WO2021229886A1 - Reception device and reception device control method - Google Patents

Reception device and reception device control method Download PDF

Info

Publication number
WO2021229886A1
WO2021229886A1 PCT/JP2021/006572 JP2021006572W WO2021229886A1 WO 2021229886 A1 WO2021229886 A1 WO 2021229886A1 JP 2021006572 W JP2021006572 W JP 2021006572W WO 2021229886 A1 WO2021229886 A1 WO 2021229886A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
master
slave
processing unit
satellite
Prior art date
Application number
PCT/JP2021/006572
Other languages
French (fr)
Japanese (ja)
Inventor
哲宏 二見
信雄 柴田
勝之 田中
和邦 鷹觜
勝美 高岡
健史 長野
明弘 大杉
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2022522525A priority Critical patent/JPWO2021229886A1/ja
Publication of WO2021229886A1 publication Critical patent/WO2021229886A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain

Definitions

  • This technology is related to the receiving device. More specifically, the present invention relates to a receiving device for measuring the current position and a control method for the receiving device.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the QZSS Quadrati-Zenith Satellite System
  • L2C L5, L6 bands
  • L5C L5, L6 bands
  • the positioning accuracy is improved and the positioning time is shortened by using the L1 band positioning signal and the L2 and L5 band positioning signals in combination for the positioning calculation.
  • the centimeter-class positioning reinforcement information in the L6 band it is possible to realize highly accurate centimeter-class positioning.
  • RF Radio Frequency
  • digital signal processing circuits since there is only one receiving circuit, reception cannot be continued when the receiving circuit fails. Therefore, when operating the system in a harsh environment, performance such as failure tolerance may be insufficient.
  • the receiving circuit is made redundant in order to improve the failure tolerance and the like, the power consumption may increase. As described above, in the above-mentioned system, it is difficult to improve the performance while suppressing the increase in power consumption.
  • This technology was created in view of such a situation, and aims to improve the performance of the receiving device that receives the signal from the satellite while suppressing the increase in power consumption.
  • the present technology has been made to solve the above-mentioned problems, and the first aspect thereof is a master that converts a high frequency signal having a higher frequency than a predetermined intermediate frequency signal into the intermediate frequency signal and outputs the signal.
  • the side receiving circuit, the master side satellite processing unit that decodes the signal from the predetermined satellite based on the intermediate frequency signal and outputs it as the master side observation value, and the signal from the predetermined satellite based on the intermediate frequency signal.
  • Master-side power supply control that shuts off the power supply of either the slave-side satellite processing unit that decodes and outputs it as the slave-side observation value, and the master-side reception circuit or the master-side satellite processing unit when certain conditions are met.
  • It is a receiving device including a unit and a positioning unit that generates position information based on at least one of the master-side observation value and the slave-side observation value. This has the effect of optimizing the balance between power consumption and performance.
  • the slave side receiving circuit that converts the high frequency signal into the intermediate frequency signal and outputs the signal to the slave side satellite processing unit, and the slave side if the predetermined condition is satisfied.
  • the slave-side power supply control unit that turns on the power to the receiving circuit is further provided, and the master-side power supply control unit controls the power supply of the master-side receiving circuit when the predetermined conditions are satisfied, and the intermediate frequency.
  • the output of the signal may be stopped, and the master-side receiving circuit may output the intermediate frequency signal to the slave-side satellite processing unit via the slave-side receiving circuit.
  • the power supply of the slave-side receiving circuit is cut off, which has the effect of reducing power consumption.
  • the master-side receiving circuit may output the digital intermediate frequency signal to the master-side satellite processing unit and the slave-side satellite processing unit. This has the effect of eliminating the need for AD (Analog to Digital) conversion on the slave side.
  • AD Analog to Digital
  • the master side receiving circuit may output the analog intermediate frequency signal to the slave side receiving circuit. This has the effect of reducing the number of wirings and terminals of the interface.
  • the master-side receiving circuit further transmits a predetermined clock signal to the slave-side receiving circuit, and the master-side receiving circuit and the slave-side receiving circuit synchronize with the clock signal.
  • the AD conversion process for the intermediate frequency signal may be further performed. This has the effect of eliminating the need for clock generation on the slave side.
  • the slave side receiving circuit may further output the intermediate frequency signal to the master side receiving circuit. This has the effect that the intermediate frequency signal on the slave side is also used on the slave side.
  • the master side satellite processing unit and the slave side satellite processing unit may decode at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave. This has the effect that two wavelengths are used for positioning.
  • the master side satellite processing unit decodes at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave, and the slave side satellite processing unit has the high frequency. At least one of the L1 signal, the L5 signal, and the L2 signal transmitted using the signal as a carrier wave may be decoded. This has the effect that three wavelengths are used for positioning.
  • the master-side satellite processing unit decodes the master-side baseband signal corresponding to a predetermined frequency band, and the slave-side satellite processing unit corresponds to a frequency band different from the above-mentioned frequency band.
  • the slave side baseband signal may be decoded. This has the effect of making it possible to deal with L2 signals and L6 signals.
  • the master side digital front end that converts the intermediate frequency signal into the master side baseband signal and generates the master side control signal based on the intermediate frequency signal, and the intermediate frequency signal. Select either the slave side digital front end that converts to the slave side baseband signal and generates the slave side control signal based on the intermediate frequency signal, or the master side control signal or the slave side control signal.
  • the master-side receiving circuit includes a mixer that converts the high-frequency signal into the intermediate-frequency signal, and an automatic gain that controls the gain with respect to the intermediate-frequency signal according to the control signal. It may be provided with a controller. This has the effect that the automatic gain control circuit is controlled by the master or slave.
  • the master side satellite processing unit decodes at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave, and the slave side satellite processing unit has the high frequency. Either the L2 signal or the L6 signal transmitted using the signal as a carrier wave may be decoded. This has the effect of making it possible to deal with L2 signals and L6 signals.
  • the master-side satellite processing unit decodes at least one of the L1 signal, the L2 signal, and the L5 signal transmitted using the high-frequency signal as a carrier wave, and the slave-side satellite processing unit obtains the slave-side satellite processing unit.
  • the L6 signal transmitted using the high frequency signal as a carrier wave may be decoded. This has the effect that three wavelengths are used for positioning.
  • the master side receiving circuit, the master side satellite processing unit, and the master side power supply control unit are provided on a predetermined master side chip, and the slave side satellite processing unit unit is a predetermined unit. It may be provided on the slave side chip. This has the effect of exchanging intermediate frequency signals between the chips.
  • the positioning unit may be provided on the master side chip. This has the effect of performing positioning within the chip.
  • the positioning unit may be provided outside the master side chip and the slave side chip. This has the effect of positioning outside the chip.
  • FIG. 1 is an overall view showing a configuration example of a positioning system according to the first embodiment of the present technology.
  • This positioning system is a system for acquiring a current position using a signal from a satellite, and includes a satellite 100 and a receiving device 200.
  • the receiving device 200 receives a signal from the satellite 100 and acquires the current position of the receiving device 200.
  • the receiving device 200 includes an antenna 201, a surface acoustic wave filter 210, a crystal oscillator 220, and GNSS chips 230 and 240.
  • the antenna 201 receives a high frequency (RF: Radio Frequency) signal transmitted from the satellite 100 as an RFIN.
  • RF Radio Frequency
  • This RF signal RFIN is supplied to both the GNSS chips 230 and 240 via the elastic surface wave filter 210.
  • the elastic surface wave filter 210 transmits a predetermined frequency band among the RF signals RFIN from the antenna.
  • a predetermined frequency band for example, L1 band and L5 band
  • the L1 band is a frequency band having a predetermined bandwidth ( ⁇ 12.0 MHz, etc.) having a center frequency of 1575.42 MHz (MHz).
  • the L5 band is a frequency band having a predetermined bandwidth ( ⁇ 12.45 MHz, etc.) having a center frequency of 1176.45 MHz (MHz).
  • the signal transmitted by the satellite 100 after modulating the carrier wave in the L1 band is called an L1 signal
  • the signal transmitted by the satellite 100 after modulating the carrier wave in the L5 band is called an L5 signal.
  • the crystal oscillator 220 uses the piezoelectric phenomenon of quartz to generate a clock signal CLK TCXO having a constant frequency.
  • the crystal oscillator 220 supplies the generated clock signal CLK TCXO to the GNSS chips 230 and 240.
  • the GNSS chip 230 generates at least one of position information, time information, and velocity information based on the RF signal RFIN from the surface acoustic wave filter 210 and the satellite observation value from the GNSS chip 240.
  • the position information is information indicating the current position of the receiving device 200
  • the time information is information indicating the current time. Signals from four or more satellites 100 are required to generate position information.
  • the speed information is information indicating the moving speed of the receiving device 200.
  • the GNSS chip 230 may generate all of the position information, the time information and the speed information, or may generate a part of them (such as only the position information). Further, the GNSS chip 230 converts an RF signal into an intermediate frequency (IF: Intermediate Frequency) signal, and outputs the IF signal to the GNSS chip 240.
  • IF Intermediate Frequency
  • the GNSS chip 240 obtains satellite observation values based on the IF signal from the GNSS chip 230.
  • the satellite observation value is information obtained by decoding a signal from a satellite such as the satellite 100, and includes navigation data, correction data, and the like.
  • the GNSS chip 240 supplies satellite observations to the GNSS chip 230.
  • the GNSS chip 230 supplies a synchronization control signal to the GNSS chip 240, and operates the GNSS chip 240 in synchronization with the GNSS chip 230. Therefore, in the receiving device 200, the GNSS chip 230 functions as a master for controlling the slave, and the GNSS chip 240 functions as a slave.
  • the receiving device 200 is provided with only one GNSS chip 240 on the slave side, the number of chips on the slave side is not limited to one, and two or more chips can be provided as needed.
  • FIG. 2 is a block diagram showing a configuration example of GNSS chips 230 and 240 according to the first embodiment of the present technology.
  • the GNSS chip 230 includes a master side interface control unit 231, a master side power supply control unit 232, a master side RF circuit 300, a master side digital signal processing unit 400, and serial interfaces 233 and 234.
  • the GNSS chip 230 is an example of the master-side chip described in the claims.
  • the GNSS chip 240 includes a slave side interface control unit 241, a slave side power supply control unit 242, a slave side RF circuit 500, a slave side digital signal processing unit 600, and a serial interface 243.
  • the GNSS chip 240 is an example of the slave-side chip described in the claims.
  • the master side interface control unit 231 controls the selector in the master side RF circuit 300.
  • the switching destination of the selector will be described later.
  • the master side power supply control unit 232 controls the power supply of the master side RF circuit 300 and the master side digital signal processing unit 400.
  • the master-side RF circuit 300 operates in synchronization with the clock signal CLK TCXO from the crystal oscillator 220, and converts the RF signal from the surface acoustic wave filter 210 into an analog IF signal AIF.
  • the master side RF circuit 300 outputs the IF signal AIF to the slave side RF circuit 500.
  • the GNSS chip 230 is provided with a terminal for outputting this IF signal AIF.
  • the master side RF circuit 300 performs AD conversion processing on the IF signal AIF, generates a digital IF signal DIF, and outputs the digital IF signal DIF to the master side digital signal processing unit 400.
  • the master-side RF circuit 300 generates a clock signal CLK DSP for operating the master-side digital signal processing unit 400 from the clock signal CLK TCXO, and outputs the clock signal CLK DSP to the master-side digital signal processing unit 400.
  • the master-side digital signal processing unit 400 operates in synchronization with the clock signal CLK DSP , processes the digital IF signal DIF, and generates position information and the like.
  • the master-side digital signal processing unit 400 converts the IF signal DIF into a baseband signal, and acquires satellite observation values (navigation data, etc.) based on the baseband signal. Further, the master side digital signal processing unit 400 acquires satellite observation values on the slave side via the serial interface 234, and generates position information and the like using the satellite observation values on the master side and the slave side. Then, the master side digital signal processing unit 400 outputs position information and the like to the outside of the GNSS chip 230 via the serial interface 233.
  • the slave side interface control unit 241 controls the selector in the slave side RF circuit 500.
  • the switching destination of the selector will be described later.
  • the slave side power supply control unit 242 controls the power supply of the slave side RF circuit 500 and the slave side digital signal processing unit 600.
  • the slave-side RF circuit 500 operates in synchronization with the clock signal CLK TCXO from the crystal oscillator 220, and converts the RF signal from the surface acoustic wave filter 210 into an analog IF signal AIF.
  • the slave side RF circuit 500 performs AD conversion processing on the master side or slave side IF signal AIF, generates a digital IF signal DIF, and outputs the digital IF signal DIF to the slave side digital signal processing unit 600.
  • the slave-side RF circuit 500 generates a clock signal CLK DSP for the slave-side digital signal processing unit 600 to operate from the clock signal CLK TCXO, and outputs the clock signal CLK DSP to the slave-side digital signal processing unit 600.
  • the slave-side digital signal processing unit 600 operates in synchronization with the clock signal CLK DSP , processes the digital IF signal DIF, and generates satellite observation values.
  • the slave side digital signal processing unit 600 outputs the satellite observation value on the slave side to the GNSS chip 230 via the serial interface 243.
  • the functions of the digital signal processing unit on the master side and slave side can also be realized by FPGA (Field-Programmable Gate Array) or DSP (Digital Signal Processor). Further, a common circuit such as a processor and a memory on the master side and the slave side may be provided outside the master and the slave and shared between the master and the slave. The same applies to other embodiments described later.
  • FIG. 3 is a block diagram showing a configuration example of the master-side RF circuit 300 according to the first embodiment of the present technology.
  • the master-side RF circuit 300 includes low-noise amplifiers 311 and 321, local phase-locked loops 312 and 322, mixers 313 and 323, low-pass filters 314 and 324, and automatic gain control circuits 315 and 325. Further, the master side RF circuit 300 further includes a phase synchronization circuit 330, a switching unit 340, and ADCs (Analog to Digital Converter) 351 and 352. Selectors 341 and 342 are arranged in the switching unit 340.
  • the low noise amplifier 311 amplifies the RF signal RFIN from the elastic surface wave filter 210.
  • the low noise amplifier 311 supplies the amplified RF signal RFIN to the mixer 313.
  • Local phase synchronization circuit 312 a local signal LO L1 of the local frequency corresponding to the L1 band, and generates a clock signal CLK TCXO.
  • the local phase-locked loop 312 supplies the local signal LO L1 to the mixer 313.
  • Mixer 313 mixes the RF signal RFIN and the local signal LO L1 from the low noise amplifier 311, and generates an IF signal AIF L1 of low analog frequency than the RF signal.
  • the mixer 313 supplies the IF signal AIF L1 to the low-pass filter 314.
  • the low-pass filter 314 passes a frequency component having a predetermined cutoff frequency or less in the IF signal AIF L1 and supplies it to the automatic gain control circuit 315.
  • the automatic gain control circuit 315 controls the gain for the input IF signal AIF L1 according to the level of the signal.
  • the automatic gain control circuit 315 outputs a constant level IF signal AIF L1 to the GNSS chip 240 and the selector 341.
  • the selector 341 has two input terminals and one output terminal. One of the two input terminals is connected to the automatic gain control circuit 315, and the output terminal is connected to the ADC 351. Further, the selector 341 switches the input destination according to the control of the interface control unit 231 on the master side.
  • the phase-locked loop 330 generates a clock signal CLK DSP and a clock signal CLK ADC for operating the ADCs 351 and 352 from the clock signal CLK TCXO.
  • the phase-locked loop 330 supplies the clock signal CLK DSP to the master side digital signal processing unit 400, and supplies the clock signal CLK ADC to the ADCs 351 and 352.
  • the ADC 351 performs AD conversion processing for the IF signal AIF L1 from the selector 341 in synchronization with the clock signal CLK ADC.
  • the ADC 351 outputs the processed digital IF signal as DIF L1 to the master side digital signal processing unit 400.
  • the low noise amplifier 321 amplifies the RF signal RFIN.
  • the low noise amplifier 321 supplies the amplified RF signal RFIN to the mixer 323.
  • the local phase-locked loop 322 generates a local signal LO L5 having a local frequency corresponding to the L5 band from the clock signal CLK TCXO.
  • the local phase-locked loop 312 supplies the local signal LO L5 to the mixer 323.
  • Mixer 323 mixes the RF signal RFIN and the local signal LO L5 from the low noise amplifier 321, and generates an analog IF signal AIF L5 lower frequency than the RF signal.
  • the mixer 323 supplies the IF signal AIF L5 to the low-pass filter 324.
  • the low-pass filter 324 passes a frequency component of a predetermined cutoff frequency or less in the IF signal AIF L5 and supplies it to the automatic gain control circuit 325.
  • the automatic gain control circuit 325 controls the gain for the input IF signal AIF L5 according to the level of the signal.
  • the automatic gain control circuit 325 outputs a constant level IF signal AIF L5 to the GNSS chip 240 and the selector 342.
  • the selector 342 has two input terminals and one output terminal. One of the two input terminals is connected to the automatic gain control circuit 325, and the output terminal is connected to the ADC 352. Further, the selector 342 switches the input destination according to the control of the master side interface control unit 231.
  • the ADC 352 performs AD conversion processing for the IF signal AIF L5 from the selector 342 in synchronization with the clock signal CLK ADC.
  • the ADC 352 outputs the processed digital IF signal as DIF L5 to the master side digital signal processing unit 400.
  • the master side interface control unit 231 sets both input destinations of the selectors 341 and 342 to the automatic gain control circuits 315 and 325 in the initial state. Further, the master side power supply control unit 232 turns on all the power of the master side RF circuit 300 in the initial state.
  • the interface control unit 231 on the master side switches the input destinations of both the selectors 341 and 342. As a result, the path between the automatic gain control circuits 315 and 325 and the ADCs 351 and 352 is opened. Further, the master side power supply control unit 232 cuts off the power supply of the master side RF circuit 300 when a predetermined condition is satisfied. As a predetermined condition, for example, a failure of the master side RF circuit 300 can be considered.
  • FIG. 4 is a block diagram showing a configuration example of the slave-side RF circuit 500 according to the first embodiment of the present technology.
  • the slave-side RF circuit 500 includes low noise amplifiers 511 and 521, local phase-locked loops 512 and 522, mixers 513 and 523, low-pass filters 514 and 524, and automatic gain control circuits 515 and 525. Further, the slave-side RF circuit 500 further includes a phase-locked loop 530, a switching unit 540, and ADCs 551 and 552. Selectors 541 and 542 are arranged in the switching unit 540.
  • each circuit in the slave side RF circuit 500 is the same as the circuit of the same name in the master side RF circuit 300.
  • the IF signal AIF L1 from the GNSS chip 230 (master) is input to one of the two input terminals of the selector 541, and the other is connected to the automatic gain control circuit 515.
  • the IF signal AIF L5 from the master is input to one of the two input terminals of the selector 542, and the other is connected to the automatic gain control circuit 525.
  • the slave side interface control unit 241 sets the input destinations of both the selectors 541 and 542 to the master side in the initial state. Further, in the initial state, the slave-side power supply control unit 242 cuts off the power supply of circuits other than the phase-locked loop 530, the switching unit 540, the ADC 551, and the ADC 552 in the slave-side RF circuit 500.
  • the gray circuit is a circuit in which the power supply is cut off. The same applies to the subsequent drawings.
  • the slave side interface control unit 241 switches the input destinations of both the selectors 541 and 542. Further, when the predetermined condition is satisfied, the slave side power supply control unit 242 turns on the power of all the circuits in the slave side RF circuit 500.
  • a predetermined condition for example, a failure of the master side RF circuit 300 can be considered.
  • FIG. 5 is a block diagram showing a configuration example of the master-side digital signal processing unit 400 according to the first embodiment of the present technology.
  • the master-side digital signal processing unit 400 includes an L1 digital front end 410 and a predetermined number of L1 satellite processing units 420. Further, the master side digital signal processing unit 400 includes an L5 digital front end 430, a predetermined number of L5 satellite processing units 440, and a positioning engine 450.
  • a predetermined satellite is assigned to each of the L1 satellite processing units 420 as a capture target. Similarly, a predetermined satellite is assigned to each of the L5 satellite processing units 440 as a capture target.
  • the L1 satellite processing unit 420 and the L5 satellite processing unit 440 are each provided with N (N is an integer).
  • the L1 digital front end 410 converts the IF signal DIF L1 into a baseband signal corresponding to the L1 band by using a down converter or a digital filter.
  • the L1 digital front end 410 supplies a baseband signal to each of the L1 satellite processing units 420.
  • the L1 satellite processing unit 420 captures and tracks the assigned satellite based on the baseband signal corresponding to the L1 band, and decodes the L1 signal from that satellite.
  • the L1 satellite processing unit 420 outputs satellite observation values (navigation data, etc.) obtained for decoding to the positioning engine 450.
  • Each of the L1 satellite processing units 420 includes a satellite acquisition unit 421 and a satellite tracking unit 422.
  • the satellite acquisition unit 421 captures the assigned satellite.
  • the satellite acquisition unit 421 inputs, for example, the exclusive OR of the assigned satellite identification information (C / A code) and the input baseband signal to the correlator, and acquires the correlation value.
  • the satellite acquisition unit 421 outputs the carrier frequency offset and the code phase having the maximum correlation value to the satellite tracking unit 422.
  • the satellite acquisition unit 421 can integrate the correlation value for a certain period of time and output the carrier frequency offset or the like that maximizes the integrated value.
  • the satellite tracking unit 422 tracks the captured satellite.
  • the satellite tracking unit 422 synchronizes the carrier wave and the code timing with the carrier wave frequency offset and the code phase as initial values, and further synchronizes the navigation data and the correction data with respect to the physical frame to reproduce the satellite time. Further, the satellite tracking unit 422 estimates the propagation time of the satellite signal from the difference between the satellite time and the time of the receiving device, and by multiplying this by the speed of light, the propagation distance between the satellite 100 and the receiving device 200 is a pseudo distance. Estimate as. Further, the satellite tracking unit 422 demodulates the signal from the captured satellite and acquires navigation data and correction data. The satellite tracking unit 422 supplies these pseudo-distance, navigation data, and correction data to the positioning engine 450 as satellite observation values.
  • the L5 digital front end 430 converts the IF signal DIF L5 into a baseband signal corresponding to the L5 band.
  • the L5 digital front end 430 supplies a baseband signal to each of the L5 satellite processing units 440.
  • the L5 satellite processing unit 440 captures and tracks the assigned satellite based on the baseband signal corresponding to the L5 band, and decodes the L5 signal from that satellite.
  • the L5 satellite processing unit 440 outputs satellite observation values (navigation data, etc.) obtained for decoding to the positioning engine 450.
  • Each of the L5 satellite processing units 440 includes a satellite acquisition unit 441 and a satellite tracking unit 442. These functions are the same as those of the satellite acquisition unit 421 and the satellite tracking unit 422.
  • the positioning engine 450 generates position information and the like based on the satellite observation values on the master side from the L1 satellite processing unit 420 and the L5 satellite processing unit 440 and the satellite observation values on the slave side obtained via the serial interface 234. It is something to do. In positioning, the positioning engine 450 may use only the satellite observation values on the master side or may use the satellite observation values on both the master side and the slave side. Further, in positioning, both L1 band and L5 band satellite observation values are used.
  • the master side power supply control unit 232 turns on the power of all the circuits in the master side digital signal processing unit 400 in the initial state. Then, when the predetermined conditions are satisfied (in the case of failure of the master side RF circuit 300, etc.), the master side power supply control unit 232 uses the L1 digital front end 410, the L1 satellite processing unit 420, the L5 digital front end 430, and the L5 satellite. The power supply of each of the processing units 440 is cut off.
  • the master side digital signal processing unit 400 decodes both the L1 signal and the L5 signal, it is also possible to decode only one (L1 signal or the like). In this case, the power supply of the digital front end and the satellite processing unit corresponding to the one not decoded is cut off by the master side power supply control unit 232.
  • the master side digital signal processing unit 400 performs positioning using signals in GPS or QZSS (L1 signal or L5 signal), but performs positioning using signals in GNSS (Galileo, Glonass, etc.) other than GPS. You can also.
  • FIG. 6 is a block diagram showing a configuration example of the slave-side digital signal processing unit 600 according to the first embodiment of the present technology.
  • the slave-side digital signal processing unit 600 includes an L1 digital front end 610, a predetermined number of L1 satellite processing units 620, an L5 digital front end 630, and a predetermined number of L5 satellite processing units 640.
  • Each of the L1 satellite processing units 620 is provided with a satellite acquisition unit 621 and a satellite tracking unit 622
  • each of the L5 satellite processing units 640 is provided with a satellite acquisition unit 641 and a satellite tracking unit 642.
  • the circuit configuration of the slave-side digital signal processing unit 600 is the same as that of the master-side digital signal processing unit 400, except that the positioning engine 450 is not provided.
  • the L1 satellite processing unit 620 and the L5 satellite processing unit 640 on the slave side acquire satellite observation values and transmit them to the master via the serial interface 243.
  • FIG. 7 is a diagram showing an example of the state of the receiving device when switching from the master to the slave in the first embodiment of the present technology.
  • the master side RF circuit 300 down-converts the RF signal RFIN to an IF signal having a lower frequency. Then, the master-side RF circuit 300 outputs the analog IF signal AIF to the slave-side RF circuit 500, and outputs the IF signal DIF obtained by AD-converting the IF signal AIF to the master-side digital signal processing unit 400.
  • the master-side RF circuit 300 is an example of the master-side receiving circuit described in the claims.
  • the slave side RF circuit 500 AD-converts the IF signal AIF from the master and outputs it to the slave side digital signal processing unit 600.
  • the IF signal from the master is input to the slave side digital signal processing unit 600 via the slave side RF circuit 500.
  • the slave-side RF circuit 500 is an example of the slave-side receiving circuit described in the claims.
  • the L1 digital front end 410 and the L5 digital front end 430 in the master side digital signal processing unit 400 convert the IF signals DIF L1 and DIF L5 into baseband signals.
  • the L1 satellite processing unit 420 and the L5 satellite processing unit 440 decode the signal from the assigned satellite based on their baseband signals and acquire satellite observation values.
  • the positioning engine 450 generates position information and the like based on satellite observation values on at least one of the master side and the slave side.
  • the positioning engine 450 is an example of the positioning unit described in the claims.
  • the slave-side satellite processing unit (not shown) in the slave-side digital signal processing unit 600 converts the IF signal into a baseband signal. Then, the slave side satellite processing unit decodes a signal from a satellite different from the master side based on the baseband signal, acquires a satellite observation value, and outputs the satellite observation value to the master.
  • both the master and the slave observe the satellites, so if the number of observable satellites is the same, the number of receivers 200 is double that of the master alone. You can observe the satellites of.
  • the slave GNSS chip 240 can be added as needed. Therefore, assuming that the total number of master and slave chips is M (M is an integer of 2 or more), the receiving device 200 can observe M times as many satellites as in the case of only the master. can.
  • M is an integer of 2 or more
  • the receiving device 200 can observe M times as many satellites as in the case of only the master. can.
  • PPP-RTK PrecisePointPositioning-RTK
  • the slave-side power supply control unit 242 can cut off the power supply of the low-noise amplifier or mixer in the slave-side RF circuit 500. This makes it possible to suppress an increase in power consumption.
  • the master side interface control unit 231 switches the selector in the master side RF circuit 300. Further, the master side power supply control unit 232 cuts off the power supply of the master side RF circuit 300, and cuts off the power supply other than the positioning engine in the master side digital signal processing unit 400. As a result, the output of the IF signal from the power supply control unit 232 on the master side is stopped.
  • the slave side interface control unit 241 switches the selector in the slave side RF circuit 500, and the slave side power supply control unit 242 turns on the power of all the circuits of the slave side RF circuit 500. .. Therefore, even if the master side RF circuit 300 fails, the receiving device 200 can switch to the slave side RF circuit 500 and continue the positioning. As a result, the fault tolerance of the receiving device 200 is improved, and it becomes possible to operate in a harsher environment such as outer space. In other words, the performance of the receiving device 200 is improved. As described above, since the power supply of the slave side RF circuit 500 is cut off before switching to the slave side RF circuit 500, it is possible to suppress an increase in power consumption due to the redundancy of the RF circuit.
  • one antenna 201 is shared by the master and the slave, but the configuration is not limited to this.
  • the receiving device 200 may be provided with a plurality of antennas.
  • FIG. 8 is a diagram showing a configuration example of the receiving device 200 when a plurality of antennas are provided according to the first embodiment of the present technology.
  • an antenna 202 and a surface acoustic wave filter 211 are further added.
  • the RF signal from the antenna 201 is input only to the GNSS chip 230 on the master side via the elastic surface wave filter 210.
  • the RF signal from the antenna 202 is input only to the GNSS chip 240 on the slave side via the elastic surface wave filter 211.
  • an independent antenna may be provided for each frequency band.
  • Each frequency band can be cut out with a SAW filter to improve interference resistance.
  • the demultiplexing loss of the antenna signal can be eliminated.
  • FIG. 9 is a flowchart showing an example of the operation of the receiving device 200 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application using the position information is executed in the receiving device 200.
  • the receiving device 200 determines whether or not the current time is the positioning time to be positioned (step S901). If the current time is not the positioning time (step S9011: No), the receiving device 200 repeats step S901.
  • the receiving device 200 captures the GPS satellites (step S902) and tracks them (step S903). Further, the receiving device 200 performs a positioning calculation using satellite observation values and acquires position information and speed information (step S904).
  • the receiving device 200 determines whether or not the master-side RF circuit 300 has failed (step S905).
  • the master side RF circuit 300 fails (step S905: Yes)
  • the receiving device 200 switches the operating RF circuit from the master side RF circuit 300 to the slave side RF circuit 500 (step S906). If the master-side RF circuit 300 has not failed (step S905: No), or after step S906, the receiving device 200 repeatedly executes step S901 and subsequent steps.
  • the master side RF circuit 300 outputs the IF signal to the master side and the slave side, and after switching to the slave, the master side power supply control unit 232 uses the master side RF circuit. Block 300. Further, before switching to the slave, the slave side power supply management unit 242 cuts off the power supply of the slave side RF circuit 500. By shutting off the power supply of these RF circuits, it is possible to suppress an increase in power consumption when the RF circuits are made redundant to improve performance (fault tolerance, etc.).
  • the receiving device 200 performs positioning using signals in the L1 band and the L5 band, but the number of satellites and the positioning accuracy may be insufficient only in these two frequency bands. be.
  • the receiving device 200 of the modification of the first embodiment is different from the first embodiment in that positioning is further performed by using the L2 signal.
  • the L2 signal is a signal transmitted by the satellite after modulating the carrier wave in the L2 band.
  • This L2 band is a frequency band having a predetermined bandwidth ( ⁇ 12.0 MHz, etc.) having a center frequency of 1227.60 MHz (MHz).
  • FIG. 10 is a block diagram showing a configuration example of the slave side RF circuit 500 in the modified example of the first embodiment of the present technology.
  • the slave-side RF circuit 500 of the modification of the first embodiment is different from the first embodiment in that the local phase-locked loop 526 is provided instead of the local phase-locked loop 522.
  • Local phase synchronization circuit 526 is for generating a local signal LO L2 of the local frequency corresponding to the L2 band in GPS, one of the local signal LO L5 of the local frequency corresponding to the L5 band from the clock signal CLK TCXO.
  • the local phase-locked loop 526 supplies one of the local signals LO L2 and LO L5 to the mixer 523.
  • the ADC 552 of the modified example of the first embodiment outputs one of the digital IF signals DIF L2 and DIF L5 to the slave side digital signal processing unit 600.
  • the slave side power supply control unit 242 of the modified example of the first embodiment shuts off the power supply of the circuits other than the phase-locked loop 530, the switching unit 540, the ADC 551 and the ADC 552 in the initial state. do.
  • FIG. 11 is a block diagram showing a configuration example of the slave-side digital signal processing unit 600 in the modified example of the first embodiment of the present technology.
  • the slave-side digital signal processing unit 600 of the modification of the first embodiment is different from the first embodiment in that it further includes an L2 digital front end 660 and a predetermined number of L2 satellite processing units 670.
  • the L2 digital front end 660 converts the IF signal DIF L2 into a baseband signal corresponding to the L2 band.
  • the L2 digital front end 660 supplies the baseband signal to each of the L2 satellite processing units 670.
  • the L2 satellite processing unit 670 captures and tracks the assigned satellite based on the baseband signal corresponding to the L2 band, and decodes the L2 signal from that satellite.
  • the L2 satellite processing unit 670 outputs satellite observation values (navigation data, etc.) obtained for decoding to the master via the serial interface 243.
  • the three satellite processing units on the slave side can decode at least one or more of the L1 signal, the L2 signal, and the L5 signal.
  • the slave side power supply control unit 242 of the modified example of the first embodiment cuts off the power supply between the L2 digital front end 660 and the L2 satellite processing unit 670. It is also possible to provide a clock control unit instead of the slave side power supply control unit 242 to stop the clocks of the L2 digital front end 660 and the L2 satellite processing unit 670 instead of shutting off the power supply.
  • the positioning engine 450 on the master side of the modified example of the first embodiment performs positioning in the initial state based on, for example, satellite observation values of the L1 band and the L5 band.
  • FIG. 12 is a diagram showing an example of the state of the slave-side RF circuit 500 when receiving the L2 band in the modified example of the first embodiment of the present technology.
  • the receiving device 200 receives two wavelengths in GPS or QZSS, the number of observable satellites may be larger in the combination of the L1 signal and the L2 signal than in the L1 signal and the L5 signal. Therefore, when the number of observable satellites is less than a predetermined value, the receiving device 200 switches the combination of the received signals from the L1 signal and the L5 signal to the L1 signal and the L2 signal. Further, the performance can be further improved by using the three frequency bands of the L1 signal, the L2 signal, and the L5 signal.
  • the receiving device 200 switches from the two wavelengths of the L1 signal, the L5 signal, the L1 signal, and the L2 signal to the three wavelengths of the L1 signal, the L2 signal, and the L5 signal. Can be done.
  • the slave side power supply control unit 242 When switching the received signal to the L1 signal and the L2 signal, as illustrated in the figure, the slave side power supply control unit 242 includes a low noise amplifier 521, a local phase-locked loop 526, a mixer 523, a low-pass filter 524, and automatic gain control. Turn on the power of the circuit 525.
  • the local phase synchronization circuit 526 under control of slave digital signal processor 600, and supplies to the mixer 523 the local signal LO L2.
  • the slave side power supply control unit 242 turns on the power of the L2 digital front end 660 and the L2 satellite processing unit 670, and shuts off the power of the L5 digital front end 630 and the L5 satellite processing unit 640. do. It is also possible to provide a clock control unit instead of the slave side power supply control unit 242 to stop the clocks of the L5 digital front end 630 and the L5 satellite processing unit 640 instead of shutting off the power supply.
  • the positioning engine 450 on the master side performs positioning based on the satellite observation values of the L1 band and the L2 band.
  • the master side power supply control unit 232 When switching the received signal to the L1 signal, the L2 signal, and the L5 signal, the master side power supply control unit 232 turns on the power of all the circuits in the GNSS chip 230, and the slave side power supply control unit 242 turns on the GNSS chip 240. Turn on the power of all the circuits in. Then, the positioning engine 450 on the master side performs positioning based on the satellite observation values of the L1 band, the L2 band, and the L5 band.
  • the positioning engine can be realized by software processing by the CPU (Central Processing Unit).
  • positioning processing such as the L1 band, the L2 band, and the L5 band may be implemented as a function, and necessary functions may be used in combination according to the satellite observation conditions.
  • the implementation of the frequency band switching function can also be supported by function expansion by updating the firmware.
  • the receiving device 200 can also receive the L1 signal and the L2 signal in the initial state, and then switch to the combination of the L1 signal and the L5 signal, the L1 signal, the L2 signal, and the L5 signal.
  • the slave can decode the L1 signal, the L2 signal, and the L5 signal to correspond to the three wavelengths of the L1 band, the L2 band, and the L5 band. As a result, it is possible to improve the performance such as the number of observable satellites as compared with the case where only two wavelengths of the L1 band and the L5 band are supported.
  • the receiving device 200 switches to the slave side RF circuit 500 when the master side RF circuit 300 fails, as in the first embodiment. ..
  • the receiving device 200 of the modified example of the first embodiment receives two wavelengths or three wavelengths, it is also possible to receive only one wavelength (L1 band or the like) among them. In this case, the power of the digital front end and the satellite processing unit corresponding to the signal not received is cut off.
  • the slave since the slave decodes at least one of the L1 signal, the L2 signal, and the L5 signal, only the L1 band and the L5 band are supported. Performance can be improved in comparison with.
  • Second Embodiment> In the first embodiment described above, the master transmits an analog IF signal to the slave and AD conversion of the IF signal is performed on the slave side, but in this configuration, the power supply of the ADC on the slave side is cut off. Can't.
  • the receiving device 200 of the second embodiment is different from the first embodiment in that the master outputs a digital IF signal to the slave.
  • FIG. 14 is a block diagram showing a configuration example of GNSS chips 230 and 240 according to the second embodiment of the present technology.
  • the GNSS chip 230 on the master side of the second embodiment is different from the first embodiment in that it further includes a switching unit 250.
  • the master side RF circuit 300 outputs a digital IF signal DIF to the switching unit 250 and the GNSS chip 240 (slave).
  • the slave-side GNSS chip 240 of the second embodiment is different from the first embodiment in that it further includes a switching unit 260.
  • the master side RF circuit 300 outputs a digital IF signal DIF to the switching unit 260.
  • FIG. 15 is a block diagram showing a configuration example of the master side RF circuit 300 and the switching unit 250 in the second embodiment of the present technology.
  • the master side RF circuit 300 of the second embodiment is not provided with the switching unit 340.
  • the automatic gain control circuit 315 supplies an analog IF signal to the ADC 351 and the automatic gain control circuit 325 supplies an analog IF signal to the ADC 352.
  • selectors 251 and 252 are arranged in the switching unit 250.
  • the ADC 351 outputs a digital IF signal DIF L1 to the selector 251 and the GNSS chip 240.
  • the ADC 352 outputs a digital IF signal DIF L5 to the selector 252 and the GNSS chip 240.
  • the selector 251 has two input terminals and one output terminal. One of the two input terminals is connected to the ADC 351 and the output terminal is connected to the master side digital signal processing unit 400. Further, the selector 251 switches the input destination according to the control of the master side interface control unit 231.
  • the selector 252 has two input terminals and one output terminal. One of the two input terminals is connected to the ADC 352, and the output terminal is connected to the master side digital signal processing unit 400. Further, the selector 252 switches the input destination according to the control of the interface control unit 231 on the master side.
  • K selectors 251 are arranged in the switching unit 250. Similarly, the same number of selectors 252 as the number of bits of the IF signal DIF L5 are provided. In the figure, only the selectors 251 and 252 for one bit are described, and the rest are omitted.
  • a parallel serial converter that performs parallel serial conversion can also be inserted between the ADCs 351 and 352 and the switching unit 250. As a result, only one selector 251 and one selector 252 are required, and the number of terminals for outputting an IF signal can be reduced. However, it is necessary to raise the operating clock compared to the case where parallel serial conversion is not performed.
  • a parallel serial converter can be inserted on the slave side as well.
  • the master can also output the digital signal after downsampling or interference removal at the digital front end in the master side digital signal processing unit 400 to the slave.
  • the number of bits of the digital signals (DIF L1 and DIF L5 ) output by the ADCs 351 and 352 is increased in order to have a dynamic range margin (so-called backoff) for interference.
  • the number of bits can be reduced.
  • the band can be suppressed, so that parallel serial conversion becomes easy.
  • the degree of freedom for wiring is improved.
  • FIG. 16 is a block diagram showing a configuration example of the slave-side RF circuit 500 and the switching unit 260 according to the second embodiment of the present technology.
  • the slave side RF circuit 500 of the second embodiment is not provided with the switching unit 540.
  • the automatic gain control circuit 515 supplies an analog IF signal to the ADC 551, and the automatic gain control circuit 525 supplies an analog IF signal to the ADC 552.
  • selectors 261 and 262 are arranged in the switching unit 260.
  • the ADC 551 outputs a digital IF signal DIF L1 to the selector 261.
  • the ADC 552 outputs a digital IF signal DIF L5 to the selector 262.
  • the selector 261 has two input terminals and one output terminal. One of the two input terminals is connected to the ADC 551, and the other is input with the IF signal DIF L1 from the master. The output terminal is connected to the slave side digital signal processing unit 600. Further, the selector 261 switches the input destination according to the control of the slave side interface control unit 241.
  • the selector 262 has two input terminals and one output terminal. One of the two input terminals is connected to the ADC 552, and the other receives the IF signal DIF L5 from the master. The output terminal is connected to the slave side digital signal processing unit 600. Further, the selector 262 switches the input destination according to the control of the slave side interface control unit 241.
  • the slave side power supply control unit 242 cuts off the power supply of circuits other than the phase-locked loop 530, including ADC 551 and 552, in the initial state. Further, when a predetermined condition is satisfied (such as when the master side RF circuit 300 fails), the slave side power supply control unit 242 turns on the power of all the circuits in the slave side RF circuit 500.
  • the master outputs a digital IF signal to the slave, so that the slave does not need to perform AD conversion of the IF signal.
  • the slave-side power supply control unit 242 can further cut off the power supplies of the ADCs 551 and 552, and further reduce the power consumption.
  • the GNSS chip 230 on the master side outputs a digital IF signal to the slave, the power supplies of the ADCs 551 and 552 on the slave side can be cut off. .. As a result, the power consumption of the receiving device 200 can be reduced.
  • the master and the slave each generate the clock signals CLK ADC and CLK DSP , but in this configuration, the power supply of the phase-locked loop on the slave side cannot be cut off.
  • the receiving device 200 of the third embodiment is different from the first embodiment in that the master further outputs the clock signals CLK ADC and CLK DSP to the slave.
  • FIG. 17 is a block diagram showing a configuration example of GNSS chips 230 and 240 according to the third embodiment of the present technology.
  • the GNSS chip 230 on the master side of the third embodiment is different from the first embodiment in that it further includes a selector 235.
  • the master-side RF circuit 300 of the third embodiment further outputs the clock signals CLK ADC and CLK DSP to the slave-side GNSS chip 240. Of these, the clock signal CLK DSP is also output to the selector 245.
  • the selector 235 has two input terminals and one output terminal. One of the two input terminals is connected to the master side RF circuit 300, and the output terminal is connected to the master side digital signal processing unit 400. Further, the selector 235 switches the input destination according to the control of the master side interface control unit 231.
  • the GNSS chip 240 on the third slave side is different from the first embodiment in that it further includes a selector 245.
  • the selector 245 has two input terminals and one output terminal. One of the two input terminals is connected to the slave side RF circuit 500, and the clock signal CLK DSP from the master is input to the other. The output terminal is connected to the slave side digital signal processing unit 600. Further, the selector 245 switches the input destination according to the control of the slave side interface control unit 241.
  • FIG. 18 is a block diagram showing a configuration example of the master-side RF circuit 300 according to the third embodiment of the present technology.
  • the master-side RF circuit 300 of the third embodiment is different from the first embodiment in that it further includes a selector 360.
  • the phase-locked loop 330 of the third embodiment outputs the clock signal CLK DSP to the selector 235, and outputs the clock signal CLK ADC to the selector 360 and the GNSS chip 240 on the slave side.
  • the selector 360 has two input terminals and one output terminal.
  • the clock signal CLK ADC from the phase-locked loop 330 is input to one of the two input terminals.
  • the output terminals are connected to ADCs 351 and 352. Further, the selector 360 switches the input destination according to the control of the master side interface control unit 231.
  • FIG. 19 is a block diagram showing a configuration example of the slave-side RF circuit 500 according to the third embodiment of the present technology.
  • the slave-side RF circuit 500 of the third embodiment is different from the first embodiment in that it further includes a selector 560.
  • the phase-locked loop 530 of the third embodiment outputs the clock signal CLK DSP to the selector 245 and outputs the clock signal CLK ADC to the selector 560.
  • the selector 560 has two input terminals and one output terminal.
  • the one of the two input terminals is a clock signal CLK ADC is input from the phase synchronization circuit 530, the other clock signal CLK ADC from GNSS chip 230 on the master side is input.
  • the output terminals are connected to ADCs 551 and 552. Further, the selector 560 switches the input destination according to the control of the slave side interface control unit 241.
  • the slave side power supply control unit 242 cuts off the power supply of circuits other than the switching unit 540, ADC 551 and 552, including the phase-locked loop 530, in the initial state. Further, when a predetermined condition is satisfied (such as when the master side RF circuit 300 fails), the slave side power supply control unit 242 turns on the power of all the circuits in the slave side RF circuit 500.
  • the phase-locked loop 530 on the slave side does not need to generate those clocks.
  • the slave-side power supply control unit 242 can further cut off the power supply of the phase-locked loop 530 and further reduce the power consumption.
  • the GNSS chip 230 on the master side further outputs the clock signals CLK ADC and CLK DSP to the slave, so that the power supply of the phase synchronization circuit 530 on the slave side is supplied. It can be blocked. As a result, the power consumption of the receiving device 200 can be reduced.
  • the master-side RF circuit 300 AD-converts only the master-side IF signal, but in this configuration, the slave-side IF signal is mastered when switching from the master to the slave. Cannot be used on the side.
  • the slave also outputs an IF signal to the master, and the master-side RF circuit 300 AD-converts the slave-side or master-side IF signal. Is different.
  • FIG. 20 is a block diagram showing a configuration example of GNSS chips 230 and 240 according to the fourth embodiment of the present technology.
  • the GNSS chip 240 of the fourth embodiment is different from the first embodiment in that it further includes a serial interface 244. Further, the GNSS chip 230 on the master side of the fourth embodiment outputs satellite observation values to the slave when a predetermined condition (master failure or the like) is satisfied.
  • FIG. 21 is a block diagram showing a configuration example of the master-side RF circuit 300 according to the fourth embodiment of the present technology.
  • the analog IF signals AIF L1 and AIF L5 from the GNSS chip 240 on the slave side are further input to the fourth master side RF circuit 300.
  • IF signal AIF L1 on the slave side is input to one of the two input terminals of the selector 341 of the fourth embodiment, and the other is the automatic gain control circuit 315 as in the first embodiment.
  • IF signal AIF L1 from is input.
  • the IF signal AIF L5 on the slave side is input to one of the two input terminals of the selector 342 of the fourth embodiment, and the other is from the automatic gain control circuit 325 as in the first embodiment.
  • the IF signal AIF L5 is input.
  • FIG. 22 is a block diagram showing a configuration example of the slave-side RF circuit 500 according to the fourth embodiment of the present technology.
  • the automatic gain control circuits 515 and 525 output the IF signals AIF L1 and AIF L5 to both the switching unit 540 and the GNSS chip 230 on the master side. It differs from the first embodiment in that it is different from the first embodiment.
  • FIG. 23 is a block diagram showing a configuration example of the slave-side digital signal processing unit 600 according to the fourth embodiment of the present technology.
  • the slave-side digital signal processing unit 600 of the fourth embodiment is different from the first embodiment in that it further includes a positioning engine 650.
  • the function of the positioning engine 650 is the same as that of the positioning engine 450 on the master side. However, the slave-side power supply control unit 242 cuts off the power supply of the positioning engine 650 in the initial state, for example. Then, when a predetermined condition such as a failure of the master is satisfied, the slave side power supply control unit 242 turns on the power of the positioning engine 650. At this time, the power supply of the positioning engine 450 on the master side is cut off, and the satellite observation value is transmitted from the satellite processing unit on the master side to the slave side. The positioning engine 650 on the slave side performs positioning using satellite observation values of the master and the slave, and outputs position information and the like to the outside via the serial interface 244.
  • the slave side IF signal can also be used on the master side when switching from the master to the slave.
  • the number of observable satellites can be maintained at the same level as before the switching, and performance deterioration can be suppressed.
  • positioning can be continued using the positioning engine on the slave side. This makes it possible to realize flexible and robust failure avoidance.
  • the slave when the slave outputs the IF signal to the master side RF circuit 300 and switches from the master to the slave, the IF signal on the slave side is output to the master side. But it can also be used. As a result, the number of observable satellites can be maintained, and deterioration of performance when switching can be suppressed.
  • the receiving device 200 has received the L1 signal and the L5 signal, but in this configuration, the L2 signal and the L6 signal cannot be used.
  • the receiving device 200 in the fifth embodiment is different from the first embodiment in that it also corresponds to the L2 signal and the L6 signal.
  • the L6 signal is a signal transmitted by the satellite after modulating the carrier wave in the L6 band.
  • This L6 band is a frequency band having a predetermined bandwidth with a center frequency of 1278.75 MHz (MHz).
  • FIG. 24 is a block diagram showing a configuration example of GNSS chips 230 and 240 according to the fifth embodiment of the present technology.
  • the GNSS chip 240 of the fifth embodiment is different from the first embodiment in that the slave side RF circuit 500 is not provided and the ADC 552 is arranged instead.
  • the master-side RF circuit 300 of the fifth embodiment receives the L1 signal and any one of the L2 signal, the L5 signal, and the L6 signal. Further, the master side RF circuit 300 converts the RF signal into an analog IF signal AIF using a local signal corresponding to either the L2 signal or the L6 signal, and outputs the RF signal to the slave side ADC 552. Further, the master side RF circuit 300 converts the RF signal into a digital IF signal using the local signal corresponding to the L1 signal and the L5 signal, and outputs the RF signal to the master side digital signal processing unit 400. Further, the master side RF circuit 300 outputs the clock signal CLK ADC to the ADC 552.
  • the ADC 552 AD-converts the IF signal from the master side and outputs it to the slave side digital signal processing unit 600.
  • the slave side when the slave side does not have an RF circuit, the slave itself can be realized by FPGA or DSP. As a result, it is possible to reduce the development cost when adding slaves to expand the functions.
  • FIG. 25 is a block diagram showing a configuration example of the master-side RF circuit 300 according to the fifth embodiment of the present technology.
  • the master-side RF circuit 300 of the fifth embodiment is different from the first embodiment in that the local phase-locked loop 326 is provided instead of the local phase-locked loop 322.
  • the local phase-locked loop 326 generates one of the local signals LO L2 , LO L5, and LO L6 from the clock signal CLK TCXO under the control of the master side digital signal processing unit 400.
  • LO L6 is a local signal having a local frequency corresponding to the L6 band.
  • the local phase-locked loop 326 supplies the generated local signal to the mixer 323.
  • phase-locked loop 330 of the fifth embodiment outputs the clock signal CLK ADC to the ADCs 351 and 352 and the GNSS chip 240.
  • the automatic gain control circuit 325 of the fifth embodiment outputs an analog IF signal to the ADC 352 and the GNSS chip 240.
  • the IF signals AIF L2 and AIF L6 corresponding to the local signals LO L2 and L OL6 are used in the GNSS chip 240 on the slave side.
  • the IF signal AIF L5 corresponding to the local signal LO L5 is AD-converted by the ADC 352 on the master side.
  • the automatic gain control circuit 325 controls the gain for the IF signal according to the control signal CTRL AGC from the master side digital signal processing unit 400.
  • FIG. 26 is a block diagram showing a configuration example of the master-side digital signal processing unit 400 according to the fifth embodiment of the present technology.
  • the master-side digital signal processing unit 400 of the fifth embodiment is different from the first embodiment in that it further includes a selector 451.
  • the L5 digital front end 430 of the fifth embodiment generates a master side control signal CTRL AGCm for controlling the automatic gain control circuit 325 based on the baseband signal. Specifically, the L5 digital front end 430 calculates the average amplitude or average power of the IF signal AIF L5. Then, when the calculated value exceeds a certain value, the L5 digital front end 430 generates a master side control signal CTRL AGCm for lowering the gain by a predetermined value. On the other hand, when the calculated value falls below a certain value, the L5 digital front end 430 generates a master side control signal CTRL AGCm for increasing the gain by a predetermined value and outputs it to the selector 451.
  • the selector 451 includes two input terminals and one output terminal.
  • the master side control signal CTRL AGCm is input to one of the two input terminals, and the slave side control signal CTRL AGCs from the serial interface 234 is input to the other. Further, the control signal CTRL AGC is output from the output terminal to the master side RF circuit 300.
  • the selector 451 switches the input destination according to the control of the master side interface control unit 231.
  • FIG. 27 is a block diagram showing a configuration example of the slave-side digital signal processing unit 600 according to the fifth embodiment of the present technology.
  • the slave-side digital signal processing unit 600 of the fifth embodiment includes an L2 / L6 digital front end 680 and a predetermined number of L2 / L6 satellite processing units 690.
  • the L2 / L6 digital front end 680 converts the IF signal DIF L2 or DIF L6 from the ADC 552 into a baseband signal and supplies it to each of the L2 / L6 satellite processing units. Further, the L2 / L6 digital front end 680 generates slave side control signals CTRL AGCs by the same method as the master side, and outputs them to the master via the serial interface 243.
  • the L2 / L6 satellite processing unit 690 includes a satellite acquisition unit 691 and a satellite tracking unit 692.
  • the L2 / L6 satellite processing unit 690 decodes one of the L2 signal and the L6 signal, and supplies satellite observation values to the GNSS chip 230 on the master side via the serial interface 243.
  • the receiving device 200 receives any combination of the L1 signal and the L2 signal, the L1 signal and the L5 signal, and the L1 signal and the L6 signal, and uses them for positioning. can do. As a result, it is possible to flexibly correspond to the standard using the added L2 band and L6 band while corresponding to the L1 band and the L5 band. Further, the receiving device 200 can optimize the dynamic range of the IF signal in a new frequency band (L2 band, L6 band, etc.).
  • the frequency band that can be generated by the local phase-locked loop 326 of the master side RF circuit 300 is an arbitrary frequency including the L5 band, and the slave side digital signal processing unit 600 will be introduced in the future as a new GNSS. If it corresponds to the standard, it can flexibly correspond to the new standard in any frequency band.
  • the selector 451 selects the slave side control signals CTRL AGCs and supplies them to the automatic gain control circuit 325.
  • the master-side RF circuit 300 generates local signals LO L1 and LO L2, and generates a digital IF signal DIF L1 and an analog IF signal AIF L2 .
  • the master side power supply control unit 232 shuts off the power supply of the L5 digital front end 430 and the L5 satellite processing unit 440 in the master side digital signal processing unit 400, and turns on the power other than those.
  • the slave-side power supply control unit 242 turns on the power of the slave-side digital signal processing unit 600.
  • the selector 451 selects the master side control signal CTRL AGCm and supplies it to the automatic gain control circuit 325.
  • the master-side RF circuit 300 generates the local signals LO L1 and LO L5, and generates the digital IF signals DIF L1 and DIF L5 .
  • the master side power supply control unit 232 turns on the power of the master side digital signal processing unit 400.
  • the slave-side power supply control unit 242 cuts off the power supply of the slave-side digital signal processing unit 600.
  • the selector 451 selects the slave side control signal CTRL AGCs and supplies the L1 signal to the automatic gain control circuit 325.
  • the master-side RF circuit 300 generates local signals LO L1 and LO L6, and generates a digital IF signal DIF L1 and an analog IF signal AIF L6 .
  • the master side power supply control unit 232 shuts off the power supply of the L5 digital front end 430 and the L5 satellite processing unit 440 in the master side digital signal processing unit 400, and turns on the power other than those.
  • the slave-side power supply control unit 242 turns on the power of the slave-side digital signal processing unit 600.
  • the receiving device 200 receives the L1 signal and the L5 signal, and when a predetermined condition is satisfied, switches to a combination of the L1 signal and the L2 signal, or the L1 signal and the L6 signal.
  • a predetermined condition for example, the case where the number of observable satellites is less than or equal to the predetermined value, or the case where the positioning accuracy is less than the target value is assumed.
  • the receiving device 200 decodes signals in two frequency bands such as an L1 signal and an L2 signal, it is also possible to decode only one of them (L1 signal or the like). In this case, the power of the digital front end and the satellite processing unit corresponding to the one that does not decode is cut off.
  • L2 corresponds to the L1 band and the L5 band. It can flexibly handle bands and L6 bands.
  • the receiving device 200 has been positioned using two frequency bands such as the L1 band and the L2 band, but the performance may be insufficient in this configuration.
  • the receiving device 200 of the sixth embodiment differs from the fifth embodiment in that it uses three frequency bands.
  • FIG. 28 is a block diagram showing a configuration example of the master-side RF circuit 300 according to the sixth embodiment of the present technology.
  • the master-side RF circuit 300 of the sixth embodiment further includes a low noise amplifier 371, a local phase-locked loop 372, a mixer 373, a low-pass filter 374, an automatic gain control circuit 375, and an ADC 353.
  • the master-side RF circuit 300 of the sixth embodiment instead of the local phase synchronizing circuit 326 includes a local phase synchronizing circuit 322 for generating a local signal LO L5.
  • the low noise amplifier 371 amplifies the RF signal RFIN.
  • the low noise amplifier 371 supplies the amplified RF signal RFIN to the mixer 373.
  • the local phase-locked loop 372 generates one of the local signals LO L2 and LO L6 from the clock signal CLK TCXO under the control of the master side digital signal processing unit 400.
  • the local phase-locked loop 372 supplies the generated local signal to the mixer 373.
  • the mixer 373 mixes the RF signal RFIN from the low noise amplifier 371 with a local signal (LO L2 or LO L6 ) to generate an analog IF signal AIF L2 or AIF L6 having a frequency lower than that of the RF signal.
  • the mixer 373 supplies the IF signal to the low-pass filter 374.
  • the low-pass filter 374 passes a frequency component below a predetermined cutoff frequency in the IF signal and supplies it to the automatic gain control circuit 375.
  • the automatic gain control circuit 375 controls the gain for the input IF signal (AIF L2 or AIF L6 ) according to the level of the signal.
  • the automatic gain control circuit 315 outputs a constant level IF signal to the GNSS chip 240 and the ADC 353.
  • the IF signal AIF L2 is used on the master side, and the IF signal AIF L6 is used on the slave side.
  • the automatic gain control circuit 375 controls the gain for the IF signal according to the control signal CTRL AGCs from the master side digital signal processing unit 400.
  • the ADC 353 AD-converts the IF signal and outputs it to the master side digital signal processing unit 400.
  • FIG. 29 is a block diagram showing a configuration example of the master-side digital signal processing unit 400 according to the sixth embodiment of the present technology.
  • the master-side digital signal processing unit 400 of the sixth embodiment is different from the fifth embodiment in that it further includes an L2 digital front end 460 and a predetermined number of L2 satellite processing units 470.
  • the L2 digital front end 460 converts the IF signal DIF L2 into a baseband signal corresponding to the L2 band.
  • the L2 digital front end 460 supplies a baseband signal to each of the L2 satellite processing units 470. Further, the L2 digital front end 460 generates a master side control signal CTRL AGCm based on the baseband signal and supplies it to the selector 451.
  • the L2 satellite processing unit 470 captures and tracks the assigned satellite based on the baseband signal corresponding to the L2 band, and decodes the L2 signal from that satellite.
  • the L2 satellite processing unit 470 outputs satellite observation values (navigation data, etc.) obtained for decoding to the positioning engine 450.
  • the positioning engine 450 of the sixth embodiment is positioned based on the satellite observation values from the L1 satellite processing unit 420, the L5 satellite processing unit 440 and the L2 satellite processing unit 470, and the satellite observation values of the L6 signal from the slave. Generate information etc.
  • FIG. 30 is a block diagram showing a configuration example of the slave-side digital signal processing unit 600 according to the sixth embodiment of the present technology.
  • the slave-side digital signal processing unit 600 of the sixth embodiment includes an L6 digital front end 681 and a predetermined number of L6 satellite processing units 695.
  • the L6 digital front end 681 converts the IF signal DIF L6 from the ADC 552 into a baseband signal and supplies it to each of the L6 satellite processing units 695. Further, the L6 digital front end 681 generates slave side control signals CTRL AGCs by the same method as the master side, and outputs them to the master via the serial interface 243.
  • the L6 satellite processing unit 695 includes a satellite acquisition unit 691 and a satellite tracking unit 692.
  • the L6 satellite processing unit 695 decodes the L2 signal and supplies satellite observation values to the GNSS chip 230 on the master side via the serial interface 243.
  • the slave-side digital signal processing unit 600 decodes the L6 signal
  • the present invention is not limited to this configuration, and signals other than the L1, L2, L5, and L6 signals can be decoded.
  • the receiving device 200 receives any combination of the L1 signal, the L5 signal, and the L2 signal and the L1 signal, the L5 signal, and the L6 signal, and performs positioning using them. be able to.
  • the selector 451 selects the master side control signal CTRL AGCm and supplies it to the automatic gain control circuit 375.
  • the master side power supply control unit 232 turns on the power of all the circuits in the master side digital signal processing unit 400.
  • the slave-side power supply control unit 242 cuts off the power supply of the slave-side digital signal processing unit 600.
  • the selector 451 selects the slave side control signal CTRL AGCs and supplies the L1 signal to the automatic gain control circuit 375.
  • the master side power supply control unit 232 shuts off the power supply of the L2 digital front end 460 and the L2 satellite processing unit 470 in the master side digital signal processing unit 400, and turns on the power other than those.
  • the slave-side power supply control unit 242 turns on the power of the slave-side digital signal processing unit 600.
  • Switching from the combination of the L1 signal, the L5 signal and the L2 signal to the combination of the L1 signal, the L5 signal and the L6 signal is executed when predetermined conditions regarding the number of satellites, positioning accuracy and the like are satisfied.
  • the receiving device 200 decodes signals in three frequency bands such as an L1 signal, an L5 signal, and an L2 signal, but two of them (L1 signal, L5 signal, etc.) and one of them. It is also possible to decode only (L1 signal, etc.). In this case, the power of the digital front end and the satellite processing unit corresponding to the undecoded signal is cut off.
  • the receiving device 200 uses signals in three frequency bands, signals in four or more frequency bands can also be used.
  • a circuit digital front end or satellite processing unit
  • corresponding to the master or slave may be added.
  • the receiving device 200 since the receiving device 200 performs positioning using signals in three frequency bands (L1 signal, L5 signal, L2 signal, etc.), only two frequency bands are used. Performance can be improved as compared with the case of using.
  • the positioning engine is arranged in the GNSS chip 230 in the receiving device 200, but it is difficult to reduce the circuit scale of the GNSS chip 230 in this configuration.
  • the receiving device 200 of the seventh embodiment is different from the first embodiment in that the positioning engine is arranged outside the GNSS chip 230.
  • FIG. 31 is a block diagram showing a configuration example of the receiving device 200 according to the seventh embodiment of the present technology.
  • the receiving device 200 of the seventh embodiment is different from the first embodiment in that the host CPU 270 is further provided.
  • the host CPU 270 has the same function as the positioning engine.
  • the host CPU 270 receives the clock signal CLK DSP and the satellite observation value on the master side from the GNSS chip 230, and receives the satellite observation value on the slave side from the GNSS chip 240.
  • the host CPU 270 generates a satellite control signal and a synchronization control signal for controlling the satellite processing unit and supplies them to the GNSS chips 230 and 240.
  • the host CPU 270 is an example of the positioning unit described in the claims.
  • FIG. 32 is a block diagram showing a configuration example of the master-side digital signal processing unit 400 according to the seventh embodiment of the present technology.
  • the master-side digital signal processing unit 400 of the seventh embodiment is different from the first embodiment in that the positioning engine 450 is not arranged.
  • the L1 satellite processing unit 420 and the L5 satellite processing unit 440 according to the seventh embodiment output satellite observation values to the host CPU 270.
  • the positioning engine outside the GNSS chip 230, the balance of cost, performance and electric power can be optimized for each application by the user or the customer.
  • circuit scale of the GNSS chip 230 can be reduced. Further, the circuits of the GNSS chips 230 and 240 can be made the same to facilitate the manufacture of those chips.
  • the host CPU 270 that performs positioning is arranged outside the GNSS chip 230, it is not necessary to arrange the positioning engine inside the GNSS chip 230. As a result, the circuit scale of the GNSS chip 230 can be reduced.
  • IoT Internet of things
  • IoT Internet of things
  • IoT devices 9100 which are “things”
  • IoT devices 9003 the Internet, cloud 9005, etc.
  • IoT can be used in various industries such as agriculture, home, automobile, manufacturing, distribution, and energy.
  • FIG. 33 is a diagram showing an example of a schematic configuration of an IoT system 9000 to which the technique according to the present disclosure can be applied.
  • the IoT device 9001 includes various sensors such as a temperature sensor, a humidity sensor, an illuminance sensor, an acceleration sensor, a distance sensor, an image sensor, a gas sensor, and a human sensor. Further, the IoT device 9001 may include terminals such as smartphones, mobile phones, wearable terminals, and game devices.
  • the IoT device 9001 is powered by an AC power supply, a DC power supply, a battery, a non-contact power supply, a so-called energy harvest, or the like.
  • the IoT device 9001 can communicate by wire, wireless, proximity wireless communication, or the like.
  • the IoT device 9001 may switch and communicate with a plurality of these communication means.
  • the IoT device 9001 may form a one-to-one, star-shaped, tree-shaped, or mesh-shaped network.
  • the IoT device 9001 may connect to the external cloud 9005 either directly or through the gateway 9002.
  • An address is assigned to the IoT device 9001 by IPv4, IPv6, 6LoWPAN, or the like.
  • the data collected from the IoT device 9001 is transmitted to other IoT devices 9003, the server 9004, the cloud 9005, and the like.
  • the timing and frequency of transmitting data from the IoT device 9001 are appropriately adjusted, and the data may be compressed and transmitted.
  • Such data may be used as it is, or the data may be analyzed by a computer 9008 by various means such as statistical analysis, machine learning, data mining, cluster analysis, discriminant analysis, combination analysis, and time series analysis.
  • various services such as control, warning, monitoring, visualization, automation, and optimization can be provided.
  • IoT devices 9001 at home include washing machines, dryers, dryers, microwave ovens, dishwashers, refrigerators, ovens, rice cookers, cookware, gas appliances, fire alarms, thermostats, air conditioners, televisions, recorders, audio, etc. Includes lighting equipment, water heaters, water heaters, vacuum cleaners, fans, air purifiers, security cameras, locks, door / shutter opening / closing devices, sprinklers, toilets, thermostats, weight scales, blood pressure monitors, etc. Further, the IoT device 9001 may include a solar cell, a fuel cell, a storage battery, a gas meter, a power meter, and a distribution board.
  • the communication method of the IoT device 9001 at home is preferably a low power consumption type communication method. Further, the IoT device 9001 may communicate by WiFi indoors and 3G / LTE outdoors.
  • An external server 9006 for controlling the IoT device may be installed on the cloud 9005 to control the IoT device 9001.
  • the IoT device 9001 transmits data such as the status of household equipment, temperature, humidity, power consumption, and the presence / absence of people / animals inside and outside the house.
  • the data transmitted from the home device is stored in the external server 9006 through the cloud 9005. Based on such data, new services will be provided.
  • Such an IoT device 9001 can be controlled by voice by using voice recognition technology.
  • various household devices can be visualized.
  • various sensors determine the presence or absence of a resident and send the data to an air conditioner, lighting, etc., so that the power can be turned on and off.
  • advertisements can be displayed on displays provided in various household devices via the Internet.
  • the above is an example of the IoT system 9000 to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be suitably applied to the IoT device 9001 among the configurations described above.
  • the receiving device 200 of FIG. 3 can be applied to the IoT device 9001.
  • the technique according to the present disclosure it is possible to improve the performance of the IoT device while suppressing the power consumption, and improve the usefulness and convenience of the system.
  • the processing procedure described in the above-described embodiment may be regarded as a method having these series of procedures, or as a program for causing a computer to execute these series of procedures or as a recording medium for storing the program. You may catch it.
  • this recording medium for example, a CD (Compact Disc), MD (MiniDisc), DVD (Digital Versatile Disc), memory card, Blu-ray Disc (Blu-ray (registered trademark) Disc) and the like can be used.
  • the present technology can have the following configurations.
  • a master-side receiving circuit that converts a high frequency signal having a higher frequency than a predetermined intermediate frequency signal into the intermediate frequency signal and outputs the signal.
  • a master-side satellite processing unit that decodes a signal from a predetermined satellite based on the intermediate frequency signal and outputs it as a master-side observation value.
  • a slave-side satellite processing unit that decodes a signal from a predetermined satellite based on the intermediate frequency signal and outputs it as a slave-side observation value.
  • a master-side power supply control unit that shuts off the power supply of the master-side satellite processing unit when certain conditions are met.
  • a receiving device including a positioning unit that generates position information based on at least one of the master-side observation value and the slave-side observation value.
  • a slave-side receiving circuit that converts the high-frequency signal into the intermediate-frequency signal and outputs it to the slave-side satellite processing unit. Further, a slave-side power supply control unit that turns on the power to the slave-side receiving circuit when the predetermined condition is satisfied is provided. When the predetermined condition is satisfied, the master side power supply control unit controls the power supply of the master side receiving circuit to stop the output of the intermediate frequency signal.
  • the master-side receiving circuit outputs the intermediate frequency signal to the slave-side satellite processing unit via the slave-side receiving circuit.
  • the master-side receiving circuit outputs the digital intermediate frequency signal to the master-side satellite processing unit and the slave-side satellite processing unit.
  • the receiving device (4) The receiving device according to (2) above, wherein the master-side receiving circuit outputs an analog intermediate frequency signal to the slave-side receiving circuit. (5) The master-side receiving circuit further transmits a predetermined clock signal to the slave-side receiving circuit. 2. Receiver. (6) The receiving device according to any one of (2) to (5), wherein the slave-side receiving circuit further outputs the intermediate frequency signal to the master-side receiving circuit. (7) The master-side satellite processing unit and the slave-side satellite processing unit decode at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave, whichever is one of (2) to (6). The receiver described in.
  • the master-side satellite processing unit decodes at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave.
  • the receiving device according to any one of (2) to (6) above, wherein the slave-side satellite processing unit decodes at least one of an L1 signal, an L5 signal, and an L2 signal transmitted using the high frequency signal as a carrier wave. .. (9)
  • the master-side satellite processing unit decodes the master-side baseband signal corresponding to a predetermined frequency band, and decodes the master-side baseband signal.
  • a master-side digital front end that converts the intermediate frequency signal into the master-side baseband signal and generates a master-side control signal based on the intermediate-frequency signal.
  • a slave-side digital front end that converts the intermediate frequency signal into the slave-side baseband signal and generates a slave-side control signal based on the intermediate-frequency signal.
  • a selector for selecting either the master side control signal or the slave side control signal and outputting it as a control signal is provided.
  • the master side receiving circuit is A mixer that converts the high frequency signal into the intermediate frequency signal, and
  • the master-side satellite processing unit decodes at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave.
  • the master-side satellite processing unit decodes at least one of the L1 signal, the L2 signal, and the L5 signal transmitted using the high frequency signal as a carrier wave.
  • the receiving device according to (9) or (10) wherein the slave-side satellite processing unit decodes an L6 signal transmitted using the high frequency signal as a carrier wave.
  • the master-side receiving circuit, the master-side satellite processing unit, and the master-side power supply control unit are provided on a predetermined master-side chip.
  • the receiving device according to any one of (1) to (12), wherein the slave-side satellite processing unit unit is provided on a predetermined slave-side chip.
  • the receiving device according to (13), wherein the positioning unit is provided on the master-side chip.
  • the receiving device according to (13), wherein the positioning unit is provided outside the master-side chip and the slave-side chip.
  • a master-side satellite processing procedure in which the master-side satellite processing unit decodes a signal from a predetermined satellite based on the intermediate frequency signal and outputs it as a master-side observation value.
  • a slave-side digital signal processing procedure in which the slave-side satellite processing unit decodes a signal from a predetermined satellite based on the intermediate frequency signal and outputs it as a slave-side observation value.
  • the master side power supply control procedure for shutting off the power supply of the master side satellite processing unit when a predetermined condition is satisfied, and the master side power supply control procedure.
  • a method for controlling a receiving device comprising a positioning procedure for generating position information based on at least one of the master-side observation value and the slave-side observation value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

This invention suppresses power consumption increase in and enhances the performance of a reception device for receiving signals from satellites. In this invention, a master-side reception circuit converts a high frequency signal having a frequency higher than a prescribed intermediate frequency signal to an intermediate frequency signal and outputs the same. A master-side satellite processing unit decodes a signal from a prescribed satellite on the basis of the intermediate frequency signal and outputs the same as master-side observation values. A slave-side satellite processing unit decodes the signal from the prescribed satellite on the basis of the intermediate frequency signal and outputs the same as slave-side observation values. A master-side power supply control unit cuts off power to either the master-side reception circuit or the master-side satellite processing unit if a prescribed condition is met. A positioning unit generates position information on the basis of at least one from among the master-side observation values and slave-side observation values.

Description

受信装置、および、受信装置の制御方法Receiver and control method of receiver
 本技術は、受信装置に関する。詳しくは、現在位置を測定する受信装置、および、受信装置の制御方法に関する。 This technology is related to the receiving device. More specifically, the present invention relates to a receiving device for measuring the current position and a control method for the receiving device.
 従来より、米国のGPS(Global Positioning System)に代表されるGNSS(Global Navigation Satellite System)が、現在位置を測定する目的で、カーナビゲーション装置やスマートフォンなどにおいて広く利用されている。また、近年、GNSSの近代化が進み、従来のL1帯に加えて、L2帯やL5帯、L6帯における新しいGNSS規格に対応した衛星が次々と打ち上げられている。これまで、2周波以上の信号を用いた高精度測位は測量や農業機械など、一部業界への導入に限定されていたが、今後は民生機器に対しても広く普及していくことが期待される。GNSSのうちQZSS(Quasi-Zenith Satellite System)においても、L2、L5、L6帯の信号(L2C、L5、L6)が配信されている(例えば、非特許文献1および非特許文献2参照。)。 Conventionally, GNSS (Global Navigation Satellite System) represented by GPS (Global Positioning System) in the United States has been widely used in car navigation devices and smartphones for the purpose of measuring the current position. In recent years, the modernization of GNSS has progressed, and in addition to the conventional L1 band, satellites corresponding to the new GNSS standard in the L2 band, L5 band, and L6 band have been launched one after another. Until now, high-precision positioning using signals of two or more frequencies has been limited to introduction to some industries such as surveying and agricultural machinery, but it is expected that it will spread widely to consumer equipment in the future. Will be done. Among the GNSS, the QZSS (Quasi-Zenith Satellite System) also distributes signals in the L2, L5, and L6 bands (L2C, L5, L6) (see, for example, Non-Patent Document 1 and Non-Patent Document 2).
 上述の従来技術では、L1帯の測位用信号とL2、L5帯の測位用信号を組み合わせて測位演算に用いることにより、測位精度の向上や測位にかかる時間の短縮化を図っている。また、更にL6帯のセンチメータ級測位補強情報を用いることにより、センチメータ級の高精度な測位を実現することも可能となる。但し、複数の周波数帯における複数のGNSS規格に対応するためには、その分だけRF(Radio Frequency)回路やデジタル信号処理回路の増設が必要となり、ハードウェアコストや消費電力の増大を招くという懸念がある。また、上述のシステムでは、受信回路が1系統しかないため、その受信回路が故障した際に受信を継続することができなくなる。このため、過酷な環境下でシステムを運用する際に、故障耐性などの性能が不足することがある。一方、故障耐性などを向上させるために受信回路を冗長化してしまうと、消費電力が増大するおそれがある。このように、上述のシステムでは、消費電力の増大を抑制しつつ、性能を向上させることが困難である。 In the above-mentioned conventional technique, the positioning accuracy is improved and the positioning time is shortened by using the L1 band positioning signal and the L2 and L5 band positioning signals in combination for the positioning calculation. Further, by using the centimeter-class positioning reinforcement information in the L6 band, it is possible to realize highly accurate centimeter-class positioning. However, in order to support multiple GNSS standards in multiple frequency bands, it is necessary to add RF (Radio Frequency) circuits and digital signal processing circuits accordingly, which may lead to an increase in hardware cost and power consumption. There is. Further, in the above-mentioned system, since there is only one receiving circuit, reception cannot be continued when the receiving circuit fails. Therefore, when operating the system in a harsh environment, performance such as failure tolerance may be insufficient. On the other hand, if the receiving circuit is made redundant in order to improve the failure tolerance and the like, the power consumption may increase. As described above, in the above-mentioned system, it is difficult to improve the performance while suppressing the increase in power consumption.
 本技術はこのような状況に鑑みて生み出されたものであり、衛星からの信号を受信する受信装置において、消費電力の増大を抑制しつつ、性能を向上させることを目的とする。 This technology was created in view of such a situation, and aims to improve the performance of the receiving device that receives the signal from the satellite while suppressing the increase in power consumption.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、所定の中間周波数信号より周波数の高い高周波数信号を前記中間周波数信号に変換して出力するマスタ側受信回路と、前記中間周波数信号に基づいて所定の衛星からの信号を復号してマスタ側観測値として出力するマスタ側衛星処理ユニットと、前記中間周波数信号に基づいて所定の衛星からの信号を復号してスレーブ側観測値として出力するスレーブ側衛星処理ユニットと、所定条件が満たされた場合には上記マスタ側受信回路および上記マスタ側衛星処理ユニットのいずれかの電源を遮断するマスタ側電源制御部と、上記マスタ側観測値および上記スレーブ側観測値の少なくとも一方に基づいて位置情報を生成する測位部とを具備する受信装置である。これにより、消費電力、性能のバランスが最適化されるという作用をもたらす。 The present technology has been made to solve the above-mentioned problems, and the first aspect thereof is a master that converts a high frequency signal having a higher frequency than a predetermined intermediate frequency signal into the intermediate frequency signal and outputs the signal. The side receiving circuit, the master side satellite processing unit that decodes the signal from the predetermined satellite based on the intermediate frequency signal and outputs it as the master side observation value, and the signal from the predetermined satellite based on the intermediate frequency signal. Master-side power supply control that shuts off the power supply of either the slave-side satellite processing unit that decodes and outputs it as the slave-side observation value, and the master-side reception circuit or the master-side satellite processing unit when certain conditions are met. It is a receiving device including a unit and a positioning unit that generates position information based on at least one of the master-side observation value and the slave-side observation value. This has the effect of optimizing the balance between power consumption and performance.
 また、この第1の側面において、上記高周波数信号を上記中間周波数信号に変換して上記スレーブ側衛星処理ユニットに出力するスレーブ側受信回路と、上記所定条件が満たされた場合には上記スレーブ側受信回路に電源を投入するスレーブ側電源制御部とをさらに具備し、上記マスタ側電源制御部は、上記所定条件が満たされた場合には上記マスタ側受信回路の電源を制御して上記中間周波数信号の出力を停止させ、上記マスタ側受信回路は、上記スレーブ側受信回路を介して上記中間周波数信号を上記スレーブ側衛星処理ユニットに出力してもよい。これにより、スレーブ側受信回路の電源が遮断され、消費電力が削減されるという作用をもたらす。 Further, in the first aspect, the slave side receiving circuit that converts the high frequency signal into the intermediate frequency signal and outputs the signal to the slave side satellite processing unit, and the slave side if the predetermined condition is satisfied. The slave-side power supply control unit that turns on the power to the receiving circuit is further provided, and the master-side power supply control unit controls the power supply of the master-side receiving circuit when the predetermined conditions are satisfied, and the intermediate frequency. The output of the signal may be stopped, and the master-side receiving circuit may output the intermediate frequency signal to the slave-side satellite processing unit via the slave-side receiving circuit. As a result, the power supply of the slave-side receiving circuit is cut off, which has the effect of reducing power consumption.
 また、この第1の側面において、上記マスタ側受信回路は、デジタルの上記中間周波数信号を上記マスタ側衛星処理ユニットおよび上記スレーブ側衛星処理ユニットに出力してもよい。これにより、スレーブ側のAD(Analog to Digital)変換が不要になるという作用をもたらす。 Further, in the first aspect, the master-side receiving circuit may output the digital intermediate frequency signal to the master-side satellite processing unit and the slave-side satellite processing unit. This has the effect of eliminating the need for AD (Analog to Digital) conversion on the slave side.
 また、この第1の側面において、上記マスタ側受信回路は、アナログの上記中間周波数信号を上記スレーブ側受信回路に出力してもよい。これにより、インターフェースの配線数や端子数が削減されるという作用をもたらす。 Further, in the first aspect, the master side receiving circuit may output the analog intermediate frequency signal to the slave side receiving circuit. This has the effect of reducing the number of wirings and terminals of the interface.
 また、この第1の側面において、上記マスタ側受信回路は、所定のクロック信号を上記スレーブ側受信回路にさらに送信し、上記マスタ側受信回路および上記スレーブ側受信回路は、上記クロック信号に同期して上記中間周波数信号に対するAD変換処理をさらに行ってもよい。これにより、スレーブ側のクロック生成が不要になるという作用をもたらす。 Further, in the first aspect, the master-side receiving circuit further transmits a predetermined clock signal to the slave-side receiving circuit, and the master-side receiving circuit and the slave-side receiving circuit synchronize with the clock signal. The AD conversion process for the intermediate frequency signal may be further performed. This has the effect of eliminating the need for clock generation on the slave side.
 また、この第1の側面において、上記スレーブ側受信回路は、上記中間周波数信号を上記マスタ側受信回路にさらに出力してもよい。これにより、スレーブ側の中間周波数信号がスレーブ側でも用いられるという作用をもたらす。 Further, in the first aspect, the slave side receiving circuit may further output the intermediate frequency signal to the master side receiving circuit. This has the effect that the intermediate frequency signal on the slave side is also used on the slave side.
 また、この第1の側面において、上記マスタ側衛星処理ユニットおよび上記スレーブ側衛星処理ユニットは、上記高周波数信号を搬送波として伝送されたL1信号およびL5信号の少なくとも一方を復号してもよい。これにより、2波長が測位に用いられるという作用をもたらす。 Further, in the first aspect, the master side satellite processing unit and the slave side satellite processing unit may decode at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave. This has the effect that two wavelengths are used for positioning.
 また、この第1の側面において、上記マスタ側衛星処理ユニットは、上記高周波数信号を搬送波として伝送されたL1信号およびL5信号の少なくとも一方を復号し、上記スレーブ側衛星処理ユニットは、上記高周波数信号を搬送波として伝送されたL1信号、L5信号およびL2信号のうち少なくとも1つの復号を行ってもよい。これにより、3波長が測位に用いられるという作用をもたらす。 Further, in the first aspect, the master side satellite processing unit decodes at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave, and the slave side satellite processing unit has the high frequency. At least one of the L1 signal, the L5 signal, and the L2 signal transmitted using the signal as a carrier wave may be decoded. This has the effect that three wavelengths are used for positioning.
 また、この第1の側面において、上記マスタ側衛星処理ユニットは、所定の周波数帯域に対応するマスタ側ベースバンド信号を復号し、上記スレーブ側衛星処理ユニットは、上記周波数帯域と異なる周波数帯域に対応するスレーブ側ベースバンド信号を復号してもよい。これにより、L2信号やL6信号への対応が可能になるという作用をもたらす。 Further, in the first aspect, the master-side satellite processing unit decodes the master-side baseband signal corresponding to a predetermined frequency band, and the slave-side satellite processing unit corresponds to a frequency band different from the above-mentioned frequency band. The slave side baseband signal may be decoded. This has the effect of making it possible to deal with L2 signals and L6 signals.
 また、この第1の側面において、上記中間周波数信号を上記マスタ側ベースバンド信号に変換するとともに上記中間周波数信号に基づいてマスタ側制御信号を生成するマスタ側デジタルフロントエンドと、上記中間周波数信号を上記スレーブ側ベースバンド信号に変換するとともに上記中間周波数信号に基づいてスレーブ側制御信号を生成するスレーブ側デジタルフロントエンドと、上記マスタ側制御信号と上記スレーブ側制御信号とのいずれかを選択して制御信号として出力するセレクタとをさらに具備し、上記マスタ側受信回路は、上記高周波数信号を上記中間周波数信号に変換する混合器と、上記制御信号に従って上記中間周波数信号に対する利得を制御する自動利得制御器とを備えてもよい。これにより、自動利得制御回路がマスタまたはスレーブにより制御されるという作用をもたらす。 Further, in the first aspect, the master side digital front end that converts the intermediate frequency signal into the master side baseband signal and generates the master side control signal based on the intermediate frequency signal, and the intermediate frequency signal. Select either the slave side digital front end that converts to the slave side baseband signal and generates the slave side control signal based on the intermediate frequency signal, or the master side control signal or the slave side control signal. Further provided with a selector to output as a control signal, the master-side receiving circuit includes a mixer that converts the high-frequency signal into the intermediate-frequency signal, and an automatic gain that controls the gain with respect to the intermediate-frequency signal according to the control signal. It may be provided with a controller. This has the effect that the automatic gain control circuit is controlled by the master or slave.
 また、この第1の側面において、上記マスタ側衛星処理ユニットは、上記高周波数信号を搬送波として伝送されたL1信号およびL5信号の少なくとも一方を復号し、上記スレーブ側衛星処理ユニットは、上記高周波数信号を搬送波として伝送されたL2信号およびL6信号のいずれかを復号してもよい。これにより、L2信号やL6信号への対応が可能になるという作用をもたらす。 Further, in the first aspect, the master side satellite processing unit decodes at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave, and the slave side satellite processing unit has the high frequency. Either the L2 signal or the L6 signal transmitted using the signal as a carrier wave may be decoded. This has the effect of making it possible to deal with L2 signals and L6 signals.
 また、この第1の側面において、上記マスタ側衛星処理ユニットは、上記高周波数信号を搬送波として伝送されたL1信号、L2信号およびL5信号の少なくとも一方を復号し、上記スレーブ側衛星処理ユニットは、上記高周波数信号を搬送波として伝送されたL6信号を復号してもよい。これにより、3波長が測位に用いられるという作用をもたらす。 Further, in the first aspect, the master-side satellite processing unit decodes at least one of the L1 signal, the L2 signal, and the L5 signal transmitted using the high-frequency signal as a carrier wave, and the slave-side satellite processing unit obtains the slave-side satellite processing unit. The L6 signal transmitted using the high frequency signal as a carrier wave may be decoded. This has the effect that three wavelengths are used for positioning.
 また、この第1の側面において、上記マスタ側受信回路、上記マスタ側衛星処理ユニットおよび上記マスタ側電源制御部は、所定のマスタ側チップに設けられ、上記スレーブ側衛星処理ユニット部は、所定のスレーブ側チップに設けられてもよい。これにより、チップ間で中間周波数信号がやりとりされるという作用をもたらす。 Further, in the first aspect, the master side receiving circuit, the master side satellite processing unit, and the master side power supply control unit are provided on a predetermined master side chip, and the slave side satellite processing unit unit is a predetermined unit. It may be provided on the slave side chip. This has the effect of exchanging intermediate frequency signals between the chips.
 また、この第1の側面において、上記測位部は、上記マスタ側チップに設けられてもよい。これにより、チップ内で測位が行われるという作用をもたらす。 Further, in this first aspect, the positioning unit may be provided on the master side chip. This has the effect of performing positioning within the chip.
 また、この第1の側面において、上記測位部は、上記マスタ側チップおよび上記スレーブ側チップの外部に設けられてもよい。これにより、チップ外で測位が行われるという作用をもたらす。 Further, in this first aspect, the positioning unit may be provided outside the master side chip and the slave side chip. This has the effect of positioning outside the chip.
本技術の第1の実施の形態における受信装置の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the receiving device in 1st Embodiment of this technique. 本技術の第1の実施の形態におけるGNSSチップの一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the GNSS chip in the 1st Embodiment of this technique. 本技術の第1の実施の形態におけるマスタ側RF回路の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the master side RF circuit in 1st Embodiment of this technique. 本技術の第1の実施の形態におけるスレーブ側RF回路の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the slave side RF circuit in 1st Embodiment of this technique. 本技術の第1の実施の形態におけるマスタ側デジタル信号処理部の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the digital signal processing unit on the master side in the 1st Embodiment of this technique. 本技術の第1の実施の形態におけるスレーブ側デジタル信号処理部の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the slave side digital signal processing unit in the 1st Embodiment of this technique. 本技術の第1の実施の形態におけるマスタからスレーブへ切り替わった際の受信装置の状態の一例を示す図である。It is a figure which shows an example of the state of the receiving apparatus at the time of switching from a master to a slave in the 1st Embodiment of this technique. 本技術の第1の実施の形態における複数のアンテナを設けた場合の受信装置の一構成例を示す図である。It is a figure which shows one configuration example of the receiving apparatus in the case of providing a plurality of antennas in the 1st Embodiment of this technique. 本技術の第1の実施の形態における受信装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of the receiving apparatus in 1st Embodiment of this technique. 本技術の第1の実施の形態の変形例におけるスレーブ側RF回路の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the slave side RF circuit in the modification of the 1st Embodiment of this technique. 本技術の第1の実施の形態の変形例におけるスレーブ側デジタル信号処理部の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the slave side digital signal processing unit in the modification of the 1st Embodiment of this technique. 本技術の第1の実施の形態の変形例におけるL2帯を受信する際のスレーブ側RF回路の状態の一例を示す図である。It is a figure which shows an example of the state of the slave side RF circuit at the time of receiving the L2 band in the modification of the 1st Embodiment of this technique. 本技術の第1の実施の形態の変形例におけるL2帯を受信する際のスレーブ側デジタル信号処理部の状態の一例を示す図である。It is a figure which shows an example of the state of the slave side digital signal processing unit at the time of receiving the L2 band in the modification of the 1st Embodiment of this technique. 本技術の第2の実施の形態におけるGNSSチップの一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the GNSS chip in the 2nd Embodiment of this technique. 本技術の第2の実施の形態におけるマスタ側RF回路および切替部の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the master side RF circuit and the switching part in the 2nd Embodiment of this technique. 本技術の第2の実施の形態におけるスレーブ側RF回路および切替部の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the slave side RF circuit and the switching part in the 2nd Embodiment of this technique. 本技術の第3の実施の形態におけるGNSSチップの一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the GNSS chip in the 3rd Embodiment of this technique. 本技術の第3の実施の形態におけるマスタ側RF回路の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the master side RF circuit in 3rd Embodiment of this technique. 本技術の第3の実施の形態におけるスレーブ側RF回路の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the slave side RF circuit in 3rd Embodiment of this technique. 本技術の第4の実施の形態におけるGNSSチップの一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the GNSS chip in the 4th Embodiment of this technique. 本技術の第4の実施の形態におけるマスタ側RF回路の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the master side RF circuit in 4th Embodiment of this technique. 本技術の第4の実施の形態におけるスレーブ側RF回路の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the slave side RF circuit in 4th Embodiment of this technique. 本技術の第4の実施の形態におけるスレーブ側デジタル信号処理部の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the slave side digital signal processing unit in the 4th Embodiment of this technique. 本技術の第5の実施の形態におけるGNSSチップの一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the GNSS chip in the 5th Embodiment of this technique. 本技術の第5の実施の形態におけるマスタ側RF回路の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the master side RF circuit in 5th Embodiment of this technique. 本技術の第5の実施の形態におけるマスタ側デジタル信号処理部の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the digital signal processing unit on the master side in the 5th Embodiment of this technique. 本技術の第5の実施の形態におけるスレーブ側デジタル信号処理部の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the slave side digital signal processing unit in the 5th Embodiment of this technique. 本技術の第6の実施の形態におけるマスタ側RF回路の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the master side RF circuit in 6th Embodiment of this technique. 本技術の第6の実施の形態におけるマスタ側デジタル信号処理部の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the digital signal processing unit on the master side in the 6th Embodiment of this technique. 本技術の第6の実施の形態におけるスレーブ側デジタル信号処理部の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the slave side digital signal processing unit in the 6th Embodiment of this technique. 本技術の第7の実施の形態における受信装置の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the receiving device in 7th Embodiment of this technique. 本技術の第7の実施の形態におけるマスタ側デジタル信号処理部の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the digital signal processing unit on the master side in 7th Embodiment of this technique. 本開示に係る技術が適用され得るIoTシステム9000の概略的な構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the IoT system 9000 to which the technique which concerns on this disclosure can be applied.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(マスタがスレーブにIF信号を出力する例)
 2.第2の実施の形態(マスタがスレーブにデジタルのIF信号を出力する例)
 3.第3の実施の形態(マスタがスレーブにIF信号およびクロック信号を出力する例)
 4.第4の実施の形態(マスタ、スレーブ間でIF信号を送受信する例)
 5.第5の実施の形態(マスタがスレーブにマスタ側と異なる帯域のIF信号を出力する例)
 6.第6の実施の形態(マスタがスレーブにIF信号を出力し、3つの周波数帯域を用いる例)
 7.第7の実施の形態(マスタがスレーブにIF信号を出力し、チップ外で測位する例)
 8.移動体への応用例
Hereinafter, embodiments for carrying out the present technology (hereinafter referred to as embodiments) will be described. The explanation will be given in the following order.
1. 1. First embodiment (example in which the master outputs an IF signal to the slave)
2. 2. Second embodiment (example in which the master outputs a digital IF signal to the slave)
3. 3. Third embodiment (example in which the master outputs an IF signal and a clock signal to the slave)
4. Fourth embodiment (example of transmitting and receiving IF signals between master and slave)
5. Fifth embodiment (example in which the master outputs an IF signal in a band different from that on the master side to the slave)
6. Sixth embodiment (an example in which the master outputs an IF signal to the slave and uses three frequency bands)
7. Seventh embodiment (example in which the master outputs an IF signal to the slave and performs positioning outside the chip)
8. Application example to mobile
 <1.第1の実施の形態>
 [測位システムの構成例]
 図1は、本技術の第1の実施の形態における測位システムの一構成例を示す全体図である。この測位システムは、衛星からの信号を用いて現在位置を取得するためのシステムであり、衛星100と受信装置200とを備える。
<1. First Embodiment>
[Positioning system configuration example]
FIG. 1 is an overall view showing a configuration example of a positioning system according to the first embodiment of the present technology. This positioning system is a system for acquiring a current position using a signal from a satellite, and includes a satellite 100 and a receiving device 200.
 受信装置200は、衛星100からの信号を受信し、その受信装置200の現在位置を取得するものである。この受信装置200は、アンテナ201と、弾性表面波フィルタ210と、水晶発振器220と、GNSSチップ230および240とを備える。 The receiving device 200 receives a signal from the satellite 100 and acquires the current position of the receiving device 200. The receiving device 200 includes an antenna 201, a surface acoustic wave filter 210, a crystal oscillator 220, and GNSS chips 230 and 240.
 アンテナ201は、衛星100から送信された高周波数(RF:Radio Frequency)信号をRFINとして受信するものである。このRF信号RFINは弾性表面波フィルタ210を介してGNSSチップ230および240の両方に供給される。 The antenna 201 receives a high frequency (RF: Radio Frequency) signal transmitted from the satellite 100 as an RFIN. This RF signal RFIN is supplied to both the GNSS chips 230 and 240 via the elastic surface wave filter 210.
 弾性表面波フィルタ210は、アンテナからのRF信号RFINのうち、所定の周波数帯域を透過するものである。例えば、GPSやQZSSにおける所定の周波数帯域(例えば、L1帯およびL5帯)が透過される。ここで、L1帯は、中心周波数を1575.42メガヘルツ(MHz)とする所定の帯域幅(±12.0メガヘルツなど)の周波数帯域である。L5帯は、中心周波数を1176.45メガヘルツ(MHz)とする所定の帯域幅(±12.45メガヘルツなど)の周波数帯域である。L1帯の搬送波を変調して衛星100が送信した信号は、L1信号と呼ばれ、L5帯の搬送波を変調して衛星100が送信した信号は、L5信号と呼ばれる。 The elastic surface wave filter 210 transmits a predetermined frequency band among the RF signals RFIN from the antenna. For example, a predetermined frequency band (for example, L1 band and L5 band) in GPS or QZSS is transmitted. Here, the L1 band is a frequency band having a predetermined bandwidth (± 12.0 MHz, etc.) having a center frequency of 1575.42 MHz (MHz). The L5 band is a frequency band having a predetermined bandwidth (± 12.45 MHz, etc.) having a center frequency of 1176.45 MHz (MHz). The signal transmitted by the satellite 100 after modulating the carrier wave in the L1 band is called an L1 signal, and the signal transmitted by the satellite 100 after modulating the carrier wave in the L5 band is called an L5 signal.
 水晶発振器220は、水晶の持つ圧電現象を利用して、一定の周波数のクロック信号CLKTCXOを生成するものである。この水晶発振器220は、生成したクロック信号CLKTCXOをGNSSチップ230および240に供給する。 The crystal oscillator 220 uses the piezoelectric phenomenon of quartz to generate a clock signal CLK TCXO having a constant frequency. The crystal oscillator 220 supplies the generated clock signal CLK TCXO to the GNSS chips 230 and 240.
 GNSSチップ230は、弾性表面波フィルタ210からのRF信号RFINとGNSSチップ240からの衛星観測値とに基づいて位置情報、時刻情報および速度情報の少なくとも1つを生成するものである。ここで、位置情報は、受信装置200の現在位置を示す情報であり、時刻情報は、現在時刻を示す情報である。位置情報の生成には、4つ以上の衛星100からの信号が必要となる。また、速度情報は、受信装置200の移動速度を示す情報である。GNSSチップ230は、位置情報、時刻情報および速度情報の全てを生成してもよいし、それらの一部(位置情報のみなど)を生成してもよい。また、GNSSチップ230は、RF信号を中間周波数(IF:Intermediate Frequency)信号に変換し、そのIF信号をGNSSチップ240に出力する。 The GNSS chip 230 generates at least one of position information, time information, and velocity information based on the RF signal RFIN from the surface acoustic wave filter 210 and the satellite observation value from the GNSS chip 240. Here, the position information is information indicating the current position of the receiving device 200, and the time information is information indicating the current time. Signals from four or more satellites 100 are required to generate position information. Further, the speed information is information indicating the moving speed of the receiving device 200. The GNSS chip 230 may generate all of the position information, the time information and the speed information, or may generate a part of them (such as only the position information). Further, the GNSS chip 230 converts an RF signal into an intermediate frequency (IF: Intermediate Frequency) signal, and outputs the IF signal to the GNSS chip 240.
 GNSSチップ240は、GNSSチップ230からのIF信号に基づいて衛星観測値を求めるものである。ここで、衛星観測値は、衛星100などの衛星からの信号を復号して得られた情報であり、航法データや補正データなどが挙げられる。GNSSチップ240は、衛星観測値をGNSSチップ230に供給する。 The GNSS chip 240 obtains satellite observation values based on the IF signal from the GNSS chip 230. Here, the satellite observation value is information obtained by decoding a signal from a satellite such as the satellite 100, and includes navigation data, correction data, and the like. The GNSS chip 240 supplies satellite observations to the GNSS chip 230.
 また、GNSSチップ230は、GNSSチップ240に同期制御信号を供給し、GNSSチップ240をGNSSチップ230と同期して動作させる。このため、受信装置200において、GNSSチップ230はスレーブを制御するマスタとして機能し、GNSSチップ240は、スレーブとして機能する。 Further, the GNSS chip 230 supplies a synchronization control signal to the GNSS chip 240, and operates the GNSS chip 240 in synchronization with the GNSS chip 230. Therefore, in the receiving device 200, the GNSS chip 230 functions as a master for controlling the slave, and the GNSS chip 240 functions as a slave.
 また、受信装置200にスレーブ側のGNSSチップ240を1枚のみ設けているが、スレーブ側のチップは1枚に限定されず、必要に応じて2枚以上を設けることができる。 Further, although the receiving device 200 is provided with only one GNSS chip 240 on the slave side, the number of chips on the slave side is not limited to one, and two or more chips can be provided as needed.
 [GNSSチップの構成例]
 図2は、本技術の第1の実施の形態におけるGNSSチップ230および240の一構成例を示すブロック図である。
[Configuration example of GNSS chip]
FIG. 2 is a block diagram showing a configuration example of GNSS chips 230 and 240 according to the first embodiment of the present technology.
 GNSSチップ230は、マスタ側インターフェース制御部231と、マスタ側電源制御部232と、マスタ側RF回路300と、マスタ側デジタル信号処理部400と、シリアルインターフェース233および234とを備える。なお、GNSSチップ230は、特許請求の範囲に記載のマスタ側チップの一例である。 The GNSS chip 230 includes a master side interface control unit 231, a master side power supply control unit 232, a master side RF circuit 300, a master side digital signal processing unit 400, and serial interfaces 233 and 234. The GNSS chip 230 is an example of the master-side chip described in the claims.
 GNSSチップ240は、スレーブ側インターフェース制御部241と、スレーブ側電源制御部242と、スレーブ側RF回路500と、スレーブ側デジタル信号処理部600と、シリアルインターフェース243とを備える。なお、GNSSチップ240は、特許請求の範囲に記載のスレーブ側チップの一例である。 The GNSS chip 240 includes a slave side interface control unit 241, a slave side power supply control unit 242, a slave side RF circuit 500, a slave side digital signal processing unit 600, and a serial interface 243. The GNSS chip 240 is an example of the slave-side chip described in the claims.
 マスタ側インターフェース制御部231は、マスタ側RF回路300内のセレクタを制御するものである。セレクタの切り替え先については、後述する。 The master side interface control unit 231 controls the selector in the master side RF circuit 300. The switching destination of the selector will be described later.
 マスタ側電源制御部232は、マスタ側RF回路300およびマスタ側デジタル信号処理部400の電源を制御するものである。 The master side power supply control unit 232 controls the power supply of the master side RF circuit 300 and the master side digital signal processing unit 400.
 マスタ側RF回路300は、水晶発振器220からのクロック信号CLKTCXOに同期して動作し、弾性表面波フィルタ210からのRF信号をアナログのIF信号AIFに変換するものである。このマスタ側RF回路300は、IF信号AIFをスレーブ側RF回路500に出力する。GNSSチップ230には、このIF信号AIFを出力するための端子が設けられている。 The master-side RF circuit 300 operates in synchronization with the clock signal CLK TCXO from the crystal oscillator 220, and converts the RF signal from the surface acoustic wave filter 210 into an analog IF signal AIF. The master side RF circuit 300 outputs the IF signal AIF to the slave side RF circuit 500. The GNSS chip 230 is provided with a terminal for outputting this IF signal AIF.
 また、マスタ側RF回路300は、IF信号AIFに対して、AD変換処理を行い、デジタルのIF信号DIFを生成してマスタ側デジタル信号処理部400に出力する。 Further, the master side RF circuit 300 performs AD conversion processing on the IF signal AIF, generates a digital IF signal DIF, and outputs the digital IF signal DIF to the master side digital signal processing unit 400.
 さらにマスタ側RF回路300は、マスタ側デジタル信号処理部400が動作するためのクロック信号CLKDSPをクロック信号CLKTCXOから生成し、マスタ側デジタル信号処理部400に出力する。 Further, the master-side RF circuit 300 generates a clock signal CLK DSP for operating the master-side digital signal processing unit 400 from the clock signal CLK TCXO, and outputs the clock signal CLK DSP to the master-side digital signal processing unit 400.
 マスタ側デジタル信号処理部400は、クロック信号CLKDSPに同期して動作し、デジタルのIF信号DIFを処理して位置情報などを生成するものである。このマスタ側デジタル信号処理部400は、IF信号DIFをベースバンド信号に変換し、そのベースバンド信号に基づいて衛星観測値(航法データなど)を取得する。また、マスタ側デジタル信号処理部400は、シリアルインターフェース234を介してスレーブ側の衛星観測値を取得し、マスタ側およびスレーブ側のそれぞれの衛星観測値を用いて位置情報等を生成する。そして、マスタ側デジタル信号処理部400は、シリアルインターフェース233を介して位置情報等をGNSSチップ230の外部に出力する。 The master-side digital signal processing unit 400 operates in synchronization with the clock signal CLK DSP , processes the digital IF signal DIF, and generates position information and the like. The master-side digital signal processing unit 400 converts the IF signal DIF into a baseband signal, and acquires satellite observation values (navigation data, etc.) based on the baseband signal. Further, the master side digital signal processing unit 400 acquires satellite observation values on the slave side via the serial interface 234, and generates position information and the like using the satellite observation values on the master side and the slave side. Then, the master side digital signal processing unit 400 outputs position information and the like to the outside of the GNSS chip 230 via the serial interface 233.
 スレーブ側インターフェース制御部241は、スレーブ側RF回路500内のセレクタを制御するものである。セレクタの切り替え先については、後述する。 The slave side interface control unit 241 controls the selector in the slave side RF circuit 500. The switching destination of the selector will be described later.
 スレーブ側電源制御部242は、スレーブ側RF回路500およびスレーブ側デジタル信号処理部600の電源を制御するものである。 The slave side power supply control unit 242 controls the power supply of the slave side RF circuit 500 and the slave side digital signal processing unit 600.
 スレーブ側RF回路500は、水晶発振器220からのクロック信号CLKTCXOに同期して動作し、弾性表面波フィルタ210からのRF信号をアナログのIF信号AIFに変換するものである。 The slave-side RF circuit 500 operates in synchronization with the clock signal CLK TCXO from the crystal oscillator 220, and converts the RF signal from the surface acoustic wave filter 210 into an analog IF signal AIF.
 また、スレーブ側RF回路500は、マスタ側またはスレーブ側のIF信号AIFに対してAD変換処理を行い、デジタルのIF信号DIFを生成してスレーブ側デジタル信号処理部600に出力する。 Further, the slave side RF circuit 500 performs AD conversion processing on the master side or slave side IF signal AIF, generates a digital IF signal DIF, and outputs the digital IF signal DIF to the slave side digital signal processing unit 600.
 さらにスレーブ側RF回路500は、スレーブ側デジタル信号処理部600が動作するためのクロック信号CLKDSPをクロック信号CLKTCXOから生成し、スレーブ側デジタル信号処理部600に出力する。 Further, the slave-side RF circuit 500 generates a clock signal CLK DSP for the slave-side digital signal processing unit 600 to operate from the clock signal CLK TCXO, and outputs the clock signal CLK DSP to the slave-side digital signal processing unit 600.
 スレーブ側デジタル信号処理部600は、クロック信号CLKDSPに同期して動作し、デジタルのIF信号DIFを処理して衛星観測値を生成するものである。このスレーブ側デジタル信号処理部600は、シリアルインターフェース243を介してスレーブ側の衛星観測値をGNSSチップ230に出力する。 The slave-side digital signal processing unit 600 operates in synchronization with the clock signal CLK DSP , processes the digital IF signal DIF, and generates satellite observation values. The slave side digital signal processing unit 600 outputs the satellite observation value on the slave side to the GNSS chip 230 via the serial interface 243.
 なお、マスタ側やスレーブ側のデジタル信号処理部の機能を、FPGA(Field-Programmable Gate Array)またはDSP(Digital Signal Processor)により実現することもできる。また、マスタ側やスレーブ側におけるプロセッサやメモリ等の共通する回路をマスタ、スレーブの外部に設けて、マスタ、スレーブ間で共有してもよい。後述する他の実施形態においても同様である。 Note that the functions of the digital signal processing unit on the master side and slave side can also be realized by FPGA (Field-Programmable Gate Array) or DSP (Digital Signal Processor). Further, a common circuit such as a processor and a memory on the master side and the slave side may be provided outside the master and the slave and shared between the master and the slave. The same applies to other embodiments described later.
 [RF回路の構成例]
 図3は、本技術の第1の実施の形態におけるマスタ側RF回路300の一構成例を示すブロック図である。このマスタ側RF回路300は、ローノイズアンプ311および321と、ローカル位相同期回路312および322と、混合器313および323と、ローパスフィルタ314および324と、自動利得制御回路315および325とを備える。また、マスタ側RF回路300は、位相同期回路330と、切替部340と、ADC(Analog to Digital Converter)351および352とをさらに備える。切替部340内には、セレクタ341および342が配置される。
[RF circuit configuration example]
FIG. 3 is a block diagram showing a configuration example of the master-side RF circuit 300 according to the first embodiment of the present technology. The master-side RF circuit 300 includes low- noise amplifiers 311 and 321, local phase-locked loops 312 and 322, mixers 313 and 323, low- pass filters 314 and 324, and automatic gain control circuits 315 and 325. Further, the master side RF circuit 300 further includes a phase synchronization circuit 330, a switching unit 340, and ADCs (Analog to Digital Converter) 351 and 352. Selectors 341 and 342 are arranged in the switching unit 340.
 ローノイズアンプ311は、弾性表面波フィルタ210からのRF信号RFINを増幅するものである。このローノイズアンプ311は、増幅したRF信号RFINを混合器313に供給する。 The low noise amplifier 311 amplifies the RF signal RFIN from the elastic surface wave filter 210. The low noise amplifier 311 supplies the amplified RF signal RFIN to the mixer 313.
 ローカル位相同期回路312は、L1帯に応じたローカル周波数のローカル信号LOL1を、クロック信号CLKTCXOから生成するものである。このローカル位相同期回路312は、ローカル信号LOL1を混合器313に供給する。 Local phase synchronization circuit 312, a local signal LO L1 of the local frequency corresponding to the L1 band, and generates a clock signal CLK TCXO. The local phase-locked loop 312 supplies the local signal LO L1 to the mixer 313.
 混合器313は、ローノイズアンプ311からのRF信号RFINとローカル信号LOL1を混合して、RF信号より周波数の低いアナログのIF信号AIFL1を生成するものである。この混合器313は、IF信号AIFL1をローパスフィルタ314に供給する。 Mixer 313 mixes the RF signal RFIN and the local signal LO L1 from the low noise amplifier 311, and generates an IF signal AIF L1 of low analog frequency than the RF signal. The mixer 313 supplies the IF signal AIF L1 to the low-pass filter 314.
 ローパスフィルタ314は、IF信号AIFL1において所定の遮断周波数以下の周波 数成分を通過させて、自動利得制御回路315に供給するものである。 The low-pass filter 314 passes a frequency component having a predetermined cutoff frequency or less in the IF signal AIF L1 and supplies it to the automatic gain control circuit 315.
 自動利得制御回路315は、入力されたIF信号AIFL1のレベルに応じて、その信号に対する利得を制御するものである。この自動利得制御回路315は、一定のレベルのIF信号AIFL1をGNSSチップ240およびセレクタ341に出力する。 The automatic gain control circuit 315 controls the gain for the input IF signal AIF L1 according to the level of the signal. The automatic gain control circuit 315 outputs a constant level IF signal AIF L1 to the GNSS chip 240 and the selector 341.
 セレクタ341は、2つの入力端子と1つの出力端子を有する。2つの入力端子の一方は自動利得制御回路315に接続され、出力端子はADC351に接続される。また、セレクタ341は、マスタ側インターフェース制御部231の制御に従って入力先を切り替える。 The selector 341 has two input terminals and one output terminal. One of the two input terminals is connected to the automatic gain control circuit 315, and the output terminal is connected to the ADC 351. Further, the selector 341 switches the input destination according to the control of the interface control unit 231 on the master side.
 位相同期回路330は、クロック信号CLKDSPと、ADC351および352が動作するためのクロック信号CLKADCとをクロック信号CLKTCXOから生成するものである。この位相同期回路330は、クロック信号CLKDSPをマスタ側デジタル信号処理部400に供給し、クロック信号CLKADCをADC351および352に供給する。 The phase-locked loop 330 generates a clock signal CLK DSP and a clock signal CLK ADC for operating the ADCs 351 and 352 from the clock signal CLK TCXO. The phase-locked loop 330 supplies the clock signal CLK DSP to the master side digital signal processing unit 400, and supplies the clock signal CLK ADC to the ADCs 351 and 352.
 ADC351は、セレクタ341からのIF信号AIFL1に対するAD変換処理をクロック信号CLKADCに同期して行うものである。ADC351は、処理後のデジタルのIF信号をDIFL1としてマスタ側デジタル信号処理部400に出力する。 The ADC 351 performs AD conversion processing for the IF signal AIF L1 from the selector 341 in synchronization with the clock signal CLK ADC. The ADC 351 outputs the processed digital IF signal as DIF L1 to the master side digital signal processing unit 400.
 ローノイズアンプ321は、RF信号RFINを増幅するものである。このローノイズアンプ321は、増幅したRF信号RFINを混合器323に供給する。 The low noise amplifier 321 amplifies the RF signal RFIN. The low noise amplifier 321 supplies the amplified RF signal RFIN to the mixer 323.
 ローカル位相同期回路322は、L5帯に応じたローカル周波数のローカル信号LOL5を、クロック信号CLKTCXOから生成するものである。このローカル位相同期回路312は、ローカル信号LOL5を混合器323に供給する。 The local phase-locked loop 322 generates a local signal LO L5 having a local frequency corresponding to the L5 band from the clock signal CLK TCXO. The local phase-locked loop 312 supplies the local signal LO L5 to the mixer 323.
 混合器323は、ローノイズアンプ321からのRF信号RFINとローカル信号LOL5を混合して、RF信号より周波数の低いアナログのIF信号AIFL5を生成するものである。この混合器323は、IF信号AIFL5をローパスフィルタ324に供給する。 Mixer 323 mixes the RF signal RFIN and the local signal LO L5 from the low noise amplifier 321, and generates an analog IF signal AIF L5 lower frequency than the RF signal. The mixer 323 supplies the IF signal AIF L5 to the low-pass filter 324.
 ローパスフィルタ324は、IF信号AIFL5において所定の遮断周波数以下の周波 数成分を通過させて、自動利得制御回路325に供給するものである。 The low-pass filter 324 passes a frequency component of a predetermined cutoff frequency or less in the IF signal AIF L5 and supplies it to the automatic gain control circuit 325.
 自動利得制御回路325は、入力されたIF信号AIFL5のレベルに応じて、その信号に対する利得を制御するものである。この自動利得制御回路325は、一定のレベルのIF信号AIFL5をGNSSチップ240およびセレクタ342に出力する。 The automatic gain control circuit 325 controls the gain for the input IF signal AIF L5 according to the level of the signal. The automatic gain control circuit 325 outputs a constant level IF signal AIF L5 to the GNSS chip 240 and the selector 342.
 セレクタ342は、2つの入力端子と1つの出力端子を有する。2つの入力端子の一方は自動利得制御回路325に接続され、出力端子はADC352に接続される。また、セレクタ342は、マスタ側インターフェース制御部231の制御に従って入力先を切り替える。 The selector 342 has two input terminals and one output terminal. One of the two input terminals is connected to the automatic gain control circuit 325, and the output terminal is connected to the ADC 352. Further, the selector 342 switches the input destination according to the control of the master side interface control unit 231.
 ADC352は、セレクタ342からのIF信号AIFL5に対するAD変換処理をクロック信号CLKADCに同期して行うものである。ADC352は、処理後のデジタルのIF信号をDIFL5としてマスタ側デジタル信号処理部400に出力する。 The ADC 352 performs AD conversion processing for the IF signal AIF L5 from the selector 342 in synchronization with the clock signal CLK ADC. The ADC 352 outputs the processed digital IF signal as DIF L5 to the master side digital signal processing unit 400.
 ここで、マスタ側インターフェース制御部231は、初期状態においてセレクタ341および342の両方の入力先を自動利得制御回路315および325にする。また、マスタ側電源制御部232は、初期状態において、マスタ側RF回路300の全電源を投入する。 Here, the master side interface control unit 231 sets both input destinations of the selectors 341 and 342 to the automatic gain control circuits 315 and 325 in the initial state. Further, the master side power supply control unit 232 turns on all the power of the master side RF circuit 300 in the initial state.
 そして、所定条件が満たされた場合にマスタ側インターフェース制御部231は、セレクタ341および342の両方の入力先を切り替える。これにより、自動利得制御回路315および325とADC351および352との間の経路は、開状態となる。また、マスタ側電源制御部232は、所定条件が満たされた場合に、マスタ側RF回路300の電源を遮断する。所定条件として、例えば、マスタ側RF回路300の故障が考えられる。 Then, when the predetermined condition is satisfied, the interface control unit 231 on the master side switches the input destinations of both the selectors 341 and 342. As a result, the path between the automatic gain control circuits 315 and 325 and the ADCs 351 and 352 is opened. Further, the master side power supply control unit 232 cuts off the power supply of the master side RF circuit 300 when a predetermined condition is satisfied. As a predetermined condition, for example, a failure of the master side RF circuit 300 can be considered.
 図4は、本技術の第1の実施の形態におけるスレーブ側RF回路500の一構成例を示すブロック図である。このスレーブ側RF回路500は、ローノイズアンプ511および521と、ローカル位相同期回路512および522と、混合器513および523と、ローパスフィルタ514および524と、自動利得制御回路515および525とを備える。また、スレーブ側RF回路500は、位相同期回路530と、切替部540と、ADC551および552とをさらに備える。切替部540内には、セレクタ541および542が配置される。 FIG. 4 is a block diagram showing a configuration example of the slave-side RF circuit 500 according to the first embodiment of the present technology. The slave-side RF circuit 500 includes low noise amplifiers 511 and 521, local phase-locked loops 512 and 522, mixers 513 and 523, low- pass filters 514 and 524, and automatic gain control circuits 515 and 525. Further, the slave-side RF circuit 500 further includes a phase-locked loop 530, a switching unit 540, and ADCs 551 and 552. Selectors 541 and 542 are arranged in the switching unit 540.
 スレーブ側RF回路500内の各回路の構成は、マスタ側RF回路300内の同名の回路と同様である。ただし、セレクタ541の2つの入力端子の一方には、GNSSチップ230(マスタ)からのIF信号AIFL1が入力され、他方は自動利得制御回路515に接続される。セレクタ542の2つの入力端子の一方には、マスタからのIF信号AIFL5が入力され、他方は自動利得制御回路525に接続される。 The configuration of each circuit in the slave side RF circuit 500 is the same as the circuit of the same name in the master side RF circuit 300. However, the IF signal AIF L1 from the GNSS chip 230 (master) is input to one of the two input terminals of the selector 541, and the other is connected to the automatic gain control circuit 515. The IF signal AIF L5 from the master is input to one of the two input terminals of the selector 542, and the other is connected to the automatic gain control circuit 525.
 また、スレーブ側インターフェース制御部241は、初期状態においてセレクタ541および542の両方の入力先をマスタ側にする。また、スレーブ側電源制御部242は、初期状態において、スレーブ側RF回路500内の位相同期回路530、切替部540、ADC551およびADC552以外の回路の電源を遮断する。同図において、灰色の回路は、電源が遮断された回路である。以降の図面においても同様である。 Further, the slave side interface control unit 241 sets the input destinations of both the selectors 541 and 542 to the master side in the initial state. Further, in the initial state, the slave-side power supply control unit 242 cuts off the power supply of circuits other than the phase-locked loop 530, the switching unit 540, the ADC 551, and the ADC 552 in the slave-side RF circuit 500. In the figure, the gray circuit is a circuit in which the power supply is cut off. The same applies to the subsequent drawings.
 そして、所定条件が満たされた場合にスレーブ側インターフェース制御部241は、セレクタ541および542の両方の入力先を切り替える。また、スレーブ側電源制御部242は、所定条件が満たされた場合に、スレーブ側RF回路500内の全回路の電源を投入する。所定条件として、例えば、マスタ側RF回路300の故障が考えられる。 Then, when the predetermined condition is satisfied, the slave side interface control unit 241 switches the input destinations of both the selectors 541 and 542. Further, when the predetermined condition is satisfied, the slave side power supply control unit 242 turns on the power of all the circuits in the slave side RF circuit 500. As a predetermined condition, for example, a failure of the master side RF circuit 300 can be considered.
 [デジタル信号処理部の構成例]
 図5は、本技術の第1の実施の形態におけるマスタ側デジタル信号処理部400の一構成例を示すブロック図である。このマスタ側デジタル信号処理部400は、L1デジタルフロントエンド410と、所定数のL1衛星処理ユニット420とを備える。さらに、マスタ側デジタル信号処理部400は、L5デジタルフロントエンド430と、所定数のL5衛星処理ユニット440と、測位エンジン450とを備える。L1衛星処理ユニット420のそれぞれには、所定の衛星が捕捉対象として割り当てられている。同様に、L5衛星処理ユニット440のそれぞれにも、所定の衛星が捕捉対象として割り当てられている。L1衛星処理ユニット420およびL5衛星処理ユニット440は、それぞれN(Nは、整数)個ずつ設けられる。
[Configuration example of digital signal processing unit]
FIG. 5 is a block diagram showing a configuration example of the master-side digital signal processing unit 400 according to the first embodiment of the present technology. The master-side digital signal processing unit 400 includes an L1 digital front end 410 and a predetermined number of L1 satellite processing units 420. Further, the master side digital signal processing unit 400 includes an L5 digital front end 430, a predetermined number of L5 satellite processing units 440, and a positioning engine 450. A predetermined satellite is assigned to each of the L1 satellite processing units 420 as a capture target. Similarly, a predetermined satellite is assigned to each of the L5 satellite processing units 440 as a capture target. The L1 satellite processing unit 420 and the L5 satellite processing unit 440 are each provided with N (N is an integer).
 L1デジタルフロントエンド410は、ダウンコンバータやデジタルフィルタを用いて、IF信号DIFL1を、L1帯に対応するベースバンド信号に変換するものである。L1デジタルフロントエンド410は、ベースバンド信号をL1衛星処理ユニット420のそれぞれに供給する。 The L1 digital front end 410 converts the IF signal DIF L1 into a baseband signal corresponding to the L1 band by using a down converter or a digital filter. The L1 digital front end 410 supplies a baseband signal to each of the L1 satellite processing units 420.
 L1衛星処理ユニット420は、L1帯に対応するベースバンド信号に基づいて、割り当てられた衛星を捕捉および追尾し、その衛星からのL1信号を復号するものである。このL1衛星処理ユニット420は、復号に得られた衛星観測値(航法データなど)を測位エンジン450に出力する。L1衛星処理ユニット420のそれぞれは、衛星捕捉部421および衛星追尾部422を備える。 The L1 satellite processing unit 420 captures and tracks the assigned satellite based on the baseband signal corresponding to the L1 band, and decodes the L1 signal from that satellite. The L1 satellite processing unit 420 outputs satellite observation values (navigation data, etc.) obtained for decoding to the positioning engine 450. Each of the L1 satellite processing units 420 includes a satellite acquisition unit 421 and a satellite tracking unit 422.
 衛星捕捉部421は、割り当てられた衛星を捕捉するものである。この衛星捕捉部421は、例えば、割り当てられた衛星の識別情報(C/Aコード)と、入力されたベースバンド信号との排他的論理和を相関器に入力し、相関値を取得する。衛星捕捉部421は、捕捉結果として、相関値が最大となる搬送波周波数オフセットおよびコード位相を衛星追尾部422に出力する。なお、衛星捕捉部421は、SN(Signal to Noise)比を高くするために、一定時間、相関値を積分し、その積分値が最大となる搬送波周波数オフセット等を出力することもできる。 The satellite acquisition unit 421 captures the assigned satellite. The satellite acquisition unit 421 inputs, for example, the exclusive OR of the assigned satellite identification information (C / A code) and the input baseband signal to the correlator, and acquires the correlation value. As a result of acquisition, the satellite acquisition unit 421 outputs the carrier frequency offset and the code phase having the maximum correlation value to the satellite tracking unit 422. In addition, in order to increase the SN (Signal to Noise) ratio, the satellite acquisition unit 421 can integrate the correlation value for a certain period of time and output the carrier frequency offset or the like that maximizes the integrated value.
 衛星追尾部422は、捕捉された衛星を追尾するものである。この衛星追尾部422は、搬送波周波数オフセット、コード位相を初期値として、搬送波およびコードタイミングへの同期を行い、さらに航法データおよび補正データの物理フレームに対する同期を経て、衛星時刻を再生する。また、衛星追尾部422は、衛星時刻と受信装置の時刻との差分から衛星信号の伝搬時間を推定し、これに光速を乗じることにより衛星100と受信装置200との間の伝搬距離を疑似距離として推定する。また、衛星追尾部422は、捕捉した衛星からの信号を復調し、航法データや補正データを取得する。衛星追尾部422は、これらの疑似距離、航法データや補正データを衛星観測値として測位エンジン450に供給する。 The satellite tracking unit 422 tracks the captured satellite. The satellite tracking unit 422 synchronizes the carrier wave and the code timing with the carrier wave frequency offset and the code phase as initial values, and further synchronizes the navigation data and the correction data with respect to the physical frame to reproduce the satellite time. Further, the satellite tracking unit 422 estimates the propagation time of the satellite signal from the difference between the satellite time and the time of the receiving device, and by multiplying this by the speed of light, the propagation distance between the satellite 100 and the receiving device 200 is a pseudo distance. Estimate as. Further, the satellite tracking unit 422 demodulates the signal from the captured satellite and acquires navigation data and correction data. The satellite tracking unit 422 supplies these pseudo-distance, navigation data, and correction data to the positioning engine 450 as satellite observation values.
 L5デジタルフロントエンド430は、IF信号DIFL5を、L5帯に対応するベースバンド信号に変換するものである。L5デジタルフロントエンド430は、ベースバンド信号をL5衛星処理ユニット440のそれぞれに供給する。 The L5 digital front end 430 converts the IF signal DIF L5 into a baseband signal corresponding to the L5 band. The L5 digital front end 430 supplies a baseband signal to each of the L5 satellite processing units 440.
 L5衛星処理ユニット440は、L5帯に対応するベースバンド信号に基づいて、割り当てられた衛星を捕捉および追尾し、その衛星からのL5信号を復号するものである。このL5衛星処理ユニット440は、復号に得られた衛星観測値(航法データなど)を測位エンジン450に出力する。 The L5 satellite processing unit 440 captures and tracks the assigned satellite based on the baseband signal corresponding to the L5 band, and decodes the L5 signal from that satellite. The L5 satellite processing unit 440 outputs satellite observation values (navigation data, etc.) obtained for decoding to the positioning engine 450.
 L5衛星処理ユニット440のそれぞれは、衛星捕捉部441および衛星追尾部442を備える。これらの機能は、衛星捕捉部421および衛星追尾部422と同様である。 Each of the L5 satellite processing units 440 includes a satellite acquisition unit 441 and a satellite tracking unit 442. These functions are the same as those of the satellite acquisition unit 421 and the satellite tracking unit 422.
 測位エンジン450は、L1衛星処理ユニット420およびL5衛星処理ユニット440からのマスタ側の衛星観測値と、シリアルインターフェース234を介して得られたスレーブ側の衛星観測値とに基づいて位置情報などを生成するものである。測位において、測位エンジン450は、マスタ側の衛星観測値のみを用いてもよいし、マスタ側およびスレーブ側の両方の衛星観測値を用いてもよい。また、測位において、L1帯およびL5帯の両方の衛星観測値が用いられる。 The positioning engine 450 generates position information and the like based on the satellite observation values on the master side from the L1 satellite processing unit 420 and the L5 satellite processing unit 440 and the satellite observation values on the slave side obtained via the serial interface 234. It is something to do. In positioning, the positioning engine 450 may use only the satellite observation values on the master side or may use the satellite observation values on both the master side and the slave side. Further, in positioning, both L1 band and L5 band satellite observation values are used.
 また、マスタ側電源制御部232は、初期状態において、マスタ側デジタル信号処理部400内の全回路の電源を投入する。そして、所定条件が満たされた場合(マスタ側RF回路300の故障などの場合)にマスタ側電源制御部232は、L1デジタルフロントエンド410、L1衛星処理ユニット420、L5デジタルフロントエンド430およびL5衛星処理ユニット440のそれぞれの電源を遮断する。 Further, the master side power supply control unit 232 turns on the power of all the circuits in the master side digital signal processing unit 400 in the initial state. Then, when the predetermined conditions are satisfied (in the case of failure of the master side RF circuit 300, etc.), the master side power supply control unit 232 uses the L1 digital front end 410, the L1 satellite processing unit 420, the L5 digital front end 430, and the L5 satellite. The power supply of each of the processing units 440 is cut off.
 なお、マスタ側デジタル信号処理部400は、L1信号およびL5信号の両方を復号しているが、一方(L1信号など)のみを復号することもできる。この場合には、復号しない方に対応するデジタルフロントエンドおよび衛星処理ユニットの電源がマスタ側電源制御部232により遮断される。 Although the master side digital signal processing unit 400 decodes both the L1 signal and the L5 signal, it is also possible to decode only one (L1 signal or the like). In this case, the power supply of the digital front end and the satellite processing unit corresponding to the one not decoded is cut off by the master side power supply control unit 232.
 また、マスタ側デジタル信号処理部400は、GPSやQZSSにおける信号(L1信号やL5信号)を用いて測位しているが、GPS以外のGNSS(ガリレオやグロナスなど)における信号を用いて測位することもできる。 Further, the master side digital signal processing unit 400 performs positioning using signals in GPS or QZSS (L1 signal or L5 signal), but performs positioning using signals in GNSS (Galileo, Glonass, etc.) other than GPS. You can also.
 図6は、本技術の第1の実施の形態におけるスレーブ側デジタル信号処理部600の一構成例を示すブロック図である。このスレーブ側デジタル信号処理部600は、L1デジタルフロントエンド610と、所定数のL1衛星処理ユニット620と、L5デジタルフロントエンド630と、所定数のL5衛星処理ユニット640とを備える。L1衛星処理ユニット620のそれぞれには、衛星捕捉部621および衛星追尾部622が設けられ、L5衛星処理ユニット640のそれぞれには、衛星捕捉部641および衛星追尾部642が設けられる。スレーブ側デジタル信号処理部600の回路構成は、測位エンジン450が設けられない点以外は、マスタ側デジタル信号処理部400と同様である。 FIG. 6 is a block diagram showing a configuration example of the slave-side digital signal processing unit 600 according to the first embodiment of the present technology. The slave-side digital signal processing unit 600 includes an L1 digital front end 610, a predetermined number of L1 satellite processing units 620, an L5 digital front end 630, and a predetermined number of L5 satellite processing units 640. Each of the L1 satellite processing units 620 is provided with a satellite acquisition unit 621 and a satellite tracking unit 622, and each of the L5 satellite processing units 640 is provided with a satellite acquisition unit 641 and a satellite tracking unit 642. The circuit configuration of the slave-side digital signal processing unit 600 is the same as that of the master-side digital signal processing unit 400, except that the positioning engine 450 is not provided.
 スレーブ側のL1衛星処理ユニット620およびL5衛星処理ユニット640は、衛星観測値を取得し、シリアルインターフェース243を介してマスタへ送信する。 The L1 satellite processing unit 620 and the L5 satellite processing unit 640 on the slave side acquire satellite observation values and transmit them to the master via the serial interface 243.
 図7は、本技術の第1の実施の形態におけるマスタからスレーブへ切り替わった際の受信装置の状態の一例を示す図である。 FIG. 7 is a diagram showing an example of the state of the receiving device when switching from the master to the slave in the first embodiment of the present technology.
 前述したように、初期状態においてマスタ側RF回路300は、RF信号RFINを、より周波数の低いIF信号にダウンコンバートする。そして、マスタ側RF回路300は、アナログのIF信号AIFをスレーブ側RF回路500に出力し、そのIF信号AIFをAD変換したIF信号DIFをマスタ側デジタル信号処理部400に出力する。なお、マスタ側RF回路300は、特許請求の範囲に記載のマスタ側受信回路の一例である。 As described above, in the initial state, the master side RF circuit 300 down-converts the RF signal RFIN to an IF signal having a lower frequency. Then, the master-side RF circuit 300 outputs the analog IF signal AIF to the slave-side RF circuit 500, and outputs the IF signal DIF obtained by AD-converting the IF signal AIF to the master-side digital signal processing unit 400. The master-side RF circuit 300 is an example of the master-side receiving circuit described in the claims.
 また、初期状態において、スレーブ側RF回路500は、マスタからのIF信号AIFをAD変換してスレーブ側デジタル信号処理部600に出力する。言い換えれば、マスタからのIF信号は、スレーブ側RF回路500を介してスレーブ側デジタル信号処理部600に入力される。なお、スレーブ側RF回路500は、特許請求の範囲に記載のスレーブ側受信回路の一例である。 Further, in the initial state, the slave side RF circuit 500 AD-converts the IF signal AIF from the master and outputs it to the slave side digital signal processing unit 600. In other words, the IF signal from the master is input to the slave side digital signal processing unit 600 via the slave side RF circuit 500. The slave-side RF circuit 500 is an example of the slave-side receiving circuit described in the claims.
 また、初期状態において、マスタ側デジタル信号処理部400内のL1デジタルフロントエンド410およびL5デジタルフロントエンド430は、IF信号DIFL1およびDIFL5をベースバンド信号に変換する。L1衛星処理ユニット420およびL5衛星処理ユニット440は、それらのベースバンド信号に基づいて、割り当てられた衛星からの信号を復号し、衛星観測値を取得する。測位エンジン450は、マスタ側およびスレーブ側の少なくとも一方の衛星観測値に基づいて、位置情報などを生成する。なお、測位エンジン450は、特許請求の範囲に記載の測位部の一例である。 Further, in the initial state, the L1 digital front end 410 and the L5 digital front end 430 in the master side digital signal processing unit 400 convert the IF signals DIF L1 and DIF L5 into baseband signals. The L1 satellite processing unit 420 and the L5 satellite processing unit 440 decode the signal from the assigned satellite based on their baseband signals and acquire satellite observation values. The positioning engine 450 generates position information and the like based on satellite observation values on at least one of the master side and the slave side. The positioning engine 450 is an example of the positioning unit described in the claims.
 初期状態において、スレーブ側デジタル信号処理部600内のスレーブ側衛星処理ユニット(不図示)は、IF信号をベースバンド信号に変換する。そして、スレーブ側衛星処理ユニットは、ベースバンド信号に基づいて、マスタ側と異なる衛星からの信号を復号して衛星観測値を取得し、マスタに出力する。 In the initial state, the slave-side satellite processing unit (not shown) in the slave-side digital signal processing unit 600 converts the IF signal into a baseband signal. Then, the slave side satellite processing unit decodes a signal from a satellite different from the master side based on the baseband signal, acquires a satellite observation value, and outputs the satellite observation value to the master.
 上述したように初期状態において、マスタおよびスレーブの両方が衛星を観測するため、それぞれの観測可能な衛星数を同一とすると、受信装置200は、マスタのみの場合と比較して、2倍の個数の衛星を観測することができる。スレーブのGNSSチップ240は、必要に応じて増設することができる。このため、マスタおよびスレーブのチップ数の合計をM(Mは、2以上の整数)とすると、受信装置200は、マスタのみの場合と比較して、M倍の個数の衛星を観測することができる。L1帯およびL5帯の2波長を用い、観測する衛星数をM倍にすることにより、マルチパス耐性を向上させ、高精度単独測位(PPP-RTK:Precise Point Positioning-RTK)における初期化時間を短縮することができる。言い換えれば、受信装置200の性能を向上させることができる。 As described above, in the initial state, both the master and the slave observe the satellites, so if the number of observable satellites is the same, the number of receivers 200 is double that of the master alone. You can observe the satellites of. The slave GNSS chip 240 can be added as needed. Therefore, assuming that the total number of master and slave chips is M (M is an integer of 2 or more), the receiving device 200 can observe M times as many satellites as in the case of only the master. can. By using two wavelengths of L1 band and L5 band and multiplying the number of observed satellites by M times, multipath resistance is improved and the initialization time in high-precision independent positioning (PPP-RTK: PrecisePointPositioning-RTK) is set. Can be shortened. In other words, the performance of the receiving device 200 can be improved.
 また、スレーブのGNSSチップ240の増設により消費電力の増大が懸念されるが、マスタ側RF回路300がIF信号をスレーブに出力するため、マスタ側RF回路300をマスタおよびスレーブで共有することができる。このため、スレーブ側電源制御部242は、スレーブ側RF回路500内のローノイズアンプや混合器の電源を遮断することができる。これにより、消費電力の増大を抑制することができる。 Further, although there is a concern that the power consumption will increase due to the addition of the slave GNSS chip 240, since the master side RF circuit 300 outputs the IF signal to the slave, the master side RF circuit 300 can be shared by the master and the slave. .. Therefore, the slave-side power supply control unit 242 can cut off the power supply of the low-noise amplifier or mixer in the slave-side RF circuit 500. This makes it possible to suppress an increase in power consumption.
 このように、スケーラブルなチップの増設と、RF回路の電源制御とにより、アプリケーション毎に性能や電力のバランスを最適化することができる。 In this way, the balance of performance and power can be optimized for each application by adding scalable chips and controlling the power supply of the RF circuit.
 そして、所定条件が満たされた場合、例えば、マスタ側RF回路300が故障した場合、マスタ側インターフェース制御部231は、マスタ側RF回路300内のセレクタを切り替える。また、マスタ側電源制御部232は、マスタ側RF回路300の電源を遮断し、マスタ側デジタル信号処理部400内の測位エンジン以外の電源を遮断する。これにより、マスタ側電源制御部232からのIF信号の出力が停止する。 Then, when a predetermined condition is satisfied, for example, when the master side RF circuit 300 fails, the master side interface control unit 231 switches the selector in the master side RF circuit 300. Further, the master side power supply control unit 232 cuts off the power supply of the master side RF circuit 300, and cuts off the power supply other than the positioning engine in the master side digital signal processing unit 400. As a result, the output of the IF signal from the power supply control unit 232 on the master side is stopped.
 また、所定条件が満たされた場合、スレーブ側インターフェース制御部241は、スレーブ側RF回路500内のセレクタを切り替え、スレーブ側電源制御部242は、スレーブ側RF回路500の全回路の電源を投入する。このため、受信装置200は、マスタ側RF回路300が故障しても、スレーブ側RF回路500に切り替えて、測位を継続することができる。これにより、受信装置200の故障耐性が向上し、宇宙空間など、より過酷な環境下での運用が可能となる。言い換えれば、受信装置200の性能が向上する。前述したようにスレーブ側RF回路500への切り替え前は、スレーブ側RF回路500の電源が遮断されているため、RF回路の冗長化による消費電力の増大を抑制することができる。 When the predetermined condition is satisfied, the slave side interface control unit 241 switches the selector in the slave side RF circuit 500, and the slave side power supply control unit 242 turns on the power of all the circuits of the slave side RF circuit 500. .. Therefore, even if the master side RF circuit 300 fails, the receiving device 200 can switch to the slave side RF circuit 500 and continue the positioning. As a result, the fault tolerance of the receiving device 200 is improved, and it becomes possible to operate in a harsher environment such as outer space. In other words, the performance of the receiving device 200 is improved. As described above, since the power supply of the slave side RF circuit 500 is cut off before switching to the slave side RF circuit 500, it is possible to suppress an increase in power consumption due to the redundancy of the RF circuit.
 なお、受信装置200では、1つのアンテナ201をマスタおよびスレーブで共用しているが、この構成に限定されない。受信装置200に、複数のアンテナを設けることもできる。 In the receiving device 200, one antenna 201 is shared by the master and the slave, but the configuration is not limited to this. The receiving device 200 may be provided with a plurality of antennas.
 図8は、本技術の第1の実施の形態における複数のアンテナを設けた場合の受信装置200の一構成例を示す図である。同図に例示するように、アンテナ202および弾性表面波フィルタ211がさらに追加される。アンテナ201からのRF信号は、弾性表面波フィルタ210を介してマスタ側のGNSSチップ230のみに入力される。一方、アンテナ202からのRF信号は、弾性表面波フィルタ211を介してスレーブ側のGNSSチップ240のみに入力される。 FIG. 8 is a diagram showing a configuration example of the receiving device 200 when a plurality of antennas are provided according to the first embodiment of the present technology. As illustrated in the figure, an antenna 202 and a surface acoustic wave filter 211 are further added. The RF signal from the antenna 201 is input only to the GNSS chip 230 on the master side via the elastic surface wave filter 210. On the other hand, the RF signal from the antenna 202 is input only to the GNSS chip 240 on the slave side via the elastic surface wave filter 211.
 同図に例示した構成の場合、マスタからスレーブへ切り替える所定条件として、マスタ側の故障のほか、マスタ側のアンテナ201の受信感度の低下が考えられる。 In the case of the configuration illustrated in the figure, as a predetermined condition for switching from the master to the slave, it is conceivable that the reception sensitivity of the antenna 201 on the master side is lowered in addition to the failure on the master side.
 あるいは、図には示さないが、周波数帯毎に独立したアンテナを設ける構成としてもよい。各周波数帯をSAWフィルタで切り出して、妨害耐性を向上させることができる。また、アンテナ信号の分波ロスも無くすことができる。 Alternatively, although not shown in the figure, an independent antenna may be provided for each frequency band. Each frequency band can be cut out with a SAW filter to improve interference resistance. In addition, the demultiplexing loss of the antenna signal can be eliminated.
 なお、受信装置200内の回路を2系統配置し、系統ごとにアンテナを設け、それぞれの測位結果を用いて受信装置200の向いた方向を検出する方向検出部をさらに配置することもできる。これにより、サテライトコンパスを実現することができる。 It is also possible to arrange two circuits in the receiving device 200, provide an antenna for each system, and further arrange a direction detecting unit that detects the direction in which the receiving device 200 faces using the positioning results of each system. This makes it possible to realize a satellite compass.
 [受信装置の動作例]
 図9は、本技術の第1の実施の形態における受信装置200の動作の一例を示すフローチャートである。この動作は、例えば、受信装置200において、位置情報を用いる所定のアプリケーションが実行されたときに開始される。
[Operation example of receiver]
FIG. 9 is a flowchart showing an example of the operation of the receiving device 200 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application using the position information is executed in the receiving device 200.
 受信装置200は、現在時刻が測位すべき測位時刻であるか否かを判断する(ステップS901)。現在時刻が測位時刻でない場合(ステップS901:No)、受信装置200は、ステップS901を繰り返す。 The receiving device 200 determines whether or not the current time is the positioning time to be positioned (step S901). If the current time is not the positioning time (step S9011: No), the receiving device 200 repeats step S901.
 一方、現在時刻が測位時刻である場合(ステップS901:Yes)、受信装置200は 、GPSの衛星を捕捉し(ステップS902)、それらを追尾する(ステップS903)。また、受信装置200は、衛星観測値を用いて測位演算を行い、位置情報や速度情報を取得する(ステップS904)。 On the other hand, when the current time is the positioning time (step S901: Yes), the receiving device 200 captures the GPS satellites (step S902) and tracks them (step S903). Further, the receiving device 200 performs a positioning calculation using satellite observation values and acquires position information and speed information (step S904).
 そして、受信装置200は、マスタ側RF回路300が故障したか否かを判断する(ステップS905)。マスタ側RF回路300が故障した場合(ステップS905:Yes)、受信装置200は、動作させるRF回路をマスタ側RF回路300からスレーブ側RF回路500に切り替える(ステップS906)。マスタ側RF回路300が故障していない場合(ステップS905:No)、または、ステップS906の後に、受信装置200は、ステップS901以降を繰り返し実行する。 Then, the receiving device 200 determines whether or not the master-side RF circuit 300 has failed (step S905). When the master side RF circuit 300 fails (step S905: Yes), the receiving device 200 switches the operating RF circuit from the master side RF circuit 300 to the slave side RF circuit 500 (step S906). If the master-side RF circuit 300 has not failed (step S905: No), or after step S906, the receiving device 200 repeatedly executes step S901 and subsequent steps.
 このように、本技術の第1の実施の形態では、マスタ側RF回路300がIF信号をマスタ側およびスレーブ側に出力し、スレーブへの切り替え後にマスタ側電源制御部232が、マスタ側RF回路300を遮断する。また、スレーブへの切り替え前は、スレーブ側電源管理部242が、スレーブ側RF回路500の電源を遮断する。これらのRF回路の電源遮断により、RF回路を冗長化して性能(故障耐性など)を向上させた際の消費電力の増大を抑制することができる。 As described above, in the first embodiment of the present technology, the master side RF circuit 300 outputs the IF signal to the master side and the slave side, and after switching to the slave, the master side power supply control unit 232 uses the master side RF circuit. Block 300. Further, before switching to the slave, the slave side power supply management unit 242 cuts off the power supply of the slave side RF circuit 500. By shutting off the power supply of these RF circuits, it is possible to suppress an increase in power consumption when the RF circuits are made redundant to improve performance (fault tolerance, etc.).
 [変形例]
 上述の第1の実施の形態では、受信装置200がL1帯およびL5帯の信号を用いて測位を行っていたが、これらの2つの周波数帯域のみでは、衛星数や測位精度が不足することもある。この第1の実施の形態の変形例の受信装置200は、L2信号をさらに用いて測位を行う点において第1の実施の形態と異なる。ここで、L2信号は、L2帯の搬送波を変調して衛星が送信した信号である。このL2帯は、中心周波数を1227.60メガヘルツ(MHz)とする所定の帯域幅(±12.0メガヘルツなど)の周波数帯域である。
[Modification example]
In the first embodiment described above, the receiving device 200 performs positioning using signals in the L1 band and the L5 band, but the number of satellites and the positioning accuracy may be insufficient only in these two frequency bands. be. The receiving device 200 of the modification of the first embodiment is different from the first embodiment in that positioning is further performed by using the L2 signal. Here, the L2 signal is a signal transmitted by the satellite after modulating the carrier wave in the L2 band. This L2 band is a frequency band having a predetermined bandwidth (± 12.0 MHz, etc.) having a center frequency of 1227.60 MHz (MHz).
 図10は、本技術の第1の実施の形態の変形例におけるスレーブ側RF回路500の一構成例を示すブロック図である。この第1の実施の形態の変形例のスレーブ側RF回路500は、ローカル位相同期回路522の代わりにローカル位相同期回路526を備える点において、第1の実施の形態と異なる。 FIG. 10 is a block diagram showing a configuration example of the slave side RF circuit 500 in the modified example of the first embodiment of the present technology. The slave-side RF circuit 500 of the modification of the first embodiment is different from the first embodiment in that the local phase-locked loop 526 is provided instead of the local phase-locked loop 522.
 ローカル位相同期回路526は、GPSにおけるL2帯に応じたローカル周波数のローカル信号LOL2と、L5帯に応じたローカル周波数のローカル信号LOL5との一方をクロック信号CLKTCXOから生成するものである。このローカル位相同期回路526は、ローカル信号LOL2およびLOL5の一方を混合器523に供給する。 Local phase synchronization circuit 526 is for generating a local signal LO L2 of the local frequency corresponding to the L2 band in GPS, one of the local signal LO L5 of the local frequency corresponding to the L5 band from the clock signal CLK TCXO. The local phase-locked loop 526 supplies one of the local signals LO L2 and LO L5 to the mixer 523.
 また、第1の実施の形態の変形例のADC552は、デジタルのIF信号DIFL2およびDIFL5の一方をスレーブ側デジタル信号処理部600に出力する。 Further, the ADC 552 of the modified example of the first embodiment outputs one of the digital IF signals DIF L2 and DIF L5 to the slave side digital signal processing unit 600.
 第1の実施の形態の変形例のスレーブ側電源制御部242は、第1の実施の形態と同様に、初期状態において位相同期回路530、切替部540、ADC551およびADC552以外の回路の電源を遮断する。 Similar to the first embodiment, the slave side power supply control unit 242 of the modified example of the first embodiment shuts off the power supply of the circuits other than the phase-locked loop 530, the switching unit 540, the ADC 551 and the ADC 552 in the initial state. do.
 図11は、本技術の第1の実施の形態の変形例におけるスレーブ側デジタル信号処理部600の一構成例を示すブロック図である。この第1の実施の形態の変形例のスレーブ側デジタル信号処理部600は、L2デジタルフロントエンド660と、所定数のL2衛星処理ユニット670とをさらに備える点において第1の実施の形態と異なる。 FIG. 11 is a block diagram showing a configuration example of the slave-side digital signal processing unit 600 in the modified example of the first embodiment of the present technology. The slave-side digital signal processing unit 600 of the modification of the first embodiment is different from the first embodiment in that it further includes an L2 digital front end 660 and a predetermined number of L2 satellite processing units 670.
 L2デジタルフロントエンド660は、IF信号DIFL2を、L2帯に対応するベースバンド信号に変換するものである。L2デジタルフロントエンド660は、ベースバンド信号をL2衛星処理ユニット670のそれぞれに供給する。 The L2 digital front end 660 converts the IF signal DIF L2 into a baseband signal corresponding to the L2 band. The L2 digital front end 660 supplies the baseband signal to each of the L2 satellite processing units 670.
 L2衛星処理ユニット670は、L2帯に対応するベースバンド信号に基づいて、割り当てられた衛星を捕捉および追尾し、その衛星からのL2信号を復号するものである。このL2衛星処理ユニット670は、復号に得られた衛星観測値(航法データなど)を、シリアルインターフェース243を介してマスタに出力する。 The L2 satellite processing unit 670 captures and tracks the assigned satellite based on the baseband signal corresponding to the L2 band, and decodes the L2 signal from that satellite. The L2 satellite processing unit 670 outputs satellite observation values (navigation data, etc.) obtained for decoding to the master via the serial interface 243.
 同図に例示した構成により、スレーブ側の3つの衛星処理ユニットは、L1信号、L2信号およびL5信号のうち、少なくとも1つ以上の復号を行うことができる。 According to the configuration illustrated in the figure, the three satellite processing units on the slave side can decode at least one or more of the L1 signal, the L2 signal, and the L5 signal.
 第1の実施の形態の変形例のスレーブ側電源制御部242は、初期状態において、L2デジタルフロントエンド660と、L2衛星処理ユニット670のそれぞれとの電源を遮断する。なお、スレーブ側電源制御部242の代わりにクロック制御部を設け、L2デジタルフロントエンド660およびL2衛星処理ユニット670について、電源の遮断ではなく、それらのクロックを停止することもできる。 In the initial state, the slave side power supply control unit 242 of the modified example of the first embodiment cuts off the power supply between the L2 digital front end 660 and the L2 satellite processing unit 670. It is also possible to provide a clock control unit instead of the slave side power supply control unit 242 to stop the clocks of the L2 digital front end 660 and the L2 satellite processing unit 670 instead of shutting off the power supply.
 また、第1の実施の形態の変形例のマスタ側の測位エンジン450は、初期状態において、例えば、L1帯およびL5帯の衛星観測値に基づいて測位を行う。 Further, the positioning engine 450 on the master side of the modified example of the first embodiment performs positioning in the initial state based on, for example, satellite observation values of the L1 band and the L5 band.
 図12は、本技術の第1の実施の形態の変形例におけるL2帯を受信する際のスレーブ側RF回路500の状態の一例を示す図である。GPSやQZSSにおいて受信装置200が2波長を受信する場合、L1信号およびL5信号よりも、L1信号およびL2信号の組み合わせの方が観測可能な衛星数が多くなることがある。このため、観測可能な衛星数が所定値に満たない場合などに受信装置200は、受信する信号の組み合わせをL1信号およびL5信号からL1信号およびL2信号に切り替える。また、L1信号、L2信号およびL5信号の3つの周波数帯域を用いることにより、さらに性能を向上させることもできる。このため、受信装置200は、衛星数や測位精度などが不足する際に、L1信号およびL5信号やL1信号およびL2信号の2波長から、L1信号、L2信号およびL5信号の3波長に切り替えることができる。 FIG. 12 is a diagram showing an example of the state of the slave-side RF circuit 500 when receiving the L2 band in the modified example of the first embodiment of the present technology. When the receiving device 200 receives two wavelengths in GPS or QZSS, the number of observable satellites may be larger in the combination of the L1 signal and the L2 signal than in the L1 signal and the L5 signal. Therefore, when the number of observable satellites is less than a predetermined value, the receiving device 200 switches the combination of the received signals from the L1 signal and the L5 signal to the L1 signal and the L2 signal. Further, the performance can be further improved by using the three frequency bands of the L1 signal, the L2 signal, and the L5 signal. Therefore, when the number of satellites, positioning accuracy, or the like is insufficient, the receiving device 200 switches from the two wavelengths of the L1 signal, the L5 signal, the L1 signal, and the L2 signal to the three wavelengths of the L1 signal, the L2 signal, and the L5 signal. Can be done.
 受信する信号をL1信号およびL2信号に切り替える場合、同図に例示するように、スレーブ側電源制御部242は、ローノイズアンプ521、ローカル位相同期回路526、混合器523、ローパスフィルタ524および自動利得制御回路525の電源を投入する。また、ローカル位相同期回路526は、スレーブ側デジタル信号処理部600の制御に従って、ローカル信号LOL2を混合器523に供給する。 When switching the received signal to the L1 signal and the L2 signal, as illustrated in the figure, the slave side power supply control unit 242 includes a low noise amplifier 521, a local phase-locked loop 526, a mixer 523, a low-pass filter 524, and automatic gain control. Turn on the power of the circuit 525. The local phase synchronization circuit 526, under control of slave digital signal processor 600, and supplies to the mixer 523 the local signal LO L2.
 また、図13に例示するように、スレーブ側電源制御部242は、L2デジタルフロントエンド660およびL2衛星処理ユニット670の電源を投入し、L5デジタルフロントエンド630およびL5衛星処理ユニット640の電源を遮断する。なお、スレーブ側電源制御部242の代わりにクロック制御部を設け、L5デジタルフロントエンド630およびL5衛星処理ユニット640について、電源の遮断ではなく、それらのクロックを停止することもできる。 Further, as illustrated in FIG. 13, the slave side power supply control unit 242 turns on the power of the L2 digital front end 660 and the L2 satellite processing unit 670, and shuts off the power of the L5 digital front end 630 and the L5 satellite processing unit 640. do. It is also possible to provide a clock control unit instead of the slave side power supply control unit 242 to stop the clocks of the L5 digital front end 630 and the L5 satellite processing unit 640 instead of shutting off the power supply.
 そして、マスタ側の測位エンジン450は、L1帯およびL2帯の衛星観測値に基づいて測位を行う。 Then, the positioning engine 450 on the master side performs positioning based on the satellite observation values of the L1 band and the L2 band.
 また、受信する信号をL1信号、L2信号およびL5信号に切り替える場合、マスタ側電源制御部232は、GNSSチップ230内の全回路の電源を投入し、スレーブ側電源制御部242は、GNSSチップ240内の全回路の電源を投入する。そして、マスタ側の測位エンジン450は、L1帯、L2帯およびL5帯の衛星観測値に基づいて測位を行う。 When switching the received signal to the L1 signal, the L2 signal, and the L5 signal, the master side power supply control unit 232 turns on the power of all the circuits in the GNSS chip 230, and the slave side power supply control unit 242 turns on the GNSS chip 240. Turn on the power of all the circuits in. Then, the positioning engine 450 on the master side performs positioning based on the satellite observation values of the L1 band, the L2 band, and the L5 band.
 ここで、測位エンジンはCPU(Central Processing Unit)によるソフトウェア処理により実現することができる。この場合、例えば、L1帯、L2帯やL5帯等の測位処理を関数として実装しておき、衛星観測の条件に応じて、必要となる関数を組み合わせて使用すればよい。また、周波数帯域の切り替え機能の実装は、ファームウェアのアップデートによる機能拡張で対応することもできる。 Here, the positioning engine can be realized by software processing by the CPU (Central Processing Unit). In this case, for example, positioning processing such as the L1 band, the L2 band, and the L5 band may be implemented as a function, and necessary functions may be used in combination according to the satellite observation conditions. In addition, the implementation of the frequency band switching function can also be supported by function expansion by updating the firmware.
 なお、受信装置200は、初期状態においてL1信号およびL2信号を受信し、その後にL1信号およびL5信号や、L1信号、L2信号およびL5信号の組み合わせに切り替えることもできる。 The receiving device 200 can also receive the L1 signal and the L2 signal in the initial state, and then switch to the combination of the L1 signal and the L5 signal, the L1 signal, the L2 signal, and the L5 signal.
 上述したように、スレーブがL1信号、L2信号およびL5信号の復号を行うことにより、L1帯、L2帯およびL5帯の3波長に対応することができる。これにより、L1帯およびL5帯の2波長のみに対応する場合と比較して、観測可能な衛星数などの性能を向上させることができる。 As described above, the slave can decode the L1 signal, the L2 signal, and the L5 signal to correspond to the three wavelengths of the L1 band, the L2 band, and the L5 band. As a result, it is possible to improve the performance such as the number of observable satellites as compared with the case where only two wavelengths of the L1 band and the L5 band are supported.
 また、第1の実施の形態の変形例においても受信装置200は、第1の実施の形態と同様に、マスタ側RF回路300が故障した場合などに、スレーブ側RF回路500への切り替えを行う。 Further, also in the modified example of the first embodiment, the receiving device 200 switches to the slave side RF circuit 500 when the master side RF circuit 300 fails, as in the first embodiment. ..
 なお、第1の実施の形態の変形例の受信装置200は、2波長や3波長を受信しているが、それらのうち1波長(L1帯域など)のみを受信することもできる。この場合には、受信しない信号に対応するデジタルフロントエンドおよび衛星処理ユニットの電源が遮断される。 Although the receiving device 200 of the modified example of the first embodiment receives two wavelengths or three wavelengths, it is also possible to receive only one wavelength (L1 band or the like) among them. In this case, the power of the digital front end and the satellite processing unit corresponding to the signal not received is cut off.
 このように、本技術の第1の実施の形態の変形例によれば、スレーブがL1信号、L2信号およびL5信号のうち少なくとも1つの復号を行うため、L1帯およびL5帯のみに対応する場合と比較して性能を向上させることができる。 As described above, according to the modification of the first embodiment of the present technology, since the slave decodes at least one of the L1 signal, the L2 signal, and the L5 signal, only the L1 band and the L5 band are supported. Performance can be improved in comparison with.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、マスタがスレーブにアナログのIF信号を送信し、スレーブ側でIF信号のAD変換を行っていたが、この構成では、スレーブ側のADCの電源を遮断することができない。この第2の実施の形態の受信装置200は、マスタがデジタルのIF信号をスレーブに出力する点において第1の実施の形態と異なる。
<2. Second Embodiment>
In the first embodiment described above, the master transmits an analog IF signal to the slave and AD conversion of the IF signal is performed on the slave side, but in this configuration, the power supply of the ADC on the slave side is cut off. Can't. The receiving device 200 of the second embodiment is different from the first embodiment in that the master outputs a digital IF signal to the slave.
 図14は、本技術の第2の実施の形態におけるGNSSチップ230および240の一構成例を示すブロック図である。この第2の実施の形態のマスタ側のGNSSチップ230は、切替部250をさらに備える点において第1の実施の形態と異なる。 FIG. 14 is a block diagram showing a configuration example of GNSS chips 230 and 240 according to the second embodiment of the present technology. The GNSS chip 230 on the master side of the second embodiment is different from the first embodiment in that it further includes a switching unit 250.
 第2の実施の形態のGNSSチップ230において、マスタ側RF回路300は、デジタルのIF信号DIFを切替部250およびGNSSチップ240(スレーブ)に出力する。 In the GNSS chip 230 of the second embodiment, the master side RF circuit 300 outputs a digital IF signal DIF to the switching unit 250 and the GNSS chip 240 (slave).
 また、第2の実施の形態のスレーブ側のGNSSチップ240は、切替部260をさらに備える点において第1の実施の形態と異なる。第2の実施の形態のGNSSチップ240において、マスタ側RF回路300は、デジタルのIF信号DIFを切替部260に出力する。 Further, the slave-side GNSS chip 240 of the second embodiment is different from the first embodiment in that it further includes a switching unit 260. In the GNSS chip 240 of the second embodiment, the master side RF circuit 300 outputs a digital IF signal DIF to the switching unit 260.
 図15は、本技術の第2の実施の形態におけるマスタ側RF回路300および切替部250の一構成例を示すブロック図である。第2の実施の形態のマスタ側RF回路300には、切替部340が設けられない。 FIG. 15 is a block diagram showing a configuration example of the master side RF circuit 300 and the switching unit 250 in the second embodiment of the present technology. The master side RF circuit 300 of the second embodiment is not provided with the switching unit 340.
 また、自動利得制御回路315は、ADC351にアナログのIF信号を供給し、自動利得制御回路325は、ADC352にアナログのIF信号を供給する。 Further, the automatic gain control circuit 315 supplies an analog IF signal to the ADC 351 and the automatic gain control circuit 325 supplies an analog IF signal to the ADC 352.
 また、切替部250には、セレクタ251および252が配置される。ADC351は、デジタルのIF信号DIFL1をセレクタ251およびGNSSチップ240に出力する。ADC352は、デジタルのIF信号DIFL5をセレクタ252およびGNSSチップ240に出力する。 Further, selectors 251 and 252 are arranged in the switching unit 250. The ADC 351 outputs a digital IF signal DIF L1 to the selector 251 and the GNSS chip 240. The ADC 352 outputs a digital IF signal DIF L5 to the selector 252 and the GNSS chip 240.
 セレクタ251は、2つの入力端子と1つの出力端子を有する。2つの入力端子の一方はADC351に接続され、出力端子はマスタ側デジタル信号処理部400に接続される。また、セレクタ251は、マスタ側インターフェース制御部231の制御に従って入力先を切り替える。 The selector 251 has two input terminals and one output terminal. One of the two input terminals is connected to the ADC 351 and the output terminal is connected to the master side digital signal processing unit 400. Further, the selector 251 switches the input destination according to the control of the master side interface control unit 231.
 セレクタ252は、2つの入力端子と1つの出力端子を有する。2つの入力端子の一方はADC352に接続され、出力端子はマスタ側デジタル信号処理部400に接続される。また、セレクタ252は、マスタ側インターフェース制御部231の制御に従って入力先を切り替える。 The selector 252 has two input terminals and one output terminal. One of the two input terminals is connected to the ADC 352, and the output terminal is connected to the master side digital signal processing unit 400. Further, the selector 252 switches the input destination according to the control of the interface control unit 231 on the master side.
 IF信号DIFL1のビット数をK(Kは、整数)とすると、切替部250には、K個のセレクタ251が配置される。同様に、IF信号DIFL5のビット数と同じ個数のセレクタ252が設けられる。同図においては、1ビット分のセレクタ251および252のみが記載され、残りは省略されている。 Assuming that the number of bits of the IF signal DIF L1 is K (K is an integer), K selectors 251 are arranged in the switching unit 250. Similarly, the same number of selectors 252 as the number of bits of the IF signal DIF L5 are provided. In the figure, only the selectors 251 and 252 for one bit are described, and the rest are omitted.
 なお、パラレルシリアル変換を行うパラレルシリアル変換器をADC351および352と切替部250との間に挿入することもできる。これにより、セレクタ251および252は1つずつで済み、IF信号を出力する端子数を削減することができる。ただし、パラレルシリアル変換を行わない場合と比較して、動作クロックを上げる必要がある。スレーブ側についても同様にパラレルシリアル変換器を挿入することができる。 A parallel serial converter that performs parallel serial conversion can also be inserted between the ADCs 351 and 352 and the switching unit 250. As a result, only one selector 251 and one selector 252 are required, and the number of terminals for outputting an IF signal can be reduced. However, it is necessary to raise the operating clock compared to the case where parallel serial conversion is not performed. A parallel serial converter can be inserted on the slave side as well.
 また、マスタは、マスタ側デジタル信号処理部400内のデジタルフロントエンドにおける、ダウンサンプリング後または妨害除去後のデジタル信号をスレーブに出力することもできる。ADC351および352の出力するデジタル信号(DIFL1およびDIFL5)のビット数は、妨害に対するダイナミックレンジのマージン(いわゆるバックオフ)を持たせるために多めにしている。しかし、妨害除去後のデジタル信号であれば、ビット数を削減することができる。また、ダウンサンプリング後の信号であれば、帯域を抑制することができるため、パラレルシリアル変換が容易となる。あるいは、配線に対する自由度が向上する。 Further, the master can also output the digital signal after downsampling or interference removal at the digital front end in the master side digital signal processing unit 400 to the slave. The number of bits of the digital signals (DIF L1 and DIF L5 ) output by the ADCs 351 and 352 is increased in order to have a dynamic range margin (so-called backoff) for interference. However, if it is a digital signal after deinterference, the number of bits can be reduced. Further, if the signal is a signal after downsampling, the band can be suppressed, so that parallel serial conversion becomes easy. Alternatively, the degree of freedom for wiring is improved.
 図16は、本技術の第2の実施の形態におけるスレーブ側RF回路500および切替部260の一構成例を示すブロック図である。第2の実施の形態のスレーブ側RF回路500には、切替部540が設けられない。 FIG. 16 is a block diagram showing a configuration example of the slave-side RF circuit 500 and the switching unit 260 according to the second embodiment of the present technology. The slave side RF circuit 500 of the second embodiment is not provided with the switching unit 540.
 そして、自動利得制御回路515は、ADC551にアナログのIF信号を供給し、自動利得制御回路525は、ADC552にアナログのIF信号を供給する。 Then, the automatic gain control circuit 515 supplies an analog IF signal to the ADC 551, and the automatic gain control circuit 525 supplies an analog IF signal to the ADC 552.
 また、切替部260には、セレクタ261および262が配置される。ADC551は、デジタルのIF信号DIFL1をセレクタ261に出力する。ADC552は、デジタルのIF信号DIFL5をセレクタ262に出力する。 Further, selectors 261 and 262 are arranged in the switching unit 260. The ADC 551 outputs a digital IF signal DIF L1 to the selector 261. The ADC 552 outputs a digital IF signal DIF L5 to the selector 262.
 セレクタ261は、2つの入力端子と1つの出力端子を有する。2つの入力端子の一方はADC551に接続され、他方には、マスタからのIF信号DIFL1が入力される。出力端子はスレーブ側デジタル信号処理部600に接続される。また、セレクタ261は、スレーブ側インターフェース制御部241の制御に従って入力先を切り替える。 The selector 261 has two input terminals and one output terminal. One of the two input terminals is connected to the ADC 551, and the other is input with the IF signal DIF L1 from the master. The output terminal is connected to the slave side digital signal processing unit 600. Further, the selector 261 switches the input destination according to the control of the slave side interface control unit 241.
 セレクタ262は、2つの入力端子と1つの出力端子を有する。2つの入力端子の一方はADC552に接続され、他方には、マスタからのIF信号DIFL5が入力される。出力端子はスレーブ側デジタル信号処理部600に接続される。また、セレクタ262は、スレーブ側インターフェース制御部241の制御に従って入力先を切り替える。 The selector 262 has two input terminals and one output terminal. One of the two input terminals is connected to the ADC 552, and the other receives the IF signal DIF L5 from the master. The output terminal is connected to the slave side digital signal processing unit 600. Further, the selector 262 switches the input destination according to the control of the slave side interface control unit 241.
 また、スレーブ側電源制御部242は、初期状態において、ADC551および552も含め、位相同期回路530以外の回路の電源を遮断する。また、所定条件が満たされた場合(マスタ側RF回路300が故障した場合など)に、スレーブ側電源制御部242は、スレーブ側RF回路500内の全回路の電源を投入する。 Further, the slave side power supply control unit 242 cuts off the power supply of circuits other than the phase-locked loop 530, including ADC 551 and 552, in the initial state. Further, when a predetermined condition is satisfied (such as when the master side RF circuit 300 fails), the slave side power supply control unit 242 turns on the power of all the circuits in the slave side RF circuit 500.
 図14乃至図16に例示するように、マスタがスレーブにデジタルのIF信号を出力することにより、スレーブは、IF信号のAD変換を行う必要がなくなる。これにより、スレーブ側電源制御部242は、ADC551および552の電源をさらに遮断し、消費電力をさらに削減することができる。 As illustrated in FIGS. 14 to 16, the master outputs a digital IF signal to the slave, so that the slave does not need to perform AD conversion of the IF signal. As a result, the slave-side power supply control unit 242 can further cut off the power supplies of the ADCs 551 and 552, and further reduce the power consumption.
 なお、第2の実施の形態に、第1の実施の形態の変形例を適用することもできる。 It should be noted that a modified example of the first embodiment can be applied to the second embodiment.
 このように、本技術の第2の実施の形態によれば、マスタ側のGNSSチップ230が、スレーブにデジタルのIF信号を出力するため、スレーブ側のADC551および552の電源を遮断することができる。これにより、受信装置200の消費電力を削減することができる。 As described above, according to the second embodiment of the present technology, since the GNSS chip 230 on the master side outputs a digital IF signal to the slave, the power supplies of the ADCs 551 and 552 on the slave side can be cut off. .. As a result, the power consumption of the receiving device 200 can be reduced.
 <3.第3の実施の形態>
 上述の第1の実施の形態では、マスタおよびスレーブのそれぞれが、クロック信号CLKADCおよびCLKDSPを生成していたが、この構成では、スレーブ側の位相同期回路の電源を遮断することができない。この第3の実施の形態の受信装置200は、マスタがスレーブへクロック信号CLKADCおよびCLKDSPをさらに出力する点において第1の実施の形態と異なる。
<3. Third Embodiment>
In the first embodiment described above, the master and the slave each generate the clock signals CLK ADC and CLK DSP , but in this configuration, the power supply of the phase-locked loop on the slave side cannot be cut off. The receiving device 200 of the third embodiment is different from the first embodiment in that the master further outputs the clock signals CLK ADC and CLK DSP to the slave.
 図17は、本技術の第3の実施の形態におけるGNSSチップ230および240の一構成例を示すブロック図である。この第3の実施の形態のマスタ側のGNSSチップ230は、セレクタ235をさらに備える点において第1の実施の形態と異なる。 FIG. 17 is a block diagram showing a configuration example of GNSS chips 230 and 240 according to the third embodiment of the present technology. The GNSS chip 230 on the master side of the third embodiment is different from the first embodiment in that it further includes a selector 235.
 第3の実施の形態のマスタ側RF回路300は、スレーブ側のGNSSチップ240へクロック信号CLKADCおよびCLKDSPをさらに出力する。これらのうちクロック信号CLKDSPは、セレクタ245にも出力される。 The master-side RF circuit 300 of the third embodiment further outputs the clock signals CLK ADC and CLK DSP to the slave-side GNSS chip 240. Of these, the clock signal CLK DSP is also output to the selector 245.
 セレクタ235は、2つの入力端子と1つの出力端子を有する。2つの入力端子の一方はマスタ側RF回路300に接続され、出力端子はマスタ側デジタル信号処理部400に接続される。また、セレクタ235は、マスタ側インターフェース制御部231の制御に従って入力先を切り替える。 The selector 235 has two input terminals and one output terminal. One of the two input terminals is connected to the master side RF circuit 300, and the output terminal is connected to the master side digital signal processing unit 400. Further, the selector 235 switches the input destination according to the control of the master side interface control unit 231.
 また、第3のスレーブ側のGNSSチップ240は、セレクタ245をさらに備える点において第1の実施の形態と異なる。 Further, the GNSS chip 240 on the third slave side is different from the first embodiment in that it further includes a selector 245.
 セレクタ245は、2つの入力端子と1つの出力端子を有する。2つの入力端子の一方はスレーブ側RF回路500に接続され、他方にはマスタからのクロック信号CLKDSPが入力される。出力端子はスレーブ側デジタル信号処理部600に接続される。また、セレクタ245は、スレーブ側インターフェース制御部241の制御に従って入力先を切り替える。 The selector 245 has two input terminals and one output terminal. One of the two input terminals is connected to the slave side RF circuit 500, and the clock signal CLK DSP from the master is input to the other. The output terminal is connected to the slave side digital signal processing unit 600. Further, the selector 245 switches the input destination according to the control of the slave side interface control unit 241.
 図18は、本技術の第3の実施の形態におけるマスタ側RF回路300の一構成例を示すブロック図である。この第3の実施の形態のマスタ側RF回路300は、セレクタ360をさらに備える点において第1の実施の形態と異なる。 FIG. 18 is a block diagram showing a configuration example of the master-side RF circuit 300 according to the third embodiment of the present technology. The master-side RF circuit 300 of the third embodiment is different from the first embodiment in that it further includes a selector 360.
 第3の実施の形態の位相同期回路330は、クロック信号CLKDSPをセレクタ235に出力し、クロック信号CLKADCを、セレクタ360とスレーブ側のGNSSチップ240とに出力する。 The phase-locked loop 330 of the third embodiment outputs the clock signal CLK DSP to the selector 235, and outputs the clock signal CLK ADC to the selector 360 and the GNSS chip 240 on the slave side.
 セレクタ360は、2つの入力端子と1つの出力端子を有する。2つの入力端子の一方には位相同期回路330からのクロック信号CLKADCが入力される。出力端子はADC351および352に接続される。また、セレクタ360は、マスタ側インターフェース制御部231の制御に従って入力先を切り替える。 The selector 360 has two input terminals and one output terminal. The clock signal CLK ADC from the phase-locked loop 330 is input to one of the two input terminals. The output terminals are connected to ADCs 351 and 352. Further, the selector 360 switches the input destination according to the control of the master side interface control unit 231.
 図19は、本技術の第3の実施の形態におけるスレーブ側RF回路500の一構成例を示すブロック図である。この第3の実施の形態のスレーブ側RF回路500は、セレクタ560をさらに備える点において第1の実施の形態と異なる。 FIG. 19 is a block diagram showing a configuration example of the slave-side RF circuit 500 according to the third embodiment of the present technology. The slave-side RF circuit 500 of the third embodiment is different from the first embodiment in that it further includes a selector 560.
 第3の実施の形態の位相同期回路530は、クロック信号CLKDSPをセレクタ245に出力し、クロック信号CLKADCを、セレクタ560に出力する。 The phase-locked loop 530 of the third embodiment outputs the clock signal CLK DSP to the selector 245 and outputs the clock signal CLK ADC to the selector 560.
 セレクタ560は、2つの入力端子と1つの出力端子を有する。2つの入力端子の一方には位相同期回路530からのクロック信号CLKADCが入力され、他方にはマスタ側のGNSSチップ230からのクロック信号CLKADCが入力される。出力端子はADC551および552に接続される。また、セレクタ560は、スレーブ側インターフェース制御部241の制御に従って入力先を切り替える。 The selector 560 has two input terminals and one output terminal. The one of the two input terminals is a clock signal CLK ADC is input from the phase synchronization circuit 530, the other clock signal CLK ADC from GNSS chip 230 on the master side is input. The output terminals are connected to ADCs 551 and 552. Further, the selector 560 switches the input destination according to the control of the slave side interface control unit 241.
 また、スレーブ側電源制御部242は、初期状態において、位相同期回路530も含め、切替部540、ADC551および552以外の回路の電源を遮断する。また、所定条件が満たされた場合(マスタ側RF回路300が故障した場合など)に、スレーブ側電源制御部242は、スレーブ側RF回路500内の全回路の電源を投入する。 Further, the slave side power supply control unit 242 cuts off the power supply of circuits other than the switching unit 540, ADC 551 and 552, including the phase-locked loop 530, in the initial state. Further, when a predetermined condition is satisfied (such as when the master side RF circuit 300 fails), the slave side power supply control unit 242 turns on the power of all the circuits in the slave side RF circuit 500.
 図17乃至図19に例示するように、マスタがスレーブにクロック信号CLKADCおよびCLKDSPをさらに出力することにより、スレーブ側の位相同期回路530は、それらのクロックを生成する必要がなくなる。これにより、スレーブ側電源制御部242は、位相同期回路530の電源をさらに遮断し、消費電力をさらに削減することができる。 As illustrated in FIGS. 17 to 19, when the master further outputs the clock signals CLK ADC and CLK DSP to the slave, the phase-locked loop 530 on the slave side does not need to generate those clocks. As a result, the slave-side power supply control unit 242 can further cut off the power supply of the phase-locked loop 530 and further reduce the power consumption.
 なお、第3の実施の形態に、第1の実施の形態の変形例や、第2の実施の形態を適用することもできる。 It should be noted that a modified example of the first embodiment or the second embodiment can be applied to the third embodiment.
 このように、本技術の第3の実施の形態によれば、マスタ側のGNSSチップ230が、スレーブにクロック信号CLKADCおよびCLKDSPをさらに出力するため、スレーブ側の位相同期回路530の電源を遮断することができる。これにより、受信装置200の消費電力を削減することができる。 As described above, according to the third embodiment of the present technology, the GNSS chip 230 on the master side further outputs the clock signals CLK ADC and CLK DSP to the slave, so that the power supply of the phase synchronization circuit 530 on the slave side is supplied. It can be blocked. As a result, the power consumption of the receiving device 200 can be reduced.
 <4.第4の実施の形態>
 上述の第1の実施の形態では、マスタ側RF回路300は、マスタ側のIF信号のみをAD変換していたが、この構成では、マスタからスレーブに切り替えた際にスレーブ側のIF信号をマスタ側で用いることができない。この第4の実施の形態の受信装置200は、スレーブもマスタへIF信号を出力し、マスタ側RF回路300が、スレーブ側またはマスタ側のIF信号をAD変換する点において第1の実施の形態と異なる。
<4. Fourth Embodiment>
In the first embodiment described above, the master-side RF circuit 300 AD-converts only the master-side IF signal, but in this configuration, the slave-side IF signal is mastered when switching from the master to the slave. Cannot be used on the side. In the receiving device 200 of the fourth embodiment, the slave also outputs an IF signal to the master, and the master-side RF circuit 300 AD-converts the slave-side or master-side IF signal. Is different.
 図20は、本技術の第4の実施の形態におけるGNSSチップ230および240の一構成例を示すブロック図である。この第4の実施の形態のGNSSチップ240は、シリアルインターフェース244をさらに備える点において第1の実施の形態と異なる。また、第4の実施の形態のマスタ側のGNSSチップ230は、所定の条件(マスタの故障など)が満たされた場合に、スレーブへ衛星観測値を出力する。 FIG. 20 is a block diagram showing a configuration example of GNSS chips 230 and 240 according to the fourth embodiment of the present technology. The GNSS chip 240 of the fourth embodiment is different from the first embodiment in that it further includes a serial interface 244. Further, the GNSS chip 230 on the master side of the fourth embodiment outputs satellite observation values to the slave when a predetermined condition (master failure or the like) is satisfied.
 図21は、本技術の第4の実施の形態におけるマスタ側RF回路300の一構成例を示すブロック図である。この第4のマスタ側RF回路300には、スレーブ側のGNSSチップ240からのアナログのIF信号AIFL1およびAIFL5がさらに入力される。 FIG. 21 is a block diagram showing a configuration example of the master-side RF circuit 300 according to the fourth embodiment of the present technology. The analog IF signals AIF L1 and AIF L5 from the GNSS chip 240 on the slave side are further input to the fourth master side RF circuit 300.
 また、第4の実施の形態のセレクタ341の2つの入力端子の一方には、スレーブ側のIF信号AIFL1が入力され、他方には、第1の実施の形態と同様に自動利得制御回路315からのIF信号AIFL1が入力される。 Further, the IF signal AIF L1 on the slave side is input to one of the two input terminals of the selector 341 of the fourth embodiment, and the other is the automatic gain control circuit 315 as in the first embodiment. IF signal AIF L1 from is input.
 第4の実施の形態のセレクタ342の2つの入力端子の一方には、スレーブ側のIF信号AIFL5が入力され、他方には、第1の実施の形態と同様に自動利得制御回路325からのIF信号AIFL5が入力される。 The IF signal AIF L5 on the slave side is input to one of the two input terminals of the selector 342 of the fourth embodiment, and the other is from the automatic gain control circuit 325 as in the first embodiment. The IF signal AIF L5 is input.
 図22は、本技術の第4の実施の形態におけるスレーブ側RF回路500の一構成例を示すブロック図である。この第4の実施の形態のスレーブ側RF回路500は、自動利得制御回路515および525が、IF信号AIFL1およびAIFL5を、切替部540と、マスタ側のGNSSチップ230との両方に出力する点において第1の実施の形態と異なる。 FIG. 22 is a block diagram showing a configuration example of the slave-side RF circuit 500 according to the fourth embodiment of the present technology. In the slave-side RF circuit 500 of the fourth embodiment, the automatic gain control circuits 515 and 525 output the IF signals AIF L1 and AIF L5 to both the switching unit 540 and the GNSS chip 230 on the master side. It differs from the first embodiment in that it is different from the first embodiment.
 図23は、本技術の第4の実施の形態におけるスレーブ側デジタル信号処理部600の一構成例を示すブロック図である。この第4の実施の形態のスレーブ側デジタル信号処理部600は、測位エンジン650をさらに備える点において第1の実施の形態と異なる。 FIG. 23 is a block diagram showing a configuration example of the slave-side digital signal processing unit 600 according to the fourth embodiment of the present technology. The slave-side digital signal processing unit 600 of the fourth embodiment is different from the first embodiment in that it further includes a positioning engine 650.
 測位エンジン650の機能は、マスタ側の測位エンジン450と同様である。ただし、スレーブ側電源制御部242は、例えば、初期状態において測位エンジン650の電源を遮断する。そして、マスタの故障などの所定条件が満たされた場合にスレーブ側電源制御部242は、測位エンジン650の電源を投入する。このときに、マスタ側の測位エンジン450の電源が遮断され、マスタ側の衛星処理ユニットから衛星観測値がスレーブ側に送信される。スレーブ側の測位エンジン650は、マスタおよびスレーブの衛星観測値を用いて測位し、位置情報などを、シリアルインターフェース244を介して外部に出力する。 The function of the positioning engine 650 is the same as that of the positioning engine 450 on the master side. However, the slave-side power supply control unit 242 cuts off the power supply of the positioning engine 650 in the initial state, for example. Then, when a predetermined condition such as a failure of the master is satisfied, the slave side power supply control unit 242 turns on the power of the positioning engine 650. At this time, the power supply of the positioning engine 450 on the master side is cut off, and the satellite observation value is transmitted from the satellite processing unit on the master side to the slave side. The positioning engine 650 on the slave side performs positioning using satellite observation values of the master and the slave, and outputs position information and the like to the outside via the serial interface 244.
 図20乃至図23に例示したように、スレーブがIF信号をマスタ側RF回路300に出力することにより、マスタからスレーブに切り替えた際に、スレーブ側のIF信号をマスタ側でも用いることができる。これにより、スレーブに切り替えた際に、観測可能な衛星数を切り替え前と同じに維持することができ、性能低下を抑制することができる。また、マスタ側の測位エンジンが故障した際にも、スレーブ側の測位エンジンを用いて測位を継続することができる。これにより、柔軟かつロバストな故障回避を実現することができる。 As illustrated in FIGS. 20 to 23, when the slave outputs the IF signal to the master side RF circuit 300, the slave side IF signal can also be used on the master side when switching from the master to the slave. As a result, when switching to the slave, the number of observable satellites can be maintained at the same level as before the switching, and performance deterioration can be suppressed. Further, even if the positioning engine on the master side fails, positioning can be continued using the positioning engine on the slave side. This makes it possible to realize flexible and robust failure avoidance.
 なお、マスタ側電源制御部232やスレーブ側電源制御部242の代わりにクロック制御部を設け、マスタ側やスレーブ側の回路について、電源の遮断ではなく、それらのクロックを停止することもできる。 It is also possible to provide a clock control unit instead of the master side power supply control unit 232 and the slave side power supply control unit 242, and stop the clocks of the master side and slave side circuits instead of shutting off the power supply.
 また、第4の実施の形態に、第1の実施の形態の変形例、第2および第3の実施の形態のそれぞれを適用することもできる。 Further, each of the modified examples of the first embodiment and the second and third embodiments can be applied to the fourth embodiment.
 このように、本技術の第4の実施の形態によれば、スレーブがIF信号をマスタ側RF回路300に出力することにより、マスタからスレーブに切り替えた際に、スレーブ側のIF信号をマスタ側でも用いることができる。これにより、観測可能な衛星数を維持することができ、切り替えた際の性能の低下を抑制することができる。 As described above, according to the fourth embodiment of the present technology, when the slave outputs the IF signal to the master side RF circuit 300 and switches from the master to the slave, the IF signal on the slave side is output to the master side. But it can also be used. As a result, the number of observable satellites can be maintained, and deterioration of performance when switching can be suppressed.
 <5.第5の実施の形態>
 上述の第1の実施の形態では、受信装置200がL1信号およびL5信号を受信していたが、この構成では、L2信号やL6信号を用いることができない。この第5の実施の形態における受信装置200は、L2信号およびL6信号にも対応した点において第1の実施の形態と異なる。ここで、L6信号は、L6帯の搬送波を変調して衛星が送信した信号である。このL6帯は、中心周波数を1278.75メガヘルツ(MHz)とする所定の帯域幅の周波数帯域である。
<5. Fifth Embodiment>
In the first embodiment described above, the receiving device 200 has received the L1 signal and the L5 signal, but in this configuration, the L2 signal and the L6 signal cannot be used. The receiving device 200 in the fifth embodiment is different from the first embodiment in that it also corresponds to the L2 signal and the L6 signal. Here, the L6 signal is a signal transmitted by the satellite after modulating the carrier wave in the L6 band. This L6 band is a frequency band having a predetermined bandwidth with a center frequency of 1278.75 MHz (MHz).
 図24は、本技術の第5の実施の形態におけるGNSSチップ230および240の一構成例を示すブロック図である。この第5の実施の形態のGNSSチップ240は、スレーブ側RF回路500が設けられず、その代わりに、ADC552が配置される点において第1の実施の形態と異なる。 FIG. 24 is a block diagram showing a configuration example of GNSS chips 230 and 240 according to the fifth embodiment of the present technology. The GNSS chip 240 of the fifth embodiment is different from the first embodiment in that the slave side RF circuit 500 is not provided and the ADC 552 is arranged instead.
 第5の実施の形態のマスタ側RF回路300は、L1信号と、L2信号、L5信号およびL6信号のいずれかとを受信する。また、マスタ側RF回路300は、L2信号およびL6信号のいずれかに対応するローカル信号を用いてRF信号をアナログのIF信号AIFに変換してスレーブ側のADC552に出力する。また、マスタ側RF回路300は、L1信号およびL5信号に対応するローカル信号を用いてRF信号をデジタルのIF信号に変換してマスタ側デジタル信号処理部400に出力する。さらにマスタ側RF回路300は、クロック信号CLKADCをADC552に出力する。 The master-side RF circuit 300 of the fifth embodiment receives the L1 signal and any one of the L2 signal, the L5 signal, and the L6 signal. Further, the master side RF circuit 300 converts the RF signal into an analog IF signal AIF using a local signal corresponding to either the L2 signal or the L6 signal, and outputs the RF signal to the slave side ADC 552. Further, the master side RF circuit 300 converts the RF signal into a digital IF signal using the local signal corresponding to the L1 signal and the L5 signal, and outputs the RF signal to the master side digital signal processing unit 400. Further, the master side RF circuit 300 outputs the clock signal CLK ADC to the ADC 552.
 ADC552は、マスタ側からのIF信号をAD変換して、スレーブ側デジタル信号処理部600に出力する。 The ADC 552 AD-converts the IF signal from the master side and outputs it to the slave side digital signal processing unit 600.
 なお、同図に例示したようにスレーブ側がRF回路を持たない場合、スレーブそのものをFPGAまたはDSPにより実現することもできる。これにより、スレーブを増設して機能を拡張する際の開発コストを削減することができる。 Note that, as illustrated in the figure, when the slave side does not have an RF circuit, the slave itself can be realized by FPGA or DSP. As a result, it is possible to reduce the development cost when adding slaves to expand the functions.
 図25は、本技術の第5の実施の形態におけるマスタ側RF回路300の一構成例を示すブロック図である。この第5の実施の形態のマスタ側RF回路300は、ローカル位相同期回路322の代わりにローカル位相同期回路326を備える点において第1の実施の形態と異なる。 FIG. 25 is a block diagram showing a configuration example of the master-side RF circuit 300 according to the fifth embodiment of the present technology. The master-side RF circuit 300 of the fifth embodiment is different from the first embodiment in that the local phase-locked loop 326 is provided instead of the local phase-locked loop 322.
 ローカル位相同期回路326は、マスタ側デジタル信号処理部400の制御に従って、ローカル信号LOL2、LOL5およびLOL6のいずれかをクロック信号CLKTCXOから生成するものである。LOL6は、L6帯に応じたローカル周波数のローカル信号である。このローカル位相同期回路326は、生成したローカル信号を混合器323に供給する。 The local phase-locked loop 326 generates one of the local signals LO L2 , LO L5, and LO L6 from the clock signal CLK TCXO under the control of the master side digital signal processing unit 400. LO L6 is a local signal having a local frequency corresponding to the L6 band. The local phase-locked loop 326 supplies the generated local signal to the mixer 323.
 また、第5の実施の形態の位相同期回路330は、クロック信号CLKADCを、ADC351および352とGNSSチップ240とに出力する。 Further, the phase-locked loop 330 of the fifth embodiment outputs the clock signal CLK ADC to the ADCs 351 and 352 and the GNSS chip 240.
 また、第5の実施の形態の自動利得制御回路325は、アナログのIF信号をADC352とGNSSチップ240とに出力する。ローカル信号LOL2およびLOL6に対応するIF信号AIFL2およびAIFL6は、スレーブ側のGNSSチップ240で用いられる。また、ローカル信号LOL5に対応するIF信号AIFL5は、マスタ側のADC352によりAD変換される。 Further, the automatic gain control circuit 325 of the fifth embodiment outputs an analog IF signal to the ADC 352 and the GNSS chip 240. The IF signals AIF L2 and AIF L6 corresponding to the local signals LO L2 and L OL6 are used in the GNSS chip 240 on the slave side. Further, the IF signal AIF L5 corresponding to the local signal LO L5 is AD-converted by the ADC 352 on the master side.
 また、自動利得制御回路325は、マスタ側デジタル信号処理部400からの制御信号CTRLAGCに従って、IF信号に対する利得を制御する。 Further, the automatic gain control circuit 325 controls the gain for the IF signal according to the control signal CTRL AGC from the master side digital signal processing unit 400.
 図26は、本技術の第5の実施の形態におけるマスタ側デジタル信号処理部400の一構成例を示すブロック図である。この第5の実施の形態のマスタ側デジタル信号処理部400は、セレクタ451をさらに備える点において第1の実施の形態と異なる。 FIG. 26 is a block diagram showing a configuration example of the master-side digital signal processing unit 400 according to the fifth embodiment of the present technology. The master-side digital signal processing unit 400 of the fifth embodiment is different from the first embodiment in that it further includes a selector 451.
 また、第5の実施の形態のL5デジタルフロントエンド430は、ベースバンド信号に基づいて、自動利得制御回路325を制御するためのマスタ側制御信号CTRLAGCmを生成する。具体的には、L5デジタルフロントエンド430は、IF信号AIFL5の平均振幅または平均電力を演算する。そして、L5デジタルフロントエンド430は、演算値が一定値を超えると、ゲインを所定値だけ下げるためのマスタ側制御信号CTRLAGCmを生成する。一方、演算値が一定値を下回ると、L5デジタルフロントエンド430は、ゲインを所定値だけ上げるためのマスタ側制御信号CTRLAGCmを生成してセレクタ451に出力する。 Further, the L5 digital front end 430 of the fifth embodiment generates a master side control signal CTRL AGCm for controlling the automatic gain control circuit 325 based on the baseband signal. Specifically, the L5 digital front end 430 calculates the average amplitude or average power of the IF signal AIF L5. Then, when the calculated value exceeds a certain value, the L5 digital front end 430 generates a master side control signal CTRL AGCm for lowering the gain by a predetermined value. On the other hand, when the calculated value falls below a certain value, the L5 digital front end 430 generates a master side control signal CTRL AGCm for increasing the gain by a predetermined value and outputs it to the selector 451.
 セレクタ451は、2つの入力端子と1つの出力端子とを備える。2つの入力端子の一方には、マスタ側制御信号CTRLAGCmが入力され、他方には、シリアルインターフェース234からのスレーブ側制御信号CTRLAGCsが入力される。また、出力端子からは、制御信号CTRLAGCがマスタ側RF回路300へ出力される。セレクタ451は、マスタ側インターフェース制御部231の制御に従って、入力先を切り替える。 The selector 451 includes two input terminals and one output terminal. The master side control signal CTRL AGCm is input to one of the two input terminals, and the slave side control signal CTRL AGCs from the serial interface 234 is input to the other. Further, the control signal CTRL AGC is output from the output terminal to the master side RF circuit 300. The selector 451 switches the input destination according to the control of the master side interface control unit 231.
 図27は、本技術の第5の実施の形態におけるスレーブ側デジタル信号処理部600の一構成例を示すブロック図である。この第5の実施の形態のスレーブ側デジタル信号処理部600は、L2/L6デジタルフロントエンド680と、所定数のL2/L6衛星処理ユニット690とを備える。 FIG. 27 is a block diagram showing a configuration example of the slave-side digital signal processing unit 600 according to the fifth embodiment of the present technology. The slave-side digital signal processing unit 600 of the fifth embodiment includes an L2 / L6 digital front end 680 and a predetermined number of L2 / L6 satellite processing units 690.
 L2/L6デジタルフロントエンド680は、ADC552からのIF信号DIFL2またはDIFL6をベースバンド信号に変換してL2/L6衛星処理ユニットのそれぞれに供給するものである。また、L2/L6デジタルフロントエンド680は、マスタ側と同様の方法によりスレーブ側制御信号CTRLAGCsを生成し、シリアルインターフェース243を介してマスタへ出力する。 The L2 / L6 digital front end 680 converts the IF signal DIF L2 or DIF L6 from the ADC 552 into a baseband signal and supplies it to each of the L2 / L6 satellite processing units. Further, the L2 / L6 digital front end 680 generates slave side control signals CTRL AGCs by the same method as the master side, and outputs them to the master via the serial interface 243.
 L2/L6衛星処理ユニット690は、衛星捕捉部691および衛星追尾部692を備える。このL2/L6衛星処理ユニット690は、L2信号およびL6信号の一方を復号し、シリアルインターフェース243を介して、衛星観測値をマスタ側のGNSSチップ230に供給する。 The L2 / L6 satellite processing unit 690 includes a satellite acquisition unit 691 and a satellite tracking unit 692. The L2 / L6 satellite processing unit 690 decodes one of the L2 signal and the L6 signal, and supplies satellite observation values to the GNSS chip 230 on the master side via the serial interface 243.
 図24乃至図27に例示した構成により、受信装置200は、L1信号およびL2信号と、L1信号およびL5信号と、L1信号およびL6信号とのいずれかの組み合わせを受信し、それらを用いて測位することができる。これにより、L1帯およびL5帯に対応しつつ、追加したL2帯やL6帯を用いる規格にも柔軟に対応することができる。また、受信装置200は、新しい周波数帯(L2帯やL6帯等)のIF信号のダイナミックレンジを最適化することができる。なお、マスタ側RF回路300のローカル位相同期回路326で生成できる周波数帯を、L5帯を含む任意の周波数としつつ、スレーブ側のデジタル信号処理部600を今後、将来的に導入される新たなGNSS規格に対応するものとすれば、任意の周波数帯における新規格にも柔軟に対応することもできる。 According to the configuration exemplified in FIGS. 24 to 27, the receiving device 200 receives any combination of the L1 signal and the L2 signal, the L1 signal and the L5 signal, and the L1 signal and the L6 signal, and uses them for positioning. can do. As a result, it is possible to flexibly correspond to the standard using the added L2 band and L6 band while corresponding to the L1 band and the L5 band. Further, the receiving device 200 can optimize the dynamic range of the IF signal in a new frequency band (L2 band, L6 band, etc.). The frequency band that can be generated by the local phase-locked loop 326 of the master side RF circuit 300 is an arbitrary frequency including the L5 band, and the slave side digital signal processing unit 600 will be introduced in the future as a new GNSS. If it corresponds to the standard, it can flexibly correspond to the new standard in any frequency band.
 L1信号およびL2信号を受信する場合、セレクタ451は、スレーブ側制御信号CTRLAGCsを選択して、自動利得制御回路325に供給する。マスタ側RF回路300は、ローカル信号LOL1およびLOL2を生成し、デジタルのIF信号DIFL1とアナログのIF信号AIFL2とを生成する。マスタ側電源制御部232は、マスタ側デジタル信号処理部400内のL5デジタルフロントエンド430およびL5衛星処理ユニット440の電源を遮断し、それら以外の電源を投入する。スレーブ側電源制御部242は、スレーブ側デジタル信号処理部600の電源を投入する。 When receiving the L1 signal and the L2 signal, the selector 451 selects the slave side control signals CTRL AGCs and supplies them to the automatic gain control circuit 325. The master-side RF circuit 300 generates local signals LO L1 and LO L2, and generates a digital IF signal DIF L1 and an analog IF signal AIF L2 . The master side power supply control unit 232 shuts off the power supply of the L5 digital front end 430 and the L5 satellite processing unit 440 in the master side digital signal processing unit 400, and turns on the power other than those. The slave-side power supply control unit 242 turns on the power of the slave-side digital signal processing unit 600.
 また、L1信号およびL5信号を受信する場合、セレクタ451は、マスタ側制御信号CTRLAGCmを選択して、自動利得制御回路325に供給する。マスタ側RF回路300は、ローカル信号LOL1およびLOL5を生成し、デジタルのIF信号DIFL1およびDIFL5を生成する。マスタ側電源制御部232は、マスタ側デジタル信号処理部400の電源を投入する。スレーブ側電源制御部242は、スレーブ側デジタル信号処理部600の電源を遮断する。 Further, when receiving the L1 signal and the L5 signal, the selector 451 selects the master side control signal CTRL AGCm and supplies it to the automatic gain control circuit 325. The master-side RF circuit 300 generates the local signals LO L1 and LO L5, and generates the digital IF signals DIF L1 and DIF L5 . The master side power supply control unit 232 turns on the power of the master side digital signal processing unit 400. The slave-side power supply control unit 242 cuts off the power supply of the slave-side digital signal processing unit 600.
 また、L1信号およびL6信号を受信する場合、セレクタ451は、スレーブ側制御信号CTRLAGCsを選択して、自動利得制御回路325に供給する。マスタ側RF回路300は、ローカル信号LOL1およびLOL6を生成し、デジタルのIF信号DIFL1とアナログのIF信号AIFL6とを生成する。マスタ側電源制御部232は、マスタ側デジタル信号処理部400内のL5デジタルフロントエンド430およびL5衛星処理ユニット440の電源を遮断し、それら以外の電源を投入する。スレーブ側電源制御部242は、スレーブ側デジタル信号処理部600の電源を投入する。 Further, when receiving the L1 signal and the L6 signal, the selector 451 selects the slave side control signal CTRL AGCs and supplies the L1 signal to the automatic gain control circuit 325. The master-side RF circuit 300 generates local signals LO L1 and LO L6, and generates a digital IF signal DIF L1 and an analog IF signal AIF L6 . The master side power supply control unit 232 shuts off the power supply of the L5 digital front end 430 and the L5 satellite processing unit 440 in the master side digital signal processing unit 400, and turns on the power other than those. The slave-side power supply control unit 242 turns on the power of the slave-side digital signal processing unit 600.
 例えば、初期状態においては、受信装置200は、L1信号およびL5信号を受信し、所定条件が満たされた場合に、L1信号およびL2信号、または、L1信号およびL6信号の組み合わせに切り替える。所定条件としては、例えば、観測可能な衛星数が所定値以下である場合や、測位精度が目標値未満である場合などが想定される。 For example, in the initial state, the receiving device 200 receives the L1 signal and the L5 signal, and when a predetermined condition is satisfied, switches to a combination of the L1 signal and the L2 signal, or the L1 signal and the L6 signal. As the predetermined condition, for example, the case where the number of observable satellites is less than or equal to the predetermined value, or the case where the positioning accuracy is less than the target value is assumed.
 なお、マスタ側電源制御部232やスレーブ側電源制御部242の代わりにクロック制御部を設け、マスタ側やスレーブ側の回路について、電源の遮断ではなく、それらのクロックを停止することもできる。 It is also possible to provide a clock control unit instead of the master side power supply control unit 232 and the slave side power supply control unit 242, and stop the clocks of the master side and slave side circuits instead of shutting off the power supply.
 また、受信装置200は、L1信号およびL2信号などの2つの周波数帯域の信号を復号しているが、それらの一方(L1信号など)のみを復号することもできる。この場合には、復号しない方に対応するデジタルフロントエンドおよび衛星処理ユニットの電源が遮断される。 Further, although the receiving device 200 decodes signals in two frequency bands such as an L1 signal and an L2 signal, it is also possible to decode only one of them (L1 signal or the like). In this case, the power of the digital front end and the satellite processing unit corresponding to the one that does not decode is cut off.
 このように、本技術の第5の実施の形態によれば、マスタがL1およびL5信号を復号し、スレーブがL2信号またはL6信号を復号するため、L1帯およびL5帯に対応しつつ、L2帯やL6帯にも柔軟に対応することができる。 As described above, according to the fifth embodiment of the present technology, since the master decodes the L1 and L5 signals and the slave decodes the L2 signal or the L6 signal, L2 corresponds to the L1 band and the L5 band. It can flexibly handle bands and L6 bands.
 <6.第6の実施の形態>
 上述の第5の実施の形態では、受信装置200は、L1帯およびL2帯などの2つの周波数帯域を用いて測位していたが、この構成では、性能が不足することがある。この第6の実施の形態の受信装置200は、3つの周波数帯域を用いる点において第5の実施の形態と異なる。
<6. 6th Embodiment>
In the fifth embodiment described above, the receiving device 200 has been positioned using two frequency bands such as the L1 band and the L2 band, but the performance may be insufficient in this configuration. The receiving device 200 of the sixth embodiment differs from the fifth embodiment in that it uses three frequency bands.
 図28は、本技術の第6の実施の形態におけるマスタ側RF回路300の一構成例を示すブロック図である。この第6の実施の形態のマスタ側RF回路300は、ローノイズアンプ371、ローカル位相同期回路372、混合器373、ローパスフィルタ374、自動利得制御回路375およびADC353をさらに備える。また、第6の実施の形態のマスタ側RF回路300は、ローカル位相同期回路326の代わりに、ローカル信号LOL5を生成するローカル位相同期回路322を備える。 FIG. 28 is a block diagram showing a configuration example of the master-side RF circuit 300 according to the sixth embodiment of the present technology. The master-side RF circuit 300 of the sixth embodiment further includes a low noise amplifier 371, a local phase-locked loop 372, a mixer 373, a low-pass filter 374, an automatic gain control circuit 375, and an ADC 353. The master-side RF circuit 300 of the sixth embodiment, instead of the local phase synchronizing circuit 326 includes a local phase synchronizing circuit 322 for generating a local signal LO L5.
 ローノイズアンプ371は、RF信号RFINを増幅するものである。このローノイズアンプ371は、増幅したRF信号RFINを混合器373に供給する。 The low noise amplifier 371 amplifies the RF signal RFIN. The low noise amplifier 371 supplies the amplified RF signal RFIN to the mixer 373.
 ローカル位相同期回路372は、マスタ側デジタル信号処理部400の制御に従って、ローカル信号LOL2およびLOL6のいずれかをクロック信号CLKTCXOから生成するものである。このローカル位相同期回路372は、生成したローカル信号を混合器373に供給する。 The local phase-locked loop 372 generates one of the local signals LO L2 and LO L6 from the clock signal CLK TCXO under the control of the master side digital signal processing unit 400. The local phase-locked loop 372 supplies the generated local signal to the mixer 373.
 混合器373は、ローノイズアンプ371からのRF信号RFINとローカル信号(LOL2またはLOL6)を混合して、RF信号より周波数の低いアナログのIF信号AIFL2またはAIFL6を生成するものである。この混合器373は、そのIF信号をローパスフィルタ374に供給する。 The mixer 373 mixes the RF signal RFIN from the low noise amplifier 371 with a local signal (LO L2 or LO L6 ) to generate an analog IF signal AIF L2 or AIF L6 having a frequency lower than that of the RF signal. The mixer 373 supplies the IF signal to the low-pass filter 374.
 ローパスフィルタ374は、IF信号において所定の遮断周波数以下の周波数成分を通過させて、自動利得制御回路375に供給するものである。 The low-pass filter 374 passes a frequency component below a predetermined cutoff frequency in the IF signal and supplies it to the automatic gain control circuit 375.
 自動利得制御回路375は、入力されたIF信号(AIFL2またはAIFL6)のレベルに応じて、その信号に対する利得を制御するものである。この自動利得制御回路315は、一定のレベルのIF信号をGNSSチップ240およびADC353に出力する。IF信号AIFL2は、マスタ側で用いられ、IF信号AIFL6は、スレーブ側で用いられる。 The automatic gain control circuit 375 controls the gain for the input IF signal (AIF L2 or AIF L6 ) according to the level of the signal. The automatic gain control circuit 315 outputs a constant level IF signal to the GNSS chip 240 and the ADC 353. The IF signal AIF L2 is used on the master side, and the IF signal AIF L6 is used on the slave side.
 また、自動利得制御回路375は、マスタ側デジタル信号処理部400からの制御信号CTRLAGCsに従って、IF信号に対する利得を制御する。 Further, the automatic gain control circuit 375 controls the gain for the IF signal according to the control signal CTRL AGCs from the master side digital signal processing unit 400.
 ADC353は、IF信号をAD変換してマスタ側デジタル信号処理部400に出力するものである。 The ADC 353 AD-converts the IF signal and outputs it to the master side digital signal processing unit 400.
 図29は、本技術の第6の実施の形態におけるマスタ側デジタル信号処理部400の一構成例を示すブロック図である。この第6の実施の形態のマスタ側デジタル信号処理部400は、L2デジタルフロントエンド460と、所定数のL2衛星処理ユニット470とをさらに備える点において第5の実施の形態と異なる。 FIG. 29 is a block diagram showing a configuration example of the master-side digital signal processing unit 400 according to the sixth embodiment of the present technology. The master-side digital signal processing unit 400 of the sixth embodiment is different from the fifth embodiment in that it further includes an L2 digital front end 460 and a predetermined number of L2 satellite processing units 470.
 L2デジタルフロントエンド460は、IF信号DIFL2を、L2帯に対応するベースバンド信号に変換するものである。L2デジタルフロントエンド460は、ベースバンド信号をL2衛星処理ユニット470のそれぞれに供給する。また、L2デジタルフロントエンド460は、ベースバンド信号に基づいてマスタ側制御信号CTRLAGCmを生成し、セレクタ451に供給する。 The L2 digital front end 460 converts the IF signal DIF L2 into a baseband signal corresponding to the L2 band. The L2 digital front end 460 supplies a baseband signal to each of the L2 satellite processing units 470. Further, the L2 digital front end 460 generates a master side control signal CTRL AGCm based on the baseband signal and supplies it to the selector 451.
 L2衛星処理ユニット470は、L2帯に対応するベースバンド信号に基づいて、割り当てられた衛星を捕捉および追尾し、その衛星からのL2信号を復号するものである。このL2衛星処理ユニット470は、復号に得られた衛星観測値(航法データなど)を測位エンジン450に出力する。 The L2 satellite processing unit 470 captures and tracks the assigned satellite based on the baseband signal corresponding to the L2 band, and decodes the L2 signal from that satellite. The L2 satellite processing unit 470 outputs satellite observation values (navigation data, etc.) obtained for decoding to the positioning engine 450.
 第6の実施の形態の測位エンジン450は、L1衛星処理ユニット420、L5衛星処理ユニット440およびL2衛星処理ユニット470からの衛星観測値と、スレーブからのL6信号の衛星観測値とに基づいて位置情報等を生成する。 The positioning engine 450 of the sixth embodiment is positioned based on the satellite observation values from the L1 satellite processing unit 420, the L5 satellite processing unit 440 and the L2 satellite processing unit 470, and the satellite observation values of the L6 signal from the slave. Generate information etc.
 図30は、本技術の第6の実施の形態におけるスレーブ側デジタル信号処理部600の一構成例を示すブロック図である。この第6の実施の形態のスレーブ側デジタル信号処理部600は、L6デジタルフロントエンド681と、所定数のL6衛星処理ユニット695とを備える。 FIG. 30 is a block diagram showing a configuration example of the slave-side digital signal processing unit 600 according to the sixth embodiment of the present technology. The slave-side digital signal processing unit 600 of the sixth embodiment includes an L6 digital front end 681 and a predetermined number of L6 satellite processing units 695.
 L6デジタルフロントエンド681は、ADC552からのIF信号DIFL6をベースバンド信号に変換してL6衛星処理ユニット695のそれぞれに供給するものである。また、L6デジタルフロントエンド681は、マスタ側と同様の方法によりスレーブ側制御信号CTRLAGCsを生成し、シリアルインターフェース243を介してマスタへ出力する。 The L6 digital front end 681 converts the IF signal DIF L6 from the ADC 552 into a baseband signal and supplies it to each of the L6 satellite processing units 695. Further, the L6 digital front end 681 generates slave side control signals CTRL AGCs by the same method as the master side, and outputs them to the master via the serial interface 243.
 L6衛星処理ユニット695は、衛星捕捉部691および衛星追尾部692を備える。このL6衛星処理ユニット695は、L2信号を復号し、シリアルインターフェース243を介して、衛星観測値をマスタ側のGNSSチップ230に供給する。 The L6 satellite processing unit 695 includes a satellite acquisition unit 691 and a satellite tracking unit 692. The L6 satellite processing unit 695 decodes the L2 signal and supplies satellite observation values to the GNSS chip 230 on the master side via the serial interface 243.
 なお、スレーブ側デジタル信号処理部600は、L6信号を復号しているが、この構成に限定されず、L1、L2、L5およびL6信号以外の信号を復号することもできる。 Although the slave-side digital signal processing unit 600 decodes the L6 signal, the present invention is not limited to this configuration, and signals other than the L1, L2, L5, and L6 signals can be decoded.
 図28乃至図30に例示した構成により、受信装置200は、L1信号、L5信号およびL2信号と、L1信号、L5信号およびL6信号とのいずれかの組み合わせを受信し、それらを用いて測位することができる。 According to the configuration exemplified in FIGS. 28 to 30, the receiving device 200 receives any combination of the L1 signal, the L5 signal, and the L2 signal and the L1 signal, the L5 signal, and the L6 signal, and performs positioning using them. be able to.
 L1信号、L5信号およびL2信号を受信する場合、セレクタ451は、マスタ側制御信号CTRLAGCmを選択して、自動利得制御回路375に供給する。マスタ側電源制御部232は、マスタ側デジタル信号処理部400内の全回路の電源を投入する。スレーブ側電源制御部242は、スレーブ側デジタル信号処理部600の電源を遮断する。 When receiving the L1 signal, the L5 signal and the L2 signal, the selector 451 selects the master side control signal CTRL AGCm and supplies it to the automatic gain control circuit 375. The master side power supply control unit 232 turns on the power of all the circuits in the master side digital signal processing unit 400. The slave-side power supply control unit 242 cuts off the power supply of the slave-side digital signal processing unit 600.
 L1信号、L5信号およびL6信号を受信する場合、セレクタ451は、スレーブ側制御信号CTRLAGCsを選択して、自動利得制御回路375に供給する。マスタ側電源制御部232は、マスタ側デジタル信号処理部400内のL2デジタルフロントエンド460およびL2衛星処理ユニット470の電源を遮断し、それら以外の電源を投入する。スレーブ側電源制御部242は、スレーブ側デジタル信号処理部600の電源を投入する。 When receiving the L1 signal, the L5 signal and the L6 signal, the selector 451 selects the slave side control signal CTRL AGCs and supplies the L1 signal to the automatic gain control circuit 375. The master side power supply control unit 232 shuts off the power supply of the L2 digital front end 460 and the L2 satellite processing unit 470 in the master side digital signal processing unit 400, and turns on the power other than those. The slave-side power supply control unit 242 turns on the power of the slave-side digital signal processing unit 600.
 L1信号、L5信号およびL2信号の組み合わせから、L1信号、L5信号およびL6信号の組み合わせへの切り替えは、衛星数や測位精度などに関する所定条件が満たされた場合に実行される。 Switching from the combination of the L1 signal, the L5 signal and the L2 signal to the combination of the L1 signal, the L5 signal and the L6 signal is executed when predetermined conditions regarding the number of satellites, positioning accuracy and the like are satisfied.
 なお、受信装置200は、L1信号、L5信号およびL2信号などの3つの周波数帯域の信号を復号しているが、それらのうち2つ(L1信号およびL5信号など)や、それらのうち1つ(L1信号など)のみを復号することもできる。この場合には、復号しない信号に対応するデジタルフロントエンドおよび衛星処理ユニットの電源が遮断される。 The receiving device 200 decodes signals in three frequency bands such as an L1 signal, an L5 signal, and an L2 signal, but two of them (L1 signal, L5 signal, etc.) and one of them. It is also possible to decode only (L1 signal, etc.). In this case, the power of the digital front end and the satellite processing unit corresponding to the undecoded signal is cut off.
 また、受信装置200は、3つの周波数帯域の信号を用いているが、4つ以上の周波数帯域の信号を用いることもできる。この場合には、マスタまたはスレーブに対応する回路(デジタルフロントエンドや衛星処理ユニット)を追加すればよい。 Further, although the receiving device 200 uses signals in three frequency bands, signals in four or more frequency bands can also be used. In this case, a circuit (digital front end or satellite processing unit) corresponding to the master or slave may be added.
 上述したように、受信装置200が3つの周波数帯域の信号を用いて測位することにより、2つの周波数帯域のみを用いる場合と比較して、測位精度などの性能を向上させることができる。 As described above, by positioning the receiving device 200 using signals in three frequency bands, it is possible to improve performance such as positioning accuracy as compared with the case where only two frequency bands are used.
 このように、本技術の第6の実施の形態によれば、受信装置200が3つの周波数帯域の信号(L1信号、L5信号およびL2信号など)を用いて測位するため、2つの周波数帯域のみを用いる場合と比較して性能を向上させることができる。 As described above, according to the sixth embodiment of the present technology, since the receiving device 200 performs positioning using signals in three frequency bands (L1 signal, L5 signal, L2 signal, etc.), only two frequency bands are used. Performance can be improved as compared with the case of using.
 <7.第7の実施の形態>
 上述の第1の実施の形態では、受信装置200においてGNSSチップ230内に測位エンジンを配置していたが、この構成では、GNSSチップ230の回路規模の削減が困難である。この第7の実施の形態の受信装置200は、GNSSチップ230の外部に測位エンジンを配置した点において第1の実施の形態と異なる。
<7. Seventh Embodiment>
In the first embodiment described above, the positioning engine is arranged in the GNSS chip 230 in the receiving device 200, but it is difficult to reduce the circuit scale of the GNSS chip 230 in this configuration. The receiving device 200 of the seventh embodiment is different from the first embodiment in that the positioning engine is arranged outside the GNSS chip 230.
 図31は、本技術の第7の実施の形態における受信装置200の一構成例を示すブロック図である。この第7の実施の形態の受信装置200は、ホストCPU270をさらに備える点において第1の実施の形態と異なる。 FIG. 31 is a block diagram showing a configuration example of the receiving device 200 according to the seventh embodiment of the present technology. The receiving device 200 of the seventh embodiment is different from the first embodiment in that the host CPU 270 is further provided.
 ホストCPU270は、測位エンジンと同様の機能を有する。このホストCPU270は、クロック信号CLKDSPおよびマスタ側の衛星観測値をGNSSチップ230から受け取り、スレーブ側の衛星観測値をGNSSチップ240から受け取る。 The host CPU 270 has the same function as the positioning engine. The host CPU 270 receives the clock signal CLK DSP and the satellite observation value on the master side from the GNSS chip 230, and receives the satellite observation value on the slave side from the GNSS chip 240.
 また、ホストCPU270は、衛星処理ユニットを制御するための衛星制御信号と同期制御信号とを生成してGNSSチップ230および240に供給する。なお、ホストCPU270は、特許請求の範囲に記載の測位部の一例である。 Further, the host CPU 270 generates a satellite control signal and a synchronization control signal for controlling the satellite processing unit and supplies them to the GNSS chips 230 and 240. The host CPU 270 is an example of the positioning unit described in the claims.
 図32は、本技術の第7の実施の形態におけるマスタ側デジタル信号処理部400の一構成例を示すブロック図である。この第7の実施の形態のマスタ側デジタル信号処理部400は、測位エンジン450が配置されない点において第1の実施の形態と異なる。また、第7の実施の形態のL1衛星処理ユニット420およびL5衛星処理ユニット440は、衛星観測値をホストCPU270に出力する。 FIG. 32 is a block diagram showing a configuration example of the master-side digital signal processing unit 400 according to the seventh embodiment of the present technology. The master-side digital signal processing unit 400 of the seventh embodiment is different from the first embodiment in that the positioning engine 450 is not arranged. Further, the L1 satellite processing unit 420 and the L5 satellite processing unit 440 according to the seventh embodiment output satellite observation values to the host CPU 270.
 図31および図32に例示したように、GNSSチップ230の外部に測位エンジンを配置することにより、ユーザーまたは顧客主体で、アプリケーション毎にコスト、性能や電力のバランスを最適化することができる。 As illustrated in FIGS. 31 and 32, by arranging the positioning engine outside the GNSS chip 230, the balance of cost, performance and electric power can be optimized for each application by the user or the customer.
 また、GNSSチップ230の回路規模を削減することができる。さらに、GNSSチップ230および240のそれぞれの回路を同一にして、それらのチップの製造を容易にすることができる。 In addition, the circuit scale of the GNSS chip 230 can be reduced. Further, the circuits of the GNSS chips 230 and 240 can be made the same to facilitate the manufacture of those chips.
 なお、第7の実施の形態に、第1の実施の形態の変形例や、第2乃至第6の実施の形態のそれぞれを適用することができる。 It should be noted that each of the modified examples of the first embodiment and the second to sixth embodiments can be applied to the seventh embodiment.
 このように、本技術の第7の実施の形態では、GNSSチップ230の外部に測位を行うホストCPU270を配置したため、GNSSチップ230内に測位エンジンを配置する必要がなくなる。これにより、GNSSチップ230の回路規模を削減することができる。 As described above, in the seventh embodiment of the present technology, since the host CPU 270 that performs positioning is arranged outside the GNSS chip 230, it is not necessary to arrange the positioning engine inside the GNSS chip 230. As a result, the circuit scale of the GNSS chip 230 can be reduced.
 <8.応用例>
本開示に係る技術は、いわゆる「物のインターネット」であるIoT(Internet of things)と呼ばれる技術へ応用可能である。IoTとは、「物」であるIoTデバイス9100が、他のIoTデバイス9003、インターネット、クラウド9005などに接続され、情報交換することにより相互に制御する仕組みである。IoTは、農業、家、自動車、製造、流通、エネルギー、など様々な産業に利用できる。
<8. Application example>
The technology according to the present disclosure can be applied to a technology called IoT (Internet of things), which is a so-called "Internet of things". IoT is a mechanism in which IoT devices 9100, which are "things", are connected to other IoT devices 9003, the Internet, cloud 9005, etc., and are mutually controlled by exchanging information. IoT can be used in various industries such as agriculture, home, automobile, manufacturing, distribution, and energy.
 図33は、本開示に係る技術が適用され得るIoTシステム9000の概略的な構成の一例を示す図である。 FIG. 33 is a diagram showing an example of a schematic configuration of an IoT system 9000 to which the technique according to the present disclosure can be applied.
 IoTデバイス9001には、温度センサー、湿度センサー、照度センサー、加速度センサー、距離センサー、画像センサー、ガスセンサー、人感センサーなどの各種センサーなどが含まれる。また、IoTデバイス9001には、スマートフォン、携帯電話、ウェアラブル端末、ゲーム機器などの端末を含めてもよい。IoTデバイス9001は、AC電源、DC電源、電池、非接触給電、いわゆるエナジーハーベストなどにより給電される。IoTデバイス9001は、有線、無線、近接無線通信などにより通信することができる。通信方式は3G/LTE、WiFi、IEEE802.15.4、Bluetooth、Zigbee(登録商標)、Z-Waveなどが好適に用いられる。IoTデバイス9001は、これらの通信手段の複数を切り替えて通信してもよい。 The IoT device 9001 includes various sensors such as a temperature sensor, a humidity sensor, an illuminance sensor, an acceleration sensor, a distance sensor, an image sensor, a gas sensor, and a human sensor. Further, the IoT device 9001 may include terminals such as smartphones, mobile phones, wearable terminals, and game devices. The IoT device 9001 is powered by an AC power supply, a DC power supply, a battery, a non-contact power supply, a so-called energy harvest, or the like. The IoT device 9001 can communicate by wire, wireless, proximity wireless communication, or the like. As the communication method, 3G / LTE, WiFi, IEEE802.154, Bluetooth, Zigbee (registered trademark), Z-Wave and the like are preferably used. The IoT device 9001 may switch and communicate with a plurality of these communication means.
 IoTデバイス9001は、1対1、星状、ツリー状、メッシュ状のネットワークを形成してもよい。IoTデバイス9001は、直接に、またはゲートウエイ9002を通して、外部のクラウド9005に接続してもよい。IoTデバイス9001には、IPv4、IPv6、6LoWPANなどによって、アドレスが付与される。IoTデバイス9001から収集されたデータは、他のIoTデバイス9003、サーバ9004、クラウド9005などに送信される。IoTデバイス9001からデータを送信するタイミングや頻度は好適に調整され、データを圧縮して送信してもよい。このようなデータはそのまま利用してもよく、統計解析、機械学習、データマイニング、クラスタ分析、判別分析、組み合わせ分析、時系列分析など様々な手段でデータをコンピュータ9008で分析してもよい。このようなデータを利用することにより、コントロール、警告、監視、可視化、自動化、最適化、など様々なサービスを提供することができる。 The IoT device 9001 may form a one-to-one, star-shaped, tree-shaped, or mesh-shaped network. The IoT device 9001 may connect to the external cloud 9005 either directly or through the gateway 9002. An address is assigned to the IoT device 9001 by IPv4, IPv6, 6LoWPAN, or the like. The data collected from the IoT device 9001 is transmitted to other IoT devices 9003, the server 9004, the cloud 9005, and the like. The timing and frequency of transmitting data from the IoT device 9001 are appropriately adjusted, and the data may be compressed and transmitted. Such data may be used as it is, or the data may be analyzed by a computer 9008 by various means such as statistical analysis, machine learning, data mining, cluster analysis, discriminant analysis, combination analysis, and time series analysis. By using such data, various services such as control, warning, monitoring, visualization, automation, and optimization can be provided.
 本開示に係る技術は、家に関するデバイス、サービスにも応用可能である。家におけるIoTデバイス9001には、洗濯機、乾燥機、ドライヤ、電子レンジ、食洗機、冷蔵庫、オーブン、炊飯器、調理器具、ガス器具、火災報知器、サーモスタット、エアコン、テレビ、レコーダ、オーディオ、照明機器、温水器、給湯器、掃除機、扇風機、空気清浄器、セキュリティカメラ、錠、扉・シャッター開閉装置、スプリンクラー、トイレ、温度計、体重計、血圧計などが含まれる。さらにIoTデバイス9001には、太陽電池、燃料電池、蓄電池、ガスメータ、電力メータ、分電盤を含んでもよい。 The technology related to this disclosure can also be applied to devices and services related to homes. IoT devices 9001 at home include washing machines, dryers, dryers, microwave ovens, dishwashers, refrigerators, ovens, rice cookers, cookware, gas appliances, fire alarms, thermostats, air conditioners, televisions, recorders, audio, etc. Includes lighting equipment, water heaters, water heaters, vacuum cleaners, fans, air purifiers, security cameras, locks, door / shutter opening / closing devices, sprinklers, toilets, thermostats, weight scales, blood pressure monitors, etc. Further, the IoT device 9001 may include a solar cell, a fuel cell, a storage battery, a gas meter, a power meter, and a distribution board.
 家におけるIoTデバイス9001の通信方式は、低消費電力タイプの通信方式が望ましい。また、IoTデバイス9001は屋内ではWiFi、屋外では3G/LTEにより通信するようにしてもよい。クラウド9005上にIoTデバイス制御用の外部サーバ9006を設置し、IoTデバイス9001を制御してもよい。IoTデバイス9001は、家庭機器の状況、温度、湿度、電力使用量、家屋内外の人・動物の存否などのデータを送信する。家庭機器から送信されたデータは、クラウド9005を通じて、外部サーバ9006に蓄積される。このようなデータに基づき、新たなサービスが提供される。このようなIoTデバイス9001は、音声認識技術を利用することにより、音声によりコントロールすることができる。 The communication method of the IoT device 9001 at home is preferably a low power consumption type communication method. Further, the IoT device 9001 may communicate by WiFi indoors and 3G / LTE outdoors. An external server 9006 for controlling the IoT device may be installed on the cloud 9005 to control the IoT device 9001. The IoT device 9001 transmits data such as the status of household equipment, temperature, humidity, power consumption, and the presence / absence of people / animals inside and outside the house. The data transmitted from the home device is stored in the external server 9006 through the cloud 9005. Based on such data, new services will be provided. Such an IoT device 9001 can be controlled by voice by using voice recognition technology.
 また各種家庭機器からテレビに情報を直接送付することにより、各種家庭機器の状態を可視化することができる。さらには、各種センサーが居住者の有無を判断し、データを空調機、照明などに送付することで、それらの電源をオン・オフすることができる。さらには、各種家庭機器に供えられたディスプレイにインターネットを通じて広告を表示することができる。 Also, by sending information directly from various household devices to the TV, the status of various household devices can be visualized. Furthermore, various sensors determine the presence or absence of a resident and send the data to an air conditioner, lighting, etc., so that the power can be turned on and off. Furthermore, advertisements can be displayed on displays provided in various household devices via the Internet.
 以上、本開示に係る技術が適用され得るIoTシステム9000の一例について説明した。本開示に係る技術は、以上説明した構成のうち、IoTデバイス9001に好適に適用され得る。具体的には、図3の受信装置200をIoTデバイス9001に適用することができる。IoTデバイス9001に本開示に係る技術を適用することにより、IoTデバイスの消費電力を抑制しつつ、その性能を向上させ、システムの有用性や利便性を向上させることができる。 The above is an example of the IoT system 9000 to which the technology according to the present disclosure can be applied. The technique according to the present disclosure can be suitably applied to the IoT device 9001 among the configurations described above. Specifically, the receiving device 200 of FIG. 3 can be applied to the IoT device 9001. By applying the technique according to the present disclosure to the IoT device 9001, it is possible to improve the performance of the IoT device while suppressing the power consumption, and improve the usefulness and convenience of the system.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 It should be noted that the above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the matters specifying the invention within the scope of claims have a corresponding relationship with each other. Similarly, the matters specifying the invention within the scope of claims and the matters in the embodiment of the present technology having the same name have a corresponding relationship with each other. However, the present technology is not limited to the embodiment, and can be embodied by applying various modifications to the embodiment without departing from the gist thereof.
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。 Further, the processing procedure described in the above-described embodiment may be regarded as a method having these series of procedures, or as a program for causing a computer to execute these series of procedures or as a recording medium for storing the program. You may catch it. As this recording medium, for example, a CD (Compact Disc), MD (MiniDisc), DVD (Digital Versatile Disc), memory card, Blu-ray Disc (Blu-ray (registered trademark) Disc) and the like can be used.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成もとることができる。
(1)所定の中間周波数信号より周波数の高い高周波数信号を前記中間周波数信号に変換して出力するマスタ側受信回路と、
 前記中間周波数信号に基づいて所定の衛星からの信号を復号してマスタ側観測値として出力するマスタ側衛星処理ユニットと、
 前記中間周波数信号に基づいて所定の衛星からの信号を復号してスレーブ側観測値として出力するスレーブ側衛星処理ユニットと、
 所定条件が満たされた場合には前記マスタ側衛星処理ユニットの電源を遮断するマスタ側電源制御部と、
 前記マスタ側観測値および前記スレーブ側観測値の少なくとも一方に基づいて位置情報を生成する測位部と
を具備する受信装置。
(2)前記高周波数信号を前記中間周波数信号に変換して前記スレーブ側衛星処理ユニットに出力するスレーブ側受信回路と、
 前記所定条件が満たされた場合には前記スレーブ側受信回路に電源を投入するスレーブ側電源制御部と
をさらに具備し、
 前記マスタ側電源制御部は、前記所定条件が満たされた場合には前記マスタ側受信回路の電源を制御して前記中間周波数信号の出力を停止させ、
 前記マスタ側受信回路は、前記スレーブ側受信回路を介して前記中間周波数信号を前記スレーブ側衛星処理ユニットに出力する
前記(1)記載の受信装置。
(3)前記マスタ側受信回路は、デジタルの前記中間周波数信号を前記マスタ側衛星処理ユニットおよび前記スレーブ側衛星処理ユニットに出力する
前記(2)記載の受信装置。
(4)前記マスタ側受信回路は、アナログの前記中間周波数信号を前記スレーブ側受信回路に出力する
前記(2)記載の受信装置。
(5)前記マスタ側受信回路は、所定のクロック信号を前記スレーブ側受信回路にさらに送信し、
 前記マスタ側受信回路および前記スレーブ側受信回路は、前記クロック信号に同期して前記中間周波数信号に対するAD(Analog to Digital)変換処理をさらに行う
前記(2)から(4)のいずれかに記載の受信装置。
(6)前記スレーブ側受信回路は、前記中間周波数信号を前記マスタ側受信回路にさらに出力する
前記(2)から(5)のいずれかに記載の受信装置。
(7)前記マスタ側衛星処理ユニットおよび前記スレーブ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL1信号およびL5信号の少なくとも一方を復号する
前記(2)から(6)のいずれかに記載の受信装置。
(8)前記マスタ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL1信号およびL5信号の少なくとも一方を復号し、
 前記スレーブ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL1信号、L5信号およびL2信号のうち少なくとも1つの復号を行う
前記(2)から(6)のいずれかに記載の受信装置。
(9)前記マスタ側衛星処理ユニットは、所定の周波数帯域に対応するマスタ側ベースバンド信号を復号し、
 前記スレーブ側衛星処理ユニットは、前記周波数帯域と異なる周波数帯域に対応するスレーブ側ベースバンド信号を復号する
前記(1)記載の受信装置。
(10)前記中間周波数信号を前記マスタ側ベースバンド信号に変換するとともに前記中間周波数信号に基づいてマスタ側制御信号を生成するマスタ側デジタルフロントエンドと、
 前記中間周波数信号を前記スレーブ側ベースバンド信号に変換するとともに前記中間周波数信号に基づいてスレーブ側制御信号を生成するスレーブ側デジタルフロントエンドと、
 前記マスタ側制御信号と前記スレーブ側制御信号とのいずれかを選択して制御信号として出力するセレクタと
をさらに具備し、
 前記マスタ側受信回路は、
 前記高周波数信号を前記中間周波数信号に変換する混合器と、
 前記制御信号に従って前記中間周波数信号に対する利得を制御する自動利得制御器と
を備える
前記(9)記載の受信装置。
(11)前記マスタ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL1信号およびL5信号の少なくとも一方を復号し、
 前記スレーブ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL2信号およびL6信号のいずれかを復号する
前記(9)または(10)記載の受信装置。
(12)前記マスタ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL1信号、L2信号およびL5信号の少なくとも一方を復号し、
 前記スレーブ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL6信号を復号する
前記(9)または(10)記載の受信装置。
(13)前記マスタ側受信回路、前記マスタ側衛星処理ユニットおよび前記マスタ側電源制御部は、所定のマスタ側チップに設けられ、
 前記スレーブ側衛星処理ユニット部は、所定のスレーブ側チップに設けられる
前記(1)から(12)のいずれかに記載の受信装置。
(14)前記測位部は、前記マスタ側チップに設けられる
前記(13)記載の受信装置。
(15)前記測位部は、前記マスタ側チップおよび前記スレーブ側チップの外部に設けられる
前記(13)記載の受信装置。
(16)所定の中間周波数信号より周波数の高い高周波数信号を前記中間周波数信号に変換して前記マスタ側衛星処理ユニットおよび前記スレーブ側衛星処理ユニットに出力するマスタ側受信手順と、
 マスタ側衛星処理ユニットが、前記中間周波数信号に基づいて所定の衛星からの信号を復号してマスタ側観測値として出力するマスタ側衛星処理手順と、
 スレーブ側衛星処理ユニットが、前記中間周波数信号に基づいて所定の衛星からの信号を復号してスレーブ側観測値として出力するスレーブ側デジタル信号処理手順と、
 所定条件が満たされた場合には前記マスタ側衛星処理ユニットの電源を遮断するマスタ側電源制御手順と、
 前記マスタ側観測値および前記スレーブ側観測値の少なくとも一方に基づいて位置情報を生成する測位手順と
を具備する受信装置の制御方法。
The present technology can have the following configurations.
(1) A master-side receiving circuit that converts a high frequency signal having a higher frequency than a predetermined intermediate frequency signal into the intermediate frequency signal and outputs the signal.
A master-side satellite processing unit that decodes a signal from a predetermined satellite based on the intermediate frequency signal and outputs it as a master-side observation value.
A slave-side satellite processing unit that decodes a signal from a predetermined satellite based on the intermediate frequency signal and outputs it as a slave-side observation value.
A master-side power supply control unit that shuts off the power supply of the master-side satellite processing unit when certain conditions are met.
A receiving device including a positioning unit that generates position information based on at least one of the master-side observation value and the slave-side observation value.
(2) A slave-side receiving circuit that converts the high-frequency signal into the intermediate-frequency signal and outputs it to the slave-side satellite processing unit.
Further, a slave-side power supply control unit that turns on the power to the slave-side receiving circuit when the predetermined condition is satisfied is provided.
When the predetermined condition is satisfied, the master side power supply control unit controls the power supply of the master side receiving circuit to stop the output of the intermediate frequency signal.
The receiving device according to (1) above, wherein the master-side receiving circuit outputs the intermediate frequency signal to the slave-side satellite processing unit via the slave-side receiving circuit.
(3) The receiving device according to (2) above, wherein the master-side receiving circuit outputs the digital intermediate frequency signal to the master-side satellite processing unit and the slave-side satellite processing unit.
(4) The receiving device according to (2) above, wherein the master-side receiving circuit outputs an analog intermediate frequency signal to the slave-side receiving circuit.
(5) The master-side receiving circuit further transmits a predetermined clock signal to the slave-side receiving circuit.
2. Receiver.
(6) The receiving device according to any one of (2) to (5), wherein the slave-side receiving circuit further outputs the intermediate frequency signal to the master-side receiving circuit.
(7) The master-side satellite processing unit and the slave-side satellite processing unit decode at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave, whichever is one of (2) to (6). The receiver described in.
(8) The master-side satellite processing unit decodes at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave.
The receiving device according to any one of (2) to (6) above, wherein the slave-side satellite processing unit decodes at least one of an L1 signal, an L5 signal, and an L2 signal transmitted using the high frequency signal as a carrier wave. ..
(9) The master-side satellite processing unit decodes the master-side baseband signal corresponding to a predetermined frequency band, and decodes the master-side baseband signal.
The receiving device according to (1) above, wherein the slave-side satellite processing unit decodes a slave-side baseband signal corresponding to a frequency band different from the frequency band.
(10) A master-side digital front end that converts the intermediate frequency signal into the master-side baseband signal and generates a master-side control signal based on the intermediate-frequency signal.
A slave-side digital front end that converts the intermediate frequency signal into the slave-side baseband signal and generates a slave-side control signal based on the intermediate-frequency signal.
Further, a selector for selecting either the master side control signal or the slave side control signal and outputting it as a control signal is provided.
The master side receiving circuit is
A mixer that converts the high frequency signal into the intermediate frequency signal, and
The receiving device according to (9) above, comprising an automatic gain controller that controls a gain with respect to the intermediate frequency signal according to the control signal.
(11) The master-side satellite processing unit decodes at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave.
The receiving device according to (9) or (10) above, wherein the slave-side satellite processing unit decodes either an L2 signal or an L6 signal transmitted using the high frequency signal as a carrier wave.
(12) The master-side satellite processing unit decodes at least one of the L1 signal, the L2 signal, and the L5 signal transmitted using the high frequency signal as a carrier wave.
The receiving device according to (9) or (10), wherein the slave-side satellite processing unit decodes an L6 signal transmitted using the high frequency signal as a carrier wave.
(13) The master-side receiving circuit, the master-side satellite processing unit, and the master-side power supply control unit are provided on a predetermined master-side chip.
The receiving device according to any one of (1) to (12), wherein the slave-side satellite processing unit unit is provided on a predetermined slave-side chip.
(14) The receiving device according to (13), wherein the positioning unit is provided on the master-side chip.
(15) The receiving device according to (13), wherein the positioning unit is provided outside the master-side chip and the slave-side chip.
(16) A master-side reception procedure for converting a high-frequency signal having a higher frequency than a predetermined intermediate-frequency signal into the intermediate-frequency signal and outputting it to the master-side satellite processing unit and the slave-side satellite processing unit.
A master-side satellite processing procedure in which the master-side satellite processing unit decodes a signal from a predetermined satellite based on the intermediate frequency signal and outputs it as a master-side observation value.
A slave-side digital signal processing procedure in which the slave-side satellite processing unit decodes a signal from a predetermined satellite based on the intermediate frequency signal and outputs it as a slave-side observation value.
The master side power supply control procedure for shutting off the power supply of the master side satellite processing unit when a predetermined condition is satisfied, and the master side power supply control procedure.
A method for controlling a receiving device, comprising a positioning procedure for generating position information based on at least one of the master-side observation value and the slave-side observation value.
 100 衛星
 200 受信装置
 201、202 アンテナ
 210、211 弾性表面波フィルタ
 220 水晶発振器
 230、240 GNSSチップ
 231 マスタ側インターフェース制御部
 232 マスタ側電源制御部
 233、234、243、244 シリアルインターフェース
 235、245、251、252、261、262、341、342、360、451、541、542、560 セレクタ
 241 スレーブ側インターフェース制御部
 242 スレーブ側電源制御部
 250、260、340、540 切替部
 270 ホストCPU
 300 マスタ側RF回路
 311、321、371、511、521 ローノイズアンプ
 312、322、326、372、512、522、526 ローカル位相同期回路
 313、323、373、513、523 混合器
 314、324、374、514、524 ローパスフィルタ
 315、325、375、515、525 自動利得制御回路
 330、530 位相同期回路
 351~353、551、552 ADC
 400 マスタ側デジタル信号処理部
 410、610 L1デジタルフロントエンド
 420、620 L1衛星処理ユニット
 421、441、621、641、691 衛星捕捉部
 422、442、622、642、692 衛星追尾部
 430、630 L5デジタルフロントエンド
 440、640 L5衛星処理ユニット
 450、650 測位エンジン
 460、660 L2デジタルフロントエンド
 470、670 L2衛星処理ユニット
 500 スレーブ側RF回路
 600 スレーブ側デジタル信号処理部
 680 L2/L6デジタルフロントエンド
 681 L6デジタルフロントエンド
 690 L2/L6衛星処理ユニット
 695 L6衛星処理ユニット
 9001 IoTデバイス
100 Satellite 200 Receiver 201, 202 Antenna 210, 211 Surface Acoustic Wave Filter 220 Crystal Oscillator 230, 240 GNSS Chip 231 Master Side Interface Control Unit 232 Master Side Power Control Unit 233 234, 243, 244 Serial Interface 235, 245, 251 , 252, 261, 262, 341, 342, 360, 451, 541, 542, 560 Selector 241 Slave side interface control unit 242 Slave side power supply control unit 250, 260, 340, 540 Switching unit 270 Host CPU
300 Master side RF circuit 311 514, 524 Low- pass filter 315, 325, 375, 515, 525 Automatic gain control circuit 330, 530 Phase-locked loop 351 to 353, 551, 552 ADC
400 Master side digital signal processing unit 410, 610 L1 digital front end 420, 620 L1 satellite processing unit 421, 441, 621, 641, 691 satellite acquisition unit 422, 442, 622, 642, 692 satellite tracking unit 430, 630 L5 digital Front End 440, 640 L5 Satellite Processing Unit 450, 650 Positioning Engine 460, 660 L2 Digital Front End 470, 670 L2 Satellite Processing Unit 500 Slave Side RF Circuit 600 Slave Side Digital Signal Processing Unit 680 L2 / L6 Digital Front End 681 L6 Digital Front End 690 L2 / L6 Satellite Processing Unit 695 L6 Satellite Processing Unit 9001 IoT Device

Claims (16)

  1.  所定の中間周波数信号より周波数の高い高周波数信号を前記中間周波数信号に変換して出力するマスタ側受信回路と、
     前記中間周波数信号に基づいて所定の衛星からの信号を復号してマスタ側観測値として出力するマスタ側衛星処理ユニットと、
     前記中間周波数信号に基づいて所定の衛星からの信号を復号してスレーブ側観測値として出力するスレーブ側衛星処理ユニットと、
     所定条件が満たされた場合には前記マスタ側受信回路および前記マスタ側衛星処理ユニットのいずれかの電源を遮断するマスタ側電源制御部と、
     前記マスタ側観測値および前記スレーブ側観測値の少なくとも一方に基づいて位置情報を生成する測位部と
    を具備する受信装置。
    A master-side receiving circuit that converts a high frequency signal having a higher frequency than a predetermined intermediate frequency signal into the intermediate frequency signal and outputs the signal.
    A master-side satellite processing unit that decodes a signal from a predetermined satellite based on the intermediate frequency signal and outputs it as a master-side observation value.
    A slave-side satellite processing unit that decodes a signal from a predetermined satellite based on the intermediate frequency signal and outputs it as a slave-side observation value.
    When the predetermined conditions are satisfied, the power supply control unit on the master side that shuts off the power supply of either the reception circuit on the master side or the satellite processing unit on the master side, and
    A receiving device including a positioning unit that generates position information based on at least one of the master-side observation value and the slave-side observation value.
  2.  前記高周波数信号を前記中間周波数信号に変換して前記スレーブ側衛星処理ユニットに出力するスレーブ側受信回路と、
     前記所定条件が満たされた場合には前記スレーブ側受信回路に電源を投入するスレーブ側電源制御部と
    をさらに具備し、
     前記マスタ側電源制御部は、前記所定条件が満たされた場合には前記マスタ側受信回路の電源を制御して前記中間周波数信号の出力を停止させ、
     前記マスタ側受信回路は、前記スレーブ側受信回路を介して前記中間周波数信号を前記スレーブ側衛星処理ユニットに出力する
    請求項1記載の受信装置。
    A slave-side receiving circuit that converts the high-frequency signal into the intermediate-frequency signal and outputs it to the slave-side satellite processing unit.
    Further, a slave-side power supply control unit that turns on the power to the slave-side receiving circuit when the predetermined condition is satisfied is provided.
    When the predetermined condition is satisfied, the master side power supply control unit controls the power supply of the master side receiving circuit to stop the output of the intermediate frequency signal.
    The receiving device according to claim 1, wherein the master-side receiving circuit outputs the intermediate frequency signal to the slave-side satellite processing unit via the slave-side receiving circuit.
  3.  前記マスタ側受信回路は、デジタルの前記中間周波数信号を前記マスタ側衛星処理ユニットおよび前記スレーブ側衛星処理ユニットに出力する
    請求項2記載の受信装置。
    The receiving device according to claim 2, wherein the master-side receiving circuit outputs the digital intermediate frequency signal to the master-side satellite processing unit and the slave-side satellite processing unit.
  4.  前記マスタ側受信回路は、アナログの前記中間周波数信号を前記スレーブ側受信回路に出力する
    請求項2記載の受信装置。
    The receiving device according to claim 2, wherein the master-side receiving circuit outputs an analog intermediate frequency signal to the slave-side receiving circuit.
  5.  前記マスタ側受信回路は、所定のクロック信号を前記スレーブ側受信回路にさらに送信し、
     前記マスタ側受信回路および前記スレーブ側受信回路は、前記クロック信号に同期して前記中間周波数信号に対するAD(Analog to Digital)変換処理をさらに行う
    請求項2記載の受信装置。
    The master-side receiving circuit further transmits a predetermined clock signal to the slave-side receiving circuit.
    The receiving device according to claim 2, wherein the master-side receiving circuit and the slave-side receiving circuit further perform AD (Analog to Digital) conversion processing on the intermediate frequency signal in synchronization with the clock signal.
  6.  前記スレーブ側受信回路は、前記中間周波数信号を前記マスタ側受信回路にさらに出力する
    請求項2記載の受信装置。
    The receiving device according to claim 2, wherein the slave-side receiving circuit further outputs the intermediate frequency signal to the master-side receiving circuit.
  7.  前記マスタ側衛星処理ユニットおよび前記スレーブ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL1信号およびL5信号の少なくとも一方を復号する
    請求項2記載の受信装置。
    The receiving device according to claim 2, wherein the master-side satellite processing unit and the slave-side satellite processing unit decode at least one of an L1 signal and an L5 signal transmitted using the high frequency signal as a carrier wave.
  8.  前記マスタ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL1信号およびL5信号の少なくとも一方を復号し、
     前記スレーブ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL1信号、L5信号およびL2信号のうち少なくとも1つの復号を行う
    請求項2記載の受信装置。
    The master-side satellite processing unit decodes at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave.
    The receiving device according to claim 2, wherein the slave-side satellite processing unit decodes at least one of an L1 signal, an L5 signal, and an L2 signal transmitted using the high frequency signal as a carrier wave.
  9.  前記マスタ側衛星処理ユニットは、所定の周波数帯域に対応するマスタ側ベースバンド信号を復号し、
     前記スレーブ側衛星処理ユニットは、前記周波数帯域と異なる周波数帯域に対応するスレーブ側ベースバンド信号を復号する
    請求項1記載の受信装置。
    The master-side satellite processing unit decodes the master-side baseband signal corresponding to a predetermined frequency band, and decodes the master-side baseband signal.
    The receiving device according to claim 1, wherein the slave-side satellite processing unit decodes a slave-side baseband signal corresponding to a frequency band different from the frequency band.
  10.  前記中間周波数信号を前記マスタ側ベースバンド信号に変換するとともに前記中間周波数信号に基づいてマスタ側制御信号を生成するマスタ側デジタルフロントエンドと、
     前記中間周波数信号を前記スレーブ側ベースバンド信号に変換するとともに前記中間周波数信号に基づいてスレーブ側制御信号を生成するスレーブ側デジタルフロントエンドと、
     前記マスタ側制御信号と前記スレーブ側制御信号とのいずれかを選択して制御信号として出力するセレクタと
    をさらに具備し、
     前記マスタ側受信回路は、
     前記高周波数信号を前記中間周波数信号に変換する混合器と、
     前記制御信号に従って前記中間周波数信号に対する利得を制御する自動利得制御器と
    を備える
    請求項9記載の受信装置。
    A master-side digital front end that converts the intermediate frequency signal into the master-side baseband signal and generates a master-side control signal based on the intermediate-frequency signal.
    A slave-side digital front end that converts the intermediate frequency signal into the slave-side baseband signal and generates a slave-side control signal based on the intermediate-frequency signal.
    Further, a selector for selecting either the master side control signal or the slave side control signal and outputting it as a control signal is provided.
    The master side receiving circuit is
    A mixer that converts the high frequency signal into the intermediate frequency signal, and
    The receiving device according to claim 9, further comprising an automatic gain controller that controls the gain with respect to the intermediate frequency signal according to the control signal.
  11.  前記マスタ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL1信号およびL5信号の少なくとも一方を復号し、
     前記スレーブ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL2信号およびL6信号のいずれかを復号する
    請求項9記載の受信装置。
    The master-side satellite processing unit decodes at least one of the L1 signal and the L5 signal transmitted using the high frequency signal as a carrier wave.
    The receiving device according to claim 9, wherein the slave-side satellite processing unit decodes either an L2 signal or an L6 signal transmitted using the high frequency signal as a carrier wave.
  12.  前記マスタ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL1信号、L2信号およびL5信号の少なくとも一方を復号し、
     前記スレーブ側衛星処理ユニットは、前記高周波数信号を搬送波として伝送されたL6信号を復号する
    請求項9記載の受信装置。
    The master-side satellite processing unit decodes at least one of the L1 signal, the L2 signal, and the L5 signal transmitted using the high frequency signal as a carrier wave.
    The receiving device according to claim 9, wherein the slave-side satellite processing unit decodes an L6 signal transmitted using the high frequency signal as a carrier wave.
  13.  前記マスタ側受信回路、前記マスタ側衛星処理ユニットおよび前記マスタ側電源制御部は、所定のマスタ側チップに設けられ、
     前記スレーブ側衛星処理ユニット部は、所定のスレーブ側チップに設けられる
    請求項1記載の受信装置。
    The master-side receiving circuit, the master-side satellite processing unit, and the master-side power supply control unit are provided on a predetermined master-side chip.
    The receiving device according to claim 1, wherein the slave-side satellite processing unit unit is provided on a predetermined slave-side chip.
  14.  前記測位部は、前記マスタ側チップに設けられる
    請求項13記載の受信装置。
    The receiving device according to claim 13, wherein the positioning unit is provided on the master-side chip.
  15.  前記測位部は、前記マスタ側チップおよび前記スレーブ側チップの外部に設けられる
    請求項13記載の受信装置。
    13. The receiving device according to claim 13, wherein the positioning unit is provided outside the master-side chip and the slave-side chip.
  16.  所定の中間周波数信号より周波数の高い高周波数信号を前記中間周波数信号に変換して前記マスタ側衛星処理ユニットおよび前記スレーブ側衛星処理ユニットに出力するマスタ側受信手順と、
     マスタ側衛星処理ユニットが、前記中間周波数信号に基づいて所定の衛星からの信号を復号してマスタ側観測値として出力するマスタ側衛星処理手順と、
     スレーブ側衛星処理ユニットが、前記中間周波数信号に基づいて所定の衛星からの信号を復号してスレーブ側観測値として出力するスレーブ側デジタル信号処理手順と、
     所定条件が満たされた場合には前記マスタ側受信回路および前記マスタ側衛星処理ユニットのいずれかの電源を遮断するマスタ側電源制御手順と、
     前記マスタ側観測値および前記スレーブ側観測値の少なくとも一方に基づいて位置情報を生成する測位手順と
    を具備する受信装置の制御方法。
    A master-side receiving procedure that converts a high-frequency signal having a higher frequency than a predetermined intermediate-frequency signal into the intermediate-frequency signal and outputs the signal to the master-side satellite processing unit and the slave-side satellite processing unit.
    A master-side satellite processing procedure in which the master-side satellite processing unit decodes a signal from a predetermined satellite based on the intermediate frequency signal and outputs it as a master-side observation value.
    A slave-side digital signal processing procedure in which the slave-side satellite processing unit decodes a signal from a predetermined satellite based on the intermediate frequency signal and outputs it as a slave-side observation value.
    A master-side power supply control procedure for shutting off the power supply of either the master-side receiving circuit or the master-side satellite processing unit when a predetermined condition is satisfied, and a master-side power supply control procedure.
    A method for controlling a receiving device, comprising a positioning procedure for generating position information based on at least one of the master-side observation value and the slave-side observation value.
PCT/JP2021/006572 2020-05-11 2021-02-22 Reception device and reception device control method WO2021229886A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022522525A JPWO2021229886A1 (en) 2020-05-11 2021-02-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020083382 2020-05-11
JP2020-083382 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021229886A1 true WO2021229886A1 (en) 2021-11-18

Family

ID=78525645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006572 WO2021229886A1 (en) 2020-05-11 2021-02-22 Reception device and reception device control method

Country Status (2)

Country Link
JP (1) JPWO2021229886A1 (en)
WO (1) WO2021229886A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145239A1 (en) * 2022-01-25 2023-08-03 ソニーセミコンダクタソリューションズ株式会社 Satellite signal receiver and consumption-amount estimation device therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073649A (en) * 1996-05-09 1998-03-17 Agence Spatiale Europ Receiving apparatus for navigation system
US6125135A (en) * 1998-11-25 2000-09-26 Navcom Technology, Inc. System and method for demodulating global positioning system signals
JP2010088086A (en) * 2008-10-03 2010-04-15 Seiko Epson Corp Rf receiving circuit, gps receiver, and electronic apparatus
US20150212211A1 (en) * 2014-01-24 2015-07-30 Qualcomm Incorporated Methods and systems for multi-gnss operation
JP2016519280A (en) * 2013-03-08 2016-06-30 クゥアルコム・インコーポレイテッドQualcomm Incorporated Simultaneous signal receiver with scattered frequency allocation
WO2018124250A1 (en) * 2016-12-27 2018-07-05 スペースリンク株式会社 Positioning device, positioning method, and program
JP2020012679A (en) * 2018-07-13 2020-01-23 株式会社クボタ Satellite signal receiver and positioning device including satellite signal receiver

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073649A (en) * 1996-05-09 1998-03-17 Agence Spatiale Europ Receiving apparatus for navigation system
US6125135A (en) * 1998-11-25 2000-09-26 Navcom Technology, Inc. System and method for demodulating global positioning system signals
JP2010088086A (en) * 2008-10-03 2010-04-15 Seiko Epson Corp Rf receiving circuit, gps receiver, and electronic apparatus
JP2016519280A (en) * 2013-03-08 2016-06-30 クゥアルコム・インコーポレイテッドQualcomm Incorporated Simultaneous signal receiver with scattered frequency allocation
US20150212211A1 (en) * 2014-01-24 2015-07-30 Qualcomm Incorporated Methods and systems for multi-gnss operation
WO2018124250A1 (en) * 2016-12-27 2018-07-05 スペースリンク株式会社 Positioning device, positioning method, and program
JP2020012679A (en) * 2018-07-13 2020-01-23 株式会社クボタ Satellite signal receiver and positioning device including satellite signal receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145239A1 (en) * 2022-01-25 2023-08-03 ソニーセミコンダクタソリューションズ株式会社 Satellite signal receiver and consumption-amount estimation device therefor

Also Published As

Publication number Publication date
JPWO2021229886A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
US8843181B2 (en) Sensor uses in communication systems
JP7269246B2 (en) Receiver and receiver control method
US8169366B2 (en) Reconfigurable satellite positioning system receivers
JP5877385B2 (en) Wireless communication system
WO2021229886A1 (en) Reception device and reception device control method
JP7235766B2 (en) Receiving device and receiving method
JP2008202964A (en) Displacement measuring device
CN101176283B (en) Base station, receiving apparatus, and receiver trouble diagnosing method
JP7284755B2 (en) Receiving device and method for controlling receiving device
JP7121744B2 (en) Transmission/reception circuit, communication device, and control method for transmission/reception circuit
WO2024062768A1 (en) Wireless communication device, and method for controlling wireless communication device
JP2010156626A (en) Satellite-positioning device
WO2016021105A1 (en) Radio apparatus
JP2015219884A (en) Monitoring device, monitoring system, and monitoring method
US11569832B1 (en) Analog-to-digital conversion
JP2010109546A (en) Radio equipment and control method therefor
WO2022113848A1 (en) Reception device
WO2021117386A1 (en) Receiving device
JP5417159B2 (en) Wireless communication apparatus, wireless network system, and wireless communication method
JP6126700B2 (en) Wireless sensor system
WO2014174748A1 (en) Wireless communication apparatus and method for controlling wireless communication apparatus
JP2012039508A (en) Antenna system and wireless reception system
JP2005268965A (en) Communication device, oscillator, pseudo oscillation circuit, and oscillation method
JP2007322322A (en) Sps module inspection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804241

Country of ref document: EP

Kind code of ref document: A1