにくく、これによる樹脂シートの透明度のバラツキや部分的な着色を抑制しやすい。逆に、加速電圧が上記の上限以下であると、過剰な架橋を抑制しやすく、合わせガラス作製時の接着加工性を向上しやすい。 The acceleration voltage of the electron beam can be appropriately selected according to the thickness of the resin sheet, and is preferably 500 kV or more, more preferably 1000 kV or more, still more preferably 1500 kV or more, preferably 4500 kV or less, more preferably 3500 kV or less, still more preferably. Is 2500 kV or less. When the acceleration voltage is equal to or higher than the above lower limit, the transparency of the resin sheet is likely to be improved. Further, since it is easy to crosslink to the deep part of the resin sheet, uneven irradiation in the thickness direction is unlikely to occur, and it is easy to suppress the variation in transparency and partial coloring of the resin sheet due to this. On the contrary, when the acceleration voltage is not more than the above upper limit, it is easy to suppress excessive cross-linking, and it is easy to improve the adhesive processability at the time of producing the laminated glass.
 電子線の照射線量は、原料樹脂のカルボン酸単位の量に応じて適宜選択でき、好ましくは15kGy以上、より好ましくは20kGy以上であり、好ましくは400kGy以下、より好ましくは300kGy以下、さらに好ましくは250kGy以下である。電子線の照射線量が上記の下限以上であると樹脂シートの透明性を向上しやすい。また、電子線の照射線量が上記の上限以下であると樹脂シートの接着加工性を向上しやすく、着色も抑制しやすい。 The irradiation dose of the electron beam can be appropriately selected according to the amount of the carboxylic acid unit of the raw material resin, and is preferably 15 kGy or more, more preferably 20 kGy or more, preferably 400 kGy or less, more preferably 300 kGy or less, still more preferably 250 kGy. It is as follows. When the irradiation dose of the electron beam is equal to or higher than the above lower limit, the transparency of the resin sheet is likely to be improved. Further, when the irradiation dose of the electron beam is not more than the above upper limit, the adhesive processability of the resin sheet is easily improved and coloring is easily suppressed.
 本発明の一実施態様における製造方法において、原料シートの厚みをt(mm)、前記加速電圧をV(kV)、及び原料シートの比重をρ(g/m)とした場合に、
下記式(3):
 33.4×V5/3÷ρ≧t   (3)
を満たすことが好ましい。式(3)は加速電圧Vに対する原料シートの厚み範囲を最適化したものであり、式(3)を満たすと、樹脂シートの深部まで架橋しやすいため、厚み方向の照射ムラが生じにくく、これによる樹脂シートの透明度のバラツキや部分的な着色を抑制しやすい。なお、原料シートの厚みt(mm)の上限は3mm未満であることが好ましい。
In the production method according to the embodiment of the present invention, when the thickness of the raw material sheet is t (mm), the acceleration voltage is V (kV), and the specific gravity of the raw material sheet is ρ (g / m 3 ).
The following formula (3):
33.4 × V 5/3 ÷ ρ ≧ t (3)
It is preferable to satisfy. Equation (3) optimizes the thickness range of the raw material sheet with respect to the acceleration voltage V. When Equation (3) is satisfied, it is easy to crosslink to the deep part of the resin sheet, so that irradiation unevenness in the thickness direction is unlikely to occur. It is easy to suppress the variation in transparency and partial coloring of the resin sheet due to the above. The upper limit of the thickness t (mm) of the raw material sheet is preferably less than 3 mm.
 本発明の一実施態様における製造方法において、原料シートのカルボン酸単位の含有量をa’(モル%)、及び前記照射線量をc(kGy)とした場合に、
下記式(4)及び(5):
 2≦a’≦9      (4)
 -15×a’+115≦c≦500   (5)
を満たすことが好ましい。式(5)はカルボン酸単位の含有量に対する電子線の照射線量cの範囲を最適化したものであり、式(4)及び式(5)を満たすと、カルボン酸単位の含有量に対する架橋度(不溶分量)を好適な範囲に調整しやすいため、得られる樹脂シートの透明性、強度、接着加工性及び高温環境下での自立性を高めやすい。
In the production method according to the embodiment of the present invention, when the content of the carboxylic acid unit of the raw material sheet is a'(mol%) and the irradiation dose is c (kGy).
The following equations (4) and (5):
2 ≤ a'≤ 9 (4)
-15 × a'+ 115 ≦ c ≦ 500 (5)
It is preferable to satisfy. The formula (5) is an optimized range of the irradiation dose c of the electron beam with respect to the content of the carboxylic acid unit. When the formulas (4) and (5) are satisfied, the degree of cross-linking with respect to the content of the carboxylic acid unit is satisfied. Since it is easy to adjust the (insoluble content) to a suitable range, it is easy to improve the transparency, strength, adhesive processability and independence of the obtained resin sheet in a high temperature environment.
 電子線の照射方法としては、原料シートに所定の電子線が照射できれば、特に限定されないが、例えば、支持材上に樹脂シートを設置し、電子線照射装置等により、所定の電子線をシート面に照射する方法などが挙げられる。シート面に対する電子線の照射角度は、特に限定されないが、シート面に対して垂直方向から照射することが好ましい。 The method of irradiating the electron beam is not particularly limited as long as the raw material sheet can be irradiated with the predetermined electron beam. For example, a resin sheet is placed on the support material, and the predetermined electron beam is applied to the sheet surface by an electron beam irradiator or the like. There is a method of irradiating the electron. The irradiation angle of the electron beam on the sheet surface is not particularly limited, but it is preferable to irradiate the sheet surface from a direction perpendicular to the sheet surface.
 本発明の樹脂シートは、表面エネルギーを制御する目的で電子線照射前もしくは電子線照射後に、コロナ処理、プラズマ処理、フレーム処理、紫外線オゾン処理などの表面処理を行ってもよい。 The resin sheet of the present invention may be subjected to surface treatment such as corona treatment, plasma treatment, frame treatment, ultraviolet ozone treatment, etc. before or after electron beam irradiation for the purpose of controlling surface energy.
 このような本発明の製造方法を用いることにより、透明性、強度、高温環境下での自立性、及び接着加工性に優れた樹脂シートを得ることができる。 By using such a manufacturing method of the present invention, it is possible to obtain a resin sheet having excellent transparency, strength, independence in a high temperature environment, and adhesive processability.
[合わせガラス用中間膜及び合わせガラス]
 本発明は、本発明の樹脂シートからなる合わせガラス用中間膜(単に中間膜ともいう)を包含する。また、本発明は、2つのガラス板と、該2つのガラス板の間に配置された該合わせガラス用中間膜とを有する合わせガラスも包含する。
[Interlayer film for laminated glass and laminated glass]
The present invention includes an interlayer film for laminated glass (also simply referred to as an interlayer film) made of the resin sheet of the present invention. The present invention also includes a laminated glass having two glass plates and an interlayer film for the laminated glass arranged between the two glass plates.
 本発明の合わせガラスは、前記樹脂シートからなる合わせガラス用中間膜を有するため、透明性、強度、高温環境下での自立性、及び製造時の中間膜とガラス板との接着加工性に優れている。 Since the laminated glass of the present invention has an interlayer film for laminated glass made of the resin sheet, it is excellent in transparency, strength, independence in a high temperature environment, and adhesive processability between the interlayer film and the glass plate during manufacturing. ing.
 本発明の中間膜と積層させるガラス板は、例えば、フロート板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、熱線吸収板ガラスなどの無機ガラスのほか、ポリメタクリル酸メチル、ポリカーボネートなどの従来公知の有機ガラス等を使用できる。これらは無色又は有色のいずれであってもよい。これらは1種を使用してもよく、2種以上を併用してもよい。また、ガラスの厚さは、100mm以下であることが好ましい。 The glass plate laminated with the interlayer film of the present invention includes, for example, inorganic glass such as float plate glass, polished plate glass, template glass, meshed plate glass, and heat ray absorbing plate glass, as well as conventionally known organic glass such as polymethyl methacrylate and polycarbonate. Etc. can be used. These may be either colorless or colored. One of these may be used, or two or more thereof may be used in combination. The thickness of the glass is preferably 100 mm or less.
 本発明の樹脂シートを2枚のガラスに挟んでなる合わせガラスは、従来公知の方法で製造できる。例えば真空ラミネーター装置を用いる方法、真空バッグを用いる方法、真空リングを用いる方法、ニップロールを用いる方法等が挙げられる。また上記方法により仮圧着した後に、オートクレーブに投入して本接着する方法も挙げられる。 The laminated glass formed by sandwiching the resin sheet of the present invention between two sheets of glass can be produced by a conventionally known method. For example, a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, a method using a nip roll, and the like can be mentioned. Further, there is also a method of temporarily crimping by the above method and then putting it into an autoclave for main bonding.
 真空ラミネーター装置を用いる場合、例えば1×10-6~1×10-1MPaの減圧下、60~200℃、特に80~160℃でガラス板、中間膜、及び任意に接着性樹脂層等がラミネートされる。真空バッグ又は真空リングを用いる方法は、例えば欧州特許第1235683号明細書に記載されており、約2×10-2~3×10-2MPa程度の圧力下、100~160℃でラミネートされる。 When a vacuum laminator device is used, for example, under a reduced pressure of 1 × 10 -6 to 1 × 10 -1 MPa, a glass plate, an interlayer film, and optionally an adhesive resin layer or the like can be formed at 60 to 200 ° C., particularly 80 to 160 ° C. It will be laminated. A method using a vacuum bag or a vacuum ring is described, for example, in European Patent No. 1235683, where it is laminated at 100-160 ° C. under a pressure of about 2 × 10 -2 to 3 × 10 -2 MPa. ..
 ニップロールを用いる製造方法としては、中間膜の流動開始温度以下の温度でロールにより脱気した後、さらに流動開始温度に近い温度で圧着を行う方法が挙げられる。具体的には、例えば赤外線ヒーターなどで30~70℃に加熱した後、ロールで脱気し、さらに50~120℃に加熱した後ロールで圧着させる方法が挙げられる。 As a manufacturing method using a nip roll, there is a method of degassing with a roll at a temperature equal to or lower than the flow start temperature of the interlayer film and then crimping at a temperature closer to the flow start temperature. Specifically, for example, a method of heating to 30 to 70 ° C. with an infrared heater or the like, degassing with a roll, further heating to 50 to 120 ° C., and then crimping with a roll can be mentioned.
 上述の方法を用いて圧着させた後にオートクレーブに投入してさらに圧着を行う場合、オートクレーブ工程の運転条件は合わせガラスの厚さや構成により適宜選択されるが、例えば0.5~1.5MPaの圧力下、100~160℃にて0.5~3時間処理することが好ましい。 When crimping is performed by using the above method and then charged into an autoclave for further crimping, the operating conditions of the autoclave process are appropriately selected depending on the thickness and composition of the laminated glass, and the pressure is, for example, 0.5 to 1.5 MPa. Underneath, it is preferable to treat at 100 to 160 ° C. for 0.5 to 3 hours.
 本発明の合わせガラスは透明性に優れる。例えば、本発明の合わせガラスを140℃まで加熱後、0.1℃/分の速度で23℃に徐冷した後のヘーズ(徐冷ヘーズ)は、好ましくは5.0%以下、より好ましくは4.5%以下、さらに好ましくは4.0%以下、特に好ましくは3.5%以下、より特に好ましくは3.0%以下である。徐冷ヘーズが上記の上限以下であると、合わせガラスの透明性を向上しやすい。また、合わせガラスの徐冷ヘーズの下限は特に限定されないが、通常0.01%以上である。なお、合わせガラスの徐冷ヘーズは、合わせガラスを140℃まで加熱した後、0.1℃/分の速度で23℃に徐冷した後、ヘーズメーターを用いてJIS K7136:2000に準拠して測定でき、例えば実施例に記載の方法により測定できる。 The laminated glass of the present invention has excellent transparency. For example, the haze (slow cooling haze) after heating the laminated glass of the present invention to 140 ° C. and then slowly cooling to 23 ° C. at a rate of 0.1 ° C./min is preferably 5.0% or less, more preferably. It is 4.5% or less, more preferably 4.0% or less, particularly preferably 3.5% or less, and even more preferably 3.0% or less. When the slow cooling haze is equal to or less than the above upper limit, the transparency of the laminated glass is likely to be improved. The lower limit of the slow cooling haze of the laminated glass is not particularly limited, but is usually 0.01% or more. The slow-cooling haze of the laminated glass is based on JIS K7136: 2000 using a haze meter after heating the laminated glass to 140 ° C. and then slowly cooling it to 23 ° C. at a rate of 0.1 ° C./min. It can be measured, for example, by the method described in Examples.
 本発明の合わせガラスは着色が少なく、可能な限り、無色であることが好ましい。本発明の合わせガラスの黄色度(YI)は、好ましくは2.0以下、より好ましくは1.8以下、さらに好ましくは1.5以下、特に好ましくは1.0以下、より特に好ましくは0.5以下である。本発明の合わせガラスの黄色度の下限は、特に限定されないが、通常0以上である。 The laminated glass of the present invention is less colored and is preferably colorless as much as possible. The yellowness (YI) of the laminated glass of the present invention is preferably 2.0 or less, more preferably 1.8 or less, still more preferably 1.5 or less, particularly preferably 1.0 or less, and even more preferably 0. It is 5 or less. The lower limit of the yellowness of the laminated glass of the present invention is not particularly limited, but is usually 0 or more.
 本発明の合わせガラスと中間膜の接着力は高い方が好ましい。例えば、国際公開第1999/058334号に記載の圧縮せん断強度試験(Compression shear strength test)により評価した値が15MPa以上であることが好ましく、20MPa以上がより好ましく、25MPa以上が最も好ましい。上限は特に規定されないが100MPa以下である。 It is preferable that the laminated glass of the present invention and the interlayer film have a high adhesive force. For example, the value evaluated by the compression shear strength test described in International Publication No. 1999/058334 is preferably 15 MPa or more, more preferably 20 MPa or more, and most preferably 25 MPa or more. The upper limit is not particularly specified, but is 100 MPa or less.
 上記したように、本発明の樹脂シートは合わせガラス用中間膜として有用である。該合わせガラス用中間膜は、透明性、強度、高温環境下での自立性、及び製造時の接着加工性に優れる点から、特に、構造材料用合わせガラスの中間膜として好ましい。また、構造材料用合わせガラスの中間膜に限らず、自動車等の移動体、建築物、太陽電池などの各種用途における合わせガラス用中間膜としても好適であるが、これらの用途に限定されるものではない。 As described above, the resin sheet of the present invention is useful as an interlayer film for laminated glass. The laminated glass interlayer film is particularly preferable as a laminated glass interlayer film for structural materials because it is excellent in transparency, strength, self-supporting property in a high temperature environment, and adhesive processability during manufacturing. Further, it is suitable not only as an interlayer film for laminated glass for structural materials but also as an interlayer film for laminated glass in various applications such as moving bodies such as automobiles, buildings, and solar cells, but is limited to these applications. is not it.
 以下、実施例及び比較例によって本発明を具体的に説明するが、本発明は下記実施例に限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[実施例・比較例で用いる樹脂の分析]
 樹脂シートの原料として用いた樹脂(IO1~IO9)について、メタクリル酸単位(カルボン酸単位)、メタクリル酸中和物単位(カルボン酸中和物単位)、及びエチレン単位の含有量の分析は以下のようにして行った。
[Analysis of resins used in Examples and Comparative Examples]
Regarding the resins (IO1 to IO9) used as raw materials for the resin sheet, the content of methacrylic acid unit (carboxylic acid unit), methacrylic acid neutralized product unit (carboxylic acid neutralized product unit), and ethylene unit is analyzed as follows. I went like this.
 実施例及び比較例において、樹脂シートの原料として用いた樹脂を脱水トルエン/脱水酢酸(75/25(質量比))の混合溶媒に溶解し、100℃にて2時間反応させた後、アセトン/水(80/20(質量比))の混合溶媒に再沈殿させることでメタクリル酸中和物をメタクリル酸単位に変換した。得られた樹脂を十分水で洗浄した後、乾燥することにより樹脂を得た。
 (1)次いで、熱分解GC-MSにより、得られた樹脂を構成する重合単位の成分分析を行った。
 (2)次いで、JIS K0070-1992に準じて、得られた樹脂の酸価を測定した。
 (3)また、重水素化トルエンと重水素化メタノールの混合溶媒にて、得られた樹脂のH-NMR(400MHz、日本電子(株)製)測定を行った。
 (4)また、樹脂シートの原料として用いた樹脂をそれぞれ硝酸によるマイクロ波分解前処理した後、ICP発光分析(Thermo Fisher Scientific iCAP6500Duo)にて、メタクリル酸中和物の金属イオンの種類と量を同定した。
 上記(1)から、メタクリル酸単位の種類と構造を同定し、その情報を基に、(2)と(3)の情報から、エチレン単位/(メタクリル酸単位とメタクリル酸中和物単位の合計)の比率を算出した。さらに(4)の情報から、エチレン単位/メタクリル酸単位/メタクリル酸中和物単位の比率を算出した。
In Examples and Comparative Examples, the resin used as a raw material for the resin sheet was dissolved in a mixed solvent of dehydrated toluene / dehydrated acetic acid (75/25 (mass ratio)), reacted at 100 ° C. for 2 hours, and then acetone /. The methacrylic acid neutralized product was converted into methacrylic acid units by reprecipitation in a mixed solvent of water (80/20 (mass ratio)). The obtained resin was sufficiently washed with water and then dried to obtain a resin.
(1) Next, the components of the polymerization units constituting the obtained resin were analyzed by thermal decomposition GC-MS.
(2) Next, the acid value of the obtained resin was measured according to JIS K0070-1992.
(3) Further, 1 H-NMR (400 MHz, manufactured by JEOL Ltd.) of the obtained resin was measured in a mixed solvent of deuterated toluene and deuterated methanol.
(4) In addition, after each of the resins used as the raw material of the resin sheet was pretreated by microwave decomposition with nitric acid, the type and amount of metal ions of the methacrylic acid neutralized product were determined by ICP emission spectrometry (Thermo Fisher Scientific iCAP6500Duo). Identified.
From the above (1), the type and structure of the methacrylic acid unit are identified, and based on the information, from the information of (2) and (3), the ethylene unit / (the total of the methacrylic acid unit and the methacrylic acid neutralized product unit). ) Was calculated. Furthermore, from the information in (4), the ratio of ethylene unit / methacrylic acid unit / methacrylic acid neutralized product unit was calculated.
[耐貫通性]
 実施例及び比較例で得られた樹脂シートから縦60mm×横60mmの試験片を切り出し、落錘式衝撃試験機(インストロン社製CEAST9350)を用い、ASTM D3763に準拠して、測定温度23℃、荷重2kg、衝突速度9m/secの条件にて試験を行い、試験片貫通の際の、ストライカ先端が試験片に接した(試験力を感知した)瞬間から貫通する(試験力がゼロに戻る)までのSSカーブの面積から貫通エネルギー(J)を算出した。
[Penetration resistance]
A test piece having a length of 60 mm and a width of 60 mm was cut out from the resin sheets obtained in Examples and Comparative Examples, and the measurement temperature was 23 ° C. using a drop weight type impact tester (CEAST9350 manufactured by Instron) in accordance with ASTM D3763. The test was conducted under the conditions of a load of 2 kg and a collision speed of 9 m / sec, and when the test piece was penetrated, it penetrated from the moment when the tip of the striker touched the test piece (sensed the test force) (the test force returned to zero). The penetration energy (J) was calculated from the area of the SS curve up to).
[貯蔵弾性率]
 実施例及び比較例で得られた樹脂シートから縦40mm×横5mmの試験片を切り出し、(株)UBM製動的粘弾性測定装置を用いて、測定温度50℃、周波数1Hzの条件で、貯蔵弾性率(E’)を測定した。測定温度50℃における貯蔵弾性率が50~300MPaの範囲である場合、高温環境下における樹脂シート(合わせガラス用中間膜)の自立性が良好となる。
[Storage modulus]
A test piece having a length of 40 mm and a width of 5 mm was cut out from the resin sheets obtained in Examples and Comparative Examples, and stored under the conditions of a measurement temperature of 50 ° C. and a frequency of 1 Hz using a dynamic viscoelasticity measuring device manufactured by UBM Co., Ltd. The elastic modulus (E') was measured. When the storage elastic modulus at the measurement temperature of 50 ° C. is in the range of 50 to 300 MPa, the self-supporting property of the resin sheet (laminated glass interlayer film) in a high temperature environment becomes good.
 また同様に、測定温度140℃、周波数1Hzの条件で、貯蔵弾性率(E’)を測定した。測定温度140℃における貯蔵弾性率が0.1~2.5MPaである場合、樹脂シート(合わせガラス用中間膜)を用いて合わせガラスを作製する際に接着加工性が良好となる。 Similarly, the storage elastic modulus (E') was measured under the conditions of a measurement temperature of 140 ° C. and a frequency of 1 Hz. When the storage elastic modulus at the measurement temperature of 140 ° C. is 0.1 to 2.5 MPa, the adhesive processability becomes good when the laminated glass is produced using the resin sheet (interlayer film for laminated glass).
[着色性]
 実施例及び比較例で得られた樹脂シートを日本電色工業(株)製の測色色差計「ZE-2000」(商品名)を用い、JIS Z8722に準拠して測定した。得られた値を元にJIS K7373に準拠して黄色度(YI)を算出した。
[Colorability]
The resin sheets obtained in Examples and Comparative Examples were measured using a colorimetric color difference meter "ZE-2000" (trade name) manufactured by Nippon Denshoku Kogyo Co., Ltd. in accordance with JIS Z8722. Based on the obtained values, the yellowness (YI) was calculated according to JIS K7373.
[トルエン/酢酸不溶分の含有量(不溶分量)]
 実施例及び比較例で得られた樹脂シート(0.1g)を脱水トルエン/脱水酢酸(75/25(質量比))の混合溶媒(9.9g)に浸漬して、マグネチックスターラーで撹拌下、60℃加熱下で5時間振とうさせたのち、ナイロンフィルターメッシュを用いて濾過し、固液分離した。膨潤体を含む固層を取り出し、質量変化がなくなるまで上記真空乾燥機を用いて0.1kPa、70℃の条件にて真空乾燥を行い、乾燥後の質量を測定し、トルエン/酢酸不溶分の質量とした。下記式(6)で表されるトルエン/酢酸不溶分の質量分率(不溶分量(質量%))を算出した。
  トルエン/酢酸不溶分の質量分率=Ma/Mc×100 (6)
 [式中、Mcは樹脂シートの質量(g)であり、Maはトルエン/酢酸不溶分の質量(g)]
[Toluene / acetic acid insoluble content (insoluble content)]
The resin sheets (0.1 g) obtained in Examples and Comparative Examples were immersed in a mixed solvent (9.9 g) of dehydrated toluene / acetic anhydride (75/25 (mass ratio)) and stirred with a magnetic stirrer. After shaking at 60 ° C. for 5 hours, the mixture was filtered using a nylon filter mesh and separated into solid and liquid. The solid layer containing the swollen material is taken out, vacuum dried using the above vacuum dryer under the conditions of 0.1 kPa and 70 ° C. until the mass change disappears, the mass after drying is measured, and the toluene / acetic acid insoluble content is measured. It was defined as mass. The mass fraction (insoluble content (mass%)) of the toluene / acetic acid insoluble matter represented by the following formula (6) was calculated.
Mass fraction of toluene / acetic acid insoluble = Ma / Mc × 100 (6)
[In the formula, Mc is the mass (g) of the resin sheet, and Ma is the mass (g) of the toluene / acetic acid insoluble matter].
[ロール巻取性]
 実施例及び比較例で得られた樹脂シートについて、オートグラフ((株)島津製作所製、AGS-5kNX)を使用して、JISK7117に準拠して3点曲げ試験を行い、変形速度1mm/minの速度でひずみ10%まで変形させた際の試験片にクラックなどの欠陥が生じなかった場合をA、試験片にクラックなどの欠陥が生じた場合をBと評価した。
[Roll take-up property]
The resin sheets obtained in Examples and Comparative Examples were subjected to a three-point bending test in accordance with JIS K7117 using Autograph (manufactured by Shimadzu Corporation, AGS-5kNX) and had a deformation rate of 1 mm / min. The case where no defects such as cracks occurred in the test piece when the test piece was deformed to a strain of 10% at a speed was evaluated as A, and the case where defects such as cracks occurred in the test piece was evaluated as B.
[透明性]
 実施例及び比較例で得られた樹脂シートを厚さ2.7mmのフロートガラス2枚に挟み、真空ラミネーター(日清紡メカトロニクス(株)製 1522N)を使用し100℃で真空ラミネーター内を1分減圧し、減圧度、温度を保持したまま30kPaで5分プレスして、仮接着体を得た。得られた仮接着体をオートクレーブに投入し140℃、1.2MPaで30分処理して、合わせガラスを得た。
[transparency]
The resin sheets obtained in Examples and Comparative Examples were sandwiched between two 2.7 mm thick float glasses, and the inside of the vacuum laminator was depressurized for 1 minute at 100 ° C. using a vacuum laminator (1522N manufactured by Nisshinbo Mechatronics Co., Ltd.). A temporary adhesive was obtained by pressing at 30 kPa for 5 minutes while maintaining the degree of reduced pressure and temperature. The obtained temporary adhesive was put into an autoclave and treated at 140 ° C. and 1.2 MPa for 30 minutes to obtain a laminated glass.
 上述の方法にて得られた合わせガラスを140℃まで加熱したのち、0.1℃/分の速度で23℃まで徐冷した。徐冷操作後の合わせガラスのヘーズをヘーズメーターHZ-1(スガ試験機(株)製)を用いてJIS K7136:2000に準拠して測定した。 The laminated glass obtained by the above method was heated to 140 ° C. and then slowly cooled to 23 ° C. at a rate of 0.1 ° C./min. The haze of the laminated glass after the slow cooling operation was measured using a haze meter HZ-1 (manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7136: 2000.
[膜厚の測定]
 原料シートの厚みは、デジタルマイクロゲージを用いて測定した。
[Measurement of film thickness]
The thickness of the raw material sheet was measured using a digital microgauge.
[原料として用いた樹脂]
 実施例及び比較例で得られた樹脂シートの原料として用いた樹脂(IO1~IO9)は、メタクリル酸単位またはアクリル酸単位(カルボン酸単位)、メタクリル酸中和物単位またはアクリル酸中和物単位(カルボン酸中和物単位)、及びエチレン単位を有するアイオノマーであり、そのカルボン酸種、含有量及び該中和物単位の金属種を表1に示す。
[Resin used as a raw material]
The resins (IO1 to IO9) used as raw materials for the resin sheets obtained in Examples and Comparative Examples are methacrylic acid unit or acrylic acid unit (carboxylic acid unit), methacrylic acid neutralized product unit or acrylic acid neutralized product unit. (Carboxylic acid neutralized product unit) and an ionomer having an ethylene unit, and the carboxylic acid species, the content thereof, and the metal species of the neutralized product unit are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 表1に示すIO1(「ハイミラン1707」、三井・ダウ・ポリケミカル社製)50gをラボプラストミル((株)東洋精機製作所製)により、200℃、100rpmで3分間溶融混練を行うことで溶融混練物を得た。得られた溶融混練物を200℃加熱下、50kgf/cmの圧力にて5分間圧縮成形し、厚さ0.8mmの原料シートを得た。得られた原料シートを移動可能なカートに設置された支持材上に固定し、電子線照射装置(RDI社製ダイナミトロン型電子加速器)を用い、加速電圧2000kV、電流20mAの条件にて、合計の照射線量が200kGyとなるように、シート面と垂直方向より電子線を照射した。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。実施例1の態様は、式(1)~(5)の関係式を満たす。
[Example 1]
50 g of IO1 (“Himilan 1707”, manufactured by Mitsui Dow Polychemical Co., Ltd.) shown in Table 1 is melted by melt-kneading at 200 ° C. and 100 rpm for 3 minutes using a lab plast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.). Obtained a kneaded product. The obtained melt-kneaded product was compression-molded at a pressure of 50 kgf / cm 2 for 5 minutes under heating at 200 ° C. to obtain a raw material sheet having a thickness of 0.8 mm. The obtained raw material sheet is fixed on a support material installed in a movable cart, and a total is used under the conditions of an acceleration voltage of 2000 kV and a current of 20 mA using an electron beam irradiation device (Dyamitron type electron accelerator manufactured by RDI). The electron beam was irradiated from the direction perpendicular to the sheet surface so that the irradiation dose was 200 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of the first embodiment satisfies the relational expression of the formulas (1) to (5).
[実施例2]
 電子線の照射線量を120kGyに変えたこと以外は、実施例1と同様の方法で樹脂シートを得た。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。実施例2の態様は、式(1)~(5)の関係式を満たす。
[Example 2]
A resin sheet was obtained in the same manner as in Example 1 except that the irradiation dose of the electron beam was changed to 120 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of the second embodiment satisfies the relational expression of the formulas (1) to (5).
[実施例3]
 表1に示すIO2を原料樹脂として使用し、電子線の照射線量を30kGyに変えたこと以外は、実施例1と同様の方法で樹脂シートを得た。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。実施例3の態様は、式(1)~(5)の関係式を満たす。
[Example 3]
A resin sheet was obtained in the same manner as in Example 1 except that IO2 shown in Table 1 was used as a raw material resin and the irradiation dose of the electron beam was changed to 30 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Example 3 satisfies the relational expression of the formulas (1) to (5).
[実施例4]
 表1に示すIO2を原料樹脂として使用し、シランカップリング剤として3-グリシドキシプロピルトリメトキシシラン及び3-グリシドキシプロピルジエトキシシラン0.015gを溶融混練時に加え、及び電子線の照射線量を20kGyに変えたこと以外は、実施例1と同様の方法で樹脂シートを得た。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。実施例4の態様は、式(1)~(5)の関係式を満たす。
[Example 4]
IO2 shown in Table 1 is used as a raw material resin, 0.015 g of 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyldiethoxysilane are added as a silane coupling agent at the time of melt-kneading, and irradiation with an electron beam is performed. A resin sheet was obtained in the same manner as in Example 1 except that the dose was changed to 20 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of the fourth embodiment satisfies the relational expression of the formulas (1) to (5).
[実施例5]
 紫外線吸収剤として2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製;商品名TINUVIN234)0.2gを溶融混練時に加え、及び電子線の照射線量を150kGyに変えたこと以外は、実施例1と同様の方法で樹脂シートを得た。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。実施例5の態様は、式(1)~(5)の関係式を満たす。
[Example 5]
0.2 g of 2- (2H-benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234) was added as an ultraviolet absorber during melt-kneading. A resin sheet was obtained in the same manner as in Example 1 except that the irradiation dose of the electron beam was changed to 150 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Example 5 satisfies the relational expression of the formulas (1) to (5).
[実施例6]
 表1に示すIO8を原料樹脂として使用し、電子線の照射線量を60kGyに変えたこと以外は、実施例1と同様の方法で樹脂シートを得た。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。実施例6の態様は、式(1)~(5)の関係式を満たす。
[Example 6]
A resin sheet was obtained in the same manner as in Example 1 except that IO8 shown in Table 1 was used as a raw material resin and the irradiation dose of the electron beam was changed to 60 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Example 6 satisfies the relational expression of the formulas (1) to (5).
[実施例7]
 表1に示すIO9を原料樹脂として使用し、電子線の照射線量を200kGyに変えたこと以外は、実施例1と同様の方法で樹脂シートを得た。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。実施例7の態様は、式(1)~(5)の関係式を満たす。
[Example 7]
A resin sheet was obtained in the same manner as in Example 1 except that IO9 shown in Table 1 was used as a raw material resin and the irradiation dose of the electron beam was changed to 200 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Example 7 satisfies the relational expression of the formulas (1) to (5).
[比較例1]
 表1に示すIO3(ハイミラン1601、三井・ダウ・ポリケミカル社製)を原料樹脂として用いたこと以外は、実施例1と同様の方法で樹脂シートを得た。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。比較例1の態様は、式(3)及び式(5)を満たすが、式(1)、(2)及び(4)を満たさない。
[Comparative Example 1]
A resin sheet was obtained in the same manner as in Example 1 except that IO3 (Himilan 1601, manufactured by Mitsui Dow Polychemical Co., Ltd.) shown in Table 1 was used as a raw material resin. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Comparative Example 1 satisfies the formulas (3) and (5), but does not satisfy the formulas (1), (2) and (4).
[比較例2]
 表1に示すIO4を原料樹脂として使用し、電子線の照射線量を30kGyに変えたこと以外は、実施例1と同様の方法で樹脂シートを得た。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。比較例2の態様は、式(2)及び式(5)を満たすが、式(1)及び式(4)を満たさない。
[Comparative Example 2]
A resin sheet was obtained in the same manner as in Example 1 except that IO4 shown in Table 1 was used as a raw material resin and the irradiation dose of the electron beam was changed to 30 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Comparative Example 2 satisfies the formulas (2) and (5), but does not satisfy the formulas (1) and (4).
[比較例3]
 表1に示すIO5を原料樹脂として用いたこと以外は、実施例1と同様の方法で樹脂シートを得た。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。比較例3の態様は、式(1)~(5)の関係式を満たす。
[Comparative Example 3]
A resin sheet was obtained in the same manner as in Example 1 except that IO5 shown in Table 1 was used as the raw material resin. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Comparative Example 3 satisfies the relational expression of the formulas (1) to (5).
[比較例4]
 電子線の照射線量を1000kGyに変えたこと以外は、実施例1と同様の方法で樹脂シートを得た。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。比較例4の態様は、式(1)及び式(4)を満たすが、式(2)及び式(5)を満たさない。
[Comparative Example 4]
A resin sheet was obtained in the same manner as in Example 1 except that the irradiation dose of the electron beam was changed to 1000 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Comparative Example 4 satisfies the formulas (1) and (4), but does not satisfy the formulas (2) and (5).
[比較例5]
 表1に示すIO6を原料樹脂として使用し、得られる樹脂シートの厚さを3.0mmにし、電子線の加速電圧を500kV及び照射線量を120kGyに変えたこと以外は、実施例1と同様の方法で樹脂シートを得た。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。比較例5の態様は、式(1)~(5)の関係式を満たす。
[Comparative Example 5]
The same as in Example 1 except that IO6 shown in Table 1 was used as the raw material resin, the thickness of the obtained resin sheet was 3.0 mm, the acceleration voltage of the electron beam was changed to 500 kV, and the irradiation dose was changed to 120 kGy. A resin sheet was obtained by the method. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Comparative Example 5 satisfies the relational expression of the formulas (1) to (5).
[比較例6]
 表1に示すIO7(ハイミラン1650、三井・ダウ・ポリケミカル社製)を原料樹脂として使用し、得られる樹脂シートの厚さを0.1mmにし、電子線の加速電圧を150kV及び照射線量を120kGyに変えたこと以外は、実施例1と同様の方法で樹脂シートを得た。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。比較例6の態様は、式(2)を満たさないが、式(1)及び式(3)~(5)を満たす。
[Comparative Example 6]
IO7 (Himilan 1650, manufactured by Mitsui Dow Polychemical Co., Ltd.) shown in Table 1 is used as a raw material resin, the thickness of the obtained resin sheet is 0.1 mm, the acceleration voltage of the electron beam is 150 kV, and the irradiation dose is 120 kGy. A resin sheet was obtained in the same manner as in Example 1 except that the resin sheet was changed to. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Comparative Example 6 does not satisfy the formula (2), but satisfies the formulas (1) and (3) to (5).
[比較例7]
 電子線の加速電圧を200kV及び照射線量を180kGyに変えたこと以外は、実施例1と同様の方法で樹脂シートを得た。得られた樹脂シートを分析し特性を評価した。得られた樹脂シートの膜厚は原料シートの膜厚と同じであった。比較例6の態様は、式(2)及び式(3)を満たさないが、式(1)、式(4)及び式(5)を満たす。
[Comparative Example 7]
A resin sheet was obtained in the same manner as in Example 1 except that the acceleration voltage of the electron beam was changed to 200 kV and the irradiation dose was changed to 180 kGy. The obtained resin sheet was analyzed and its characteristics were evaluated. The film thickness of the obtained resin sheet was the same as the film thickness of the raw material sheet. The aspect of Comparative Example 6 does not satisfy the formulas (2) and (3), but satisfies the formulas (1), (4) and (5).
 実施例1~7及び比較例1~7で得られた樹脂シートの耐貫通性、貯蔵弾性率、着色性、トルエン/酢酸不溶分の含有量(不溶分量)、ロール巻取性、及び合わせガラスの透明性の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Penetration resistance, storage elastic modulus, colorability, toluene / acetic acid insoluble content (insoluble content), roll winding property, and laminated glass of the resin sheets obtained in Examples 1 to 7 and Comparative Examples 1 to 7. Table 2 shows the evaluation results of the transparency of.
Figure JPOXMLDOC01-appb-T000002
 表2に示される通り、実施例1~7で得られた樹脂シートは、貫通エネルギー(J)が高く、50℃における貯蔵弾性率が50~300MPaの範囲であり、140℃における貯蔵弾性率が0.1~2.5MPaの範囲であり、YIが低く、ロール巻取り性の評価結果がAであり、かつ合わせガラスの徐冷ヘーズが低いことが確認された。これに対して、比較例1~7で得られた樹脂シートは、貫通エネルギー(J)、50℃における貯蔵弾性率、140℃における貯蔵弾性率及び徐冷ヘーズのうち、少なくとも1つ以上において不良な結果となった。比較例5ではさらにYI及びロール巻取り性も不良であった。 As shown in Table 2, the resin sheets obtained in Examples 1 to 7 have a high penetration energy (J), a storage elastic modulus in the range of 50 to 300 MPa at 50 ° C., and a storage elastic modulus at 140 ° C. It was confirmed that the range was 0.1 to 2.5 MPa, the YI was low, the roll take-up property evaluation result was A, and the slow cooling haze of the laminated glass was low. On the other hand, the resin sheets obtained in Comparative Examples 1 to 7 were defective in at least one of the penetration energy (J), the storage elastic modulus at 50 ° C., the storage elastic modulus at 140 ° C., and the slow cooling haze. The result was In Comparative Example 5, YI and roll take-up property were also poor.
 従って、実施例1~7で得られた樹脂シートは、透明性、強度、高温環境下での自立性、合わせガラス作製時の接着加工性及びロール巻取り性に優れ、かつ低着色性であることがわかった。 Therefore, the resin sheets obtained in Examples 1 to 7 are excellent in transparency, strength, independence in a high temperature environment, adhesive processability at the time of producing laminated glass, and roll winding property, and have low coloring property. I understood it.

Claims (11)

  1.  樹脂を構成する全単量体単位を基準にして2.0~9.0モル%のカルボン酸単位、1.0~3.0モル%のカルボン酸中和物単位、及びエチレン単位を含有する樹脂を含んでなり、厚み0.2mm以上3mm未満であり、かつトルエン/酢酸(質量比)=75/25の混合溶媒における不溶分量が5~90質量%である、樹脂シート。 Contains 2.0 to 9.0 mol% of carboxylic acid units, 1.0 to 3.0 mol% of carboxylic acid neutralized units, and ethylene units based on all the monomer units constituting the resin. A resin sheet containing a resin, having a thickness of 0.2 mm or more and less than 3 mm, and having an insoluble content of 5 to 90% by mass in a mixed solvent of toluene / acetic acid (mass ratio) = 75/25.
  2.  50℃での貯蔵弾性率が50~300MPaであり、かつ140℃での貯蔵弾性率が0.1~2.5MPaである、請求項1に記載の樹脂シート。 The resin sheet according to claim 1, wherein the storage elastic modulus at 50 ° C. is 50 to 300 MPa, and the storage elastic modulus at 140 ° C. is 0.1 to 2.5 MPa.
  3.  樹脂シートのカルボン酸単位の含有量をa(モル%)、不溶分量をb(質量%)とした場合に、
    下記式(1)及び(2):
     2≦a≦9      (1)
    -7.8×a+96≦b≦90   (2)
    を満たす、請求項1又は2に記載の樹脂シート。
    When the content of the carboxylic acid unit of the resin sheet is a (mol%) and the insoluble content is b (mass%),
    The following equations (1) and (2):
    2 ≦ a ≦ 9 (1)
    -7.8 × a + 96 ≦ b ≦ 90 (2)
    The resin sheet according to claim 1 or 2, which satisfies the above conditions.
  4.  紫外線吸収剤及びシランカップリング剤からなる群から選択される少なくとも1つを含む、請求項1~3のいずれかに記載の樹脂シート。 The resin sheet according to any one of claims 1 to 3, which contains at least one selected from the group consisting of an ultraviolet absorber and a silane coupling agent.
  5.  前記樹脂の含有量が、前記樹脂シートの質量に対して、95質量%以上である、請求項1~4のいずれかに記載の樹脂シート。 The resin sheet according to any one of claims 1 to 4, wherein the content of the resin is 95% by mass or more with respect to the mass of the resin sheet.
  6.  請求項1~5のいずれかに記載の樹脂シートからなる合わせガラス用中間膜。 An interlayer film for laminated glass made of the resin sheet according to any one of claims 1 to 5.
  7.  2つのガラス板と、該2つのガラス板の間に配置された請求項6に記載の合わせガラス用中間膜とを有する、合わせガラス。 A laminated glass having two glass plates and an interlayer film for laminated glass according to claim 6, which is arranged between the two glass plates.
  8.  前記合わせガラスを140℃まで加熱後、0.1℃/分の速度で23℃に徐冷した後のヘーズが5.0%以下である、請求項7に記載の合わせガラス。 The laminated glass according to claim 7, wherein the laminated glass has a haze of 5.0% or less after heating to 140 ° C. and then slowly cooling to 23 ° C. at a rate of 0.1 ° C./min.
  9.  カルボン酸単位、カルボン酸中和物単位、及びエチレン単位を含有する樹脂を含んでなる原料シートに、加速電圧が200~5000kVかつ照射線量が10~500kGyの電子線を照射する工程を含む、請求項1~5のいずれかに記載の樹脂シートの製造方法。 A claim comprising a step of irradiating a raw material sheet containing a resin containing a carboxylic acid unit, a carboxylic acid neutralized product unit, and an ethylene unit with an electron beam having an acceleration voltage of 200 to 5000 kV and an irradiation dose of 10 to 500 kGy. Item 8. The method for producing a resin sheet according to any one of Items 1 to 5.
  10.  原料シートの厚みをt(mm)、前記加速電圧をV(kV)、及び原料シートの比重をρ(g/m)とした場合に、
    下記式(3):
     33.4×V5/3÷ρ≧t   (3)
    を満たす、請求項9に記載の方法。
    When the thickness of the raw material sheet is t (mm), the acceleration voltage is V (kV), and the specific gravity of the raw material sheet is ρ (g / m 3 ).
    The following formula (3):
    33.4 × V 5/3 ÷ ρ ≧ t (3)
    9. The method of claim 9.
  11.  原料シートのカルボン酸単位の含有量をa’(モル%)、及び前記照射線量をc(kGy)とした場合に、
    下記式(4)及び(5):
     2≦a’≦9      (4)
     -15×a’+115≦c≦500   (5)
    を満たす、請求項9又は10に記載の方法。
    When the content of the carboxylic acid unit of the raw material sheet is a'(mol%) and the irradiation dose is c (kGy),
    The following equations (4) and (5):
    2 ≤ a'≤ 9 (4)
    -15 × a'+ 115 ≦ c ≦ 500 (5)
    The method according to claim 9 or 10, which satisfies the above conditions.
PCT/JP2020/039442 2019-10-21 2020-10-20 Resin sheet and method for producing same WO2021079886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-192194 2019-10-21
JP2019192194A JP2022172416A (en) 2019-10-21 2019-10-21 Resin sheet, and method of producing the same

Publications (1)

Publication Number Publication Date
WO2021079886A1 true WO2021079886A1 (en) 2021-04-29

Family

ID=75620574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039442 WO2021079886A1 (en) 2019-10-21 2020-10-20 Resin sheet and method for producing same

Country Status (2)

Country Link
JP (1) JP2022172416A (en)
WO (1) WO2021079886A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154447B1 (en) 2021-12-13 2022-10-17 積水化学工業株式会社 Interlayer film for laminated glass and laminated glass
WO2023112889A1 (en) * 2021-12-13 2023-06-22 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308747A (en) * 1991-04-05 1992-10-30 Kao Corp Packed composition
JPH09314657A (en) * 1996-05-30 1997-12-09 Sekisui Chem Co Ltd Production of polyethylene molded object
JP2000008276A (en) * 1998-06-19 2000-01-11 Hiraoka & Co Ltd Flame retardant olefinic resin laminate
WO2009125685A1 (en) * 2008-04-09 2009-10-15 旭化成イーマテリアルズ株式会社 Sealing resin sheet
JP2011502942A (en) * 2007-11-16 2011-01-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Manufacturing method of glass laminate
JP2012241169A (en) * 2011-05-24 2012-12-10 Bridgestone Corp Ethylene-polar monomer copolymer sheet, and intermediate film for glass laminate, glass laminate, solar cell sealing film and solar cell using the same
JP2013028486A (en) * 2011-07-28 2013-02-07 Achilles Corp Intermediate film for laminated glass
JP2014151442A (en) * 2013-02-04 2014-08-25 Du Pont Mitsui Polychem Co Ltd Skin laminated film
JP2016188158A (en) * 2015-03-30 2016-11-04 三井・デュポンポリケミカル株式会社 Laminate and laminated glass
JP2019147703A (en) * 2018-02-27 2019-09-05 積水化学工業株式会社 Interlayer for laminated glass and method for producing laminated glass

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308747A (en) * 1991-04-05 1992-10-30 Kao Corp Packed composition
JPH09314657A (en) * 1996-05-30 1997-12-09 Sekisui Chem Co Ltd Production of polyethylene molded object
JP2000008276A (en) * 1998-06-19 2000-01-11 Hiraoka & Co Ltd Flame retardant olefinic resin laminate
JP2011502942A (en) * 2007-11-16 2011-01-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Manufacturing method of glass laminate
WO2009125685A1 (en) * 2008-04-09 2009-10-15 旭化成イーマテリアルズ株式会社 Sealing resin sheet
JP2012241169A (en) * 2011-05-24 2012-12-10 Bridgestone Corp Ethylene-polar monomer copolymer sheet, and intermediate film for glass laminate, glass laminate, solar cell sealing film and solar cell using the same
JP2013028486A (en) * 2011-07-28 2013-02-07 Achilles Corp Intermediate film for laminated glass
JP2014151442A (en) * 2013-02-04 2014-08-25 Du Pont Mitsui Polychem Co Ltd Skin laminated film
JP2016188158A (en) * 2015-03-30 2016-11-04 三井・デュポンポリケミカル株式会社 Laminate and laminated glass
JP2019147703A (en) * 2018-02-27 2019-09-05 積水化学工業株式会社 Interlayer for laminated glass and method for producing laminated glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154447B1 (en) 2021-12-13 2022-10-17 積水化学工業株式会社 Interlayer film for laminated glass and laminated glass
WO2023112889A1 (en) * 2021-12-13 2023-06-22 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass
JP2023087617A (en) * 2021-12-13 2023-06-23 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass

Also Published As

Publication number Publication date
JP2022172416A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2020241515A1 (en) Ionomer, resin sheet, and laminated glass
JP6913264B1 (en) Ionomer resin, resin sheet and laminated glass
WO2021079886A1 (en) Resin sheet and method for producing same
TWI602871B (en) Molded article
CN110352212B (en) Biaxially stretched acrylic resin film and method for producing same
WO2021124950A1 (en) Method for producing ionomer resin
JP7124246B1 (en) ionomer resin
JP7186329B2 (en) Ionomer resin, resin sheet and laminated glass
EP4317209A1 (en) Methacrylic copolymer, methacrylic resin composition and method for producing same, and molded body
KR20180129675A (en) Resin laminate
JP6649177B2 (en) Methacrylic acid ester copolymer and molded article
WO2022270540A1 (en) Resin sheet having layer that contains ionomer resin composition, and laminated glass
JP2009255394A (en) Surface-protecting transparent laminate
WO2023008485A1 (en) Ionomer resin particulate production method
JP2018053210A (en) Multi-layered body and manufacturing method thereof, and composite body and method for manufacturing the same
JP6908629B2 (en) Methacryl copolymer and molded article
WO2022270545A1 (en) Ionomer resin composition, resin sheet, and laminated glass
JP5154147B2 (en) Ring-containing (meth) acrylic polymer and method for producing the same
EP4140738A1 (en) Laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP