JP2010109546A - Radio equipment and control method therefor - Google Patents

Radio equipment and control method therefor Download PDF

Info

Publication number
JP2010109546A
JP2010109546A JP2008278081A JP2008278081A JP2010109546A JP 2010109546 A JP2010109546 A JP 2010109546A JP 2008278081 A JP2008278081 A JP 2008278081A JP 2008278081 A JP2008278081 A JP 2008278081A JP 2010109546 A JP2010109546 A JP 2010109546A
Authority
JP
Japan
Prior art keywords
phase
signal
transmission signal
self
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2008278081A
Other languages
Japanese (ja)
Inventor
Manabu Koizumi
学 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008278081A priority Critical patent/JP2010109546A/en
Publication of JP2010109546A publication Critical patent/JP2010109546A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Transceivers (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide radio equipment capable of diagnosing a present apparatus in the state of continuing an operation without enlarging the scale of the apparatus, and its control method. <P>SOLUTION: The radio equipment (100) with a self diagnosing function, which is provided with an antenna (ANT) for transmitting and receiving signals and a demultiplexer (DUP) for separating the transmission route (120) of transmission signals and the reception route (130) of reception signals, includes: a distribution part (140) for distributing the transmission signals from the transmission route (120) in the prestage of the demultiplexer (DUP); a phase shifter (150) for adjusting the phase of the transmission signals distributed in the distribution part (140); a connection part (160) for connecting the transmission signals whose phase is adjusted in the phase shifter (150) to the reception route (130) in the poststage of the demultiplexer (DUP); and a control part (114) for controlling the phase shifter (150) so as to turn the phase of the transmission signals distributed in the distribution part (140) to the same phase as the phase of the transmission signals which flow into the reception route (130) through the demultiplexer (DUP). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、無線機及びその制御方法に関し、特に、無線機の運用を停止することなく無線機が正常に動作しているか否かを診断可能な、自己診断機能を有する無線機及びその制御方法に関する。   The present invention relates to a radio and a control method thereof, and more particularly, a radio having a self-diagnosis function and a control method thereof capable of diagnosing whether or not the radio is operating normally without stopping operation of the radio. About.

無線通信システムにおいて、通信事業者は、故障等の不具合を早期に検出して良質なサービスを提供するために、基地局を定期的に保守点検する必要がある。この保守点検をより簡易にすべく、基地局には、自装置が正常に動作しているかを基地局自体で診断する自己診断機能が付与されているものがよくある(例えば、特許文献1を参照)。一般に、自己診断には、自装置が送信する送信信号の受信経路への漏れ込みを利用した受信経路の診断や、擬似端末を基地局に内蔵させて、その擬似端末から送信される信号を受信することによる受信経路の診断が含まれる。   In a wireless communication system, a communication carrier needs to periodically inspect and inspect a base station in order to detect a malfunction such as a failure at an early stage and provide a high-quality service. In order to make this maintenance and inspection easier, the base station is often provided with a self-diagnosis function for diagnosing whether the own apparatus is operating normally (for example, Patent Document 1). reference). In general, for self-diagnosis, diagnosis of the reception path using leakage of the transmission signal transmitted by the own device to the reception path, and reception of a signal transmitted from the pseudo terminal by incorporating a pseudo terminal in the base station It includes the diagnosis of the reception path.

ここで、従来技術による、通信方式がFDD(Frequency Division Duplex:周波数分割複信)方式の場合の、自己診断機能を有する基地局について簡単に説明する。図7は、FDD方式の場合の、自己診断機能を有する基地局の概略ブロック図である。FDD方式では、送信信号と受信信号の周波数が異なるため、基地局に疑似端末を設置する方法がとられる。図7に示すように、基地局200は、ベースバンド部210、送信系220、デュプレクサ(分波器)DUP2、受信系230、擬似端末300、カプラCUP及びアンテナANTを主な構成要素として備える。送信系220は、デジタルアップコンバータ(DUC)221、デジタル/アナログ変換器(DAC)222、アップコンバータ223、バンドパスフィルタ224及び電力増幅器225を備える。受信系230は、低雑音増幅器235、バンドバスフィルタ234、ダウンコンバータ233、アナログ/デジタル変換器(ADC)232及びデジタルダウンコンバータ(DDC)231を備える。また、送信系220と受信系230とに共有の、局部発振器LO及びPLL226が備えられている。自己診断を行わない通常の運用時には、上述の構成によって、無線通信端末(移動局)との通信が行われる。すなわち、ベースバンド部210において送信信号が変調され、変調された信号は、DUC221によって所望の周波数へと変換される。DAC222は、DUC221からのデジタル信号をアナログ信号へと変換する。ここまでの信号処理は中間周波数帯(IF帯)で行われるが、アップコンバータ223によって、IF信号が無線周波数信号(RF信号)へと変換される。なお、局部発振器LOは、送信信号を必要なRF信号に変換するための信号を生成し、生成された信号は、PLL226と基準信号源とによって周波数及び位相の同期がかけられた上で、アップコンバータ223へ供給される。バンドパスフィルタ224は、アップコンバータ223で生じた不要なスプリアス成分を除去する。その後、送信信号は、電力増幅器225によって所要の出力電力まで増幅され、アンテナANTから送信される。   Here, a base station having a self-diagnosis function when the communication method according to the prior art is an FDD (Frequency Division Duplex) method will be briefly described. FIG. 7 is a schematic block diagram of a base station having a self-diagnosis function in the case of the FDD scheme. In the FDD system, since the frequencies of the transmission signal and the reception signal are different, a method of installing a pseudo terminal in the base station is used. As shown in FIG. 7, the base station 200 includes a baseband unit 210, a transmission system 220, a duplexer (demultiplexer) DUP2, a reception system 230, a pseudo terminal 300, a coupler CUP, and an antenna ANT as main components. The transmission system 220 includes a digital up converter (DUC) 221, a digital / analog converter (DAC) 222, an up converter 223, a band pass filter 224, and a power amplifier 225. The reception system 230 includes a low noise amplifier 235, a band-pass filter 234, a down converter 233, an analog / digital converter (ADC) 232, and a digital down converter (DDC) 231. Further, a local oscillator LO and a PLL 226 that are shared by the transmission system 220 and the reception system 230 are provided. During normal operation without performing self-diagnosis, communication with a wireless communication terminal (mobile station) is performed with the above-described configuration. That is, the transmission signal is modulated in the baseband unit 210, and the modulated signal is converted into a desired frequency by the DUC 221. The DAC 222 converts the digital signal from the DUC 221 into an analog signal. The signal processing so far is performed in the intermediate frequency band (IF band), but the IF signal is converted into a radio frequency signal (RF signal) by the up-converter 223. The local oscillator LO generates a signal for converting the transmission signal into a necessary RF signal, and the generated signal is synchronized with the frequency and phase of the PLL 226 and the reference signal source, and then uploaded. It is supplied to the converter 223. The band pass filter 224 removes unnecessary spurious components generated by the up converter 223. Thereafter, the transmission signal is amplified to a required output power by the power amplifier 225 and transmitted from the antenna ANT.

また、アンテナANTで受信した受信信号は、低雑音増幅器235によって増幅され、バンドパスフィルタ234によって不要なスプリアス成分が除去される。その後、RF帯の受信信号は、局部発振器LO、PLL226及びダウンコンバータ233によってIF信号に変換される。このIF帯の受信信号は、ADC232によってデジタル信号に変換され、さらに、DDC231によって所望の周波数に変換される。その後、受信信号はベースバンド部210へ送信され、ベースバンド部210によって復調される。   Also, the received signal received by the antenna ANT is amplified by the low noise amplifier 235, and unnecessary spurious components are removed by the band pass filter 234. Thereafter, the received signal in the RF band is converted into an IF signal by the local oscillator LO, the PLL 226, and the down converter 233. The reception signal in the IF band is converted into a digital signal by the ADC 232 and further converted into a desired frequency by the DDC 231. Thereafter, the received signal is transmitted to the baseband unit 210 and demodulated by the baseband unit 210.

擬似端末300は、無線通信端末と同様の動作をするもので、基地局200における上述のブロックと同様の構成である。自己診断時には、擬似端末300から送信された信号が、カプラCUPによって分配され、受信信号として受信系230へ出力される。この受信信号に対する受信系230の挙動(受信電界強度や変調精度等)と、出荷時の初期調整時に予め測定した挙動とを比較することで、基地局200が正常に動作しているか否かを判定する。   The pseudo terminal 300 operates in the same manner as a wireless communication terminal, and has the same configuration as the above-described block in the base station 200. At the time of self-diagnosis, the signal transmitted from the pseudo terminal 300 is distributed by the coupler CUP and output to the reception system 230 as a reception signal. By comparing the behavior of the reception system 230 with respect to this received signal (reception electric field strength, modulation accuracy, etc.) with the behavior measured in advance at the time of initial adjustment at the time of shipment, it is determined whether or not the base station 200 is operating normally. judge.

特開2008−118243号公報JP 2008-118243 A

このように、FDD方式では送信信号と受信信号とで周波数が異なるため、上述のような擬似端末の使用が考えられている。しかしながら、擬似端末を用いると基地局として大規模な構成となり、それに伴いコストも増大する。また、自己診断を行うには、無線通信端末と通信を行う通常の基地局としての運用を停止しなければならず、効率的でない。   As described above, in the FDD scheme, the frequency of the transmission signal and that of the reception signal are different, and thus the use of the pseudo terminal as described above is considered. However, if a pseudo terminal is used, it becomes a large-scale configuration as a base station, and the cost increases accordingly. In order to perform self-diagnosis, operation as a normal base station that communicates with a wireless communication terminal must be stopped, which is not efficient.

よって、本発明の目的は、上述の問題を克服し、装置の規模を大型化することなく、運用を継続させた状態で自装置の診断が可能な技法(無線機及びその制御方法)を提供することにある。   Therefore, an object of the present invention is to provide a technique (a radio device and a control method thereof) that can overcome the above-described problems and can diagnose the device itself while continuing operation without increasing the size of the device. There is to do.

上述した諸課題を解決すべく、本発明による自己診断機能を有する無線機は、
信号の送信及び受信を行うアンテナと、
前記アンテナから送信する送信信号の送信経路と、前記アンテナで受信する受信信号の受信経路とを分離する分波器(デュプレクサ)と、
を備えた自己診断機能を有する無線機であって、
前記分波器の前段で前記送信経路から送信信号を分配する分配部と、
前記分配部で分配された送信信号の位相を調整する移相器と、
前記移相器で位相が調整された送信信号を前記分波器の後段で前記受信経路に結合させる結合部と、
自己診断時に、前記分配部で分配された送信信号の位相を、前記分波器を経て前記受信経路に流入した(漏れ込んだ)送信信号の位相と同位相にするように前記移相器を制御する制御部と、
(前記分波器を経て前記受信経路に流入した(漏れ込んだ)送信信号と、当該流入した送信信号の位相と同位相にされた前記分配部で分配された送信信号とを前記受信経路上で初期調整時(出荷時)に予め測定した基準値を格納する記憶部と、)
(前記受信経路上の前記結合部から出力された送信信号と基準値とを比較して自己診断を行う判定部と)を備えることを特徴とする。
In order to solve the above-described problems, a wireless device having a self-diagnosis function according to the present invention is as follows.
An antenna for transmitting and receiving signals;
A duplexer that separates a transmission path of a transmission signal transmitted from the antenna and a reception path of a reception signal received by the antenna;
A radio having a self-diagnosis function,
A distribution unit that distributes a transmission signal from the transmission path in a front stage of the duplexer;
A phase shifter for adjusting the phase of the transmission signal distributed by the distribution unit;
A coupling unit that couples a transmission signal, the phase of which is adjusted by the phase shifter, to the reception path at a subsequent stage of the duplexer;
At the time of self-diagnosis, the phase shifter is set so that the phase of the transmission signal distributed by the distribution unit is the same as the phase of the transmission signal that has flowed (leaked) into the reception path via the duplexer. A control unit to control;
(A transmission signal that has flowed (leaked) into the reception path via the duplexer and a transmission signal that has been distributed by the distribution unit that has the same phase as the flow of the transmitted signal on the reception path) And a storage unit for storing reference values measured in advance during initial adjustment (when shipped)
(A determination unit that performs a self-diagnosis by comparing a transmission signal output from the coupling unit on the reception path with a reference value).

また、本発明の一実施態様による自己診断機能を有する無線機は、
前記制御部は、
自己診断時でない場合は、前記分配部で分配された送信信号の位相を、前記分波器を経て前記受信経路に流入した送信信号の位相と逆位相にするように前記移相器を制御することを特徴とする。
In addition, a wireless device having a self-diagnosis function according to an embodiment of the present invention,
The controller is
If it is not during self-diagnosis, the phase shifter is controlled so that the phase of the transmission signal distributed by the distribution unit is opposite to the phase of the transmission signal that has flowed into the reception path through the duplexer. It is characterized by that.

さらに、本発明の別の実施態様による自己診断機能を有する無線機は、
前記受信経路上に、前記アンテナで受信した受信信号を通過させる第1のフィルタと、前記分配部から分配された送信信号を通過させる第2のフィルタをさらに備えることを特徴とする。
Furthermore, a radio having a self-diagnosis function according to another embodiment of the present invention includes:
A first filter that passes a reception signal received by the antenna and a second filter that passes a transmission signal distributed from the distribution unit are further provided on the reception path.

上述したように本発明の解決手段を装置として説明してきたが、本発明はこれらに実質的に相当する方法、プログラム、プログラムを記録した記憶媒体としても実現し得るものであり、本発明の範囲にはこれらも包含されるものと理解されたい。なお、方法やプログラムの各ステップは、データの処理においては必要に応じて、CPU、DSPなどの演算処理装置を使用するものであり、入力したデータや加工・生成したデータなどをHDD、メモリなどの記憶装置に格納するものである。   As described above, the solution of the present invention has been described as an apparatus. However, the present invention can be realized as a method, a program, and a storage medium that stores the program substantially corresponding to these, and the scope of the present invention. It should be understood that these are also included. Note that each step of the method and program uses an arithmetic processing unit such as a CPU or DSP as necessary in data processing, and the input data, processed / generated data, etc. are stored in HDD, memory, etc. Is stored in the storage device.

例えば、本発明を方法として実現させた自己診断機能を有する無線機の制御方法は、
アンテナで信号の送信及び受信を行うステップと、
分波器で前記アンテナから送信する送信信号の送信経路と、前記アンテナで受信する受信信号の受信経路とを分離するステップとを含む自己診断機能を有する無線機の制御方法であって、さらに、
前記分波器の前段で前記送信経路から送信信号を分配するステップと、
前記分配するステップで分配された送信信号の位相を移相器で調整するステップと、
前記調整するステップで位相が調整された送信信号を前記分波器の後段の結合部で前記受信経路に結合させるステップと、
自己診断時には、前記分配するステップで分配された送信信号の位相を、前記分波器を経て前記受信経路に流入した送信信号の位相と同位相にするように前記移相器を制御するステップと、
(前記受信経路上の前記結合部から出力された出力信号と基準値とを比較して自己診断を行うステップと)を含むことを特徴とする。
For example, a method of controlling a radio having a self-diagnosis function that implements the present invention as a method is as follows:
Transmitting and receiving signals with an antenna;
A method of controlling a radio having a self-diagnostic function, including a step of separating a transmission path of a transmission signal transmitted from the antenna by a duplexer and a reception path of a reception signal received by the antenna,
Distributing a transmission signal from the transmission path in a front stage of the duplexer;
Adjusting the phase of the transmission signal distributed in the distributing step with a phase shifter;
Coupling the transmission signal, the phase of which has been adjusted in the adjusting step, to the reception path at a coupling unit subsequent to the duplexer;
At the time of self-diagnosis, controlling the phase shifter so that the phase of the transmission signal distributed in the distributing step is the same as the phase of the transmission signal flowing into the reception path via the duplexer; ,
(The step of performing a self-diagnosis by comparing an output signal output from the coupling unit on the reception path with a reference value).

本発明によれば、装置の規模を大型化することなく、通常の運用を継続させた状態で自装置の診断が可能な無線機及びその制御方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the radio | wireless machine which can diagnose the own apparatus in the state which continued normal operation, without enlarging the scale of an apparatus, and its control method are provided.

以降、諸図面を参照しながら、本発明による無線機の実施態様を詳細に説明する。なおこれ以降では、無線機として基地局を例に説明するが、本発明はこれに限られるものではなく、携帯電話、PDA(パーソナルデジタルアシスタンス)等の携帯端末装置とすることもできる。   Hereinafter, embodiments of a radio according to the present invention will be described in detail with reference to the drawings. In the following description, a base station will be described as an example of a wireless device. However, the present invention is not limited to this, and a mobile terminal device such as a mobile phone or a PDA (personal digital assistance) can also be used.

<第1実施例>
図1は、本発明の第1実施例による基地局の概略ブロック図である。図1に示すように、基地局100は、ベースバンド部110、送信系120、デュプレクサ(分波器)DUP、受信系130、分配部140、移相器150、結合部160及びアンテナANTを主な構成要素として備える。ベースバンド部110は、判定部112、制御部114及び記憶部116をさらに備える。また、送信系120は、デジタルアップコンバータ(DUC)121、デジタル/アナログ変換器(DAC)122、アップコンバータ123、バンドパスフィルタ124及び電力増幅器125を備える。受信系130は、低雑音増幅器135、バンドバスフィルタ134、ダウンコンバータ133、アナログ/デジタル変換器(ADC)132及びデジタルダウンコンバータ(DDC)131を備える。また、送信系120と受信系130とに共有の、局部発振器LO及びPLL170が備えられている。また、基地局100は、アンテナANTを共有して、信号の送受信を行う。送信系120、受信系130、局部発振器LO、PLL170及びデュプレクサ(分波器)DUPの機能は、上述した図7に示す従来技術の基地局200と同様であるため、説明を省略する。
<First embodiment>
FIG. 1 is a schematic block diagram of a base station according to a first embodiment of the present invention. As shown in FIG. 1, the base station 100 mainly includes a baseband unit 110, a transmission system 120, a duplexer (demultiplexer) DUP, a reception system 130, a distribution unit 140, a phase shifter 150, a coupling unit 160, and an antenna ANT. As a major component. The baseband unit 110 further includes a determination unit 112, a control unit 114, and a storage unit 116. The transmission system 120 includes a digital up converter (DUC) 121, a digital / analog converter (DAC) 122, an up converter 123, a band pass filter 124 and a power amplifier 125. The reception system 130 includes a low noise amplifier 135, a band-pass filter 134, a down converter 133, an analog / digital converter (ADC) 132, and a digital down converter (DDC) 131. Further, a local oscillator LO and a PLL 170 shared by the transmission system 120 and the reception system 130 are provided. Moreover, the base station 100 transmits and receives signals by sharing the antenna ANT. The functions of the transmission system 120, the reception system 130, the local oscillator LO, the PLL 170, and the duplexer (demultiplexer) DUP are the same as those of the conventional base station 200 shown in FIG.

デュプレクサDUPは、送信信号の送信経路と受信信号の受信経路とを分離する機能を有するが、電力増幅器125で増幅された電力の大きい送信信号は、デュプレクサDUPを介して受信経路へ漏れ込んで、受信経路に流入してしまう。本発明は、自己診断を行う際にこの送信信号の漏れ込みを積極的に利用することを特徴とする。したがって、従来技術と異なり、本発明は、分配部140、移相器150及び結合部160をさらに備えている。分配部140は、送信系120における電力増幅器125とデュプレクサDUPとの間に結合され、デュプレクサDUPの前段で、送信経路上の送信信号を送信経路から分配する。分配部140は、一般的な方向性結合器でよく、例えば、簡単なマイクロストリップラインで実現することができる。移相器150は、分配部140に結合されており、分配部140から分配された送信信号の位相を調整する。また、結合部160は、デュプレクサDUPと受信系130の低雑音増幅器135との間に結合され、移相器150から出力された送信信号を、デュプレクサDUPの後段で受信経路に結合させる。結合部160も、分配部140と同様に、簡単なマイクロストリップラインで実現することができる。   The duplexer DUP has a function of separating the transmission path of the transmission signal and the reception path of the reception signal, but the transmission signal having a large power amplified by the power amplifier 125 leaks into the reception path through the duplexer DUP. It will flow into the receiving path. The present invention is characterized in that this transmission signal leakage is positively utilized when performing self-diagnosis. Therefore, unlike the prior art, the present invention further includes a distributor 140, a phase shifter 150, and a coupler 160. Distribution unit 140 is coupled between power amplifier 125 and duplexer DUP in transmission system 120, and distributes a transmission signal on the transmission path from the transmission path in a preceding stage of duplexer DUP. The distribution unit 140 may be a general directional coupler, and can be realized by a simple microstrip line, for example. The phase shifter 150 is coupled to the distribution unit 140 and adjusts the phase of the transmission signal distributed from the distribution unit 140. The coupling unit 160 is coupled between the duplexer DUP and the low-noise amplifier 135 of the reception system 130, and couples the transmission signal output from the phase shifter 150 to the reception path after the duplexer DUP. Similarly to the distribution unit 140, the coupling unit 160 can also be realized by a simple microstrip line.

このように、分配部140及び結合部160によって、送信信号を受信経路に結合させることができる。なお、この受信経路上に結合される送信信号を、これ以降、「分配信号」と称し、デュプレクサDUPを経て受信経路へ漏れ込んだ送信信号を、「漏れ込み信号」と称する。自己診断時には、分配信号を受信系の診断箇所で監視することによって、受信系の診断が可能となる。すなわち、出荷時の初期調整時に予め測定した分配信号の電界強度を、基準値として記憶部116に格納しておき、その基準値と分配信号とを判定部112で比較することによって、基地局100の異常の有無を判定することができる。   As described above, the distribution unit 140 and the combining unit 160 can combine the transmission signal with the reception path. The transmission signal combined on the reception path is hereinafter referred to as a “distributed signal”, and the transmission signal leaking into the reception path through the duplexer DUP is referred to as a “leakage signal”. At the time of self-diagnosis, the reception system can be diagnosed by monitoring the distribution signal at the diagnosis part of the reception system. That is, the electric field strength of the distribution signal measured in advance at the time of initial adjustment at the time of shipment is stored in the storage unit 116 as a reference value, and the reference value and the distribution signal are compared by the determination unit 112, whereby the base station 100 It can be determined whether there is any abnormality.

なお従来技術と異なり、本発明では、制御部114によって、自己診断時には、分配信号の位相と漏れ込み信号の位相とが同位相になるように移相器150が制御される。すなわち、分配信号と漏れ込み信号とをたし合わせることで受信系130に流れる分配信号の電界強度を増大させて、自己診断時における分配信号の測定を容易にしている。これに対して、自己診断時でなく、無線通信端末と通常の通信を行う場合(通常の運用時)には、受信経路への送信信号の漏れ込みは、受信系の劣化や受信信号の精度に影響を及ぼすため、好ましくない。したがって、通常の運用時には、制御部114によって、分配信号の位相と漏れ込み信号の位相とが逆位相になるように移相器150が制御される。すなわち、漏れ込み信号と分配信号とが互いに打ち消しあうようにして、受信経路上に不要な信号が流れないような制御がなされる。このことを、図を用いて説明する。図5は、例えば結合部160と低雑音増幅器135との間で観察した分配信号の信号波形を示すグラフである。グラフにおいて、実線DPは自己診断時、すなわち分配信号の位相と漏れ込み信号の位相とが同位相になるように制御された場合、破線TPは、通常の運用時、すなわち分配信号の位相と漏れ込み信号の位相とが逆位相になるように制御された場合の信号波形を示す。図のように、自己診断時には、分配信号の振幅が増大するので、受信経路で容易に分配信号を検出することができるようになる。なお、分配信号と漏れ込み信号とが確実に打ち消しあうようにするため、分配部140と結合部160との間に、通常の運用時に動作する減衰器を設けてもよいし、分配部140や結合部160のマイクロストリップラインのパターンを調整することで信号の結合係数を調整して、分配信号の電力を調整してもよい。   Unlike the prior art, in the present invention, the phase shifter 150 is controlled by the control unit 114 so that the phase of the distribution signal and the phase of the leakage signal are the same during self-diagnosis. That is, the distribution signal and the leakage signal are added together to increase the electric field strength of the distribution signal flowing through the receiving system 130, thereby facilitating measurement of the distribution signal during self-diagnosis. On the other hand, when normal communication is performed with a wireless communication terminal (during normal operation) instead of during self-diagnosis, leakage of the transmission signal to the reception path is caused by deterioration of the reception system or accuracy of the reception signal. It is not preferable because it affects Therefore, during normal operation, the phase shifter 150 is controlled by the control unit 114 so that the phase of the distribution signal and the phase of the leakage signal are opposite to each other. That is, control is performed such that unnecessary signals do not flow on the reception path so that the leakage signal and the distribution signal cancel each other. This will be described with reference to the drawings. FIG. 5 is a graph showing a signal waveform of a distributed signal observed between the coupling unit 160 and the low noise amplifier 135, for example. In the graph, the solid line DP indicates the self-diagnosis, that is, when the distribution signal phase and the leakage signal phase are controlled to be the same phase, the broken line TP indicates the normal operation, that is, the distribution signal phase and leakage. The signal waveform when it is controlled so that the phase of the error signal is in the opposite phase is shown. As shown in the figure, the amplitude of the distribution signal increases during self-diagnosis, so that the distribution signal can be easily detected on the reception path. In order to ensure that the distribution signal and the leakage signal cancel each other, an attenuator that operates during normal operation may be provided between the distribution unit 140 and the coupling unit 160. The power of the distribution signal may be adjusted by adjusting the coupling coefficient of the signal by adjusting the microstrip line pattern of the coupling unit 160.

次に、本発明の第1実施例による基地局100の制御方法を、図2のフローチャートを用いて説明する。まず、制御部114は、自己診断の要求があるか否かを判定する(ステップS11)。自己診断の要求は、例えば、基地局100の保守管理を行う通信事業者から行われる。自己診断の要求がない場合は、制御部114は、移相器150を制御して、分配部140から分配された送信信号の位相と、デュプレクサDUPを経て受信経路に漏れ込んだ送信信号の位相とが逆位相になるように設定する(ステップS12)。自己診断の要求がある場合は、制御部114は、移相器150を制御して、分配部140から分配された送信信号の位相と、デュプレクサDUPを経て受信経路に漏れ込んだ送信信号の位相とが同位相になるように設定する(ステップS13)。その後、判定部112は、受信経路上の分配信号の電界強度と、記憶部116に格納されている基準値の電界強度とを比較する(ステップS14)。判定部112にて、異常があると判定されると、異常が発生していることを、例えば図示しないモニタ等へ表示させたり、アラーム音を発生させたりして報告する(ステップS15,S17)。異常であるか否かの判定は、分配信号の電界強度と基準値との差が所定の閾値以上である場合や、分配信号の電界強度が時間によって大きく変動している場合等が該当する。なお、判定部112にて異常がないと判定されれば、正常であることを報告して、通常の運用を継続する(ステップS15,S16)。   Next, a control method of the base station 100 according to the first embodiment of the present invention will be described using the flowchart of FIG. First, the control unit 114 determines whether or not there is a request for self-diagnosis (step S11). The request for self-diagnosis is made, for example, by a communication carrier that performs maintenance management of the base station 100. When there is no request for self-diagnosis, the control unit 114 controls the phase shifter 150 to transmit the phase of the transmission signal distributed from the distribution unit 140 and the phase of the transmission signal leaked into the reception path through the duplexer DUP. Are set to have opposite phases (step S12). When there is a request for self-diagnosis, the control unit 114 controls the phase shifter 150 to transmit the phase of the transmission signal distributed from the distribution unit 140 and the phase of the transmission signal leaked into the reception path via the duplexer DUP. Are set to have the same phase (step S13). Thereafter, the determination unit 112 compares the electric field strength of the distribution signal on the reception path with the electric field strength of the reference value stored in the storage unit 116 (step S14). If the determination unit 112 determines that there is an abnormality, the fact that the abnormality has occurred is displayed on, for example, a monitor (not shown) or an alarm sound is generated (steps S15 and S17). . The determination of whether or not it is abnormal corresponds to the case where the difference between the electric field strength of the distribution signal and the reference value is greater than or equal to a predetermined threshold, or the case where the electric field strength of the distribution signal varies greatly with time. If the determination unit 112 determines that there is no abnormality, it reports that it is normal and continues normal operation (steps S15 and S16).

本発明では、上述のように、送信信号の一部を分配して受信経路に結合させたものを用いた自己診断が行われるため、従来技術のような擬似端末を基地局に内蔵する必要がなく基地局を大型化することがないという利点がある。さらに、分配部140及び結合部160は、簡単なマイクロストリップラインで実現できるため、コストがかかることもない。   In the present invention, as described above, since a self-diagnosis is performed using a part of the transmission signal distributed and coupled to the reception path, it is necessary to incorporate a pseudo terminal as in the prior art in the base station. There is an advantage that the base station is not enlarged. Furthermore, since the distribution unit 140 and the coupling unit 160 can be realized by a simple microstrip line, there is no cost.

<第2実施例>
次に、本発明の第2実施例による基地局について説明する。図3は、本発明の第2実施例による基地局100Aの概略ブロック図である。なお、図1に示す第1実施例の基地局100と同様の機能を有する構成部には同じ符号を付し、説明を省略する。基地局100Aは、デジタルダウンコンバータ(DDC2)131B,アナログ/デジタル変換器(ADC2)132B及び分配器136をさらに備える。分配器136は、通常の運用時には、結合部160からデジタルダウンコンバータ(DDC)131Aまでの受信経路のみを構成するが、自己診断時には、デジタルダウンコンバータ(DDC2)131B及びアナログ/デジタル変換器(ADC2)132Bを、受信経路にさらに結合させる。上述のように、FDD方式の通信方式では、自己診断時に、周波数の異なる送信信号(分配信号)と受信信号とが混在して、受信経路上を流れるようになる。したがって、受信経路を2つに分路し、それぞれの経路に、送信信号と受信信号の周波数に対応したフィルタを設けて、送信信号(分配信号)と受信信号とを分離する。
<Second embodiment>
Next, a base station according to the second embodiment of the present invention is described. FIG. 3 is a schematic block diagram of a base station 100A according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the structure part which has the function similar to the base station 100 of 1st Example shown in FIG. 1, and description is abbreviate | omitted. The base station 100A further includes a digital down converter (DDC2) 131B, an analog / digital converter (ADC2) 132B, and a distributor 136. The distributor 136 configures only the reception path from the coupling unit 160 to the digital down converter (DDC) 131A during normal operation, but at the time of self-diagnosis, the digital down converter (DDC2) 131B and the analog / digital converter (ADC2). ) 132B is further coupled to the receive path. As described above, in the FDD communication method, during self-diagnosis, transmission signals (distributed signals) and reception signals having different frequencies are mixed and flow on the reception path. Therefore, the reception path is divided into two, and a filter corresponding to the frequency of the transmission signal and the reception signal is provided in each path to separate the transmission signal (distributed signal) and the reception signal.

図3の例では、分配器136からデジタルダウンコンバータ(DDC2)131B及びアナログ/デジタル変換器(ADC2)132Bの経路上で、例えばADC2 132Bの前段又は後段に、送信信号(分配信号)のみを通過させるフィルタを設ける。また、分配器136からデジタルダウンコンバータ(DDC)131A及びアナログ/デジタル変換器(ADC)132Aの経路上で、例えばADC 132Aの前段又は後段に、受信信号のみを通過させるフィルタを設ける。判定部112Aは、送信信号(分配信号)の電界強度を、予め測定した基準値と比較し、異常判定を行う。なお、図1及び図3に示す基地局100及び100Aの違いは、分配器、DDC及びADCのみであるため、図3におけるその他の構成部についての説明は省略する。   In the example of FIG. 3, only the transmission signal (distributed signal) passes through the path from the distributor 136 to the digital down converter (DDC2) 131B and the analog / digital converter (ADC2) 132B, for example, before or after the ADC2 132B. A filter is provided. Further, on the path from the distributor 136 to the digital down converter (DDC) 131A and the analog / digital converter (ADC) 132A, for example, a filter that allows only the received signal to pass is provided before or after the ADC 132A. The determination unit 112A compares the electric field strength of the transmission signal (distributed signal) with a reference value measured in advance, and performs abnormality determination. Note that the difference between the base stations 100 and 100A shown in FIGS. 1 and 3 is only the distributor, the DDC, and the ADC, and thus the description of the other components in FIG. 3 is omitted.

上述の概念を、図を用いて説明する。図6は、ADC(132A,132B)でサンプリングする際に検出される、送信信号(分配信号)及び受信信号の周波数特性を示す模式的なグラフである。図のように、送信信号(分配信号、送信波)及び受信信号(受信波)が混在して検出される。なお、図において、受信信号(受信波)の周波数特性は実線RP、送信信号(分配信号、送信波)のうち、自己診断時の周波数特性は実線DP、通常の運用時の周波数特性は破線TPで示してある。自己診断時には、分配信号の位相と漏れ込み信号の位相とが同位相になるように移相器150が調整されるため、図のように、破線TPで示す通常の運用時の送信信号(分配信号)に比べて電力が大きくなる。第2実施例では、図6に示す受信信号と送信信号(分配信号)とを、フィルタをかけることによってそれぞれ取り出すことができる。例えば、受信信号RPを取り出す場合は、図6において波形FIL1で示す通過帯域を有するローパスフィルタを用いる。それに対して、送信信号DP(又はTP)を取り出す場合は、図6においてFIL2で示す通過帯域を有するローパスフィルタを用いる。なお、フィルタはデジタルフィルタ又はアナログフィルタのいずれかで実現することができる。アナログフィルタで実現する場合は、図3における分配器136とADC 132A及び132Bとの間に、受信信号又は送信信号(分配信号)に対応するフィルタをそれぞれ設ける。また、デジタルフィルタで実現する場合は、図3におけるADC 132A,132BとDDC 131A,131Bとの間に、受信信号又は送信信号(分配信号)に対応するフィルタをそれぞれ設ける。   The above concept will be described with reference to the drawings. FIG. 6 is a schematic graph showing frequency characteristics of a transmission signal (distributed signal) and a received signal detected when sampling is performed by the ADC (132A, 132B). As shown in the figure, a transmission signal (distributed signal, transmission wave) and a reception signal (reception wave) are detected together. In the figure, the frequency characteristic of the received signal (received wave) is a solid line RP, and among the transmission signals (distributed signal, transmitted wave), the frequency characteristic during self-diagnosis is a solid line DP, and the frequency characteristic during normal operation is a broken line TP. It is shown by. At the time of self-diagnosis, the phase shifter 150 is adjusted so that the phase of the distribution signal and the phase of the leakage signal are the same, so that the transmission signal (distribution during normal operation indicated by the broken line TP is distributed as shown in the figure. The power is larger than the signal. In the second embodiment, the received signal and the transmitted signal (distributed signal) shown in FIG. 6 can be respectively extracted by applying a filter. For example, when the received signal RP is extracted, a low-pass filter having a pass band indicated by a waveform FIL1 in FIG. 6 is used. On the other hand, when the transmission signal DP (or TP) is extracted, a low-pass filter having a pass band indicated by FIL2 in FIG. 6 is used. The filter can be realized by either a digital filter or an analog filter. When an analog filter is used, a filter corresponding to a reception signal or a transmission signal (distributed signal) is provided between the distributor 136 and the ADCs 132A and 132B in FIG. In the case of realizing with a digital filter, a filter corresponding to a reception signal or a transmission signal (distributed signal) is provided between the ADCs 132A and 132B and the DDCs 131A and 131B in FIG.

次に、本発明の第2実施例による基地局100Aの制御方法を、図4のフローチャートを用いて説明する。まず、制御部114は、自己診断の要求があるか否かを判定する(ステップS21)。自己診断の要求は、例えば、基地局100Aの保守管理を行う通信事業者から行われる。自己診断の要求がない場合は、制御部114は、移相器150を制御して、分配部140から分配された送信信号の位相と、デュプレクサDUPを経て受信経路に漏れ込んだ送信信号の位相とが逆位相になるように設定する(ステップS22)。自己診断の要求がある場合は、制御部114は、移相器150を制御して、分配部140から分配された送信信号の位相と、デュプレクサDUPを経て受信経路に漏れ込んだ送信信号の位相とが同位相になるように設定する(ステップS23)。次に、制御部114は、ダウンコンバータ133からADC2 132Bへの経路も構成するように分配器136を制御し、送信信号(分配信号)の帯域で動作するADC2 132BおよびDDC2 131Bを動作させる(ステップS24)。その後、判定部112Aは、受信経路上の分配信号の電界強度と、記憶部116に格納されている基準値の電界強度とを比較する(ステップS25)。なおこのとき、受信信号と送信信号(分配信号)とが混在している第1実施例とは異なり、第2実施例では、送信信号(分配信号)のみをフィルタによって取り出すことができていることに留意されたい。判定部112にて、異常があると判定されると、異常が発生していることを、例えば図示しないモニタ等へ表示させたり、アラーム音を発生させたりして報告する(ステップS26,S29)。異常であるか否かの判定は、分配信号の電界強度と基準値との差が所定の閾値以上である場合や、分配信号の電界強度が時間によって大きく変動している場合等が該当する。なお、判定部112にて異常がないと判定されれば、正常であることを報告して、送信信号の帯域で動作するADC2 132BおよびDDC2 131Bを停止させ、通常の運用を継続する(ステップS26〜S28)。   Next, a control method of the base station 100A according to the second embodiment of the present invention will be described using the flowchart of FIG. First, the control unit 114 determines whether there is a request for self-diagnosis (step S21). The request for self-diagnosis is made, for example, from a communication carrier that performs maintenance management of the base station 100A. When there is no request for self-diagnosis, the control unit 114 controls the phase shifter 150 to transmit the phase of the transmission signal distributed from the distribution unit 140 and the phase of the transmission signal leaked into the reception path through the duplexer DUP. Are set to have opposite phases (step S22). When there is a request for self-diagnosis, the control unit 114 controls the phase shifter 150 to transmit the phase of the transmission signal distributed from the distribution unit 140 and the phase of the transmission signal leaked into the reception path via the duplexer DUP. Are set in phase with each other (step S23). Next, the control unit 114 controls the distributor 136 so as to form a path from the down converter 133 to the ADC2 132B, and operates the ADC2 132B and the DDC2 131B that operate in the band of the transmission signal (distributed signal) (step). S24). Thereafter, the determination unit 112A compares the electric field strength of the distribution signal on the reception path with the electric field strength of the reference value stored in the storage unit 116 (step S25). At this time, unlike the first embodiment in which the received signal and the transmission signal (distributed signal) are mixed, in the second embodiment, only the transmitted signal (distributed signal) can be extracted by the filter. Please note that. If the determination unit 112 determines that there is an abnormality, the fact that the abnormality has occurred is displayed on, for example, a monitor (not shown) or an alarm sound is generated (steps S26 and S29). . The determination of whether or not it is abnormal corresponds to the case where the difference between the electric field strength of the distribution signal and the reference value is greater than or equal to a predetermined threshold, or the case where the electric field strength of the distribution signal varies greatly with time. If the determination unit 112 determines that there is no abnormality, it reports normality, stops the ADC2 132B and DDC2 131B operating in the band of the transmission signal, and continues normal operation (step S26). ~ S28).

このように、第2実施例によれば、自己診断時に、周波数の異なる受信信号と送信信号とをフィルタを用いることによって別個に検出することができる。よって、より精度のよい自己診断が可能となる。   As described above, according to the second embodiment, at the time of self-diagnosis, the reception signal and the transmission signal having different frequencies can be detected separately by using the filter. Therefore, more accurate self-diagnosis is possible.

本発明の効果を再度記述する。本発明によれば、送信信号の一部を分配して受信経路に結合させたものを用いた自己診断が行われるため、従来技術のような擬似端末を基地局に内蔵する必要がなく、基地局を大型化することがない。さらに、送信信号の一部を取り出すための分配部及び受信経路に結合させるための結合部は、簡単なマイクロストリップラインで実現できるため、コストをかけることがない。また、移相器によって漏れ込み信号と分配信号とを打ち消しあうように制御するため、送信信号が受信経路に漏れ込むことによる、受信系の劣化を最小限に抑えることができる。さらに、自己診断時に、周波数の異なる受信信号と送信信号とを別個に検出することができるため、より精度のよい自己診断が可能となる。そのため、外部の無線通信端末との通信を継続しながら、自己診断を行うことができる。   The effect of the present invention will be described again. According to the present invention, since self-diagnosis is performed using a part of the transmission signal distributed and coupled to the reception path, there is no need to incorporate a pseudo terminal as in the prior art in the base station. The station is not enlarged. Furthermore, since the distribution unit for extracting a part of the transmission signal and the coupling unit for coupling to the reception path can be realized by a simple microstrip line, there is no cost. In addition, since the control is performed so that the leakage signal and the distribution signal are canceled by the phase shifter, it is possible to minimize degradation of the reception system due to the transmission signal leaking into the reception path. Furthermore, since a received signal and a transmitted signal having different frequencies can be separately detected during self-diagnosis, more accurate self-diagnosis is possible. Therefore, self-diagnosis can be performed while continuing communication with an external wireless communication terminal.

本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。したがって、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各構成部、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部やステップなどを1つに組み合わせたり、あるいは分割したりすることが可能である。例えば、上述の実施例では、FDD方式について説明したが、本発明は、送受の周波数が等しいTDD方式に適用することも可能である。また、局部発振器及びPLLを、送信系及び受信系のそれぞれに設けてもよい。なお、図ではアンテナを1つのみ有する基地局を示しているが、本発明はこれに限られるものではなく、基地局は、複数のアンテナを備えてもよい。さらに、記憶部116には、初期調整時の電界強度だけではなく、ベースバンド部110で受信経路に結合された送信信号を復調(検波)したデータを格納してもよい。この場合、検波の精度を診断することも可能となる。   Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various modifications and corrections based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, the functions included in each component, each step, etc. can be rearranged so that there is no logical contradiction, and multiple components, steps, etc. can be combined or divided into one It is. For example, in the above-described embodiments, the FDD system has been described. However, the present invention can also be applied to a TDD system having the same transmission / reception frequency. Further, a local oscillator and a PLL may be provided in each of the transmission system and the reception system. Although the figure shows a base station having only one antenna, the present invention is not limited to this, and the base station may include a plurality of antennas. Furthermore, the storage unit 116 may store not only the electric field intensity at the time of initial adjustment but also data obtained by demodulating (detecting) the transmission signal coupled to the reception path by the baseband unit 110. In this case, it is possible to diagnose the accuracy of detection.

本発明の第1実施例による基地局の概略ブロック図である。1 is a schematic block diagram of a base station according to a first embodiment of the present invention. 本発明の第1実施例による基地局100の制御方法のフローチャートである。3 is a flowchart of a control method of the base station 100 according to the first embodiment of the present invention. 本発明の第2実施例による基地局100Aの概略ブロック図である。It is a schematic block diagram of base station 100A by 2nd Example of this invention. 本発明の第2実施例による基地局100Aの制御方法のフローチャートである。5 is a flowchart of a control method of a base station 100A according to a second embodiment of the present invention. 分配信号の振幅を時間軸で示したグラフである。It is the graph which showed the amplitude of the distribution signal on the time axis. 送信信号(分配信号)及び受信信号の周波数特性を示す模式的なグラフである。It is a typical graph which shows the frequency characteristic of a transmission signal (distribution signal) and a reception signal. FDD方式の自己診断機能を有する基地局装置の概略ブロック図である。It is a schematic block diagram of the base station apparatus which has a self-diagnosis function of a FDD system.

符号の説明Explanation of symbols

100,100A,200 基地局
110,210,310 ベースバンド部
112,112A 判定部
114 制御部
116 記憶部
120,220,320 送信系
121,221,321 デジタルアップコンバータ(DUC)
122,222,322 デジタル/アナログ変換器(DAC)
123,223,323 アップコンバータ
124,224,324 バンドパスフィルタ
125,225,325 電力増幅器
130,230,330 受信系
131,231,331 デジタルダウンコンバータ(DDC)
132,232,332 アナログ/デジタル変換器(ADC)
133,233,333 ダウンコンバータ
134,234,334 バンドバスフィルタ
135,235,335 低雑音増幅器
136 分配器
140 分配部
150 移相器
160 結合部
170,226,326 PLL
300 擬似端末
ANT アンテナ
LO 局部発振器
DUP,DUP2,DUP3 デュプレクサ
CUP カプラ
FIL1,FIL2 フィルタ帯域
DP 自己診断時の分配信号の信号波形
TP 通常の運用時の分配信号の信号波形
RP 受信信号(受信波)の周波数特性
DP 自己診断時の受信信号(受信波)の周波数特性
TP 通常の運用時の受信信号(受信波)の周波数特性
100, 100A, 200 Base station 110, 210, 310 Baseband unit 112, 112A Judgment unit 114 Control unit 116 Storage unit 120, 220, 320 Transmission system 121, 221, 321 Digital up converter (DUC)
122, 222, 322 Digital / analog converter (DAC)
123, 223, 323 Up converter 124, 224, 324 Band pass filter 125, 225, 325 Power amplifier 130, 230, 330 Reception system 131, 231, 331 Digital down converter (DDC)
132,232,332 Analog / Digital Converter (ADC)
133, 233, 333 Down converter 134, 234, 334 Band-pass filter 135, 235, 335 Low noise amplifier 136 Distributor 140 Distributor 150 Phase shifter 160 Coupler 170, 226, 326 PLL
300 Pseudo terminal ANT Antenna LO Local oscillator DUP, DUP2, DUP3 Duplexer CUP Coupler FIL1, FIL2 Filter band DP Signal waveform of distributed signal during self-diagnosis TP Signal waveform of distributed signal during normal operation RP Received signal (received wave) Frequency characteristics DP Frequency characteristics of received signals (received waves) during self-diagnosis TP Frequency characteristics of received signals (received waves) during normal operation

Claims (4)

信号の送信及び受信を行うアンテナと、
前記アンテナから送信する送信信号の送信経路と、前記アンテナで受信する受信信号の受信経路とを分離する分波器と、
を備えた自己診断機能を有する無線機であって、
前記送信経路から送信信号を前記分波器の前段で分配する分配部と、
前記分配部で分配された送信信号の位相を調整する移相器と、
前記移相器で位相が調整された送信信号を前記分波器の後段で前記受信経路に結合させる結合部と、
自己診断時に、前記分配部で分配された送信信号の位相を、前記分波器を経て前記受信経路に流入した送信信号の位相と同位相にするように前記移相器を制御する制御部と、
を備えることを特徴とする自己診断機能を有する無線機。
An antenna for transmitting and receiving signals;
A duplexer for separating a transmission path of a transmission signal transmitted from the antenna and a reception path of a reception signal received by the antenna;
A radio having a self-diagnosis function,
A distribution unit that distributes a transmission signal from the transmission path in a front stage of the duplexer;
A phase shifter for adjusting the phase of the transmission signal distributed by the distribution unit;
A coupling unit that couples a transmission signal, the phase of which is adjusted by the phase shifter, to the reception path at a subsequent stage of the duplexer;
A control unit that controls the phase shifter so that the phase of the transmission signal distributed by the distribution unit at the time of self-diagnosis is the same as the phase of the transmission signal that has flowed into the reception path through the duplexer; ,
A wireless device having a self-diagnosis function.
請求項1に記載の自己診断機能を有する無線機において、
前記制御部は、
自己診断時でない場合は、前記分配部で分配された送信信号の位相を、前記分波器を経て前記受信経路に流入した送信信号の位相と逆位相にするように前記移相器を制御する、
ことを特徴とする自己診断機能を有する無線機。
The radio having the self-diagnosis function according to claim 1,
The controller is
If it is not during self-diagnosis, the phase shifter is controlled so that the phase of the transmission signal distributed by the distribution unit is opposite to the phase of the transmission signal that has flowed into the reception path through the duplexer. ,
A wireless device having a self-diagnosis function.
請求項1又は2に記載の自己診断機能を有する無線機において、
前記受信経路上に、前記アンテナで受信した受信信号を通過させる第1のフィルタと、前記分配部から分配された送信信号を通過させる第2のフィルタをさらに備える、
ことを特徴とする自己診断機能を有する無線機。
In the radio having the self-diagnosis function according to claim 1 or 2,
A first filter that passes the reception signal received by the antenna, and a second filter that passes the transmission signal distributed from the distribution unit, on the reception path;
A wireless device having a self-diagnosis function.
アンテナで信号の送信及び受信を行うステップと、
分波器で前記アンテナから送信する送信信号の送信経路と、前記アンテナで受信する受信信号の受信経路とを分離するステップと、
を含む自己診断機能を有する無線機の制御方法であって、さらに、
前記分波器の前段で前記送信経路から送信信号を分配するステップと、
前記分配するステップで分配された送信信号の位相を移相器で調整するステップと、
前記調整するステップで位相が調整された送信信号を前記分波器の後段の結合部で前記受信経路に結合させるステップと、
自己診断時に、前記分配するステップで分配された送信信号の位相を、前記分波器を経て前記受信経路に流入した送信信号の位相と同位相にするように前記移相器を制御するステップと、
を含むことを特徴とする自己診断機能を有する無線機の制御方法。
Transmitting and receiving signals with an antenna;
Separating a transmission path of a transmission signal transmitted from the antenna by a duplexer and a reception path of a reception signal received by the antenna;
A method of controlling a radio having a self-diagnosis function, further comprising:
Distributing a transmission signal from the transmission path in a front stage of the duplexer;
Adjusting the phase of the transmission signal distributed in the distributing step with a phase shifter;
Coupling the transmission signal, the phase of which has been adjusted in the adjusting step, to the reception path at a coupling unit subsequent to the duplexer;
Controlling the phase shifter so that the phase of the transmission signal distributed in the distributing step is the same as the phase of the transmission signal flowing into the reception path through the duplexer during self-diagnosis; ,
A method for controlling a radio having a self-diagnosis function, comprising:
JP2008278081A 2008-10-29 2008-10-29 Radio equipment and control method therefor Ceased JP2010109546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278081A JP2010109546A (en) 2008-10-29 2008-10-29 Radio equipment and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278081A JP2010109546A (en) 2008-10-29 2008-10-29 Radio equipment and control method therefor

Publications (1)

Publication Number Publication Date
JP2010109546A true JP2010109546A (en) 2010-05-13

Family

ID=42298571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278081A Ceased JP2010109546A (en) 2008-10-29 2008-10-29 Radio equipment and control method therefor

Country Status (1)

Country Link
JP (1) JP2010109546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021979A1 (en) * 2011-08-08 2013-02-14 シャープ株式会社 Wireless circuit, wireless device, and method for controlling wireless device
US9438292B2 (en) 2013-08-28 2016-09-06 Denso Corporation Vehicle communication apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260932A (en) * 1988-04-12 1989-10-18 Fuji Tec Kk Duplex system radio equipment
JPH0677913A (en) * 1992-08-26 1994-03-18 Fujitsu Ltd Returning system for radio transmission/reception equipment
JPH06237229A (en) * 1992-12-14 1994-08-23 Fujitsu Ltd Radio transmitting/receiving equipment capable of executing loop-back test
JPH0969803A (en) * 1995-09-01 1997-03-11 Antenna Giken Kk Leak signal removing method for circulator and its device, and radio communication equipment using the same
JPH11177467A (en) * 1997-12-08 1999-07-02 Fujitsu Ltd Loop back method in radio transmitting and receiving equipment and circuit therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260932A (en) * 1988-04-12 1989-10-18 Fuji Tec Kk Duplex system radio equipment
JPH0677913A (en) * 1992-08-26 1994-03-18 Fujitsu Ltd Returning system for radio transmission/reception equipment
JPH06237229A (en) * 1992-12-14 1994-08-23 Fujitsu Ltd Radio transmitting/receiving equipment capable of executing loop-back test
JPH0969803A (en) * 1995-09-01 1997-03-11 Antenna Giken Kk Leak signal removing method for circulator and its device, and radio communication equipment using the same
JPH11177467A (en) * 1997-12-08 1999-07-02 Fujitsu Ltd Loop back method in radio transmitting and receiving equipment and circuit therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021979A1 (en) * 2011-08-08 2013-02-14 シャープ株式会社 Wireless circuit, wireless device, and method for controlling wireless device
US9438292B2 (en) 2013-08-28 2016-09-06 Denso Corporation Vehicle communication apparatus

Similar Documents

Publication Publication Date Title
RU2516623C1 (en) Wireless communication apparatus and method for self-verification of wireless communication apparatus
US8909133B2 (en) Gain measurement and monitoring for wireless communication systems
US20060035601A1 (en) TDD transceiver for utilizing a transmission mode and a reception mode simultaneously, and a self-diagnostic method therefor
JP2000106531A (en) Interference wave detection device and method
US20080225759A1 (en) Radio communication apparatus
WO2017000560A1 (en) Radio remote unit and test method therefor
JP2011055237A (en) Wireless communication performance test method, wireless communication test-use measurement device, and wireless communication performance test system
JP4373361B2 (en) base station
US20150092825A1 (en) Self-test using internal feedback for transmit signal quality estimation
JP2009038688A (en) Radio apparatus
JPWO2007029328A1 (en) Transmitter
JP2008211482A (en) Fault detection method and radio communication apparatus
US20080039047A1 (en) Reception system
JP2010109546A (en) Radio equipment and control method therefor
JP2009232222A (en) Radio communication device
US20190182025A1 (en) Base station apparatus and method for controlling base station apparatus
JP2014053696A (en) Radio communication apparatus, control program, and control method for the radio communication device
JP6448021B2 (en) Mobile phone terminal
JP2010258618A (en) Receiving device and method of controlling the same
JP3607554B2 (en) Wireless transceiver
JP2013110693A (en) Distortion compensation amplifier
JP2007288625A (en) Output switching device
JP2007251899A (en) Distortion amount detection device, distortion amount detection method, and multiplexing radio device
JP2008166866A (en) Calibration method of base station antenna, and communication base station
JP6816346B2 (en) Wireless device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20130129