WO2020105569A1 - Aqueous composite resin dispersion and method for producing aqueous composite resin dispersion - Google Patents

Aqueous composite resin dispersion and method for producing aqueous composite resin dispersion

Info

Publication number
WO2020105569A1
WO2020105569A1 PCT/JP2019/045001 JP2019045001W WO2020105569A1 WO 2020105569 A1 WO2020105569 A1 WO 2020105569A1 JP 2019045001 W JP2019045001 W JP 2019045001W WO 2020105569 A1 WO2020105569 A1 WO 2020105569A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl
group
composite resin
aqueous dispersion
carbon atoms
Prior art date
Application number
PCT/JP2019/045001
Other languages
French (fr)
Japanese (ja)
Inventor
将浩 渡辺
増美 山根
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to CN201980076418.1A priority Critical patent/CN113166289B/en
Priority to JP2020558361A priority patent/JP7266045B2/en
Publication of WO2020105569A1 publication Critical patent/WO2020105569A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step

Definitions

  • the present invention relates to a composite resin aqueous dispersion containing composite resin particles containing a polyurethane resin and a vinyl resin in the same particle, and a method for producing the same.
  • aqueous resin dispersions have been widely used from the viewpoint of environmental issues and safety.
  • an acrylic resin aqueous dispersion is generally used for a coating agent or the like which requires mechanical strength, weather resistance, water resistance and the like.
  • the film is generally inferior in flexibility, and therefore a method of using the acrylic resin aqueous dispersion and the polyurethane resin aqueous dispersion in combination has been proposed as a method for improving flexibility.
  • Patent Document 1 a method of using the acrylic resin aqueous dispersion and the polyurethane resin aqueous dispersion in combination has been proposed as a method for improving flexibility.
  • the acrylic resin and the polyurethane resin have poor compatibility, so when the acrylic resin aqueous dispersion and the polyurethane resin aqueous dispersion are used in combination, the flexibility of the film, the mechanical strength, the flexibility, and the transparency and There is a problem that the performance such as gloss is deteriorated.
  • An object of the present invention is to include composite resin particles containing a polyurethane resin and a vinyl resin in the same particle, which are excellent in flexibility, mechanical strength, storage stability, flexibility, hardness, transparency and glossiness.
  • An object of the present invention is to provide a composite resin aqueous dispersion and a method for producing the same.
  • the present invention is a composite resin aqueous dispersion containing composite resin particles containing the polyurethane resin (U) and the vinyl resin (V) of the first invention in the same particle, wherein the polyurethane resin (U) Is a reaction product of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E), and among the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E),
  • a second invention is a method for producing a composite resin aqueous dispersion containing composite resin particles containing a polyurethane resin (U) and a vinyl resin (V) in the same particle, which comprises the following step (1): To (6), wherein at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E) contains a trifunctional or higher functional compound. Is. Step (1): reacting the active hydrogen component (A) and the organic isocyanate component (B) in the presence of a monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group.
  • M11 monofunctional vinyl-based monomer
  • Step (2) an optional step carried out between the step (1) and the following step (3), which is a monofunctional vinyl-based monomer having no hydroxyl group, amino group, imino group or thiol group.
  • Step (3) The solution of the urethane prepolymer (P) obtained in the step (1) or the solution of the urethane prepolymer (P) obtained in the step (2) is aqueous when the step (2) is carried out.
  • Step (4) Step of extending the urethane prepolymer (P) in the aqueous dispersion ( ⁇ ) with a chain extender (E); Step (5): an optional step performed between the step (4) and the following step (6), in which a monofunctional vinyl-based monomer (M1) is added; Step (6): a step of polymerizing the vinyl-based monomer (M11) in the aqueous dispersion ( ⁇ ) or the vinyl-based monomer (M11) and the monofunctional vinyl-based monomer (M1) when the step (5) is performed. ..
  • the composite resin aqueous dispersion of the present invention is excellent in flexibility, mechanical strength, storage stability, flexibility, hardness, transparency and gloss, and according to the production method of the present invention, flexibility, mechanical
  • a composite resin aqueous dispersion containing composite resin particles containing a polyurethane resin and a vinyl resin, which are excellent in dynamic strength, storage stability, flexibility, hardness, transparency and glossiness, in the same particle can be obtained.
  • the composite resin aqueous dispersion of the present invention is a composite resin aqueous dispersion containing composite resin particles containing a polyurethane resin (U) and a vinyl resin (V) in the same particle, wherein the polyurethane resin (U) is It is a reaction product of an active hydrogen component (A), an organic isocyanate component (B) and a chain extender (E), and is at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E).
  • a composite resin aqueous dispersion, one of which contains a trifunctional or higher functional compound, and a film obtained by drying the composite resin aqueous dispersion satisfies all of the following (1) to (3): (1) The gel fraction relative to N, N-dimethylformamide is 35 to 100%; (2) The breaking elongation is 200 to 1,000%; (3) The storage elastic modulus E ′ at 25 ° C. is 100 to 3,000 MPa.
  • the polyurethane resin (U) is a reaction product of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E).
  • the active hydrogen component (A) a high molecular polyol (a1) having a number average molecular weight (hereinafter abbreviated as Mn) of 300 or more, a low molecular weight polyol (a2) having Mn or a chemical formula amount of less than 300, and an ionic group and active Examples thereof include a compound (a3) having a hydrogen atom and a reaction terminator (a4).
  • Examples of the polymer polyol (a1) having Mn of 300 or more include polyester polyol, polyether polyol, polyether ester polyol, castor oil-based polyol, and the like.
  • the polymer polyol (a1) may be used alone or in combination of two or more.
  • polyester polyol having Mn of 300 or more examples include condensation type polyester polyol, polylactone polyol, and polycarbonate polyol.
  • Examples of the condensed polyester polyol having Mn of 300 or more include Mn or a low molecular weight polyol (a2) having a chemical formula of less than 300 and a polyvalent carboxylic acid having 2 to 20 carbon atoms or an ester-forming derivative thereof [acid anhydride, lower ( And the like, which are obtained by condensation with an alkyl ester having 1 to 4 carbon atoms and an acid halide, and the like.
  • Examples of the low molecular weight polyol (a2) having Mn or a chemical formula of less than 300 include polyhydric alcohols having 2 to 20 carbon atoms; alkylene oxides having 2 to 12 carbon atoms of polyhydric alcohols having 2 to 20 carbon atoms (hereinafter referred to as AO).
  • an adduct having an Mn or a chemical formula amount of less than 300 an AO adduct of bisphenol (bisphenol A, bisphenol S, bisphenol F, etc.) having 2 to 12 carbon atoms and having an Mn or a chemical formula amount of less than 300
  • bisphenol bisphenol A, bisphenol S, bisphenol F, etc.
  • examples thereof include bis (2-hydroxyethyl) terephthalate and an AO adduct thereof having 2 to 12 carbon atoms and having Mn or a chemical formula amount of less than 300.
  • Examples of the AO having 2 to 12 carbon atoms in the present invention include ethylene oxide, 1,2- or 1,3-propylene oxide, 1,2-, 1,3- or 2,3-butylene oxide, tetrahydrofuran, 3-methyl Tetrahydrofuran, styrene oxide, ⁇ -olefin oxide, epichlorohydrin and the like can be mentioned.
  • polyhydric alcohol having 2 to 20 carbon atoms a linear or branched aliphatic dihydric alcohol having 2 to 12 carbon atoms [ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5- Direct addition of pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-dodecanediol, diethylene glycol, triethylene glycol and tetraethylene glycol.
  • C3-C20 trihydric alcohol [aliphatic triols (glycerin, trimethylolpropane, etc.)]; C5-C20 4-8 octavalent alcohol [aliphatic polyols (pentaerythritol, sorbitol, mannitol, sorbitan , Diglycerin, dipentaerythritol, etc.); saccharides (sucrose, glucose, mannose, fructose, methyl glucoside and its derivatives)]; and the like.
  • polycarboxylic acid having 2 to 20 carbon atoms or its ester-forming derivative examples include aliphatic dicarboxylic acids (succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid, decylsuccinic acid, fumaric acid and Maleic acid, etc.), alicyclic dicarboxylic acid (dimer acid, etc.), aromatic dicarboxylic acid (terephthalic acid, isophthalic acid, phthalic acid, t-butylisophthalic acid, 2,6-naphthalenedicarboxylic acid and 4,4'-biphenyl) Dicarboxylic acids, etc.), trivalent or higher polycarboxylic acids (such as trimellitic acid and pyromellitic acid), their anhydrides (succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride
  • a lactone monomer having 3 to 12 carbon atoms ( ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ ) is prepared by using the polyhydric alcohol having 2 to 20 carbon atoms as an initiator.
  • -Caprolactone, ⁇ -caprylolactone, 11-undecanolactone, 12-dodecanoid, etc. and the like.
  • the lactone monomers may be used alone or in combination of two or more.
  • polycarbonate polyol one or more polyhydric alcohols having 2 to 20 carbon atoms (preferably aliphatic dihydric alcohol having 3 to 9 carbon atoms, more preferably 4 to 6 carbon atoms) and low molecular weight While carrying out a dealcoholization reaction from a carbonate compound (for example, a dialkyl carbonate having an alkyl group having 1 to 6 carbon atoms, an alkylene carbonate having an alkylene group having 2 to 6 carbon atoms and a diaryl carbonate having an aryl group having 6 to 9 carbon atoms) Polycarbonate polyols produced by condensation are mentioned.
  • a carbonate compound for example, a dialkyl carbonate having an alkyl group having 1 to 6 carbon atoms, an alkylene carbonate having an alkylene group having 2 to 6 carbon atoms and a diaryl carbonate having an aryl group having 6 to 9 carbon atoms
  • Examples of the polyether polyol having Mn of 300 or more include compounds obtained by adding AO having 2 to 12 carbon atoms to the above Mn or low molecular weight polyol (a2) having a chemical formula of less than 300.
  • One type of AO may be used alone or two or more types may be used in combination. In the latter case, block addition (chip type, balance type, active secondary type, etc.), random addition, or a combination of these may be used.
  • AO AO to Mn or the low-molecular-weight polyol (a2) having a chemical formula weight of less than 300 is carried out, for example, without catalyst or in the presence of a catalyst (alkali catalyst, amine-based catalyst, acidic catalyst, etc.) (particularly the latter half stage of AO addition).
  • a catalyst alkali catalyst, amine-based catalyst, acidic catalyst, etc.
  • polyether polyol examples include poly (oxyethylene) polyol, poly (oxypropylene) polyol, poly (oxytetramethylene) polyol, poly (oxy-3-methyltetramethylene) polyol, and tetrahydrofuran / ethylene oxide copolymer polyol. And tetrahydrofuran / 3-methyltetrahydrofuran copolymer polyol and the like.
  • poly (oxytetramethylene) polyol is preferable from the viewpoint of tensile strength and elongation.
  • polyether ester polyol having Mn of 300 or more one or more kinds of the above polyether polyols and one kind of polyvalent carboxylic acid having 2 to 20 carbon atoms or an ester-forming derivative thereof as a raw material of the above condensation type polyester polyol.
  • examples thereof include those obtained by polycondensation of the above.
  • castor oil-based polyol examples include castor oil, a castor oil fatty acid and a polyester polyol of a polyhydric alcohol having 2 to 20 carbon atoms or a polyoxyalkylene polyol (castor oil fatty acid mono- or diglyceride, castor oil fatty acid and trimethylol).
  • Castor oil fatty acid mono- or diglyceride, castor oil fatty acid and trimethylol Mono-, di- or triester from propane and mono- or diester from castor oil fatty acid and polyoxypropylene glycol
  • castor oil added with AO having 2 to 12 carbon atoms and two kinds thereof The above mixture and the like can be mentioned.
  • the Mn of the polymer polyol (a1) is preferably 300 or more, more preferably 1,000 to 5,000, and particularly preferably 1,500 to 3,000.
  • the Mn of the polyol in the present invention can be measured by gel permeation chromatography, for example, under the following conditions.
  • Device "Waters Alliance 2695" [manufactured by Waters] Column: "Guardcolumn Super HL” (one), “TSKgel SuperH2000, TSKgel SuperH3000, TSKgel SuperH4000 (both manufactured by Tosoh Corporation) are connected one by one"
  • Sample solution Tetrahydrofuran solution solution of 0.25 wt% Injection volume: 10 ⁇ l Flow rate: 0.6 ml / min Measurement temperature: 40 ° C
  • Detector Refractive index detector Reference substance: Standard polyethylene glycol
  • Examples of the compound (a3) having an ionic group and an active hydrogen atom include a compound (a31) containing an anionic group and an active hydrogen atom, and a compound (a32) containing a cationic group and an active hydrogen atom.
  • the compound (a3) one type may be used alone, or two or more types may be used in combination.
  • Examples of the compound (a31) containing an anionic group and an active hydrogen atom include a compound containing a carboxyl group as an anionic group, a hydroxyl group as an active hydrogen atom, and a carbon number of 2 to 10 [dialkylol alkane].
  • Acids eg 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolheptanoic acid and 2,2-dimethyloloctanoic acid), tartaric acid and amino acids (eg glycine, alanine and valine) Etc.]]
  • Examples of the neutralizing agent used for the salt of the compound (a31) containing an anionic group and an active hydrogen atom include ammonia, amine compounds having 1 to 20 carbon atoms or alkali metal hydroxides (sodium hydroxide, potassium hydroxide). And lithium hydroxide).
  • Examples of amine compounds having 1 to 20 carbon atoms include primary amines such as monomethylamine, monoethylamine, monobutylamine and monoethanolamine, and secondary amines such as dimethylamine, diethylamine, dibutylamine, diethanolamine and diisopropanolamine, methylpropanolamine. Examples thereof include amines and tertiary amines such as trimethylamine, triethylamine, dimethylethylamine, dimethylmonoethanolamine and triethanolamine.
  • a vapor pressure at 25 ° C. may be used from the viewpoint of the drying property of the resulting composite resin aqueous dispersion and the water resistance of the dry film. Compounds with high values are preferred. From this point of view, as the neutralizing agent used for the salt of the compound (a31) containing an anionic group and an active hydrogen atom, ammonia, monomethylamine, monoethylamine, dimethylamine, diethylamine, trimethylamine, triethylamine and dimethylethylamine can be used. Is preferred.
  • 2,2-dimethylolpropionic acid and 2,2-dimethylolpropionic acid are preferable from the viewpoints of mechanical strength of the obtained film and dispersion stability of the composite resin aqueous dispersion.
  • 2,2-Dimethylolbutanoic acid and salts thereof, more preferably 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are neutralized with ammonia or an amine compound having 1 to 20 carbon atoms. It is salt.
  • a compound having a tertiary amino group as a cationic group and a hydroxyl group as an active hydrogen atom for example, containing a tertiary amino group having 1 to 20 carbon atoms Diols [N-alkyldialkanolamines (eg N-methyldiethanolamine, N-propyldiethanolamine, N-butyldiethanolamine and N-methyldipropanolamine) and N, N-dialkylmonoalkanolamines (eg N, N-dimethylethanolamine ) Etc.] and other compounds are neutralized with a neutralizing agent.
  • N-alkyldialkanolamines eg N-methyldiethanolamine, N-propyldiethanolamine, N-butyldiethanolamine and N-methyldipropanolamine
  • N, N-dialkylmonoalkanolamines eg N, N-dimethylethanolamine
  • a monocarboxylic acid having 1 to 10 carbon atoms for example, formic acid, acetic acid, propanoic acid, etc.
  • carbonic acid dimethyl carbonate
  • examples thereof include dimethyl sulfate, methyl chloride and benzyl chloride.
  • a vapor pressure at 25 ° C. may be used from the viewpoint of the drying property of the resulting composite resin aqueous dispersion and the water resistance of the dry film. Compounds with high values are preferred.
  • the neutralizing agent used for the compound (a32) containing a cationic group and an active hydrogen atom is preferably a monocarboxylic acid having 1 to 10 carbon atoms and carbonic acid, and more preferably formic acid and carbonic acid. Particularly preferred is carbonic acid.
  • reaction terminator (a4) monoalcohols having 1 to 20 carbon atoms (methanol, ethanol, butanol, octanol, decanol, dodecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, etc.), monoamines having 1 to 20 carbon atoms (Mono- or di-alkylamines such as monomethylamine, monoethylamine, monobutylamine, dibutylamine and monooctylamine, and mono- or dialkanolamines such as monoethanolamine, diethanolamine and diisopropanolamine).
  • monoalcohols having 1 to 20 carbon atoms methanol, ethanol, butanol, octanol, decanol, dodecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, etc.
  • monoamines having 1 to 20 carbon atoms Mono- or di-alkylamines such as monomethylamine,
  • Examples of the organic isocyanate component (B) in the present invention include aromatic polyisocyanates (b1) having 2 to 3 or more isocyanate groups and having 8 to 26 carbon atoms, and aliphatic polyisocyanates (b2) having 4 to 22 carbon atoms. ), Alicyclic polyisocyanates having 8 to 18 carbon atoms (b3), araliphatic polyisocyanates having 10 to 18 carbon atoms (b4), and modified products (b5) of these organic polyisocyanates.
  • aromatic polyisocyanate (b1) having 8 to 26 carbon atoms examples include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate (hereinafter, tolylene diisocyanate is referred to as TDI).
  • crude TDI, 4,4′- or 2,4′-diphenylmethane diisocyanate (hereinafter, diphenylmethane diisocyanate is abbreviated as MDI), crude MDI, polyaryl polyisocyanate, 4,4′-diisocyanatobiphenyl, 3, 3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatodiphenylmethane, 1,5-naphthylene diisocyanate, 4,4 ', 4 "-triphenyl Mention may be made of methanetriisocyanate and m- or p-isocyanatophenylsulfonyl isocyanate.
  • MDI diphenylmethane diisocyanate
  • polyaryl polyisocyanate 4,4′-diisocyanatobiphenyl, 3, 3'-dimethyl-4,4'-diis
  • Examples of the aliphatic polyisocyanate (b2) having 4 to 22 carbon atoms include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (hereinafter abbreviated as HDI), dodecamethylene diisocyanate, 1,6,11-undecane triisocyanate, 2 , 2,4-Trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate and 2-isocyanatoethyl- 2,6-diisocyanatohexanoate may be mentioned.
  • ethylene diisocyanate tetramethylene diisocyanate
  • hexamethylene diisocyanate hereinafter abbreviated as HDI
  • dodecamethylene diisocyanate 1,6,11-und
  • Examples of the alicyclic polyisocyanate (b3) having 8 to 18 carbon atoms include isophorone diisocyanate (hereinafter abbreviated as IPDI), 4,4′-dicyclohexylmethane diisocyanate (hereinafter abbreviated as hydrogenated MDI), cyclohexylene diisocyanate, Mention may be made of methylcyclohexylene diisocyanate, bis (2-isocyanatoethyl) -4-cyclohexene-1,2-dicarboxylate and 2,5- or 2,6-norbornane diisocyanate.
  • IPDI isophorone diisocyanate
  • MDI 4,4′-dicyclohexylmethane diisocyanate
  • cyclohexylene diisocyanate Mention may be made of methylcyclohexylene diisocyanate, bis (2-isocyanatoethyl) -4-cyclohexene
  • Examples of the araliphatic polyisocyanate having 10 to 18 carbon atoms (b4) include m- or p-xylylene diisocyanate and ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate.
  • modified products (b5) of the organic polyisocyanates (b1) to (b4) include urethane groups, carbodiimide groups, alohanate groups, urea groups, biuret groups, uretdione groups, uretoimine groups, isocyanurate groups or oxazolidones of the above polyisocyanates.
  • Group-containing modified products for example, modified MDI (urethane modified MDI, carbodiimide modified MDI and trihydrocarbyl phosphate modified MDI, etc.), urethane modified TDI, HDI biuret form, HDI isocyanurate form and IPDI isocyanurate form are mentioned.
  • aliphatic polyisocyanates having 4 to 22 carbon atoms (b2) preferred are aliphatic polyisocyanates having 4 to 22 carbon atoms (b2), alicyclic polyisocyanates having 8 to 18 carbon atoms (b3) and modified products thereof, and more preferred are HDI, IPDI, hydrogenated MDI, HDI isocyanurate and IPDI isocyanurate.
  • the organic isocyanate component (B) one type may be used alone, or two or more types may be used in combination.
  • Examples of the chain extender (E) include water and Mn or a polyamine compound having a chemical formula amount of less than 500.
  • Examples thereof include derivatives (eg, dibasic acid dihydrazide such as adipic acid dihydrazide) and amino alcohols having 2 to 20 carbon atoms (eg, ethanolamine, diethanolamine, 2-amino-2-methylpropanol and triethanolamine).
  • derivatives eg, dibasic acid dihydrazide such as adipic acid dihydrazide
  • amino alcohols having 2 to 20 carbon atoms eg, ethanolamine, diethanolamine, 2-amino-2-methylpropanol and triethanolamine.
  • the polyurethane resin (U) is a compound in which at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E) is a trifunctional or higher functional compound. It is a reaction product of the contained raw materials.
  • the polyurethane resin (U) has a crosslinked structure.
  • the trifunctional or higher functional compound used for the above purpose is preferably Mn or a trihydric alcohol having 3 to 20 carbon atoms in the low molecular weight polyol (a2) having a chemical formula amount of less than 300, It is a C4 to C4 tetrahydric alcohol and a saccharide, more preferred is a C3 to C20 trihydric alcohol, and particularly preferred is trimethylolpropane.
  • the trifunctional or higher functional compound used for the above purpose is preferably an HDI isocyanurate body and an IPDI isocyanurate body.
  • the vinyl-based monomer (M) constituting the vinyl-based resin (V) is a monofunctional vinyl monomer (M1) ⁇ monofunctional vinyl having no hydroxyl group, amino group, imino group or thiol group.
  • Examples of the vinyl-based monomer (M11) include the following vinyl-based monomers (m1) to (m7).
  • Examples of the monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group include the following vinyl-based monomers (m8) to (m10).
  • Ester group-containing vinyl monomer (m1) Esters of unsaturated alcohols or hydroxystyrene with monocarboxylic acids having 1 to 12 carbon atoms, such as vinyl acetate, vinyl butyrate, vinyl propionate, vinyl butyrate, isopropenyl acetate, methyl-4-vinylbenzoate, vinyl methoxyacetate, Vinyl benzoate and acetoxy styrene; unsaturated carboxylic acid alcohol (carbon number 1 to 30) ester such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) ) Acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, eicosyl (meth) acrylate, cyclo
  • Vinyl hydrocarbon (m2) (2-1) Aliphatic vinyl hydrocarbons: alkenes having 2 to 20 carbon atoms such as ethylene, propylene, butene, isobutylene, pentene, heptene, octene, dodecene, octadecene and ⁇ -olefins other than the above. (2-2) Alicyclic vinyl hydrocarbon: monocycloalkene such as cyclohexene.
  • Aromatic vinyl hydrocarbon (C8 to C20): Styrene and its hydrocarbyl (alkyl and / or cycloalkyl) substituted product, for example, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethyl Styrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene, cyclohexylstyrene, benzylstyrene, crotylbenzene and vinylnaphthalene.
  • ⁇ -methylstyrene vinyltoluene
  • 2,4-dimethyl Styrene 2,4-dimethyl Styrene
  • ethylstyrene isopropylstyrene
  • butylstyrene phenylstyrene
  • cyclohexylstyrene benzylsty
  • Epoxy group-containing vinyl monomer (m3) Glycidyl group-containing (meth) acrylates having 6 to 20 carbon atoms such as glycidyl (meth) acrylate and ⁇ -methylglycidyl (meth) acrylate; 4-vinyl-1,2-epoxycyclohexane and 5-vinyl-2,3-epoxy Alicyclic epoxy group-containing vinyl monomers having 6 to 20 carbon atoms such as norbornane.
  • Carboxyl group-containing vinyl monomer (m4) Unsaturated monocarboxylic acids having 3 to 30 carbon atoms, unsaturated dicarboxylic acids, their anhydrides and their monoalkyl (carbon atoms having 1 to 24) esters such as (meth) acrylic acid, (anhydrous) maleic acid, and monoalkyl maleates. Ester, fumaric acid, fumaric acid monoalkyl ester, crotonic acid, itaconic acid, itaconic acid monoalkyl ester, citraconic acid, citraconic acid monoalkyl ester and cinnamic acid.
  • Sulfo group-containing vinyl-based monomer (m5) Alkene sulfonic acid having 2 to 14 carbon atoms, such as vinyl sulfonic acid, (meth) allyl sulfonic acid and methyl vinyl sulfonic acid; styrene sulfonic acid and alkyl substituted products thereof having 1 to 24 carbon atoms, such as ⁇ -methyl styrene sulfonic acid Sulfo (hydroxy) alkyl (having 1 to 8 carbon atoms)-(meth) acrylate or (meth) acrylamide, for example, sulfopropyl (meth) acrylate, 2- (meth) acryloyloxyethanesulfonic acid, 3- (meth) acryloyl Oxy-2-hydroxypropanesulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid and 3- (meth) acrylamido-2-hydroxypropanesulfonic
  • Keto group-containing vinyl monomer (m6) Any monomer having a double bond capable of polymerizing at least one keto group (excluding a keto group in a carboxyl group, an ester group and an amide group) in the molecule can be used without particular limitation, and examples thereof include: Diacetone acrylamide, vinyl methyl ketone, vinyl ethyl ketone, vinyl isobutyl ketone, (meth) acryloxyalkylpropanal and diacetone (meth) acrylamide.
  • Aldehyde group-containing vinyl monomer (m7) Any monomer having at least one aldehyde group and a polymerizable double bond in the molecule can be used without particular limitation, and examples thereof include acrolein, formylstyrol, (meth) acrylamidopivalinaldehyde and acetoacetoxyethyl ( (Meth) acrylate.
  • (M11) from the viewpoint of dispersion stability of the composite resin aqueous dispersion, (m1), (m4), (m5) and (m6) are preferable, and more preferable are methyl (meth) acrylate and ethyl ( (Meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate and (meth) acrylic acid.
  • the hydroxyl group-containing vinyl monomer (m8) includes alkenol having 2 to 12 carbon atoms, such as vinyl alcohol, (meth) allyl alcohol, 1-buten-3-ol and 2-buten-1-ol; 4 to 12 alkene diols such as 2-butene-1,4-diol; hydroxyl group-containing aromatic vinyl monomers such as hydroxystyrene; C5 to C8 hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate and Hydroxypropyl (meth) acrylate; alkenyl ethers having 3 to 30 carbon atoms, such as 2-hydroxyethylpropenyl ether and sucrose allyl ether.
  • the amino group- or imino group-containing vinyl monomer (m9) is an aminoalkyl (meth) acrylate having 5 to 20 carbon atoms, such as 7-amino-3,7-dimethyloctyl (meth) acrylate, monomethylaminoethyl.
  • Examples of the thiol group-containing vinyl monomer (m10) include (meth) allyl mercaptan and a thiol group-containing (meth) acrylic acid ester [ethylene sulfide adduct of the above hydroxyl group-containing vinyl monomer (m8) ⁇ 2- (2-mercaptoethoxy) ethyl (meth) acrylate and the like ⁇ and ethylene sulfide adduct to (meth) acrylic acid ⁇ 2-mercaptoethyl (meth) acrylate and the like ⁇ ] and the like.
  • Examples of the bifunctional or higher vinyl monomer (M2) include divinylbenzene, tricyclodecanedimethanol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and 1,10-decanediol di (meth) acrylate.
  • the monomers constituting the vinyl resin (V) a hydroxyl group, an amino group, an imino group or a thiol covalently bonded to the bifunctional or higher functional vinyl monomer (M2) and the urethane resin (U).
  • the total [(M2) + (M12 ')] of the monofunctional vinyl-based monomers (M12') having a group is 4% by weight or less based on the total weight of the monomers constituting the vinyl-based resin (V). Is more preferable, 3% by weight or less is more preferable, and 2% by weight or less is particularly preferable.
  • the weight ratio of the bifunctional or higher functional vinyl monomer (M2) in the vinyl monomer (M) constituting the vinyl resin (V) may be reduced. Further, the weight ratio of the monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group in the vinyl-based monomer (M) constituting the vinyl-based resin (V) is reduced, or a urethane resin After the production of (U), a monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group may be used at a stage where the isocyanate group is very small or scarcely left.
  • the weight ratio of the bifunctional or higher functional vinyl-based monomer (M2) and the monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group can be determined by thermal decomposition gas chromatography mass spectrometry. it can.
  • the weight ratio of the monofunctional vinyl-based monomer (M12 ′) having a hydroxyl group, an amino group, an imino group or a thiol group “covalently bonded to the urethane resin (U)” is in accordance with JIS K1557-1.
  • a composition containing a bifunctional or higher functional vinyl-based monomer (M2) and / or a monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group a composition containing a bifunctional or higher functional vinyl-based monomer (M2) and / or a monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group.
  • Two or more known vinyl-based resins are analyzed by a pyrolysis gas chromatograph mass spectrometry, and a bifunctional or more-functional vinyl-based monomer (M2) and / or a monofunctional vinyl having a hydroxyl group, an amino group, an imino group or a thiol group.
  • the weight ratio of the monofunctional vinyl monomer (M11) having no hydroxyl group, amino group, imino group or thiol group is based on the total weight of the monomers constituting the vinyl resin (V). It is preferably 96% by weight or more, more preferably 98% by weight or more, and particularly preferably 100% by weight.
  • the weight ratio [(U) :( V)] of the polyurethane resin (U) and the vinyl resin (V) in the composite resin aqueous dispersion according to the present invention is dispersion stability, flexibility of the dry film, and mechanical strength. From the viewpoint of storage stability, hardness, flexibility, transparency and glossiness, it is preferably 30:70 to 70:30, more preferably 40:60 to 60:40.
  • examples of the aqueous medium include water and a mixture of water and an organic solvent.
  • examples of the organic solvent include ketone solvents (eg acetone and methyl ethyl ketone), ester solvents (eg ethyl acetate), ether solvents (eg tetrahydrofuran), amide solvents (eg N, N-dimethylformamide and N-methylpyrrolidone), Examples thereof include alcohol solvents (for example, isopropyl alcohol) and aromatic hydrocarbon solvents (for example, toluene).
  • the organic solvent may be used alone or in combination of two or more.
  • the composite resin aqueous dispersion in the present invention may contain a crosslinking agent, a viscosity modifier, an antifoaming agent, an antiseptic agent, a weather resistance stabilizer, an antifreezing agent, and the like.
  • cross-linking agent examples include water-soluble or water-dispersible compounds containing in the molecule two or more functional groups capable of reacting with the reactive functional groups of the polyurethane resin (U) and the vinyl resin (V).
  • the polyurethane resin (U) has a carboxyl group
  • compounds such as a melamine compound, an oxazoline compound, a carbodiimide compound, an epoxy compound and an aziridine compound can be used as a crosslinking agent.
  • the vinyl resin (V) has a hydroxyl group, an amino group, an imino group or a thiol group, a melamine compound, an oxazoline compound, an aziridine compound, an epoxy compound, a blocked isocyanate compound or the like can be used as a crosslinking agent.
  • the crosslinking agents may be used alone or in combination of two or more. The amount of these crosslinking agents used is 1.0 to 20% by weight, more preferably 1.5 to 10% by weight, based on the weight of the polyurethane resin (U).
  • viscosity modifier examples include thickeners such as inorganic viscosity modifiers (sodium silicate and bentonite), cellulose viscosity modifiers (methyl cellulose having Mn of 20,000 or more, carboxymethyl cellulose, hydroxymethyl cellulose, etc.), protein viscosity. Modifiers (casein, casein soda, ammonium caseinate, etc.), acrylics (sodium polyacrylate and ammonium polyacrylate having Mn of 20,000 or more) and vinyl viscosity modifiers (polyvinyl alcohol having Mn of 20,000 or more) Etc.) can be mentioned.
  • thickeners such as inorganic viscosity modifiers (sodium silicate and bentonite), cellulose viscosity modifiers (methyl cellulose having Mn of 20,000 or more, carboxymethyl cellulose, hydroxymethyl cellulose, etc.), protein viscosity. Modifiers (casein, casein soda, ammonium caseinate, etc.), acrylics (sodium polyacrylate and ammoni
  • defoaming agent examples include long-chain alcohols (octyl alcohol, etc.), sorbitan derivatives (sorbitan monooleate, etc.), silicone oils (polymethylsiloxane, polyether modified silicone, etc.), and the like.
  • Examples of the preservatives include organic nitrogen-sulfur compound-based preservatives and organic sulfur halide-based preservatives.
  • Examples of weather resistance stabilizers include antioxidants (hindered phenol-based, sulfur-based, phosphorus-based, etc.), ultraviolet absorbers (benzotriazole-based, triazine-based, benzophenone-based, benzoate-based, etc.), hindered amine-based light stabilizers, etc.
  • a weathering stabilizer may be included. The amount of these weather stabilizers used is preferably 0.1 to 10% by weight, more preferably 0.2 to 5% by weight, based on the weight of the polyurethane resin (U).
  • Examples of the antifreezing agent include ethylene glycol and propylene glycol.
  • the amount of the viscosity modifier, defoaming agent, preservative, weathering stabilizer and antifreezing agent used is preferably 5% by weight or less, more preferably 3% by weight or less, based on the weight of the composite resin aqueous dispersion. is there.
  • the volume average particle diameter (Dv) of the particles in the composite resin aqueous dispersion in the present invention is preferably 0.01 to 1 ⁇ m, more preferably 0. 1 ⁇ m from the viewpoint of handling property and dispersion stability of the composite resin aqueous dispersion.
  • the thickness is from 02 to 0.7 ⁇ m, particularly preferably from 0.03 to 0.4 ⁇ m.
  • (Dv) is measured using a light scattering particle size distribution analyzer [ELS-8000 ⁇ manufactured by Otsuka Electronics Co., Ltd. ⁇ ].
  • the solid content concentration (content of components other than the volatile component) of the composite resin aqueous dispersion in the present invention is preferably 20 to 65% by weight, more preferably 25 to 55% from the viewpoint of easy handling of the aqueous dispersion. % By weight.
  • the solid content concentration was about 1 g of the aqueous dispersion, which was thinly spread on a Petri dish and precisely weighed, and then the weight after heating for 45 minutes at 130 ° C. using a circulation type constant temperature dryer was precisely weighed. It can be obtained by calculating the ratio (percentage) of the residual weight after heating to the weight.
  • the viscosity of the composite resin aqueous dispersion of the present invention at 25 ° C. is preferably 10 to 100,000 mPa ⁇ s, more preferably 10 to 5,000 mPa ⁇ s.
  • the viscosity can be measured using a BL type viscometer.
  • the pH of the composite resin aqueous dispersion in the present invention at 25 ° C. is preferably 2 to 12, and more preferably 4 to 10.
  • the pH can be measured using pH Meter M-12 [manufactured by Horiba, Ltd.].
  • a film obtained by drying the composite resin aqueous dispersion of the present invention satisfies all of the following (1) to (3).
  • (1) The gel fraction relative to N, N-dimethylformamide is 35 to 100%; (2) The breaking elongation is 200 to 1,000%; (3) The storage elastic modulus E ′ at 25 ° C. is 100 to 3,000 MPa.
  • the film in the above (1) to (3) is obtained by drying the composite resin aqueous dispersion at 105 ° C. for 3 hours, and further by drying under reduced pressure at 105 ° C. and a pressure of 1.3 kPa for 1 hour. A film having a thickness of 200 ⁇ m is used.
  • the gel fraction with respect to N, N-dimethylformamide (DMF) in the above (1) can be determined, for example, by the following method.
  • the aqueous composite resin dispersion is applied to a polypropylene plate so that the dry film thickness is 200 ⁇ m, and dried at 105 ° C. to obtain a film.
  • a sample is cut out from the obtained coating film, and the weight of the sample is measured to determine the “weight of the film before DMF immersion”.
  • the weight of the sample is preferably 0.035 to 0.045 g.
  • the sample is put in 20 ml of DMF and immersed at 23 ° C. for 24 hours. After the immersion, DMF containing the sample is filtered using a tetrafluoroethylene resin (PTFE) filter.
  • PTFE tetrafluoroethylene resin
  • the filter and the residue are dried at 105 ° C. for 3 hours and then cooled, and the “total weight of the filter and the residue after DMF immersion” is measured.
  • the "gel weight before immersion in DMF”, "weight of filter” and “total weight of filter and residue after immersion in DMF” are substituted into the following formula (1) to determine the gel fraction.
  • Gel fraction (%) (“total weight of filter and residue after immersion in DMF” ⁇ “weight of filter”) / “weight of coating before immersion in DMF” ⁇ 100 (1)
  • the breaking elongation in (2) above is based on JIS K6251 and the test piece is dumbbell-shaped No. 3 and the autograph [Shimadzu Corporation “AGS-500D”] It is a value measured at 500 mm / min.
  • the storage elastic modulus E'in (3) above is a value measured at a frequency of 11 Hz using a storage elastic modulus measuring device [Rheogel E4000 ⁇ manufactured by UBM Co., Ltd. ⁇ ].
  • the gel fraction relative to DMF is 35 to 100%, preferably 36 to 95%, more preferably 37 to 80%, particularly preferably 38 to 70%.
  • the gel fraction with respect to DMF can be adjusted by the crosslink density and the weight ratio [(U) :( V)] of the polyurethane resin (U) and the vinyl resin (V). Specifically, the gel fraction can be increased by increasing the crosslinking density by increasing the trifunctional or higher functional compound or increasing the weight ratio of the polyurethane resin (U).
  • the breaking elongation is 200 to 1,000%, preferably 210 to 800%, more preferably 220 to 650%. If the breaking elongation is less than 200%, the flexibility is poor, and if it exceeds 1,000%, the hardness and strength are poor.
  • the elongation at break can be adjusted by the crosslink density and the weight ratio [(U) :( V)] of the polyurethane resin (U) and the vinyl resin (V). Specifically, the breaking elongation can be increased by decreasing the cross-linking density by decreasing the trifunctional or higher functional compound used or by increasing the weight ratio of the polyurethane resin (U).
  • the storage elastic modulus E ′ is 100 to 3,000 MPa, preferably 150 to 2,000 MPa, more preferably 200 to 1,000 MPa. If the storage elastic modulus E'is less than 100 MPa, the hardness and strength are poor, and if it exceeds 3,000 MPa, the flexibility is poor.
  • the storage elastic modulus E ′ can be adjusted by the urethane group and urea group contents of the polyurethane resin (U) and the glass transition point of the vinyl resin (V). Specifically, the storage elastic modulus E ′ can be increased by using a large amount of the organic isocyanate component (B) or by using a vinyl monomer having a high glass transition point.
  • the urethane group content of the polyurethane resin (U) is 0.9 based on the weight of the polyurethane resin (U) from the viewpoints of flexibility, hardness, mechanical strength and flexibility. It is preferably from 2.5 to 2.5 mmol / g, more preferably from 1.2 to 2.2 mmol / g, particularly preferably from 1.5 to 2.0 mmol / g.
  • the urethane group content can be calculated from the N atom content quantified by a nitrogen analyzer, the urethane group / urea group ratio quantified by 1 H-NMR, and the alohanate group / biuret group content.
  • the urea group content of the polyurethane resin (U) is 0.15 based on the weight of the polyurethane resin (U) from the viewpoints of flexibility, hardness, mechanical strength and flexibility. It is preferably about 1.5 to 1.5 mmol / g, more preferably 0.18 to 1.3 mmol / g, and particularly preferably 0.2 to 1.1 mmol / g.
  • the urea group content can be calculated from the N atom content determined by a nitrogen analyzer, the urethane group / urea group ratio determined by 1 H-NMR, and the alohanate group / biuret group content.
  • a nitrogen analyzer for example, a nitrogen analyzer [ANTEK7000 (manufactured by Antec Co.)] can be used.
  • the 1 H-NMR measurement is performed by the method described in “Structural Study of Polyurethane Resin by NMR: Takeda Laboratory Report 34 (2), 224-323 (1975)”. That is, when 1 H-NMR was measured and an aliphatic group was used, it was determined that a urea group was obtained from the ratio of the integrated amount of hydrogen derived from a urea group having a chemical shift of about 6 ppm and the integrated amount of hydrogen derived from a urethane group having a chemical shift of about 7 ppm.
  • the weight ratio of urethane groups is calculated, and the urethane group and urea group contents are calculated from the weight ratio and the N atom content and the alohanate group and biuret group contents.
  • the weight ratio of the urea group and the urethane group is calculated from the ratio of the integrated amount of hydrogen derived from the urea group near the chemical shift of 8 ppm and the integrated amount of hydrogen derived from the urethane group near the chemical shift of 9 ppm
  • the urea group content is calculated from the weight ratio and the above N atom content.
  • the glass transition point of the vinyl resin (V) is preferably ⁇ 70 to 180 ° C., more preferably 0 to 180 ° C. from the viewpoint of flexibility, hardness, mechanical strength and flexibility.
  • the temperature is 150 ° C., particularly preferably 30 to 120 ° C., most preferably 60 to 110 ° C.
  • the glass transition point Tg (K) when the vinyl resin (V) is composed of two-component monomers is calculated by theoretical calculation using the Fox equation of the following equation (2). It can be calculated.
  • Tg 1 and Tg 2 glass transition points (K) of homopolymers of Monomer 1 and Monomer 2 and W 1 and W 2 are weight fractions of Monomer 1 and Monomer 2]
  • the glass transition point Tg (K) when the vinyl resin (V) is composed of three-component monomers can be calculated by theoretical calculation using the Fox equation of the following equation (3).
  • 1 / Tg W 1 / Tg 1 + W 2 / Tg 2 + W 3 / Tg 3 (3)
  • Tg 1 , Tg 2 and Tg 3 are glass transition points (K) of homopolymers of Monomer 1, Monomer 2 and Monomer 3, W 1 , W 2 and W 3 are Monomer 1, Monomer 2 and Monomer 3) Weight fraction]
  • the composite resin aqueous dispersion of the present invention can be obtained by the method for producing the composite resin aqueous dispersion, which is the second invention described below, and the production methods (I) to (II) below.
  • at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E) contains a trifunctional or higher functional compound.
  • the method for producing the composite resin aqueous dispersion is preferable from the viewpoints of flexibility, mechanical strength and flexibility.
  • Step (1 ') In the presence of the vinyl-based monomer (M'), the active hydrogen component (A) and the organic isocyanate component (B) are reacted to produce a urethane prepolymer (P ') having an isocyanate group at the terminal.
  • the vinyl-based monomer (M ′) has a monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group and hydroxyl group, amino group, imino group or thiol group.
  • M11 vinyl monomers
  • M12 vinyl monomers
  • M2 aqueous dispersion
  • the preferable conditions other than the vinyl-based monomer (M ′) are the second invention corresponding to the steps (1 ′) to (6 ′) in the following second invention ⁇ (I). This is the same as the steps (1) to (6) of the invention.
  • Step (1 ′′) In the absence of a vinyl monomer, the active hydrogen component (A) and the organic isocyanate component (B) are reacted to produce a urethane prepolymer (P ′′) having an isocyanate group at the end.
  • a step of containing the monomer (M2), and the weight ratio of (M2) is 4% by weight or less based on the weight of (M ′);
  • preferable conditions as the conditions other than producing the urethane prepolymer in the absence of the vinyl-based monomer in the step (1 ′′) are the same as those in the step (1) in the second invention. is there.
  • step (2 ′′) preferable conditions are the same as those in steps (3) and (4) in the second invention.
  • step (3 ′′) preferable conditions are the same as those in step (5) in the second invention except that the vinyl-based monomer (M ′′) is used.
  • preferable conditions are the same as those in step (6) in the second invention.
  • a method for producing the composite resin aqueous dispersion which is the second invention will be described.
  • a method for producing a composite resin aqueous dispersion which is a second invention is a method for producing a composite resin aqueous dispersion containing composite resin particles containing a polyurethane resin (U) and a vinyl resin (V) in the same particle. And the following steps (1) to (6), wherein at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E) contains a trifunctional or higher functional compound. It is a method for producing an aqueous resin dispersion.
  • Step (1) reacting the active hydrogen component (A) and the organic isocyanate component (B) in the presence of a monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group.
  • a monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group.
  • Step (2) an optional step carried out between the step (1) and the following step (3), which is a monofunctional vinyl-based monomer having no hydroxyl group, amino group, imino group or thiol group.
  • Step (4) Step of extending the urethane prepolymer (P) in the aqueous dispersion ( ⁇ ) with a chain extender (E); Step (5): an optional step performed between the step (4) and the following step (6), in which a monofunctional vinyl-based monomer (M1) is added; Step (6): a step of polymerizing the vinyl-based monomer (M11) in the aqueous dispersion ( ⁇ ) or the vinyl-based monomer (M11) and the monofunctional vinyl-based monomer (M1) when the step (5) is performed. ..
  • the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E) contains a trifunctional or higher functional compound
  • a crosslinked structure is introduced into the polyurethane resin (U)
  • the vinyl resin (V) It is possible to form a composite resin having a structure in which the molecular chain of (1) penetrates, and an aqueous composite resin dispersion having excellent flexibility, mechanical strength and flexibility of the dry film can be obtained.
  • a monofunctional vinyl-based monomer is used to form a linear vinyl-based resin, and the vinyl-based monomer in steps (1) and (2) does not have any hydroxyl group, amino group, imino group or thiol group.
  • the flexibility, mechanical strength and flexibility of the dry film can be further improved.
  • the active hydrogen component (A) used in the step (1) is the same as the active hydrogen component (A) in the first invention, and the preferred ones are also the same.
  • the organic isocyanate component (B) in the present invention is the same as the organic isocyanate component (B) in the first invention, and the preferred ones are also the same.
  • the monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group used in the step (1) is the same as the vinyl-based monomers (m1) to (m7) in the first invention. Is.
  • (m1), (m4), (m5) and (m6) are preferable from the viewpoint of solubility of the urethane prepolymer (P), and more preferable are methyl (meth) acrylate and ethyl (meth). ) Acrylate, propyl (meth) acrylate, butyl (meth) acrylate and (meth) acrylic acid.
  • the vinyl-based monomer (M11) used in the step (1) may be used alone or in combination of two or more kinds.
  • the urethane prepolymer (P) in step (1) contains an active hydrogen component (A) and an organic compound in the presence of a monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group.
  • the isocyanate component (B) preferably has an equivalent ratio (isocyanate group / active hydrogen-containing group) of isocyanate groups to active hydrogen-containing groups (excluding carboxyl group, sulfo group and sulfamic acid group) of 1.01 to 3, It is preferably formed by a urethanization reaction at a ratio of 1.1 to 2.
  • the ratio [ ⁇ (A) + (B) ⁇ :( M11)] is preferably 40:60 to 90:10, more preferably 50:50 to 80:20, and particularly preferably 55:45 to 75:25. is there.
  • the urethane prepolymerization reaction is preferably carried out at a reaction temperature of 20 to 150 ° C., more preferably 60 to 110 ° C., and a reaction time is preferably 2 to 30 hours.
  • the urethane prepolymer preferably has 0.1 to 5% by weight of isocyanate groups.
  • a catalyst can be used as needed to accelerate the reaction during the urethane prepolymerization reaction.
  • the catalyst include, for example, organometallic compounds (dibutyltin dilaurate, dioctyltin dilaurate, bismuth carboxylate, bismuth alkoxide and chelate compounds of compounds having a dicarbonyl group with bismuth), inorganic metal compounds (bismuth oxide, hydroxide). Bismuth, bismuth halide, etc.); amines (triethylamine, triethylenediamine, 1,8-diazabicyclo [5.4.0] -7-undecene, etc.) and a combination of two or more thereof.
  • a radical scavenger in order to suppress an abnormal increase in the viscosity of the reaction system during the urethane prepolymerization reaction.
  • Radical scavengers include 2,6-di-t-butyl-4-methylphenol, 6- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,6 , 10-Tetra-butyldibenz [d, f] [1,3,2] dioxaphosphepine, 3-4′-hydroxy-3′-5′-di-t-butylphenyl) propionic acid-n-octadecyl , Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate, 3,9-bis [2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl ) Propionyloxy] -1,1dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, 2,2′-methylenebis (6-t-butyl-4-methylphenol), 4 , 4'but
  • the amount of the radical scavenger used is preferably 0.01 to 2% by weight, more preferably 0.02 to 1% by weight, based on the weight of the vinyl-based monomer (M1) from the viewpoint of suppressing an abnormal increase in viscosity. ..
  • the step (2) in the present invention is an optional step performed between the step (1) and the step (3), and is a monofunctional vinyl having no hydroxyl group, amino group, imino group or thiol group. This is a step of adding a system monomer (M11).
  • Step (1) from the viewpoint of the risk of a runaway reaction, many vinyl-based monomers (M11) cannot be used for the urethane prepolymer (P). Therefore, in the composite resin aqueous dispersion of the present invention, In some cases, it is necessary to add a vinyl-based monomer (M11) in order to bring the weight ratio of the polyurethane resin (U) and the vinyl-based resin (V) to a desired value.
  • Step (2) is a step performed for this purpose.
  • the added vinyl-based monomer (M11) may be the same as or different from the vinyl-based monomer (M11) used in the step (1).
  • the vinyl-based monomer (M11) used in the step (2) may be used alone or in combination of two or more.
  • Preferable examples of the vinyl-based monomer (M11) in the step (2) include the same ones as the preferable ones in the step (1). Further, in the step (1), among the vinyl-based monomers (M11), the vinyl-based hydrocarbon (m2) is not listed as a preferred monomer because the solubility of the urethane prepolymer (P) is not so good.
  • the additional vinyl-based monomer (M11) in the step (2) in particular, an aromatic vinyl-based hydrocarbon having 8 to 20 carbon atoms (especially styrene) in (m2) is used from the viewpoint of mechanical strength of the dry film. It can be preferably used.
  • the step (3) in the present invention is a solution of the urethane prepolymer (P) obtained in the step (1) or the urethane prepolymer (P) obtained in the step (2) when the step (2) is carried out.
  • the solution of (1) is dispersed in an aqueous medium to obtain an aqueous dispersion ( ⁇ ).
  • Examples of the aqueous medium used in the step (3) include water and a mixture of water and an organic solvent.
  • the organic solvent include ketone solvents (eg acetone and methyl ethyl ketone), ester solvents (eg ethyl acetate), ether solvents (eg tetrahydrofuran), amide solvents (eg N, N-dimethylformamide and N-methylpyrrolidone), Examples thereof include alcohol solvents (for example, isopropyl alcohol) and aromatic hydrocarbon solvents (for example, toluene).
  • the organic solvent may be used alone or in combination of two or more.
  • a surfactant (C) When dispersing the reaction liquid in an aqueous medium, it is preferable to use a surfactant (C) from the viewpoint of dispersion stability. From the viewpoint of dispersion stability, it is preferable to use the compound (a3) having an ionic group and an active hydrogen atom as a constituent monomer of the polyurethane resin (U).
  • the surfactant (C) examples include a reactive surfactant (C1) having a radical reactive group and a non-reactive surfactant (C2), and one kind may be used alone, or a reaction may be performed. Two or more kinds may be used in combination, including the combination use of the surface active agent (C1) and the non-reactive surface active agent (C2). Among these, the reactive surfactant (C1) is preferable from the viewpoint of water resistance of the dry film.
  • the reactive surfactant (C1) is not particularly limited as long as it has radical reactivity, but specifically, Adecaria Soap [registered trademark, manufactured by ADEKA] SE-10N, SR-10, SR-20, SR-30, ER-20, ER-30, Aqualon [registered trademark, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.] HS-10, KH-05, KH-10, KH-1025, Eleminol [registered trademark, Sanyo Chemical Industry Co., Ltd.] JS-20, Latemur [registered trademark, Kao Corporation] PD-104, PD-420, PD-430, Ionette [registered trademark, Sanyo Chemical Industry Co., Ltd. )) MO-200 and the like.
  • non-reactive surfactant C2
  • nonionic surfactant C21
  • anionic surfactant C22
  • cationic surfactant C23
  • amphoteric surfactant C24
  • other emulsion dispersions C25
  • nonionic surfactant (C21) examples include AO addition type nonionic surfactants and polyhydric alcohol type nonionic surfactants.
  • AO addition type include ethylene oxide (hereinafter abbreviated as EO) adducts of aliphatic alcohols having 10 to 20 carbon atoms, EO adducts of phenol, EO adducts of nonylphenol, and EO of alkylamines having 8 to 22 carbon atoms. Examples thereof include adducts and EO adducts of poly (oxypropylene) glycol.
  • polyhydric alcohol type polyhydric (3 to 8 or higher) alcohol (C2 to C30) fatty acid (C8) To 24) esters (for example, glycerin monostearate, glycerin monooleate, sorbitan monolaurate and sorbitan monooleate) and alkyl (C4-24) poly (polymerization degree 1-10) glycosides.
  • anionic surfactant (C22) examples include ethercarboxylic acid having a hydrocarbon group having 8 to 24 carbon atoms or a salt thereof [sodium lauryl ether acetate and (poly) oxyethylene (additional mole number: 1 to 100) lauryl ether.
  • sulfate ester or ether sulfate having a hydrocarbon group having 8 to 24 carbon atoms and salts thereof [sodium lauryl sulfate, (poly) oxyethylene (additional mole number 1 to 100) sodium lauryl sulfate, (poly ) Oxyethylene (additional mole number 1 to 100) lauryl sulfate triethanolamine and (poly) oxyethylene (additional mole number 1 to 100) coconut oil fatty acid monoethanolamide sodium sulfate, etc.]
  • hydrocarbon group having 8 to 24 carbon atoms [Sodium dodecylbenzene sulfonate, etc.] having; sulfosuccinate having one or two hydrocarbon groups having 8 to 24 carbon atoms; phosphoric acid ester or ether having hydrocarbon group having 8 to 24 carbon atoms Phosphoric acid esters and salts thereof [sodium lauryl phosphate and
  • Examples of the cationic surfactant (C23) include quaternary ammonium salt type [stearyltrimethylammonium chloride, behenyltrimethylammonium chloride, distearyldimethylammonium chloride and lanolin fatty acid aminopropylethyldimethylammonium ethylsulfate] and amine salts.
  • Type stearic acid diethylaminoethylamide lactate, dilaurylamine hydrochloride and oleylamine lactate, etc.].
  • amphoteric surfactant (C24) examples include betaine-type amphoteric surfactants [coconut oil fatty acid amide propyldimethylaminoacetic acid betaine, lauryldimethylaminoacetic acid betaine, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazole And sodium laurylhydroxysulfobetaine and lauroylamidoethyl hydroxyethyl carboxymethyl betaine hydroxypropyl phosphate] and amino acid type amphoteric surfactants [sodium ⁇ -laurylaminopropionate].
  • betaine-type amphoteric surfactants coconut oil fatty acid amide propyldimethylaminoacetic acid betaine, lauryldimethylaminoacetic acid betaine, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazole And sodium laurylhydroxysulfobetaine and lauroylamidoeth
  • emulsifying dispersants (C25) include, for example, polyvinyl alcohol, starch and its derivatives, cellulose derivatives such as carboxymethyl cellulose, methyl cellulose and hydroxyethyl cellulose, and carboxyl group-containing (co) polymers such as sodium polyacrylate and US Pat.
  • Emulsifying dispersants having urethane groups or ester groups described in the specification of 5906704 for example, polycaprolactone polyol and polyether diol linked by polyisocyanate] and the like can be mentioned.
  • the amount of the surfactant (C) used is the weight of the vinyl-based monomer (M11) or the monofunctional vinyl-based monomer (M1) in the step (5) described below, from the viewpoint of water resistance and dispersion stability of the dry film. When used, it is preferably 0.5 to 10% by weight, preferably 1 to 5% by weight, based on the total weight of (M11) and (M1).
  • the compound (a3) having an ionic group and an active hydrogen atom is used as the active hydrogen component (A) in the step (1)
  • the neutralizing agent used in the salt of the compound (a32) containing a hydrogen atom is, before the urethane prepolymerization reaction, during the urethane prepolymerization reaction, after the urethane prepolymerization reaction, and before the water dispersion step [step (3)].
  • it may be added at any time during or after the water dispersion step, it is preferably added before or during the water dispersion step from the viewpoint of the stability of the aqueous dispersion ( ⁇ ).
  • the temperature at which step (3) is carried out is preferably 0 to 100 ° C., and the time is preferably 1 to 180 minutes.
  • the step (4) in the present invention is a step of extending the urethane prepolymer (P) in the aqueous dispersion ( ⁇ ) obtained in the step (3) with a chain extender (E).
  • the chain extender (E) is the same as the chain extender (E) in the first invention, and the preferred ones are also the same.
  • the chain extender (E) one type may be used alone, or two or more types may be used in combination.
  • the chain extender (E) can also be used as the active hydrogen component (A) in the step (1).
  • the temperature for carrying out step (4) is preferably 0 to 100 ° C., and the time is preferably 1 to 120 minutes.
  • the step (5) in the present invention is an optional step performed between the step (4) and the following step (6), and is a step of adding a monofunctional vinyl-based monomer (M1).
  • the vinyl-based monomer (M11) used in the step (1) needs to have no hydroxyl group, amino group, imino group or thiol group so that the ethylenically unsaturated bond group is not introduced into the polyurethane resin (U).
  • a monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group can be used.
  • a hydroxyl group, an amino group, an imino group or a thiol group is introduced into the vinyl-based resin (V), the adhesion of the dry film to the substrate is improved, and the aqueous dispersion of the composite resin is improved.
  • the mechanical strength of the dry film can be improved by using a cross-linking agent described below having reactivity with a hydroxyl group, an amino group, an imino group or a thiol group in the body.
  • Examples of the monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group include a hydroxyl group-containing vinyl monomer (m8), an amino group- or imino group-containing vinyl monomer (m9) in the first invention. And the thiol group-containing vinyl-based monomer (m10), and preferred ones are also the same.
  • the vinyl-based monomer (M1) a monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group may be used. In this case, it may be the same as or different from the vinyl-based monomer (M11) used in step (1).
  • the vinyl-based monomer (M1) may be used alone or in combination of two or more.
  • the temperature for carrying out step (5) is preferably 0 to 100 ° C., and the time is preferably 1 to 180 minutes.
  • the step (6) in the present invention is a step of polymerizing the vinyl monomer (M11) in the aqueous dispersion ( ⁇ ) or the vinyl monomer (M11) and (M1) when the step (5) is carried out. ..
  • Examples of the polymerization initiator used in the polymerization in the step (6) include persulfate-based initiators such as sodium persulfate, potassium persulfate and ammonium persulfate; azo-based initiators such as azobisisobutyronitrile; Organic radicals such as benzoyl, cumene hydroperoxide, tert-butyl peroxybenzoate and tert-butyl hydroperoxide; hydrogen peroxide; and other general radical polymerization initiators can be used, and these can be used alone. They may be used, or two or more kinds may be mixed and used.
  • the amount of the polymerization initiator used is preferably 0.05 to 5% by weight based on the total weight of the vinyl monomers (M11) and (M1) used for the polymerization.
  • the required amount of these initiators may be used all at once at the start of polymerization, or may be divided and added at any time.
  • a reducing agent may be used together with the above-mentioned polymerization initiator, if necessary.
  • reducing agents include reducing organic compounds such as ascorbic acid, tartaric acid, citric acid, glucose and formaldehyde sulfoxylate metal salts, and reducing agents such as sodium thiosulfate, sodium sulfite, sodium bisulfite and sodium metabisulfite. Examples thereof include inorganic compounds.
  • a chain transfer agent may be used if necessary.
  • chain transfer agents include n-dodecyl mercaptan, tert-dodecyl mercaptan, n-butyl mercaptan, 2-ethylhexyl thioglycolate, 2-mercaptoethanol, ⁇ -mercaptopropionic acid and ⁇ -methylstyrene dimer. Be done.
  • sodium acetate, sodium citrate, sodium bicarbonate or the like can be used as a buffering agent, and polyvinyl alcohol, a water-soluble cellulose derivative, an alkali metal salt of polymethacrylic acid or the like can be used in an appropriate amount as a protective colloid.
  • the polymerization reaction is preferably carried out in the range of 20 ° C to 150 ° C, more preferably 40 ° C to 100 ° C. If the temperature is lower than 20 ° C, the polymerization rate may be slow. If the temperature exceeds 150 ° C, it may be difficult to control the polymerization reaction.
  • the reaction time is preferably 1 minute to 50 hours.
  • the polymerization reaction is preferably carried out in the presence of an inert gas.
  • the manufacturing apparatus used in steps (1) to (6) is not particularly limited, and any apparatus having a mixing / dispersing ability can be used, but from the viewpoint of temperature adjustment and mixing / dispersing ability, rotary mixing / It is preferable to use a dispersing device.
  • TK Homomixer manufactured by PRIMIX Co., Ltd.
  • CLEARMIX manufactured by M Technique Co., Ltd.
  • fill Mix [Primix Co., Ltd.], Ultra Turrax [IKA Co., Ltd.], Ebara Milder [Ebara Corporation], Cavitron (Eurotech Co., Ltd.) and Biomixer [Nippon Seiki Co., Ltd.] Etc.
  • an organic solvent can be used in any of the manufacturing steps, and the solvent can be removed in the subsequent step.
  • the organic solvent is not particularly limited, and ketone solvents having 3 to 10 carbon atoms (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), ester solvents having 2 to 10 carbon atoms (ethyl acetate, butyl acetate, ⁇ -butyrolactone, etc.) , Ether solvents having 4 to 10 carbon atoms (dioxane, tetrahydrofuran, ethyl cellosolve, diethylene glycol dimethyl ether, etc.), amide solvents having 3 to 10 carbon atoms (N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl) -2-pyrrolidone and N-methylcaprolactam, etc.), sulfoxide solvents having 2-10 carbon atoms (dimethyl sulfoxide,
  • At least one of the active hydrogen component (A), the organic isocyanate component (B), and the chain extender (E) is a polyurethane resin (U Introducing a crosslinked structure into
  • the trifunctional or higher functional compound used for the above purpose is preferable as the trifunctional or higher functional compound in the first invention. Is the same as.
  • the weight ratio [(U) :( V)] of the polyurethane resin (U) and the vinyl resin (V) in the aqueous composite resin dispersion of the present invention is dispersion stability and flexibility of the dry film, mechanical strength, From the viewpoint of flexibility, transparency and glossiness, it is preferably 20:80 to 80:20, more preferably 30:70 to 70:30, and particularly preferably 40:60 to 60:40.
  • the composite resin aqueous dispersion in the present invention may contain a crosslinking agent, a viscosity modifier, an antifoaming agent, an antiseptic, a weathering stabilizer, an antifreezing agent and the like, and specific examples are those in the first invention. The same applies to the preferable content.
  • the volume average particle diameter (Dv) of the particles in the composite resin aqueous dispersion in the present invention is preferably 0.01 to 1 ⁇ m, more preferably 0. 1 ⁇ m from the viewpoint of handling property and dispersion stability of the composite resin aqueous dispersion.
  • the thickness is from 02 to 0.7 ⁇ m, particularly preferably from 0.03 to 0.4 ⁇ m.
  • (Dv) is measured using a light scattering particle size distribution analyzer [ELS-8000 ⁇ manufactured by Otsuka Electronics Co., Ltd. ⁇ ].
  • the solid content concentration (content of components other than the volatile component) of the composite resin aqueous dispersion in the present invention is preferably 20 to 65% by weight, more preferably 25 to 55% from the viewpoint of easy handling of the aqueous dispersion. % By weight.
  • the solid content concentration was about 1 g of the aqueous dispersion, which was thinly spread on a Petri dish and precisely weighed, and then the weight after heating for 45 minutes at 130 ° C. using a circulation type constant temperature dryer was precisely weighed. It can be obtained by calculating the ratio (percentage) of the residual weight after heating to the weight.
  • the viscosity of the composite resin aqueous dispersion of the present invention at 25 ° C. is preferably 10 to 100,000 mPa ⁇ s, more preferably 10 to 5,000 mPa ⁇ s.
  • the viscosity can be measured using a BL type viscometer.
  • the pH of the composite resin aqueous dispersion in the present invention at 25 ° C. is preferably 2 to 12, and more preferably 4 to 10.
  • the pH can be measured using pH Meter M-12 [manufactured by Horiba, Ltd.].
  • part means “part by weight”.
  • Example 1 (Production method of the second invention)
  • the types and amounts of active hydrogen component (A), organic isocyanate component (B), radical scavenger and vinyl monomer in step (1) shown in Table 1 After charging M11) and stirring at 80 ° C. for 10 hours to carry out a urethanization reaction to obtain a urethane prepolymer (P-1), the vinyl-based monomer (M11) in the step (2) is charged to homogenize by stirring. Thus, a solution of urethane prepolymer (P-1) was obtained.
  • Example 2 ⁇ Examples 2 to 4> (Production method of the second invention) Using each raw material shown in Table 1, urethane prepolymers (P-2) to (P-4) solutions were produced in the same manner as in Example 1, and each raw material shown in Table 2 was used. Composite resin aqueous dispersions (Q-2) to (Q-4) were obtained in the same manner as in 1. In Example 2, the step (2) was omitted.
  • Example 5 (Production method of the second invention) A urethane prepolymer (P-5) solution was produced in the same manner as in Example 1 using each of the raw materials listed in Table 1. A solution of (P-5) was dispersed in the same manner as in Example 1 using each of the raw materials listed in Table 2, and then a chain extension reaction was performed. Then, 17.0 parts of hydroxyethyl methacrylate was added as the vinyl-based monomer (M12) in step (5), the temperature was raised to 80 ° C. under a nitrogen stream, and a 10 wt% aqueous solution of potassium persulfate as a polymerization initiator 11 0.0 parts was added and the mixture was polymerized at 80 ° C. for 3 hours to obtain an aqueous composite resin dispersion (Q-5).
  • Example 6 (Production method of the second invention) In a simple pressure reactor equipped with a stirrer and a heating device, the types and amounts of active hydrogen component (A), organic isocyanate component (B), radical scavenger, vinyl monomer in step (1) ( After charging M11) and an organic solvent and stirring at 80 ° C. for 10 hours to carry out a urethanization reaction to obtain a urethane prepolymer (P-6), the vinyl-based monomer (M11) in the step (2) is charged and stirred. By homogenizing, a solution of urethane prepolymer (P-6) was obtained.
  • Examples 7 to 9 (Production method of the second invention) Using each raw material shown in Table 1, urethane prepolymers (P-7) to (P-9) solutions were produced in the same manner as in Example 1, and each raw material shown in Table 2 was used. Composite resin aqueous dispersions (Q-7) to (Q-9) were obtained in the same manner as in 1.
  • Examples 11 and 12 (Production method of (I)) Using each raw material shown in Table 1, urethane prepolymer (P-11) and (P-12) solutions were produced in the same manner as in Example 1, and each raw material shown in Table 2 was used. Aqueous composite resin dispersions (Q-11) and (Q-12) were obtained in the same manner as in 1.
  • the composite resin aqueous dispersion (Q'-1) of Comparative Example 1 was a mixture of the polyurethane resin aqueous dispersion (1) and the vinyl resin aqueous dispersion (1), and was produced by the production method of the present invention.
  • Table 1 and Table 2 show the types of raw materials and the amounts used, although not necessarily.
  • compositions of the raw materials represented by trade names in Table 1 are as follows.
  • a polypropylene resin mold was gently poured into a polypropylene resin mold to have a solid content concentration of 20% by weight so that the film thickness after drying would be about 200 ⁇ m, and the mixture was spread so as to be uniform throughout, then at 25 ° C. for 24 hours. After standing still, it was dried at 105 ° C. for 3 hours using a circulating air drier, and further dried under reduced pressure at 105 ° C. and a pressure of 1.3 kPa for 1 hour to obtain a dried film.
  • the composite resin aqueous dispersion was applied onto a polyethylene terephthalate film (Lumirror L-38T60 [manufactured by Toray Industries, Inc.]) with a bar coater so that the film thickness after drying would be 25 ⁇ m, and heated at 105 ° C. for 60 minutes for coating. I made things. The 60 ° glossiness of the coated surface was measured by a gloss meter (manufactured by BYK).
  • the gel fraction is 35 to 100%
  • the elongation at break is 200 to 1,000%
  • the storage elastic modulus E ′ at 25 ° C. is 100 to 3,000 MPa, so that the ethanol swelling ratio is 113.
  • the storage stability is low when it is used as a paint or ink, which is as low as 0.1% or less.
  • the result of the bending test is also excellent, and it is understood that it is excellent in flexibility and flexibility.
  • the breaking strength is as high as 31 MPa or more and the König hardness is as high as 15 times or more, which is excellent in hardness and mechanical strength.
  • the haze is as small as 1.1% or less and the glossiness is as large as 78 or more, which is excellent in transparency and glossiness.
  • the composite resin aqueous dispersion of the present invention and the composite resin aqueous dispersion obtained by the production method of the present invention have constant quality, and storage stability, hardness, flexibility, mechanical strength, water resistance, and resistance Due to its excellent properties such as solvent resistance, transparency and gloss, paints, coating agents (anti-rust coating agents, waterproof coating agents, water repellent coating agents, anti-fouling coating agents, etc.), adhesives, textile processing agents (pigment printing) Binders, non-woven fabric binders, reinforcing fiber sizing agents, antibacterial agent binders, artificial leather / synthetic leather raw materials, etc.), paper treatment agents, inks, etc., especially water-based paints, water-based anticorrosion coatings It can be suitably used as a composite resin aqueous dispersion for an agent, an aqueous fiber processing agent and an aqueous adhesive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The present invention is an aqueous composite resin dispersion which contains composite resin particles that contain a polyurethane resin (U) and a vinyl resin (V) within each particle, and which is configured such that: the polyurethane resin (U) is a reaction product of an active hydrogen component (A), an organic isocyanate component (B) and a chain extender (E); at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E) contains a tri- or higher functional compound; and a film obtained by drying this aqueous composite resin dispersion satisfies all of the requirements (1)-(3) described below. (1) The gel fraction with respect to N, N-dimethylformamide is 35-100%. (2) The elongation at break is 200-1,000%. (3) The storage elastic modulus E' at 25°C is 100-3,000 MPa.

Description

複合樹脂水性分散体及び複合樹脂水性分散体の製造方法Composite resin aqueous dispersion and method for producing composite resin aqueous dispersion
 本発明は、ポリウレタン樹脂とビニル系樹脂とを同一粒子内に含む複合樹脂粒子を含有する複合樹脂水性分散体と、その製造方法に関する。 The present invention relates to a composite resin aqueous dispersion containing composite resin particles containing a polyurethane resin and a vinyl resin in the same particle, and a method for producing the same.
 近年、環境問題、安全性の観点から樹脂の水性分散体が多く使用されている。中でも、機械的強度、耐候性及び耐水性等が要求されるコーティング剤等には、アクリル樹脂水性分散体が一般的に使用されている。アクリル樹脂水性分散体を用いた場合、その皮膜は一般的に可とう性に劣るため、可とう性を向上させる方法としてアクリル樹脂水性分散体とポリウレタン樹脂水性分散体を併用する方法が提案されている(例えば特許文献1参照)。しかし、一般にアクリル樹脂とポリウレタン樹脂とは相溶性が良くないため、アクリル樹脂水性分散体とポリウレタン樹脂水性分散体とを併用した場合、皮膜の柔軟性、機械的強度、可とう性、透明性及び光沢性等の性能が低下するという問題がある。 In recent years, aqueous resin dispersions have been widely used from the viewpoint of environmental issues and safety. Among them, an acrylic resin aqueous dispersion is generally used for a coating agent or the like which requires mechanical strength, weather resistance, water resistance and the like. When an acrylic resin aqueous dispersion is used, the film is generally inferior in flexibility, and therefore a method of using the acrylic resin aqueous dispersion and the polyurethane resin aqueous dispersion in combination has been proposed as a method for improving flexibility. (For example, see Patent Document 1). However, in general, the acrylic resin and the polyurethane resin have poor compatibility, so when the acrylic resin aqueous dispersion and the polyurethane resin aqueous dispersion are used in combination, the flexibility of the film, the mechanical strength, the flexibility, and the transparency and There is a problem that the performance such as gloss is deteriorated.
特開平06-192616号公報Japanese Patent Laid-Open No. 06-192616
 本発明の目的は、柔軟性、機械的強度、貯蔵安定性、可とう性、硬度、透明性及び光沢性に優れた、ポリウレタン樹脂とビニル系樹脂とを同一粒子内に含む複合樹脂粒子を含有する複合樹脂水性分散体及びこの製造方法を提供することにある。 An object of the present invention is to include composite resin particles containing a polyurethane resin and a vinyl resin in the same particle, which are excellent in flexibility, mechanical strength, storage stability, flexibility, hardness, transparency and glossiness. An object of the present invention is to provide a composite resin aqueous dispersion and a method for producing the same.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、本発明に到達した。
 即ち本発明は、第1の発明であるポリウレタン樹脂(U)とビニル系樹脂(V)とを同一粒子内に含む複合樹脂粒子を含有する複合樹脂水性分散体であって、ポリウレタン樹脂(U)が活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の反応物であり、活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の内の少なくとも1種が3官能以上の化合物を含有し、複合樹脂水性分散体を乾燥させた皮膜が以下の(1)~(3)を全て満足する複合樹脂水性分散体である:
(1)N,N-ジメチルホルムアミドに対するゲル分率が35~100%である;
(2)破断伸度が200~1,000%である;
(3)25℃における貯蔵弾性率E’が100~3,000MPaである。
The present inventors have arrived at the present invention as a result of extensive studies to solve the above problems.
That is, the present invention is a composite resin aqueous dispersion containing composite resin particles containing the polyurethane resin (U) and the vinyl resin (V) of the first invention in the same particle, wherein the polyurethane resin (U) Is a reaction product of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E), and among the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E), A composite resin aqueous dispersion containing at least one compound having a functionality of 3 or more and having a dried composite resin aqueous dispersion satisfying all of the following (1) to (3):
(1) The gel fraction relative to N, N-dimethylformamide is 35 to 100%;
(2) The breaking elongation is 200 to 1,000%;
(3) The storage elastic modulus E ′ at 25 ° C. is 100 to 3,000 MPa.
 また、第2の発明は、ポリウレタン樹脂(U)とビニル系樹脂(V)とを同一粒子内に含む複合樹脂粒子を含有する複合樹脂水性分散体の製造方法であって、下記工程(1)~(6)を含み、活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の内の少なくとも1種が3官能以上の化合物を含有する複合樹脂水性分散体の製造方法である。
工程(1):水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)の存在下で、活性水素成分(A)及び有機イソシアネート成分(B)を反応させて末端にイソシアネート基を有するウレタンプレポリマー(P)を製造する工程;
工程(2):工程(1)と下記工程(3)との間で実施される任意の工程であって、水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)を追加する工程;
工程(3):工程(1)で得られたウレタンプレポリマー(P)の溶液又は工程(2)を実施した場合には工程(2)で得られたウレタンプレポリマー(P)の溶液を水性媒体に分散させて水性分散体(α)を得る工程;
工程(4):水性分散体(α)中のウレタンプレポリマー(P)を鎖伸長剤(E)で伸長させる工程;
工程(5):工程(4)と下記工程(6)との間で実施される任意の工程であって、単官能のビニル系モノマー(M1)を追加する工程;
工程(6):水性分散体(α)中のビニル系モノマー(M11)又は工程(5)を実施した場合にはビニル系モノマー(M11)及び単官能のビニル系モノマー(M1)を重合させる工程。
A second invention is a method for producing a composite resin aqueous dispersion containing composite resin particles containing a polyurethane resin (U) and a vinyl resin (V) in the same particle, which comprises the following step (1): To (6), wherein at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E) contains a trifunctional or higher functional compound. Is.
Step (1): reacting the active hydrogen component (A) and the organic isocyanate component (B) in the presence of a monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group. To produce a urethane prepolymer (P) having an isocyanate group at the end;
Step (2): an optional step carried out between the step (1) and the following step (3), which is a monofunctional vinyl-based monomer having no hydroxyl group, amino group, imino group or thiol group. A step of adding (M11);
Step (3): The solution of the urethane prepolymer (P) obtained in the step (1) or the solution of the urethane prepolymer (P) obtained in the step (2) is aqueous when the step (2) is carried out. Dispersing in a medium to obtain an aqueous dispersion (α);
Step (4): Step of extending the urethane prepolymer (P) in the aqueous dispersion (α) with a chain extender (E);
Step (5): an optional step performed between the step (4) and the following step (6), in which a monofunctional vinyl-based monomer (M1) is added;
Step (6): a step of polymerizing the vinyl-based monomer (M11) in the aqueous dispersion (α) or the vinyl-based monomer (M11) and the monofunctional vinyl-based monomer (M1) when the step (5) is performed. ..
 本発明の複合樹脂水性分散体は、柔軟性、機械的強度、貯蔵安定性、可とう性、硬度、透明性及び光沢性に優れており、本発明の製造方法によれば、柔軟性、機械的強度、貯蔵安定性、可とう性、硬度、透明性及び光沢性に優れたポリウレタン樹脂とビニル系樹脂とを同一粒子内に含む複合樹脂粒子を含有する複合樹脂水性分散体が得られる。 The composite resin aqueous dispersion of the present invention is excellent in flexibility, mechanical strength, storage stability, flexibility, hardness, transparency and gloss, and according to the production method of the present invention, flexibility, mechanical A composite resin aqueous dispersion containing composite resin particles containing a polyurethane resin and a vinyl resin, which are excellent in dynamic strength, storage stability, flexibility, hardness, transparency and glossiness, in the same particle can be obtained.
 まず、第1の発明である複合樹脂水性分散体について説明する。
 本発明の複合樹脂水性分散体は、ポリウレタン樹脂(U)とビニル系樹脂(V)とを同一粒子内に含む複合樹脂粒子を含有する複合樹脂水性分散体であって、ポリウレタン樹脂(U)が活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の反応物であり、活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の内の少なくとも1種が3官能以上の化合物を含有し、複合樹脂水性分散体を乾燥させた皮膜が以下の(1)~(3)を全て満足する複合樹脂水性分散体である:
(1)N,N-ジメチルホルムアミドに対するゲル分率が35~100%である;
(2)破断伸度が200~1,000%である;
(3)25℃における貯蔵弾性率E’が100~3,000MPaである。
First, the composite resin aqueous dispersion which is the first invention will be described.
The composite resin aqueous dispersion of the present invention is a composite resin aqueous dispersion containing composite resin particles containing a polyurethane resin (U) and a vinyl resin (V) in the same particle, wherein the polyurethane resin (U) is It is a reaction product of an active hydrogen component (A), an organic isocyanate component (B) and a chain extender (E), and is at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E). A composite resin aqueous dispersion, one of which contains a trifunctional or higher functional compound, and a film obtained by drying the composite resin aqueous dispersion satisfies all of the following (1) to (3):
(1) The gel fraction relative to N, N-dimethylformamide is 35 to 100%;
(2) The breaking elongation is 200 to 1,000%;
(3) The storage elastic modulus E ′ at 25 ° C. is 100 to 3,000 MPa.
 本発明において、ポリウレタン樹脂(U)は、活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の反応物である。
 活性水素成分(A)としては、数平均分子量(以下、Mnと略記)が300以上の高分子ポリオール(a1)、Mn又は化学式量が300未満の低分子ポリオール(a2)、イオン性基と活性水素原子を有する化合物(a3)及び反応停止剤(a4)が挙げられる。
In the present invention, the polyurethane resin (U) is a reaction product of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E).
As the active hydrogen component (A), a high molecular polyol (a1) having a number average molecular weight (hereinafter abbreviated as Mn) of 300 or more, a low molecular weight polyol (a2) having Mn or a chemical formula amount of less than 300, and an ionic group and active Examples thereof include a compound (a3) having a hydrogen atom and a reaction terminator (a4).
 Mnが300以上の高分子ポリオール(a1)としては、ポリエステルポリオール、ポリエーテルポリオール、ポリエーテルエステルポリオール及びヒマシ油系ポリオール等が挙げられる。高分子ポリオール(a1)は、1種を単独で用いても2種以上を併用してもよい。 Examples of the polymer polyol (a1) having Mn of 300 or more include polyester polyol, polyether polyol, polyether ester polyol, castor oil-based polyol, and the like. The polymer polyol (a1) may be used alone or in combination of two or more.
 Mnが300以上のポリエステルポリオールとしては、縮合型ポリエステルポリオール、ポリラクトンポリオール及びポリカーボネートポリオール等が挙げられる。 Examples of the polyester polyol having Mn of 300 or more include condensation type polyester polyol, polylactone polyol, and polycarbonate polyol.
 Mnが300以上の縮合型ポリエステルポリオールとしては、Mn又は化学式量が300未満の低分子ポリオール(a2)と炭素数2~20の多価カルボン酸又はそのエステル形成性誘導体[酸無水物、低級(炭素数1~4)アルキルエステル及び酸ハライド等]との縮合により得られるもの等が挙げられる。 Examples of the condensed polyester polyol having Mn of 300 or more include Mn or a low molecular weight polyol (a2) having a chemical formula of less than 300 and a polyvalent carboxylic acid having 2 to 20 carbon atoms or an ester-forming derivative thereof [acid anhydride, lower ( And the like, which are obtained by condensation with an alkyl ester having 1 to 4 carbon atoms and an acid halide, and the like.
 Mn又は化学式量が300未満の低分子ポリオール(a2)としては、炭素数2~20の多価アルコール;炭素数2~20の多価アルコールの炭素数2~12のアルキレンオキサイド(以下、AOと略記)付加物であってMn又は化学式量が300未満のもの;ビスフェノール(ビスフェノールA、ビスフェノールS及びビスフェノールF等)の炭素数2~12のAO付加物であってMn又は化学式量が300未満のもの;ビス(2-ヒドロキシエチル)テレフタレート及びその炭素数2~12のAO付加物であってMn又は化学式量が300未満のもの等が挙げられる。 Examples of the low molecular weight polyol (a2) having Mn or a chemical formula of less than 300 include polyhydric alcohols having 2 to 20 carbon atoms; alkylene oxides having 2 to 12 carbon atoms of polyhydric alcohols having 2 to 20 carbon atoms (hereinafter referred to as AO). (Abbreviation) an adduct having an Mn or a chemical formula amount of less than 300; an AO adduct of bisphenol (bisphenol A, bisphenol S, bisphenol F, etc.) having 2 to 12 carbon atoms and having an Mn or a chemical formula amount of less than 300 Examples thereof include bis (2-hydroxyethyl) terephthalate and an AO adduct thereof having 2 to 12 carbon atoms and having Mn or a chemical formula amount of less than 300.
 本発明における炭素数2~12のAOとしては、エチレンオキサイド、1,2-又は1,3-プロピレンオキサイド、1,2-,1,3-又は2,3-ブチレンオキサイド、テトラヒドロフラン、3-メチルテトラヒドロフラン、スチレンオキサイド、α-オレフィンオキサイド及びエピクロルヒドリン等が挙げられる。 Examples of the AO having 2 to 12 carbon atoms in the present invention include ethylene oxide, 1,2- or 1,3-propylene oxide, 1,2-, 1,3- or 2,3-butylene oxide, tetrahydrofuran, 3-methyl Tetrahydrofuran, styrene oxide, α-olefin oxide, epichlorohydrin and the like can be mentioned.
 炭素数2~20の多価アルコールとしては、炭素数2~12の直鎖又は分岐の脂肪族2価アルコール[エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-ドデカンジオール、ジエチレングリコール、トリエチレングリコール及びテトラエチレングリコール等の直鎖アルコール;1,2-、1,3-又は2,3-ブタンジオール、2-メチル-1,4-ブタンジオール、ネオペンチルグリコール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,6-ヘキサンジオール、3-メチル-1,6-ヘキサンジオール、2-メチル-1,7-ヘプタンジオール、3-メチル-1,7-ヘプタンジオール、4-メチル-1,7-ヘプタンジオール、2-メチル-1,8-オクタンジオール、3-メチル-1,8-オクタンジオール及び4-メチルオクタンジオール等の分岐アルコール等];炭素数6~20の脂環式2価アルコール[1,4-シクロヘキサンジオール、1,3-又は1,4-シクロヘキサンジメタノール、1,4-シクロヘプタンジオール、2,5-ビス(ヒドロキシメチル)-1,4-ジオキサン、2,7-ノルボルナンジオール、テトラヒドロフランジメタノール、1,4-ビス(ヒドロキシエトキシ)シクロヘキサン、1,4-ビス(ヒドロキシメチル)シクロヘキサン及び2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン等];炭素数8~20の芳香脂肪族2価アルコール[m-又はp-キシリレンジオール、ビス(ヒドロキシエチル)ベンゼン及びビス(ヒドロキシエトキシ)ベンゼン等];炭素数3~20の3価アルコール[脂肪族トリオール(グリセリン及びトリメチロールプロパン等)等];炭素数5~20の4~8価アルコール[脂肪族ポリオール(ペンタエリスリトール、ソルビトール、マンニトール、ソルビタン、ジグリセリン及びジペンタエリスリトール等);糖類(ショ糖、グルコース、マンノース、フルクトース、メチルグルコシド及びその誘導体)];等が挙げられる。 As the polyhydric alcohol having 2 to 20 carbon atoms, a linear or branched aliphatic dihydric alcohol having 2 to 12 carbon atoms [ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5- Direct addition of pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-dodecanediol, diethylene glycol, triethylene glycol and tetraethylene glycol. Chain alcohol; 1,2-, 1,3- or 2,3-butanediol, 2-methyl-1,4-butanediol, neopentyl glycol, 2,2-diethyl-1,3-propanediol, 2- Methyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-1,6-hexanediol, 3-methyl-1,6-hexanediol, 2-methyl-1,7- Heptanediol, 3-methyl-1,7-heptanediol, 4-methyl-1,7-heptanediol, 2-methyl-1,8-octanediol, 3-methyl-1,8-octanediol and 4-methyl Branched alcohols such as octanediol, etc .; alicyclic dihydric alcohols having 6 to 20 carbon atoms [1,4-cyclohexanediol, 1,3- or 1,4-cyclohexanedimethanol, 1,4-cycloheptanediol, 2,5-bis (hydroxymethyl) -1,4-dioxane, 2,7-norbornanediol, tetrahydrofuran dimethanol, 1,4-bis (hydroxyethoxy) cyclohexane, 1,4-bis (hydroxymethyl) cyclohexane and 2 , 2-bis (4-hydroxycyclohexyl) propane, etc .; Aroaliphatic dihydric alcohols having 8 to 20 carbon atoms [m- or p-xylylenediol, bis (hydroxyethyl) benzene, bis (hydroxyethoxy) benzene, etc. ]; C3-C20 trihydric alcohol [aliphatic triols (glycerin, trimethylolpropane, etc.)]; C5-C20 4-8 octavalent alcohol [aliphatic polyols (pentaerythritol, sorbitol, mannitol, sorbitan , Diglycerin, dipentaerythritol, etc.); saccharides (sucrose, glucose, mannose, fructose, methyl glucoside and its derivatives)]; and the like.
 炭素数2~20の多価カルボン酸又はそのエステル形成性誘導体としては、脂肪族ジカルボン酸(コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、オクタデカンジカルボン酸、デシルコハク酸、フマル酸及びマレイン酸等)、脂環式ジカルボン酸(ダイマー酸等)、芳香族ジカルボン酸(テレフタル酸、イソフタル酸、フタル酸、t-ブチルイソフタル酸、2,6-ナフタレンジカルボン酸及び4,4’-ビフェニルジカルボン酸等)、3価又はそれ以上のポリカルボン酸(トリメリット酸及びピロメリット酸等)、これらの無水物(無水コハク酸、無水マレイン酸、無水フタル酸及び無水トリメリット酸等)、これらの酸ハロゲン化物(アジピン酸ジクロライド等)、これらの低分子量アルキルエステル(コハク酸ジメチル及びフタル酸ジメチル等)並びこれらの併用が挙げられる。これらの内で好ましいものは脂肪族ジカルボン酸及びそのエステル形成性誘導体である。多価カルボン酸は1種を単独で用いても2種以上を併用してもよい。 Examples of the polycarboxylic acid having 2 to 20 carbon atoms or its ester-forming derivative include aliphatic dicarboxylic acids (succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid, decylsuccinic acid, fumaric acid and Maleic acid, etc.), alicyclic dicarboxylic acid (dimer acid, etc.), aromatic dicarboxylic acid (terephthalic acid, isophthalic acid, phthalic acid, t-butylisophthalic acid, 2,6-naphthalenedicarboxylic acid and 4,4'-biphenyl) Dicarboxylic acids, etc.), trivalent or higher polycarboxylic acids (such as trimellitic acid and pyromellitic acid), their anhydrides (succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, etc.), these Acid halides (such as adipic acid dichloride), low molecular weight alkyl esters thereof (such as dimethyl succinate and dimethyl phthalate), and combinations thereof. Preferred among these are aliphatic dicarboxylic acids and their ester-forming derivatives. The polycarboxylic acids may be used alone or in combination of two or more.
 Mnが300以上のポリラクトンポリオールとしては、上記炭素数2~20の多価アルコールを開始剤として炭素数3~12のラクトンモノマー(β-プロピオラクトン、γ-ブチロラクトン、γ-バレロラクトン、ε-カプロラクトン、η-カプリロラクトン、11-ウンデカノラクトン及び12-ドデカノイド等)を開環重合させたもの等が挙げられる。ラクトンモノマーは1種を単独で用いても2種以上を併用してもよい。 As the polylactone polyol having Mn of 300 or more, a lactone monomer having 3 to 12 carbon atoms (β-propiolactone, γ-butyrolactone, γ-valerolactone, ε) is prepared by using the polyhydric alcohol having 2 to 20 carbon atoms as an initiator. -Caprolactone, η-caprylolactone, 11-undecanolactone, 12-dodecanoid, etc.) and the like. The lactone monomers may be used alone or in combination of two or more.
 ポリカーボネートポリオールとしては、上記炭素数2~20の多価アルコール(好ましくは炭素数3~9、更に好ましくは炭素数4~6の脂肪族2価アルコール)の1種又は2種以上と、低分子カーボネート化合物(例えば、アルキル基の炭素数1~6のジアルキルカーボネート、炭素数2~6のアルキレン基を有するアルキレンカーボネート及び炭素数6~9のアリール基を有するジアリールカーボネート)から、脱アルコール反応させながら縮合させることによって製造されるポリカーボネートポリオールが挙げられる。 As the polycarbonate polyol, one or more polyhydric alcohols having 2 to 20 carbon atoms (preferably aliphatic dihydric alcohol having 3 to 9 carbon atoms, more preferably 4 to 6 carbon atoms) and low molecular weight While carrying out a dealcoholization reaction from a carbonate compound (for example, a dialkyl carbonate having an alkyl group having 1 to 6 carbon atoms, an alkylene carbonate having an alkylene group having 2 to 6 carbon atoms and a diaryl carbonate having an aryl group having 6 to 9 carbon atoms) Polycarbonate polyols produced by condensation are mentioned.
 Mnが300以上のポリエーテルポリオールとしては、上記Mn又は化学式量が300未満の低分子ポリオール(a2)に炭素数2~12のAOを付加させた化合物等が挙げられる。AOは1種を単独で用いても2種以上を併用してもよく、後者の場合はブロック付加(チップ型、バランス型、活性セカンダリー型等)でもランダム付加でもこれらの併用系でもよい。 Examples of the polyether polyol having Mn of 300 or more include compounds obtained by adding AO having 2 to 12 carbon atoms to the above Mn or low molecular weight polyol (a2) having a chemical formula of less than 300. One type of AO may be used alone or two or more types may be used in combination. In the latter case, block addition (chip type, balance type, active secondary type, etc.), random addition, or a combination of these may be used.
 Mn又は化学式量が300未満の低分子ポリオール(a2)へのAOの付加は、例えば無触媒で又は触媒(アルカリ触媒、アミン系触媒、酸性触媒等)の存在下(特にAO付加の後半の段階で)に常圧又は加圧下に1段階又は多段階で行なわれる。 The addition of AO to Mn or the low-molecular-weight polyol (a2) having a chemical formula weight of less than 300 is carried out, for example, without catalyst or in the presence of a catalyst (alkali catalyst, amine-based catalyst, acidic catalyst, etc.) (particularly the latter half stage of AO addition). In step 1) under normal pressure or under pressure in one step or multiple steps.
 ポリエーテルポリオールの具体例としては、ポリ(オキシエチレン)ポリオール、ポリ(オキシプロピレン)ポリオール、ポリ(オキシテトラメチレン)ポリオール、ポリ(オキシ-3-メチルテトラメチレン)ポリオール、テトラヒドロフラン/エチレンオキサイド共重合ポリオール及びテトラヒドロフラン/3-メチルテトラヒドロフラン共重合ポリオール等が挙げられる。これらの内で引張強伸度の観点から好ましいものはポリ(オキシテトラメチレン)ポリオールである。 Specific examples of the polyether polyol include poly (oxyethylene) polyol, poly (oxypropylene) polyol, poly (oxytetramethylene) polyol, poly (oxy-3-methyltetramethylene) polyol, and tetrahydrofuran / ethylene oxide copolymer polyol. And tetrahydrofuran / 3-methyltetrahydrofuran copolymer polyol and the like. Among these, poly (oxytetramethylene) polyol is preferable from the viewpoint of tensile strength and elongation.
 Mnが300以上のポリエーテルエステルポリオールとしては、上記ポリエーテルポリオールの1種以上と上記縮合型ポリエステルポリオールの原料として例示した炭素数2~20の多価カルボン酸又はそのエステル形成性誘導体の1種以上とを縮重合させて得られるもの等が挙げられる。 As the polyether ester polyol having Mn of 300 or more, one or more kinds of the above polyether polyols and one kind of polyvalent carboxylic acid having 2 to 20 carbon atoms or an ester-forming derivative thereof as a raw material of the above condensation type polyester polyol. Examples thereof include those obtained by polycondensation of the above.
 ヒマシ油系ポリオールとしては、ヒマシ油、ヒマシ油脂肪酸と上記炭素数2~20の多価アルコールやポリオキシアルキレンポリオールとからのポリエステルポリオール(ヒマシ油脂肪酸のモノ-又はジグリセライド、ヒマシ油脂肪酸とトリメチロールプロパンとからのモノ-、ジ-又はトリエステル及びヒマシ油脂肪酸とポリオキシプロピレングリコールとからのモノ-又はジエステル等)、ヒマシ油に炭素数2~12のAOを付加したもの及びこれらの2種以上の混合物等が挙げられる。 Examples of the castor oil-based polyol include castor oil, a castor oil fatty acid and a polyester polyol of a polyhydric alcohol having 2 to 20 carbon atoms or a polyoxyalkylene polyol (castor oil fatty acid mono- or diglyceride, castor oil fatty acid and trimethylol). Mono-, di- or triester from propane and mono- or diester from castor oil fatty acid and polyoxypropylene glycol), castor oil added with AO having 2 to 12 carbon atoms and two kinds thereof The above mixture and the like can be mentioned.
 高分子ポリオール(a1)のMnは、引張強伸度の観点から、好ましくは300以上、更に好ましくは1,000~5,000、特に好ましくは1,500~3,000である。 From the viewpoint of tensile strength and elongation, the Mn of the polymer polyol (a1) is preferably 300 or more, more preferably 1,000 to 5,000, and particularly preferably 1,500 to 3,000.
 尚、本発明におけるポリオールのMnは、ゲルパーミエーションクロマトグラフィーにより、例えば以下の条件で測定することができる。
装置:「Waters Alliance 2695」[Waters社製]
カラム:「Guardcolumn Super H-L」(1本)、「TSKgel SuperH2000、TSKgel SuperH3000、TSKgel SuperH4000(いずれも東ソー株式会社製)を各1本連結したもの」
試料溶液:0.25重量%のテトラヒドロフラン溶液
溶液注入量:10μl
流量:0.6ml/分
測定温度:40℃
検出装置:屈折率検出器
基準物質:標準ポリエチレングリコール
The Mn of the polyol in the present invention can be measured by gel permeation chromatography, for example, under the following conditions.
Device: "Waters Alliance 2695" [manufactured by Waters]
Column: "Guardcolumn Super HL" (one), "TSKgel SuperH2000, TSKgel SuperH3000, TSKgel SuperH4000 (both manufactured by Tosoh Corporation) are connected one by one"
Sample solution: Tetrahydrofuran solution solution of 0.25 wt% Injection volume: 10 μl
Flow rate: 0.6 ml / min Measurement temperature: 40 ° C
Detector: Refractive index detector Reference substance: Standard polyethylene glycol
 イオン性基と活性水素原子を有する化合物(a3)としては、アニオン性基と活性水素原子を含有する化合物(a31)及びカチオン性基と活性水素原子を含有する化合物(a32)が挙げられる。化合物(a3)は1種を単独で用いても2種以上を併用してもよい。 Examples of the compound (a3) having an ionic group and an active hydrogen atom include a compound (a31) containing an anionic group and an active hydrogen atom, and a compound (a32) containing a cationic group and an active hydrogen atom. As the compound (a3), one type may be used alone, or two or more types may be used in combination.
 アニオン性基と活性水素原子を含有する化合物(a31)としては、例えばアニオン性基としてカルボキシル基を含有し、活性水素原子として水酸基を有し、炭素数が2~10の化合物[ジアルキロールアルカン酸(例えば2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロールヘプタン酸及び2,2-ジメチロールオクタン酸)、酒石酸及びアミノ酸(例えばグリシン、アラニン及びバリン)等]、アニオン性基としてスルホン酸基を含有し、活性水素原子として水酸基を有し、炭素数が2~16の化合物[3-(2,3-ジヒドロキシプロポキシ)-1-プロパンスルホン酸及びスルホイソフタル酸ジ(エチレングリコール)エステル等]、アニオン性基としてスルファミン酸基を含有し、活性水素原子として水酸基を有し、炭素数が2~10の化合物[N,N-ビス(2-ヒドロキシルエチル)スルファミン酸等]等並びにこれらの化合物を中和剤で中和した塩が挙げられる。 Examples of the compound (a31) containing an anionic group and an active hydrogen atom include a compound containing a carboxyl group as an anionic group, a hydroxyl group as an active hydrogen atom, and a carbon number of 2 to 10 [dialkylol alkane]. Acids (eg 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolheptanoic acid and 2,2-dimethyloloctanoic acid), tartaric acid and amino acids (eg glycine, alanine and valine) Etc.]], a compound having a sulfonic acid group as an anionic group, a hydroxyl group as an active hydrogen atom, and a carbon number of 2 to 16 [3- (2,3-dihydroxypropoxy) -1-propanesulfonic acid and Sulfoisophthalic acid di (ethylene glycol) ester, etc.], a compound containing a sulfamic acid group as an anionic group, a hydroxyl group as an active hydrogen atom, and a carbon number of 2 to 10 [N, N-bis (2-hydroxyl) Ethyl) sulfamic acid, etc.] and salts of these compounds neutralized with a neutralizing agent.
 アニオン性基と活性水素原子を含有する化合物(a31)の塩に用いられる中和剤としては、例えばアンモニア、炭素数1~20のアミン化合物又はアルカリ金属水酸化物(水酸化ナトリウム、水酸化カリウム及び水酸化リチウム等)が挙げられる。
 炭素数1~20のアミン化合物としては、モノメチルアミン、モノエチルアミン、モノブチルアミン及びモノエタノールアミン等の1級アミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジエタノールアミン及びジイソプロパノールアミン、メチルプロパノールアミン等の2級アミン並びにトリメチルアミン、トリエチルアミン、ジメチルエチルアミン、ジメチルモノエタノールアミン及びトリエタノールアミン等の3級アミン等が挙げられる。
Examples of the neutralizing agent used for the salt of the compound (a31) containing an anionic group and an active hydrogen atom include ammonia, amine compounds having 1 to 20 carbon atoms or alkali metal hydroxides (sodium hydroxide, potassium hydroxide). And lithium hydroxide).
Examples of amine compounds having 1 to 20 carbon atoms include primary amines such as monomethylamine, monoethylamine, monobutylamine and monoethanolamine, and secondary amines such as dimethylamine, diethylamine, dibutylamine, diethanolamine and diisopropanolamine, methylpropanolamine. Examples thereof include amines and tertiary amines such as trimethylamine, triethylamine, dimethylethylamine, dimethylmonoethanolamine and triethanolamine.
 アニオン性基と活性水素原子を含有する化合物(a31)の塩に用いられる中和剤としては、生成する複合樹脂水性分散体の乾燥性及び乾燥皮膜の耐水性の観点から、25℃における蒸気圧が高い化合物が好適である。このような観点から、アニオン性基と活性水素原子を含有する化合物(a31)の塩に用いられる中和剤としては、アンモニア、モノメチルアミン、モノエチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン及びジメチルエチルアミンが好ましい。 As the neutralizing agent used for the salt of the compound (a31) containing an anionic group and an active hydrogen atom, a vapor pressure at 25 ° C. may be used from the viewpoint of the drying property of the resulting composite resin aqueous dispersion and the water resistance of the dry film. Compounds with high values are preferred. From this point of view, as the neutralizing agent used for the salt of the compound (a31) containing an anionic group and an active hydrogen atom, ammonia, monomethylamine, monoethylamine, dimethylamine, diethylamine, trimethylamine, triethylamine and dimethylethylamine can be used. Is preferred.
 アニオン性基と活性水素原子を含有する化合物(a31)の内、得られる皮膜の機械的強度及び複合樹脂水性分散体の分散安定性の観点から好ましいのは、2,2-ジメチロールプロピオン酸及び2,2-ジメチロールブタン酸及びこれらの塩類であり、更に好ましいのは2,2-ジメチロールプロピオン酸及び2,2-ジメチロールブタン酸のアンモニア又は炭素数1~20のアミン化合物による中和塩である。 Of the compound (a31) containing an anionic group and an active hydrogen atom, 2,2-dimethylolpropionic acid and 2,2-dimethylolpropionic acid are preferable from the viewpoints of mechanical strength of the obtained film and dispersion stability of the composite resin aqueous dispersion. 2,2-Dimethylolbutanoic acid and salts thereof, more preferably 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are neutralized with ammonia or an amine compound having 1 to 20 carbon atoms. It is salt.
 カチオン性基と活性水素原子を含有する化合物(a32)としては、カチオン性基として3級アミノ基を有し、活性水素原子として水酸基を有する化合物、例えば炭素数1~20の3級アミノ基含有ジオール[N-アルキルジアルカノールアミン(例えばN-メチルジエタノールアミン、N-プロピルジエタノールアミン、N-ブチルジエタノールアミン及びN-メチルジプロパノールアミン)及びN,N-ジアルキルモノアルカノールアミン(例えばN,N-ジメチルエタノールアミン)等]等の化合物を中和剤で中和した塩が挙げられる。 As the compound (a32) containing a cationic group and an active hydrogen atom, a compound having a tertiary amino group as a cationic group and a hydroxyl group as an active hydrogen atom, for example, containing a tertiary amino group having 1 to 20 carbon atoms Diols [N-alkyldialkanolamines (eg N-methyldiethanolamine, N-propyldiethanolamine, N-butyldiethanolamine and N-methyldipropanolamine) and N, N-dialkylmonoalkanolamines (eg N, N-dimethylethanolamine ) Etc.] and other compounds are neutralized with a neutralizing agent.
 カチオン性基と活性水素原子を含有する化合物(a32)の塩に用いられる中和剤としては、炭素数1~10のモノカルボン酸(例えばギ酸、酢酸、プロパン酸等)、炭酸、炭酸ジメチル、硫酸ジメチル、メチルクロライド及びベンジルクロライド等が挙げられる。
 カチオン性基と活性水素原子を含有する化合物(a32)の塩に用いられる中和剤としては、生成する複合樹脂水性分散体の乾燥性及び乾燥皮膜の耐水性の観点から、25℃における蒸気圧が高い化合物が好適である。このような観点からカチオン性基と活性水素原子を含有する化合物(a32)に用いられる中和剤としては、炭素数1~10のモノカルボン酸及び炭酸が好ましく、更に好ましいのはギ酸及び炭酸、特に好ましいのは炭酸である。
As the neutralizing agent used for the salt of the compound (a32) containing a cationic group and an active hydrogen atom, a monocarboxylic acid having 1 to 10 carbon atoms (for example, formic acid, acetic acid, propanoic acid, etc.), carbonic acid, dimethyl carbonate, Examples thereof include dimethyl sulfate, methyl chloride and benzyl chloride.
As the neutralizing agent used in the salt of the compound (a32) containing a cationic group and an active hydrogen atom, a vapor pressure at 25 ° C. may be used from the viewpoint of the drying property of the resulting composite resin aqueous dispersion and the water resistance of the dry film. Compounds with high values are preferred. From this point of view, the neutralizing agent used for the compound (a32) containing a cationic group and an active hydrogen atom is preferably a monocarboxylic acid having 1 to 10 carbon atoms and carbonic acid, and more preferably formic acid and carbonic acid. Particularly preferred is carbonic acid.
 反応停止剤(a4)としては、炭素数1~20のモノアルコール類(メタノール、エタノール、ブタノール、オクタノール、デカノール、ドデシルアルコール、ミリスチルアルコール、セチルアルコール及びステアリルアルコール等)、炭素数1~20のモノアミン(モノメチルアミン、モノエチルアミン、モノブチルアミン、ジブチルアミン及びモノオクチルアミン等のモノ又はジアルキルアミン並びにモノエタノールアミン、ジエタノールアミン及びジイソプロパノールアミン等のモノ又はジアルカノールアミン等)が挙げられる。 As the reaction terminator (a4), monoalcohols having 1 to 20 carbon atoms (methanol, ethanol, butanol, octanol, decanol, dodecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, etc.), monoamines having 1 to 20 carbon atoms (Mono- or di-alkylamines such as monomethylamine, monoethylamine, monobutylamine, dibutylamine and monooctylamine, and mono- or dialkanolamines such as monoethanolamine, diethanolamine and diisopropanolamine).
 本発明における有機イソシアネート成分(B)としては、2~3個又はそれ以上のイソシアネート基を有する炭素数8~26の芳香族ポリイソシアネート(b1)、炭素数4~22の脂肪族ポリイソシアネート(b2)、炭素数8~18の脂環式ポリイソシアネート(b3)、炭素数10~18の芳香脂肪族ポリイソシアネート(b4)及びこれらの有機ポリイソシアネートの変性物(b5)等が挙げられる。 Examples of the organic isocyanate component (B) in the present invention include aromatic polyisocyanates (b1) having 2 to 3 or more isocyanate groups and having 8 to 26 carbon atoms, and aliphatic polyisocyanates (b2) having 4 to 22 carbon atoms. ), Alicyclic polyisocyanates having 8 to 18 carbon atoms (b3), araliphatic polyisocyanates having 10 to 18 carbon atoms (b4), and modified products (b5) of these organic polyisocyanates.
 炭素数8~26の芳香族ポリイソシアネート(b1)としては、例えば1,3-又は1,4-フェニレンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート(以下、トリレンジイソシアネートをTDIと略記)、粗製TDI、4,4’-又は2,4’-ジフェニルメタンジイソシアネート(以下、ジフェニルメタンジイソシアネートをMDIと略記)、粗製MDI、ポリアリールポリイソシアネート、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、1,5-ナフチレンジイソシアネート、4,4’,4”-トリフェニルメタントリイソシアネート及びm-又はp-イソシアナトフェニルスルホニルイソシアネートが挙げられる。 Examples of the aromatic polyisocyanate (b1) having 8 to 26 carbon atoms include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate (hereinafter, tolylene diisocyanate is referred to as TDI). Abbreviated), crude TDI, 4,4′- or 2,4′-diphenylmethane diisocyanate (hereinafter, diphenylmethane diisocyanate is abbreviated as MDI), crude MDI, polyaryl polyisocyanate, 4,4′-diisocyanatobiphenyl, 3, 3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatodiphenylmethane, 1,5-naphthylene diisocyanate, 4,4 ', 4 "-triphenyl Mention may be made of methanetriisocyanate and m- or p-isocyanatophenylsulfonyl isocyanate.
 炭素数4~22の脂肪族ポリイソシアネート(b2)としては、例えばエチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(以下、HDIと略記)、ドデカメチレンジイソシアネート、1,6,11-ウンデカントリイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)フマレート、ビス(2-イソシアナトエチル)カーボネート及び2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエートが挙げられる。 Examples of the aliphatic polyisocyanate (b2) having 4 to 22 carbon atoms include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (hereinafter abbreviated as HDI), dodecamethylene diisocyanate, 1,6,11-undecane triisocyanate, 2 , 2,4-Trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate and 2-isocyanatoethyl- 2,6-diisocyanatohexanoate may be mentioned.
 炭素数8~18の脂環式ポリイソシアネート(b3)としては、例えばイソホロンジイソシアネート(以下、IPDIと略記)、4,4’-ジシクロヘキシルメタンジイソシアネート(以下、水添MDIと略記)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(2-イソシアナトエチル)-4-シクロヘキセン-1,2-ジカルボキシレート及び2,5-又は2,6-ノルボルナンジイソシアネートが挙げられる。 Examples of the alicyclic polyisocyanate (b3) having 8 to 18 carbon atoms include isophorone diisocyanate (hereinafter abbreviated as IPDI), 4,4′-dicyclohexylmethane diisocyanate (hereinafter abbreviated as hydrogenated MDI), cyclohexylene diisocyanate, Mention may be made of methylcyclohexylene diisocyanate, bis (2-isocyanatoethyl) -4-cyclohexene-1,2-dicarboxylate and 2,5- or 2,6-norbornane diisocyanate.
 炭素数10~18の芳香脂肪族ポリイソシアネート(b4)としては、例えばm-又はp-キシリレンジイソシアネート及びα,α,α’,α’-テトラメチルキシリレンジイソシアネートが挙げられる。 Examples of the araliphatic polyisocyanate having 10 to 18 carbon atoms (b4) include m- or p-xylylene diisocyanate and α, α, α ′, α′-tetramethylxylylene diisocyanate.
 (b1)~(b4)の有機ポリイソシアネートの変性物(b5)としては、上記ポリイソシアネートのウレタン基、カルボジイミド基、アロハネート基、ウレア基、ビウレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基又はオキサゾリドン基含有変性物[例えば変性MDI(ウレタン変性MDI、カルボジイミド変性MDI及びトリヒドロカルビルホスフェート変性MDI等)、ウレタン変性TDI、HDIのビウレット体、HDIのイソシアヌレート体及びIPDIのイソシアヌレート体]が挙げられる。 Examples of the modified products (b5) of the organic polyisocyanates (b1) to (b4) include urethane groups, carbodiimide groups, alohanate groups, urea groups, biuret groups, uretdione groups, uretoimine groups, isocyanurate groups or oxazolidones of the above polyisocyanates. Group-containing modified products [for example, modified MDI (urethane modified MDI, carbodiimide modified MDI and trihydrocarbyl phosphate modified MDI, etc.), urethane modified TDI, HDI biuret form, HDI isocyanurate form and IPDI isocyanurate form] are mentioned.
 これらの内、耐候性の観点から好ましいのは炭素数4~22の脂肪族ポリイソシアネート(b2)、炭素数8~18の脂環式ポリイソシアネート(b3)及びこれらの変性物、更に好ましいのはHDI、IPDI、水添MDI、HDIのイソシアヌレート体及びIPDIのイソシアヌレート体である。
 有機イソシアネート成分(B)は、1種を単独で用いても2種以上を併用してもよい。
Among these, from the viewpoint of weather resistance, preferred are aliphatic polyisocyanates having 4 to 22 carbon atoms (b2), alicyclic polyisocyanates having 8 to 18 carbon atoms (b3) and modified products thereof, and more preferred are HDI, IPDI, hydrogenated MDI, HDI isocyanurate and IPDI isocyanurate.
As the organic isocyanate component (B), one type may be used alone, or two or more types may be used in combination.
 鎖伸長剤(E)としては、水及びMn又は化学式量が500未満のポリアミン化合物等が挙げられる。
 Mn又は化学式量が500未満のポリアミン化合物としては、炭素数2~36の脂肪族ポリアミン[エチレンジアミン及びヘキサメチレンジアミン等のアルキレンジアミン;ジエチレントリアミン、ジプロピレントリアミン、ジヘキシレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチエレンヘキサミン及びヘキサエチレンヘプタミン等のアルキレン基の炭素数が2~6で窒素原子の数が3~7であるポリアルキレンポリアミン{ポリ(n=2~6)アルキレン(炭素数2~6)ポリ(n=3~7)アミン}等]、炭素数6~20の脂環式ポリアミン(1,3-又は1,4-ジアミノシクロヘキサン、4,4’-又は2,4’-ジシクロヘキシルメタンジアミン及びイソホロンジアミン等)、炭素数6~20の芳香族ポリアミン(1,3-又は1,4-フェニレンジアミン、2,4-又は2,6-トリレンジアミン、4,4’-又は2,4’-メチレンビスアニリン等)、炭素数8~20の芳香脂肪族ポリアミン[1,3-又は1,4-キシリレンジアミン、ビス(アミノエチル)ベンゼン、ビス(アミノプロピル)ベンゼン及びビス(アミノブチル)ベンゼン等]、炭素数3~20の複素環式ポリアミン[2,4-ジアミノ-1,3,5-トリアジン、ピペラジン及びN-(2-アミノエチル)ピペラジン等]、ヒドラジン又はその誘導体(例えばアジピン酸ジヒドラジド等の二塩基酸ジヒドラジド)及び炭素数2~20のアミノアルコール類(例えばエタノールアミン、ジエタノールアミン、2-アミノ-2-メチルプロパノール及びトリエタノールアミン)等が挙げられる。
Examples of the chain extender (E) include water and Mn or a polyamine compound having a chemical formula amount of less than 500.
Examples of the polyamine compound having Mn or a chemical formula amount of less than 500 include aliphatic polyamines having 2 to 36 carbon atoms [alkylenediamine such as ethylenediamine and hexamethylenediamine; diethylenetriamine, dipropylenetriamine, dihexylenetriamine, triethylenetetramine, tetraethylenepenta Polyalkylene polyamines having 2 to 6 carbon atoms and 3 to 7 nitrogen atoms in an alkylene group such as amine, pentaethylene hexamine, and hexaethylene heptamine (poly (n = 2 to 6) alkylene (having 2 carbon atoms) To 6) poly (n = 3 to 7) amine}, etc.], and alicyclic polyamines having 6 to 20 carbon atoms (1,3- or 1,4-diaminocyclohexane, 4,4'- or 2,4'- Dicyclohexylmethanediamine, isophoronediamine, etc.), aromatic polyamines having 6 to 20 carbon atoms (1,3- or 1,4-phenylenediamine, 2,4- or 2,6-tolylenediamine, 4,4′- or 2,4'-methylenebisaniline etc.), araliphatic polyamines having 8 to 20 carbon atoms [1,3- or 1,4-xylylenediamine, bis (aminoethyl) benzene, bis (aminopropyl) benzene and bis (Aminobutyl) benzene etc.], heterocyclic polyamines having 3 to 20 carbon atoms [2,4-diamino-1,3,5-triazine, piperazine and N- (2-aminoethyl) piperazine etc.], hydrazine or the like. Examples thereof include derivatives (eg, dibasic acid dihydrazide such as adipic acid dihydrazide) and amino alcohols having 2 to 20 carbon atoms (eg, ethanolamine, diethanolamine, 2-amino-2-methylpropanol and triethanolamine).
 本発明の複合樹脂水性分散体において、ポリウレタン樹脂(U)は、活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の内の少なくとも1種が3官能以上の化合物を含有する原料の反応物である。本発明においては、活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の内の少なくとも1種に3官能以上の化合物を用いることにより、ポリウレタン樹脂(U)に架橋構造を導入する。 In the composite resin aqueous dispersion of the present invention, the polyurethane resin (U) is a compound in which at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E) is a trifunctional or higher functional compound. It is a reaction product of the contained raw materials. In the present invention, by using a trifunctional or higher functional compound for at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E), the polyurethane resin (U) has a crosslinked structure. To introduce.
 活性水素成分(A)の内、上記目的に用いる3官能以上の化合物として好ましいのは、Mn又は化学式量が300未満の低分子ポリオール(a2)の内の炭素数3~20の3価アルコール、炭素数5~20の4~8価アルコール及び糖類であり、更に好ましいのは炭素数3~20の3価アルコール、特に好ましいのはトリメチロールプロパンである。 Of the active hydrogen component (A), the trifunctional or higher functional compound used for the above purpose is preferably Mn or a trihydric alcohol having 3 to 20 carbon atoms in the low molecular weight polyol (a2) having a chemical formula amount of less than 300, It is a C4 to C4 tetrahydric alcohol and a saccharide, more preferred is a C3 to C20 trihydric alcohol, and particularly preferred is trimethylolpropane.
 有機イソシアネート成分(B)の内、上記目的に用いる3官能以上の化合物として好ましいのは、HDIのイソシアヌレート体及びIPDIのイソシアヌレート体である。 Among the organic isocyanate component (B), the trifunctional or higher functional compound used for the above purpose is preferably an HDI isocyanurate body and an IPDI isocyanurate body.
 鎖伸長剤(E)の内、上記目的に用いる3官能以上の化合物として好ましいのは、アルキレン基の炭素数が2~6で窒素原子の数が3~7であるポリアルキレンポリアミン[ポリ(n=2~6)アルキレン(炭素数2~6)ポリ(n=3~7)アミン]であり、更に好ましいのはジエチレントリアミン及びトリエチレンテトラミンである。 Among the chain extenders (E), the trifunctional or higher functional compound used for the above purpose is preferably a polyalkylene polyamine having a alkylene group having 2 to 6 carbon atoms and 3 to 7 nitrogen atoms [poly (n = 2-6) alkylene (C2-6) poly (n = 3-7) amine], and more preferred are diethylenetriamine and triethylenetetramine.
 乾燥皮膜の機械的強度の観点から、鎖伸長剤(E)に3官能以上の化合物を用いることによりポリウレタン樹脂(U)に架橋構造を導入することが好ましい。 From the viewpoint of the mechanical strength of the dry film, it is preferable to introduce a crosslinked structure into the polyurethane resin (U) by using a trifunctional or higher functional compound as the chain extender (E).
 本発明において、ビニル系樹脂(V)を構成するビニル系モノマー(M)としては、単官能のビニルモノマー(M1){水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)、水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12)}、2官能以上のビニル系モノマー(M2)が挙げられ、ビニル系モノマー(M)は1種を用いてもよく、2種以上を併用してもよい。
 上記ビニル系モノマー(M11)としては、下記ビニル系モノマー(m1)~(m7)が挙げられる。
 水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12)としては、下記ビニル系モノマー(m8)~(m10)が挙げられる。
In the present invention, the vinyl-based monomer (M) constituting the vinyl-based resin (V) is a monofunctional vinyl monomer (M1) {monofunctional vinyl having no hydroxyl group, amino group, imino group or thiol group. -Based monomers (M11), monofunctional vinyl-based monomers (M12) having a hydroxyl group, amino group, imino group or thiol group}, and bifunctional or higher functional vinyl-based monomers (M2). You may use 1 type and may use 2 or more types together.
Examples of the vinyl-based monomer (M11) include the following vinyl-based monomers (m1) to (m7).
Examples of the monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group include the following vinyl-based monomers (m8) to (m10).
(1)エステル基含有ビニル系モノマー(m1):
 不飽和アルコール又はヒドロキシスチレンと炭素数1~12のモノカルボン酸とのエステル、例えば酢酸ビニル、ビニルブチレート、プロピオン酸ビニル、酪酸ビニル、イソプロペニルアセテート、メチル-4-ビニルベンゾエート、ビニルメトキシアセテート、ビニルベンゾエート及びアセトキシスチレン;不飽和カルボン酸アルコール(炭素数1~30)エステル、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、エイコシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルノルボルネン(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、エチル-α-エトキシ(メタ)アクリレート、ジ(シクロ)アルキルフマレート(2個のアルキル基は、炭素数2~8の、直鎖又は分岐の基である)及びジ(シクロ)アルキルマレエート(2個のアルキル基は、炭素数2~8の、直鎖又は分岐の基である);重合度5~50のポリオキシアルキレン(炭素数2~4)モノオール不飽和カルボン酸エステル、例えばメチルアルコールエチレンオキシド10モル付加物(メタ)アクリレート及びラウリルアルコールエチレンオキシド30モル付加物(メタ)アクリレート。
(1) Ester group-containing vinyl monomer (m1):
Esters of unsaturated alcohols or hydroxystyrene with monocarboxylic acids having 1 to 12 carbon atoms, such as vinyl acetate, vinyl butyrate, vinyl propionate, vinyl butyrate, isopropenyl acetate, methyl-4-vinylbenzoate, vinyl methoxyacetate, Vinyl benzoate and acetoxy styrene; unsaturated carboxylic acid alcohol (carbon number 1 to 30) ester such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) ) Acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, eicosyl (meth) acrylate, cyclohexyl (meth) acrylate, methylnorbornene (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) Acrylate, ethyl-α-ethoxy (meth) acrylate, di (cyclo) alkyl fumarate (two alkyl groups are linear or branched groups having 2 to 8 carbon atoms) and di (cyclo) alkylmale Ate (two alkyl groups are linear or branched groups having 2 to 8 carbon atoms); polyoxyalkylene (2 to 4 carbon atoms) monool unsaturated carboxylic acid ester having a polymerization degree of 5 to 50, For example, methyl alcohol ethylene oxide 10 mol adduct (meth) acrylate and lauryl alcohol ethylene oxide 30 mol adduct (meth) acrylate.
(2)ビニル系炭化水素(m2):
(2-1)脂肪族ビニル系炭化水素:炭素数2~20のアルケン類、例えばエチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、オクテン、ドデセン、オクタデセン及び上記以外のα-オレフィン。
(2-2)脂環式ビニル系炭化水素:モノシクロアルケン、例えばシクロヘキセン等。
(2-3)芳香族ビニル系炭化水素(炭素数8~20):スチレン及びそのハイドロカルビル(アルキル及び/又はシクロアルキル)置換体、例えばα-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン、クロチルベンゼン及びビニルナフタレン。
(2) Vinyl hydrocarbon (m2):
(2-1) Aliphatic vinyl hydrocarbons: alkenes having 2 to 20 carbon atoms such as ethylene, propylene, butene, isobutylene, pentene, heptene, octene, dodecene, octadecene and α-olefins other than the above.
(2-2) Alicyclic vinyl hydrocarbon: monocycloalkene such as cyclohexene.
(2-3) Aromatic vinyl hydrocarbon (C8 to C20): Styrene and its hydrocarbyl (alkyl and / or cycloalkyl) substituted product, for example, α-methylstyrene, vinyltoluene, 2,4-dimethyl Styrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene, cyclohexylstyrene, benzylstyrene, crotylbenzene and vinylnaphthalene.
(3)エポキシ基含有ビニル系モノマー(m3):
 グリシジル(メタ)アクリレート及びβ-メチルグリシジル(メタ)アクリレート等の炭素数6~20のグリシジル基含有(メタ)アクリレート;4-ビニル-1,2-エポキシシクロヘキサン及び5-ビニル-2,3-エポキシノルボルナン等の炭素数6~20の脂環式エポキシ基含有ビニル系モノマー等。
(3) Epoxy group-containing vinyl monomer (m3):
Glycidyl group-containing (meth) acrylates having 6 to 20 carbon atoms such as glycidyl (meth) acrylate and β-methylglycidyl (meth) acrylate; 4-vinyl-1,2-epoxycyclohexane and 5-vinyl-2,3-epoxy Alicyclic epoxy group-containing vinyl monomers having 6 to 20 carbon atoms such as norbornane.
(4)カルボキシル基含有ビニル系モノマー(m4):
 炭素数3~30の不飽和モノカルボン酸、不飽和ジカルボン酸並びにその無水物及びそのモノアルキル(炭素数1~24)エステル、例えば(メタ)アクリル酸、(無水)マレイン酸、マレイン酸モノアルキルエステル、フマル酸、フマル酸モノアルキルエステル、クロトン酸、イタコン酸、イタコン酸モノアルキルエステル、シトラコン酸、シトラコン酸モノアルキルエステル及び桂皮酸。
(4) Carboxyl group-containing vinyl monomer (m4):
Unsaturated monocarboxylic acids having 3 to 30 carbon atoms, unsaturated dicarboxylic acids, their anhydrides and their monoalkyl (carbon atoms having 1 to 24) esters such as (meth) acrylic acid, (anhydrous) maleic acid, and monoalkyl maleates. Ester, fumaric acid, fumaric acid monoalkyl ester, crotonic acid, itaconic acid, itaconic acid monoalkyl ester, citraconic acid, citraconic acid monoalkyl ester and cinnamic acid.
(5)スルホ基含有ビニル系モノマー(m5):
 炭素数2~14のアルケンスルホン酸、例えばビニルスルホン酸、(メタ)アリルスルホン酸及びメチルビニルスルホン酸;スチレンスルホン酸及びその炭素数1~24のアルキル置換体、例えばα-メチルスチレンスルホン酸等;スルホ(ヒドロキシ)アルキル(炭素数1~8)-(メタ)アクリレート又は(メタ)アクリルアミド、例えば、スルホプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエタンスルホン酸、3-(メタ)アクリロイルオキシ-2-ヒドロキシプロパンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及び3-(メタ)アクリルアミド-2-ヒドロキシプロパンスルホン酸;アルキル(炭素数3~18)(メタ)アリルスルホコハク酸エステル等。
(5) Sulfo group-containing vinyl-based monomer (m5):
Alkene sulfonic acid having 2 to 14 carbon atoms, such as vinyl sulfonic acid, (meth) allyl sulfonic acid and methyl vinyl sulfonic acid; styrene sulfonic acid and alkyl substituted products thereof having 1 to 24 carbon atoms, such as α-methyl styrene sulfonic acid Sulfo (hydroxy) alkyl (having 1 to 8 carbon atoms)-(meth) acrylate or (meth) acrylamide, for example, sulfopropyl (meth) acrylate, 2- (meth) acryloyloxyethanesulfonic acid, 3- (meth) acryloyl Oxy-2-hydroxypropanesulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfonic acid and 3- (meth) acrylamido-2-hydroxypropanesulfonic acid; alkyl (C3-18) (meth) allylsulfosuccinic acid Acid ester etc.
(6)ケト基含有ビニル系モノマー(m6):
 分子中に少なくとも1個のケト基(カルボキシル基、エステル基及びアミド基中のケト基は含まない)と重合可能な二重結合を有するモノマーであれば特に制限されることなく使用でき、例えば、ジアセトンアクリルアミド、ビニルメチルケトン、ビニルエチルケトン、ビニルイソブチルケトン、(メタ)アクリルオキシアルキルプロパナール及びジアセトン(メタ)アクリルアミド。
(6) Keto group-containing vinyl monomer (m6):
Any monomer having a double bond capable of polymerizing at least one keto group (excluding a keto group in a carboxyl group, an ester group and an amide group) in the molecule can be used without particular limitation, and examples thereof include: Diacetone acrylamide, vinyl methyl ketone, vinyl ethyl ketone, vinyl isobutyl ketone, (meth) acryloxyalkylpropanal and diacetone (meth) acrylamide.
(7)アルデヒド基含有ビニル系モノマー(m7):
 分子中に少なくとも1個のアルデヒド基と、重合可能な二重結合を有するモノマーであれば特に制限されることなく使用でき、例えば、アクロレイン、ホルミルスチロール、(メタ)アクリルアミドピバリンアルデヒド及びアセトアセトキシエチル(メタ)アクリレート。
(7) Aldehyde group-containing vinyl monomer (m7):
Any monomer having at least one aldehyde group and a polymerizable double bond in the molecule can be used without particular limitation, and examples thereof include acrolein, formylstyrol, (meth) acrylamidopivalinaldehyde and acetoacetoxyethyl ( (Meth) acrylate.
 (M11)として、複合樹脂水性分散体の分散安定性の観点から好ましいのは(m1)、(m4)、(m5)及び(m6)であり、更に好ましいのはメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート及び(メタ)アクリル酸である。 As (M11), from the viewpoint of dispersion stability of the composite resin aqueous dispersion, (m1), (m4), (m5) and (m6) are preferable, and more preferable are methyl (meth) acrylate and ethyl ( (Meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate and (meth) acrylic acid.
(8)水酸基含有ビニル系モノマー(m8)としては、炭素数2~12のアルケノール、例えばビニルアルコール、(メタ)アリルアルコール、1-ブテン-3-オール及び2-ブテン-1-オール;炭素数4~12のアルケンジオール、例えば2-ブテン-1,4-ジオール;水酸基含有芳香族ビニルモノマー、例えばヒドロキシスチレン;炭素数5~8のヒドロキシアルキル(メタ)アクリレート、例えばヒドロキシエチル(メタ)アクリレート及びヒドロキシプロピル(メタ)アクリレート;炭素数3~30のアルケニルエーテル、例えば2-ヒドロキシエチルプロペニルエーテル及び蔗糖アリルエーテル等が挙げられる。 (8) The hydroxyl group-containing vinyl monomer (m8) includes alkenol having 2 to 12 carbon atoms, such as vinyl alcohol, (meth) allyl alcohol, 1-buten-3-ol and 2-buten-1-ol; 4 to 12 alkene diols such as 2-butene-1,4-diol; hydroxyl group-containing aromatic vinyl monomers such as hydroxystyrene; C5 to C8 hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate and Hydroxypropyl (meth) acrylate; alkenyl ethers having 3 to 30 carbon atoms, such as 2-hydroxyethylpropenyl ether and sucrose allyl ether.
(9)アミノ基又はイミノ基含有ビニル系モノマー(m9)としては、炭素数5~20のアミノアルキル(メタ)アクリレート、例えば7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、モノメチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート、t-オクチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート及びジメチルアミノプロピル(メタ)アクリレート等;炭素数5~20のN-アミノアルキル(メタ)アクリルアミド、例えばN-(2-アミノエチル)(メタ)アクリルアミド、N-(1-メチル-2-アミノエチル)(メタ)アクリルアミド、N-(3-アミノプロピル)(メタ)アクリルアミド、N-(4-アミノブチル)(メタ)アクリルアミド、N-(5-アミノペンチル)(メタ)アクリルアミド、N-(6-アミノヘキシル)(メタ)アクリルアミド、N-(3-メチルアミノプロピル)(メタ)アクリルアミド、N-(2-イソプロピルアミノエチル)(メタ)アクリルアミド、N-(3-イソプロピルアミノプロピル)(メタ)アクリルアミド及びN-(3-tert-ブチルアミノプロピル)(メタ)アクリルアミド等が挙げられる。 (9) The amino group- or imino group-containing vinyl monomer (m9) is an aminoalkyl (meth) acrylate having 5 to 20 carbon atoms, such as 7-amino-3,7-dimethyloctyl (meth) acrylate, monomethylaminoethyl. (Meth) acrylate, t-butylaminoethyl (meth) acrylate, t-octylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, etc .; N— having 5 to 20 carbon atoms Aminoalkyl (meth) acrylamides such as N- (2-aminoethyl) (meth) acrylamide, N- (1-methyl-2-aminoethyl) (meth) acrylamide, N- (3-aminopropyl) (meth) acrylamide , N- (4-aminobutyl) (meth) acrylamide, N- (5-aminopentyl) (meth) acrylamide, N- (6-aminohexyl) (meth) acrylamide, N- (3-methylaminopropyl) ( Examples thereof include (meth) acrylamide, N- (2-isopropylaminoethyl) (meth) acrylamide, N- (3-isopropylaminopropyl) (meth) acrylamide and N- (3-tert-butylaminopropyl) (meth) acrylamide. Be done.
(10)チオール基含有ビニル系モノマー(m10)としては、(メタ)アリルメルカプタン及びチオール基を有する(メタ)アクリル酸エステル[上記水酸基含有ビニル系モノマー(m8)へのエチレンスルフィド付加物{2-(2-メルカプトエトキシ)エチル(メタ)アクリレート等}及び(メタ)アクリル酸へのエチレンスルフィド付加物{2-メルカプトエチル(メタ)アクリレート等}等]等が挙げられる。 (10) Examples of the thiol group-containing vinyl monomer (m10) include (meth) allyl mercaptan and a thiol group-containing (meth) acrylic acid ester [ethylene sulfide adduct of the above hydroxyl group-containing vinyl monomer (m8) {2- (2-mercaptoethoxy) ethyl (meth) acrylate and the like} and ethylene sulfide adduct to (meth) acrylic acid {2-mercaptoethyl (meth) acrylate and the like}] and the like.
 2官能以上のビニル系モノマー(M2)としては、ジビニルベンゼン、トリシクロデカンジメタノールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチエレングルコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロポキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、トリペンタエリスリトールポリ(メタ)アクリレート、ポリペンタエリスリトールポリ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、アリル(メタ)アクリレート、トリアリルイソシアヌレート、イソ(テレ)フタル酸ジアリル、イソシアヌル酸ジアリル及びマレイン酸ジアリル等が挙げられる。 Examples of the bifunctional or higher vinyl monomer (M2) include divinylbenzene, tricyclodecanedimethanol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and 1,10-decanediol di (meth) acrylate. , Ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, glycerin di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, diethylene glycol Di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate , Polyethylene glycol di (meth) acrylate, propoxylated bisphenol A di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, 9,9-bis [4- ( 2- (meth) acryloyloxyethoxy) phenyl] fluorene, ethoxylated isocyanuric acid tri (meth) acrylate, ε-caprolactone-modified tris- (2- (meth) acryloxyethyl) isocyanurate, pentaerythritol tri (meth) acrylate, Trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa ( (Meth) acrylate, dipentaerythritol poly (meth) acrylate, tripentaerythritol poly (meth) acrylate, polypentaerythritol poly (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, tricyclodecane dimethanol di (meth) Examples thereof include acrylate, allyl (meth) acrylate, triallyl isocyanurate, diallyl iso (tere) phthalate, diallyl isocyanurate and diallyl maleate.
 本発明において、ビニル系樹脂(V)を構成する単量体のうち、2官能以上のビニル系モノマー(M2)及びウレタン樹脂(U)と共有結合している水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12’)の合計[(M2)+(M12’)]が、ビニル系樹脂(V)を構成する単量体の合計重量に基づいて、4重量%以下が好ましく、さらに好ましくは3重量%以下であり、特に好ましくは2重量%以下である。
 上記値を小さくするためには、ビニル系樹脂(V)を構成するビニル系モノマー(M)中の2官能以上のビニル系モノマー(M2)の重量割合を少なくすればよい。また、ビニル系樹脂(V)を構成するビニル系モノマー(M)中の水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12)の重量割合を少なくする、又はウレタン樹脂(U)を製造した後、イソシアネート基が非常に少ない、若しくはほとんど残っていない段階で水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12)を用いればよい。
 なお、2官能以上のビニル系モノマー(M2)及び水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12)の重量割合は、熱分解ガスクロマトグラフ質量分析法によって求めることができる。また、「ウレタン樹脂(U)と共有結合している」水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12’)の重量割合は、JIS K1557-1に準拠して分析した水酸基価、JIS K1557-7に準拠して分析した全アミン価、メタロジェニクス株式会社製「レドックスアッセイチオール定量キット」を使用したDTNB法によって求めたチオール基含量及び熱分解ガスクロマトグラフ質量分析法から定性した(M12)の分子量から「ウレタン樹脂(U)と結合していない」水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマーの重量割合を求め、(M12)の重量割合から減じることで求めることができる。
熱分解ガスクロマトグラフ質量分析法として具体的には、2官能以上のビニル系モノマー(M2)及び/又は水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12)を含む組成既知の2種以上のビニル系樹脂を熱分解ガスクロマトグラフ質量分析法によって分析し、2官能以上のビニル系モノマー(M2)及び/又は水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12)のピークの積分値から作成した検量線を使用し、組成分析したい樹脂の熱分解ガスクロマトグラフ質量分析法における2官能以上のビニル系モノマー(M2)及び/又は水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12)のピークの積分値から2官能以上のビニル系モノマー(M2)及び/又は水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12)の重量割合を算出することができる。
 本発明において、水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)の重量割合は、ビニル系樹脂(V)を構成する単量体の合計重量に基づいて、96重量%以上であることが好ましく、さらに好ましくは98重量%以上であり、特に好ましくは100重量%である。
In the present invention, among the monomers constituting the vinyl resin (V), a hydroxyl group, an amino group, an imino group or a thiol covalently bonded to the bifunctional or higher functional vinyl monomer (M2) and the urethane resin (U). The total [(M2) + (M12 ')] of the monofunctional vinyl-based monomers (M12') having a group is 4% by weight or less based on the total weight of the monomers constituting the vinyl-based resin (V). Is more preferable, 3% by weight or less is more preferable, and 2% by weight or less is particularly preferable.
In order to reduce the above value, the weight ratio of the bifunctional or higher functional vinyl monomer (M2) in the vinyl monomer (M) constituting the vinyl resin (V) may be reduced. Further, the weight ratio of the monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group in the vinyl-based monomer (M) constituting the vinyl-based resin (V) is reduced, or a urethane resin After the production of (U), a monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group may be used at a stage where the isocyanate group is very small or scarcely left.
The weight ratio of the bifunctional or higher functional vinyl-based monomer (M2) and the monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group can be determined by thermal decomposition gas chromatography mass spectrometry. it can. The weight ratio of the monofunctional vinyl-based monomer (M12 ′) having a hydroxyl group, an amino group, an imino group or a thiol group “covalently bonded to the urethane resin (U)” is in accordance with JIS K1557-1. Hydroxyl value analyzed, total amine value analyzed according to JIS K1557-7, thiol group content and pyrolysis gas chromatograph mass spectrometry determined by DTNB method using "Redox Assay Thiol Quantitative Kit" manufactured by Metallogenics Co., Ltd. From the molecular weight of (M12) qualitatively determined by the method, the weight ratio of the monofunctional vinyl-based monomer having a hydroxyl group, an amino group, an imino group or a thiol group which is “not bonded to the urethane resin (U)” is obtained, It can be obtained by subtracting from the weight ratio.
Specifically as the pyrolysis gas chromatograph mass spectrometry, a composition containing a bifunctional or higher functional vinyl-based monomer (M2) and / or a monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group. Two or more known vinyl-based resins are analyzed by a pyrolysis gas chromatograph mass spectrometry, and a bifunctional or more-functional vinyl-based monomer (M2) and / or a monofunctional vinyl having a hydroxyl group, an amino group, an imino group or a thiol group. Using a calibration curve created from the integrated value of the peak of the system monomer (M12), a bifunctional or higher functional vinyl monomer (M2) and / or a hydroxyl group, an amino group in the pyrolysis gas chromatograph mass spectrometry of the resin whose composition is to be analyzed, Based on the integrated value of the peak of the monofunctional vinyl-based monomer (M12) having an imino group or a thiol group, a bifunctional or higher-functional vinyl-based monomer (M2) and / or a monofunctional vinyl monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group The weight ratio of the vinyl monomer (M12) can be calculated.
In the present invention, the weight ratio of the monofunctional vinyl monomer (M11) having no hydroxyl group, amino group, imino group or thiol group is based on the total weight of the monomers constituting the vinyl resin (V). It is preferably 96% by weight or more, more preferably 98% by weight or more, and particularly preferably 100% by weight.
 本発明における複合樹脂水性分散体中のポリウレタン樹脂(U)とビニル系樹脂(V)との重量比[(U):(V)]は、分散安定性及び乾燥皮膜の柔軟性、機械的強度、貯蔵安定性、硬度、可とう性、透明性及び光沢性の観点から、好ましくは30:70~70:30、さらに好ましくは40:60~60:40である。 The weight ratio [(U) :( V)] of the polyurethane resin (U) and the vinyl resin (V) in the composite resin aqueous dispersion according to the present invention is dispersion stability, flexibility of the dry film, and mechanical strength. From the viewpoint of storage stability, hardness, flexibility, transparency and glossiness, it is preferably 30:70 to 70:30, more preferably 40:60 to 60:40.
 本発明における複合樹脂水性分散体において、水性媒体としては、水及び水と有機溶剤との混合物が挙げられる。
 有機溶剤としては、ケトン系溶剤(例えばアセトン及びメチルエチルケトン)、エステル系溶剤(例えば酢酸エチル)、エーテル系溶剤(例えばテトラヒドロフラン)、アミド系溶剤(例えばN,N-ジメチルホルムアミド及びN-メチルピロリドン)、アルコール系溶剤(例えばイソプロピルアルコール)及び芳香族炭化水素系溶剤(例えばトルエン)等が挙げられる。有機溶剤は1種を単独で用いても2種以上を併用してもよい。
In the composite resin aqueous dispersion of the present invention, examples of the aqueous medium include water and a mixture of water and an organic solvent.
Examples of the organic solvent include ketone solvents (eg acetone and methyl ethyl ketone), ester solvents (eg ethyl acetate), ether solvents (eg tetrahydrofuran), amide solvents (eg N, N-dimethylformamide and N-methylpyrrolidone), Examples thereof include alcohol solvents (for example, isopropyl alcohol) and aromatic hydrocarbon solvents (for example, toluene). The organic solvent may be used alone or in combination of two or more.
 本発明における複合樹脂水性分散体は、架橋剤、粘度調整剤、消泡剤、防腐剤、耐候安定化剤及び凍結防止剤等を含有することができる。 The composite resin aqueous dispersion in the present invention may contain a crosslinking agent, a viscosity modifier, an antifoaming agent, an antiseptic agent, a weather resistance stabilizer, an antifreezing agent, and the like.
 架橋剤としては、ポリウレタン樹脂(U)及びビニル系樹脂(V)が有する反応性官能基と反応し得る官能基を分子内に2個以上含有する水溶性又は水分散性の化合物が挙げられる。具体的にはポリウレタン樹脂(U)がカルボキシル基を有する場合、メラミン化合物、オキサゾリン化合物、カルボジイミド化合物、エポキシ化合物及びアジリジン化合物等の化合物を架橋剤として用いることができる。
 また、ビニル系樹脂(V)が水酸基、アミノ基、イミノ基又はチオール基を有する場合、メラミン化合物、オキサゾリン化合物、アジリジン化合物、エポキシ化合物及びブロックイソシアネート化合物等を架橋剤として用いることができる。
 架橋剤は1種を単独で用いても2種以上を併用してもよい。これらの架橋剤の使用量はポリウレタン樹脂(U)の重量に基づいて1.0~20重量%、更に好ましくは1.5~10重量%である。
Examples of the cross-linking agent include water-soluble or water-dispersible compounds containing in the molecule two or more functional groups capable of reacting with the reactive functional groups of the polyurethane resin (U) and the vinyl resin (V). Specifically, when the polyurethane resin (U) has a carboxyl group, compounds such as a melamine compound, an oxazoline compound, a carbodiimide compound, an epoxy compound and an aziridine compound can be used as a crosslinking agent.
When the vinyl resin (V) has a hydroxyl group, an amino group, an imino group or a thiol group, a melamine compound, an oxazoline compound, an aziridine compound, an epoxy compound, a blocked isocyanate compound or the like can be used as a crosslinking agent.
The crosslinking agents may be used alone or in combination of two or more. The amount of these crosslinking agents used is 1.0 to 20% by weight, more preferably 1.5 to 10% by weight, based on the weight of the polyurethane resin (U).
 粘度調整剤としては増粘剤、例えば無機系粘度調整剤(ケイ酸ソーダ及びベントナイト等)、セルロース系粘度調整剤(Mnが20,000以上のメチルセルロース、カルボキシメチルセルロース及びヒドロキシメチルセルロース等)、タンパク質系粘度調整剤(カゼイン、カゼインソーダ及びカゼインアンモニウム等)、アクリル系(Mnが20,000以上のポリアクリル酸ナトリウム及びポリアクリル酸アンモニウム等)及びビニル系粘度調整剤(Mnが20,000以上のポリビニルアルコール等)が挙げられる。
 消泡剤としては、長鎖アルコール(オクチルアルコール等)、ソルビタン誘導体(ソルビタンモノオレート等)及びシリコーンオイル(ポリメチルシロキサン及びポリエーテル変性シリコーン等)等が挙げられる。
Examples of the viscosity modifier include thickeners such as inorganic viscosity modifiers (sodium silicate and bentonite), cellulose viscosity modifiers (methyl cellulose having Mn of 20,000 or more, carboxymethyl cellulose, hydroxymethyl cellulose, etc.), protein viscosity. Modifiers (casein, casein soda, ammonium caseinate, etc.), acrylics (sodium polyacrylate and ammonium polyacrylate having Mn of 20,000 or more) and vinyl viscosity modifiers (polyvinyl alcohol having Mn of 20,000 or more) Etc.) can be mentioned.
Examples of the defoaming agent include long-chain alcohols (octyl alcohol, etc.), sorbitan derivatives (sorbitan monooleate, etc.), silicone oils (polymethylsiloxane, polyether modified silicone, etc.), and the like.
 防腐剤としては、有機窒素硫黄化合物系防腐剤及び有機硫黄ハロゲン化物系防腐剤等が挙げられる。
 耐候安定化剤としては、酸化防止剤(ヒンダードフェノール系、硫黄系、リン系等)、紫外線吸収剤(ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系、ベンゾエート系等)、ヒンダードアミン系光安定剤等の耐候安定化剤を含有することができる。これらの耐候安定化剤の使用量はポリウレタン樹脂(U)の重量に基づいて好ましくは0.1~10重量%、更に好ましくは0.2~5重量%である。
 凍結防止剤としては、エチレングリコール及びプロピレングリコール等が挙げられる。
 粘度調整剤、消泡剤、防腐剤、耐候安定化剤及び凍結防止剤の使用量は、複合樹脂水性分散体の重量を基準としてそれぞれ好ましくは5重量%以下、更に好ましくは3重量%以下である。
Examples of the preservatives include organic nitrogen-sulfur compound-based preservatives and organic sulfur halide-based preservatives.
Examples of weather resistance stabilizers include antioxidants (hindered phenol-based, sulfur-based, phosphorus-based, etc.), ultraviolet absorbers (benzotriazole-based, triazine-based, benzophenone-based, benzoate-based, etc.), hindered amine-based light stabilizers, etc. A weathering stabilizer may be included. The amount of these weather stabilizers used is preferably 0.1 to 10% by weight, more preferably 0.2 to 5% by weight, based on the weight of the polyurethane resin (U).
Examples of the antifreezing agent include ethylene glycol and propylene glycol.
The amount of the viscosity modifier, defoaming agent, preservative, weathering stabilizer and antifreezing agent used is preferably 5% by weight or less, more preferably 3% by weight or less, based on the weight of the composite resin aqueous dispersion. is there.
 本発明における複合樹脂水性分散体中の粒子の体積平均粒子径(Dv)は、複合樹脂水性分散体のハンドリング性及び分散安定性の観点から、好ましくは0.01~1μm、更に好ましくは0.02~0.7μm、特に好ましくは0.03~0.4μmである。(Dv)は、光散乱粒度分布測定装置[ELS-8000{大塚電子(株)製}]を用いて測定される。 The volume average particle diameter (Dv) of the particles in the composite resin aqueous dispersion in the present invention is preferably 0.01 to 1 μm, more preferably 0. 1 μm from the viewpoint of handling property and dispersion stability of the composite resin aqueous dispersion. The thickness is from 02 to 0.7 μm, particularly preferably from 0.03 to 0.4 μm. (Dv) is measured using a light scattering particle size distribution analyzer [ELS-8000 {manufactured by Otsuka Electronics Co., Ltd.}].
 本発明における複合樹脂水性分散体の固形分濃度(揮発性成分以外の成分の含有量)は、水性分散体の取り扱い易さの観点から、好ましくは20~65重量%、更に好ましくは25~55重量%である。固形分濃度は、水性分散体約1gをペトリ皿上にうすく伸ばし、精秤した後、循環式定温乾燥機を用いて130℃で、45分間加熱した後の重量を精秤し、加熱前の重量に対する加熱後の残存重量の割合(百分率)を計算することにより得ることができる。 The solid content concentration (content of components other than the volatile component) of the composite resin aqueous dispersion in the present invention is preferably 20 to 65% by weight, more preferably 25 to 55% from the viewpoint of easy handling of the aqueous dispersion. % By weight. The solid content concentration was about 1 g of the aqueous dispersion, which was thinly spread on a Petri dish and precisely weighed, and then the weight after heating for 45 minutes at 130 ° C. using a circulation type constant temperature dryer was precisely weighed. It can be obtained by calculating the ratio (percentage) of the residual weight after heating to the weight.
 本発明における複合樹脂水性分散体の25℃における粘度は、好ましくは10~100,000mPa・s、更に好ましくは10~5,000mPa・sである。粘度はBL型粘度計を用いて測定することができる。
 本発明における複合樹脂水性分散体の25℃におけるpHは、好ましくは2~12、更に好ましくは4~10である。pHは、pH Meter M-12[堀場製作所(株)製]を用いて測定することができる。
The viscosity of the composite resin aqueous dispersion of the present invention at 25 ° C. is preferably 10 to 100,000 mPa · s, more preferably 10 to 5,000 mPa · s. The viscosity can be measured using a BL type viscometer.
The pH of the composite resin aqueous dispersion in the present invention at 25 ° C. is preferably 2 to 12, and more preferably 4 to 10. The pH can be measured using pH Meter M-12 [manufactured by Horiba, Ltd.].
 本発明の複合樹脂水性分散体を乾燥させた皮膜は、以下の(1)~(3)を全て満足するものである。
(1)N,N-ジメチルホルムアミドに対するゲル分率が35~100%である;
(2)破断伸度が200~1,000%である;
(3)25℃における貯蔵弾性率E’が100~3,000MPaである。
 上記(1)~(3)における皮膜は、複合樹脂水性分散体を105℃で3時間乾燥後、更に105℃、圧力1.3kPaで1時間減圧乾燥して得られたものであって、膜厚が200μmの皮膜を用いる。
A film obtained by drying the composite resin aqueous dispersion of the present invention satisfies all of the following (1) to (3).
(1) The gel fraction relative to N, N-dimethylformamide is 35 to 100%;
(2) The breaking elongation is 200 to 1,000%;
(3) The storage elastic modulus E ′ at 25 ° C. is 100 to 3,000 MPa.
The film in the above (1) to (3) is obtained by drying the composite resin aqueous dispersion at 105 ° C. for 3 hours, and further by drying under reduced pressure at 105 ° C. and a pressure of 1.3 kPa for 1 hour. A film having a thickness of 200 μm is used.
 上記(1)におけるN,N-ジメチルホルムアミド(DMF)に対するゲル分率は、例えば以下の方法によって求めることができる。
 複合樹脂水性分散体を、乾燥膜厚が200μmとなるようにポリプロピレン板に塗布し、105℃で乾燥して皮膜を得る。得られた塗膜からサンプルを切り出し、上記サンプルの重量を測定して、「DMF浸漬前の皮膜の重量」を決定する。上記サンプルの重量としては、0.035~0.045gが好ましい。その後、サンプルを20mlのDMFに入れ、23℃で24時間浸漬する。浸漬後、四フッ化エチレン樹脂(PTFE)フィルターを用いてサンプルを含むDMFを濾過する。更に上記フィルター及び残渣物を105℃で3時間乾燥した後冷却して、「DMF浸漬後のフィルターと残渣物の総重量」を測定する。「DMF浸漬前の皮膜の重量」、「フィルターの重量」、「DMF浸漬後のフィルターと残渣物の総重量」を下記式(1)に代入して、ゲル分率を求める。
ゲル分率(%)=(「DMF浸漬後のフィルターと残渣物の総重量」-「フィルターの重量」)/「DMF浸漬前の皮膜の重量」)×100  ・・・(1)
The gel fraction with respect to N, N-dimethylformamide (DMF) in the above (1) can be determined, for example, by the following method.
The aqueous composite resin dispersion is applied to a polypropylene plate so that the dry film thickness is 200 μm, and dried at 105 ° C. to obtain a film. A sample is cut out from the obtained coating film, and the weight of the sample is measured to determine the “weight of the film before DMF immersion”. The weight of the sample is preferably 0.035 to 0.045 g. Then, the sample is put in 20 ml of DMF and immersed at 23 ° C. for 24 hours. After the immersion, DMF containing the sample is filtered using a tetrafluoroethylene resin (PTFE) filter. Further, the filter and the residue are dried at 105 ° C. for 3 hours and then cooled, and the “total weight of the filter and the residue after DMF immersion” is measured. The "gel weight before immersion in DMF", "weight of filter" and "total weight of filter and residue after immersion in DMF" are substituted into the following formula (1) to determine the gel fraction.
Gel fraction (%) = (“total weight of filter and residue after immersion in DMF” − “weight of filter”) / “weight of coating before immersion in DMF” × 100 (1)
 上記(2)における破断伸度は、JIS K6251に準拠して、試験片の形状をダンベル状3号形とし、オートグラフ[島津製作所(株)製「AGS-500D」]を用いて、引張速度500mm/分で測定した値である。 The breaking elongation in (2) above is based on JIS K6251 and the test piece is dumbbell-shaped No. 3 and the autograph [Shimadzu Corporation “AGS-500D”] It is a value measured at 500 mm / min.
 上記(3)における貯蔵弾性率E’は、貯蔵弾性率測定装置[Rheogel E4000{UBM(株)製}]を使用して周波数11Hzで測定した値である。 The storage elastic modulus E'in (3) above is a value measured at a frequency of 11 Hz using a storage elastic modulus measuring device [Rheogel E4000 {manufactured by UBM Co., Ltd.}].
 DMFに対するゲル分率は、35~100%であり、好ましくは36~95%、さらに好ましくは37~80%、特に好ましくは38~70%である。
 DMFに対するゲル分率が35%未満では、塗料やインクに配合した際の貯蔵安定性、乾燥皮膜の柔軟性、機械的強度及び破断伸度の観点で劣る。
 DMFに対するゲル分率は、架橋密度及びポリウレタン樹脂(U)とビニル系樹脂(V)との重量比[(U):(V)]によって調整することができる。具体的には、3官能以上の化合物を多くして架橋密度を高くする又はポリウレタン樹脂(U)の重量割合を大きくするとゲル分率を高くすることができる。
The gel fraction relative to DMF is 35 to 100%, preferably 36 to 95%, more preferably 37 to 80%, particularly preferably 38 to 70%.
When the gel fraction with respect to DMF is less than 35%, the storage stability when blended in a paint or ink, the flexibility of the dry film, the mechanical strength and the elongation at break are poor.
The gel fraction with respect to DMF can be adjusted by the crosslink density and the weight ratio [(U) :( V)] of the polyurethane resin (U) and the vinyl resin (V). Specifically, the gel fraction can be increased by increasing the crosslinking density by increasing the trifunctional or higher functional compound or increasing the weight ratio of the polyurethane resin (U).
 破断伸度は、200~1,000%であり、好ましくは210~800%、さらに好ましくは220~650%である。
 破断伸度が200%未満では、可とう性が劣り、1,000%を超えると、硬度及び強度が劣る。
 破断伸度は、架橋密度及びポリウレタン樹脂(U)とビニル系樹脂(V)との重量比[(U):(V)]によって調整することができる。具体的には、用いる3官能以上の化合物を少なくして架橋密度を低くする又はポリウレタン樹脂(U)の重量割合を大きくすると破断伸度を高くすることができる。
The breaking elongation is 200 to 1,000%, preferably 210 to 800%, more preferably 220 to 650%.
If the breaking elongation is less than 200%, the flexibility is poor, and if it exceeds 1,000%, the hardness and strength are poor.
The elongation at break can be adjusted by the crosslink density and the weight ratio [(U) :( V)] of the polyurethane resin (U) and the vinyl resin (V). Specifically, the breaking elongation can be increased by decreasing the cross-linking density by decreasing the trifunctional or higher functional compound used or by increasing the weight ratio of the polyurethane resin (U).
 貯蔵弾性率E’は、100~3,000MPaであり、好ましくは150~2,000MPa、さらに好ましくは200~1,000MPaである。
 貯蔵弾性率E’が100MPa未満では、硬度及び強度が劣り、3,000MPaを超えると、可とう性が劣る。
 貯蔵弾性率E’は、ポリウレタン樹脂(U)のウレタン基、ウレア基含量及びビニル系樹脂(V)のガラス転移点によって調整することができる。具体的には、有機イソシアネート成分(B)を多く使用したり、ガラス転移点の高いビニル系モノマーを使用することにより貯蔵弾性率E’を高くすることができる。
The storage elastic modulus E ′ is 100 to 3,000 MPa, preferably 150 to 2,000 MPa, more preferably 200 to 1,000 MPa.
If the storage elastic modulus E'is less than 100 MPa, the hardness and strength are poor, and if it exceeds 3,000 MPa, the flexibility is poor.
The storage elastic modulus E ′ can be adjusted by the urethane group and urea group contents of the polyurethane resin (U) and the glass transition point of the vinyl resin (V). Specifically, the storage elastic modulus E ′ can be increased by using a large amount of the organic isocyanate component (B) or by using a vinyl monomer having a high glass transition point.
 本発明の複合樹脂水性分散体において、ポリウレタン樹脂(U)のウレタン基含量は、柔軟性、硬度、機械的強度及び可とう性の観点から、ポリウレタン樹脂(U)の重量に基づいて0.9~2.5mmol/gが好ましく、更に好ましくは1.2~2.2mmol/g、特に好ましくは1.5~2.0mmol/gである。
 なお、ウレタン基含量は窒素分析計によって定量されるN原子含量とH-NMRによって定量されるウレタン基とウレア基の比率及びアロハネート基とビウレット基含量から算出することができる。
In the composite resin aqueous dispersion of the present invention, the urethane group content of the polyurethane resin (U) is 0.9 based on the weight of the polyurethane resin (U) from the viewpoints of flexibility, hardness, mechanical strength and flexibility. It is preferably from 2.5 to 2.5 mmol / g, more preferably from 1.2 to 2.2 mmol / g, particularly preferably from 1.5 to 2.0 mmol / g.
The urethane group content can be calculated from the N atom content quantified by a nitrogen analyzer, the urethane group / urea group ratio quantified by 1 H-NMR, and the alohanate group / biuret group content.
 本発明の複合樹脂水性分散体において、ポリウレタン樹脂(U)のウレア基含量は、柔軟性、硬度、機械的強度及び可とう性の観点から、ポリウレタン樹脂(U)の重量に基づいて0.15~1.5mmol/gが好ましく、更に好ましくは0.18~1.3mmol/g、特に好ましくは0.2~1.1mmol/gである。
 なお、ウレア基含量は窒素分析計によって定量されるN原子含量とH-NMRによって定量されるウレタン基とウレア基の比率及びアロハネート基とビウレット基含量から算出することができる。
In the composite resin aqueous dispersion of the present invention, the urea group content of the polyurethane resin (U) is 0.15 based on the weight of the polyurethane resin (U) from the viewpoints of flexibility, hardness, mechanical strength and flexibility. It is preferably about 1.5 to 1.5 mmol / g, more preferably 0.18 to 1.3 mmol / g, and particularly preferably 0.2 to 1.1 mmol / g.
The urea group content can be calculated from the N atom content determined by a nitrogen analyzer, the urethane group / urea group ratio determined by 1 H-NMR, and the alohanate group / biuret group content.
 窒素分析計については、例えば窒素分析計[ANTEK7000(アンテック社製)]が使用できる。
H-NMR測定については、「NMRによるポリウレタン樹脂の構造研究:武田研究所報34(2)、224-323(1975)」に記載の方法で行う。すなわちH-NMRを測定して、脂肪族を使用した場合、化学シフト6ppm付近のウレア基由来の水素の積分量と化学シフト7ppm付近のウレタン基由来の水素の積分量の比率からウレア基とウレタン基の重量比を算出し、該重量比と上記のN原子含量及びアロハネート基及びビウレット基含量からウレタン基及びウレア基含量を算出する。芳香族イソシアネートを使用した場合、化学シフト8ppm付近のウレア基由来の水素の積分量と化学シフト9ppm付近のウレタン基由来の水素の積分量の比率からウレア基とウレタン基の重量比を算出し、該重量比と上記のN原子含量からウレア基含量を算出する。
As the nitrogen analyzer, for example, a nitrogen analyzer [ANTEK7000 (manufactured by Antec Co.)] can be used.
The 1 H-NMR measurement is performed by the method described in “Structural Study of Polyurethane Resin by NMR: Takeda Laboratory Report 34 (2), 224-323 (1975)”. That is, when 1 H-NMR was measured and an aliphatic group was used, it was determined that a urea group was obtained from the ratio of the integrated amount of hydrogen derived from a urea group having a chemical shift of about 6 ppm and the integrated amount of hydrogen derived from a urethane group having a chemical shift of about 7 ppm. The weight ratio of urethane groups is calculated, and the urethane group and urea group contents are calculated from the weight ratio and the N atom content and the alohanate group and biuret group contents. When an aromatic isocyanate is used, the weight ratio of the urea group and the urethane group is calculated from the ratio of the integrated amount of hydrogen derived from the urea group near the chemical shift of 8 ppm and the integrated amount of hydrogen derived from the urethane group near the chemical shift of 9 ppm, The urea group content is calculated from the weight ratio and the above N atom content.
 本発明の複合樹脂水性分散体において、ビニル系樹脂(V)のガラス転移点は柔軟性、硬度、機械的強度及び可とう性の観点から、-70~180℃が好ましく、更に好ましくは0~150℃、特に好ましくは30~120℃、最も好ましくは60~110℃である。
 本発明の複合樹脂水性分散体において、ビニル系樹脂(V)が2成分のモノマーから構成される場合のガラス転移点Tg(K)は下記式(2)のFoxの式を用いた理論計算によって算出することができる。
1/Tg=W/Tg+W/Tg   ・・・(2)
[式中、Tg及びTgはモノマー1及びモノマー2のホモポリマーのガラス転移点(K)、W及びWはモノマー1及びモノマー2の重量分率である]
In the aqueous composite resin dispersion of the present invention, the glass transition point of the vinyl resin (V) is preferably −70 to 180 ° C., more preferably 0 to 180 ° C. from the viewpoint of flexibility, hardness, mechanical strength and flexibility. The temperature is 150 ° C., particularly preferably 30 to 120 ° C., most preferably 60 to 110 ° C.
In the composite resin aqueous dispersion of the present invention, the glass transition point Tg (K) when the vinyl resin (V) is composed of two-component monomers is calculated by theoretical calculation using the Fox equation of the following equation (2). It can be calculated.
1 / Tg = W 1 / Tg 1 + W 2 / Tg 2 (2)
[Wherein, Tg 1 and Tg 2 are glass transition points (K) of homopolymers of Monomer 1 and Monomer 2 and W 1 and W 2 are weight fractions of Monomer 1 and Monomer 2]
 ビニル系樹脂(V)が3成分のモノマーから構成される場合のガラス転移点Tg(K)は下記式(3)のFoxの式を用いた理論計算によって算出することができる。
1/Tg=W/Tg+W/Tg+W/Tg3 ・・・(3)
[式中、Tg、Tg及びTgはモノマー1、モノマー2及びモノマー3のホモポリマーのガラス転移点(K)、W、W及びWはモノマー1、モノマー2及びモノマー3の重量分率である]
The glass transition point Tg (K) when the vinyl resin (V) is composed of three-component monomers can be calculated by theoretical calculation using the Fox equation of the following equation (3).
1 / Tg = W 1 / Tg 1 + W 2 / Tg 2 + W 3 / Tg 3 (3)
[Wherein, Tg 1 , Tg 2 and Tg 3 are glass transition points (K) of homopolymers of Monomer 1, Monomer 2 and Monomer 3, W 1 , W 2 and W 3 are Monomer 1, Monomer 2 and Monomer 3) Weight fraction]
 本発明の複合樹脂水性分散体は、後述する第2の発明である複合樹脂水性分散体の製造方法、及び下記(I)~(II)の製造方法により得ることができる。なお、(I)~(II)において、活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の内の少なくとも1種が3官能以上の化合物を含有する。
 本発明において、複合樹脂水性分散体の製造方法としては、柔軟性、機械的強度及び可とう性の観点から、第2の発明である複合樹脂水性分散体の製造方法が好ましい。
The composite resin aqueous dispersion of the present invention can be obtained by the method for producing the composite resin aqueous dispersion, which is the second invention described below, and the production methods (I) to (II) below. In addition, in (I) to (II), at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E) contains a trifunctional or higher functional compound.
In the present invention, as the method for producing the composite resin aqueous dispersion, the method for producing the composite resin aqueous dispersion which is the second invention is preferable from the viewpoints of flexibility, mechanical strength and flexibility.
(I)下記工程(1’)~(6’)を含む製造方法。
工程(1’):ビニル系モノマー(M’)の存在下で、活性水素成分(A)及び有機イソシアネート成分(B)を反応させて末端にイソシアネート基を有するウレタンプレポリマー(P’)を製造する工程であって、ビニル系モノマー(M’)が水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)と水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12)及び/又は2官能以上のビニル系モノマー(M2)とを含有し、(M’)の重量を基準として(M12)及び(M2)の合計重量割合が4重量%以下である工程;
工程(2’):工程(1’)と下記工程(3’)との間で実施される任意の工程であって、ビニル系モノマー(M’)を追加する工程;
工程(3’):工程(1’)で得られたウレタンプレポリマー(P’)の溶液又は工程(2’)を実施した場合には工程(2’)で得られたウレタンプレポリマー(P’)の溶液を水性媒体に分散させて水性分散体(α’)を得る工程;
工程(4’):水性分散体(α’)中のウレタンプレポリマー(P’)を鎖伸長剤(E)で伸長させる工程;
工程(5’):工程(4’)と下記工程(6’)との間で実施される任意の工程であって、単官能のビニル系モノマー(M11)、単官能のビニル系モノマー(M12)及び2官能以上のビニルモノマー(M2)からなる群より選ばれる少なくとも1種を追加する工程;
工程(6’):水性分散体(α’)中のビニル系モノマー(M11)、(M12)及び(M2)を重合させる工程。
 (I)の製造方法では、工程(1’)並びに工程(2’)を実施した場合には工程(1’)及び工程(2’)において、(M’)の重量を基準として(M11)を96重量%以上100重量%未満含有することにより、(V)の架橋密度を適切な範囲に設定することができ、乾燥皮膜の柔軟性、機械的強度及び可とう性に優れた複合樹脂水性分散体が得られる。
(I) A production method including the following steps (1 ′) to (6 ′).
Step (1 '): In the presence of the vinyl-based monomer (M'), the active hydrogen component (A) and the organic isocyanate component (B) are reacted to produce a urethane prepolymer (P ') having an isocyanate group at the terminal. In the step of, the vinyl-based monomer (M ′) has a monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group and hydroxyl group, amino group, imino group or thiol group. A monofunctional vinyl monomer (M12) and / or a bifunctional or higher functional vinyl monomer (M2), and the total weight ratio of (M12) and (M2) is 4 based on the weight of (M ′). A step of not more than wt%;
Step (2 ′): an optional step performed between step (1 ′) and the following step (3 ′), in which a vinyl-based monomer (M ′) is added;
Step (3 ′): The solution of the urethane prepolymer (P ′) obtained in the step (1 ′) or the urethane prepolymer (P ′ obtained in the step (2 ′) when the step (2 ′) is carried out Dispersing the solution of ') in an aqueous medium to obtain an aqueous dispersion (α');
Step (4 ′): Step of extending the urethane prepolymer (P ′) in the aqueous dispersion (α ′) with the chain extender (E);
Step (5 ′): an optional step performed between the step (4 ′) and the following step (6 ′), which is a monofunctional vinyl-based monomer (M11) or a monofunctional vinyl-based monomer (M12). ) And at least one selected from the group consisting of bifunctional or higher functional vinyl monomers (M2);
Step (6 ′): a step of polymerizing the vinyl monomers (M11), (M12) and (M2) in the aqueous dispersion (α ′).
In the production method of (I), when the step (1 ′) and the step (2 ′) are carried out, in the step (1 ′) and the step (2 ′), based on the weight of (M ′) (M11) By containing 96% by weight or more and less than 100% by weight, the crosslink density of (V) can be set in an appropriate range, and the dryness of the composite resin is excellent in flexibility, mechanical strength and flexibility. A dispersion is obtained.
 (I)の製造方法において、ビニル系モノマー(M’)以外の条件として好ましいものは、下記の第2の発明{(I)における工程(1’)~(6’)に対応する第2の発明の工程(1)~(6)}と同様である。 In the production method of (I), the preferable conditions other than the vinyl-based monomer (M ′) are the second invention corresponding to the steps (1 ′) to (6 ′) in the following second invention {(I). This is the same as the steps (1) to (6) of the invention.
(II)下記工程(1’’)~(4’’)を含む製造方法。
工程(1’’):ビニル系モノマーの不存在下で、活性水素成分(A)及び有機イソシアネート成分(B)を反応させて末端にイソシアネート基を有するウレタンプレポリマー(P’’)を製造する工程;
工程(2’’):工程(1’’)で得られたウレタンプレポリマー(P’’)の溶液を水性媒体に分散させて水性分散体(αx)を得た後にウレタンプレポリマー(P’’)を鎖伸長剤(E)で伸長させて水性分散体(α’’)を得る工程、又は工程(1’’)で得られたウレタンプレポリマー(P’’)を鎖伸長剤(E)で伸長させた後に水性媒体に分散させて水性分散体(α’’)を得る工程;
工程(3’’):水性分散体(α’’)中にビニル系モノマー(M’’)を共存させる工程であって、ビニル系モノマー(M’’)が水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)と、必要により水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12)及び/又は2官能以上のビニル系モノマー(M2)とを含有し、(M’)の重量を基準として(M2)の重量割合が4重量%以下である工程;
工程(4’’):水性分散体(α’’)中のビニル系モノマー(M’’)を重合させる工程。
(II) A production method including the following steps (1 ″) to (4 ″).
Step (1 ″): In the absence of a vinyl monomer, the active hydrogen component (A) and the organic isocyanate component (B) are reacted to produce a urethane prepolymer (P ″) having an isocyanate group at the end. Process;
Step (2 ″): The solution of the urethane prepolymer (P ″) obtained in the step (1 ″) is dispersed in an aqueous medium to obtain an aqueous dispersion (αx), and then the urethane prepolymer (P ′). ') Is extended with a chain extender (E) to obtain an aqueous dispersion (α''), or the urethane prepolymer (P'') obtained in the step (1'') is added to the chain extender (E''). ) And then dispersing in an aqueous medium to obtain an aqueous dispersion (α ″);
Step (3 ″): a step of allowing the vinyl-based monomer (M ″) to coexist in the aqueous dispersion (α ″), wherein the vinyl-based monomer (M ″) is a hydroxyl group, an amino group, an imino group or Monofunctional vinyl-based monomer (M11) having no thiol group, and monofunctional vinyl-based monomer (M12) optionally having a hydroxyl group, amino group, imino group or thiol group, and / or bifunctional or more vinyl-based monomer A step of containing the monomer (M2), and the weight ratio of (M2) is 4% by weight or less based on the weight of (M ′);
Step (4 ″): A step of polymerizing the vinyl-based monomer (M ″) in the aqueous dispersion (α ″).
 (II)の製造方法における各工程と、第2の発明における各工程との対応関係は下記である。
工程(1’’):工程(1)
工程(2’’):工程(3)及び工程(4)
工程(3’’):工程(5)
工程(4’’):工程(6)
 また、(II)の製造方法において、工程(1’’)におけるビニル系モノマー不存在下でウレタンプレポリマーを製造する以外の条件として好ましい条件は、第2の発明における工程(1)と同様である。また、工程(2’’)において、好ましい条件は第2の発明における工程(3)及び(4)と同様である。工程(3’’)において、ビニル系モノマー(M’’)を用いる以外の好ましい条件は、第2の発明における工程(5)と同様である。工程(4’’)において、好ましい条件は、第2の発明における工程(6)と同様である。
The correspondence between each step in the manufacturing method (II) and each step in the second invention is as follows.
Process (1 ''): Process (1)
Step (2 ''): Step (3) and Step (4)
Process (3 ''): Process (5)
Process (4 ''): Process (6)
Further, in the production method of (II), preferable conditions as the conditions other than producing the urethane prepolymer in the absence of the vinyl-based monomer in the step (1 ″) are the same as those in the step (1) in the second invention. is there. In step (2 ″), preferable conditions are the same as those in steps (3) and (4) in the second invention. In step (3 ″), preferable conditions are the same as those in step (5) in the second invention except that the vinyl-based monomer (M ″) is used. In step (4 ″), preferable conditions are the same as those in step (6) in the second invention.
 第2の発明である複合樹脂水性分散体の製造方法について説明する。
 第2の発明である複合樹脂水性分散体の製造方法は、ポリウレタン樹脂(U)とビニル系樹脂(V)を同一粒子内に含む複合樹脂粒子を含有する複合樹脂水性分散体の製造方法であって、下記工程(1)~(6)を含み、活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の内の少なくとも1種が3官能以上の化合物を含有する複合樹脂水性分散体の製造方法である。
工程(1):水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)の存在下で、活性水素成分(A)及び有機イソシアネート成分(B)を反応させて末端にイソシアネート基を有するウレタンプレポリマー(P)を製造する工程;
工程(2):工程(1)と下記工程(3)との間で実施される任意の工程であって、水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)を追加する工程;
工程(3):工程(1)で得られたウレタンプレポリマー(P)の溶液又は工程(2)を実施した場合には工程(2)で得られたウレタンプレポリマー(P)の溶液を水性媒体に分散させて水性分散体(α)を得る工程;
工程(4):水性分散体(α)中のウレタンプレポリマー(P)を鎖伸長剤(E)で伸長させる工程;
工程(5):工程(4)と下記工程(6)との間で実施される任意の工程であって、単官能のビニル系モノマー(M1)を追加する工程;
工程(6):水性分散体(α)中のビニル系モノマー(M11)又は工程(5)を実施した場合にはビニル系モノマー(M11)及び単官能のビニル系モノマー(M1)を重合させる工程。
A method for producing the composite resin aqueous dispersion which is the second invention will be described.
A method for producing a composite resin aqueous dispersion which is a second invention is a method for producing a composite resin aqueous dispersion containing composite resin particles containing a polyurethane resin (U) and a vinyl resin (V) in the same particle. And the following steps (1) to (6), wherein at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E) contains a trifunctional or higher functional compound. It is a method for producing an aqueous resin dispersion.
Step (1): reacting the active hydrogen component (A) and the organic isocyanate component (B) in the presence of a monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group. To produce a urethane prepolymer (P) having an isocyanate group at the end;
Step (2): an optional step carried out between the step (1) and the following step (3), which is a monofunctional vinyl-based monomer having no hydroxyl group, amino group, imino group or thiol group. A step of adding (M11);
Step (3): The solution of the urethane prepolymer (P) obtained in the step (1) or the solution of the urethane prepolymer (P) obtained in the step (2) is aqueous when the step (2) is carried out. Dispersing in a medium to obtain an aqueous dispersion (α);
Step (4): Step of extending the urethane prepolymer (P) in the aqueous dispersion (α) with a chain extender (E);
Step (5): an optional step performed between the step (4) and the following step (6), in which a monofunctional vinyl-based monomer (M1) is added;
Step (6): a step of polymerizing the vinyl-based monomer (M11) in the aqueous dispersion (α) or the vinyl-based monomer (M11) and the monofunctional vinyl-based monomer (M1) when the step (5) is performed. ..
 活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の内の少なくとも1種が3官能以上の化合物を含有することにより、ポリウレタン樹脂(U)に架橋構造が導入され、ポリウレタン樹脂(U)形成の際に系内に存在していたビニル系モノマー(M11)又は(M11)及び(M1)を重合することにより、ポリウレタン樹脂(U)の網目間にビニル系樹脂(V)の分子鎖が貫通する構造の複合樹脂を形成させることができ、乾燥皮膜の柔軟性、機械的強度及び可とう性に優れた複合樹脂水性分散体が得られる。
 また、単官能のビニル系モノマーを使用して線状のビニル系樹脂とすること及び工程(1)及び(2)におけるビニル系モノマーとして水酸基、アミノ基、イミノ基又はチオール基のいずれも有しないものを用いてポリウレタン樹脂(U)とビニル系樹脂(V)が共有結合を形成しないようにすることにより、乾燥皮膜の柔軟性、機械的強度及び可とう性を更に向上させることができる。
When at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E) contains a trifunctional or higher functional compound, a crosslinked structure is introduced into the polyurethane resin (U), By polymerizing the vinyl monomer (M11) or (M11) and (M1) existing in the system at the time of forming the polyurethane resin (U), the vinyl resin (V It is possible to form a composite resin having a structure in which the molecular chain of (1) penetrates, and an aqueous composite resin dispersion having excellent flexibility, mechanical strength and flexibility of the dry film can be obtained.
Also, a monofunctional vinyl-based monomer is used to form a linear vinyl-based resin, and the vinyl-based monomer in steps (1) and (2) does not have any hydroxyl group, amino group, imino group or thiol group. By using a material such that the polyurethane resin (U) and the vinyl resin (V) do not form a covalent bond, the flexibility, mechanical strength and flexibility of the dry film can be further improved.
 工程(1)で用いる活性水素成分(A)は、第1の発明における活性水素成分(A)と同様であり、好ましいものも同様である。 The active hydrogen component (A) used in the step (1) is the same as the active hydrogen component (A) in the first invention, and the preferred ones are also the same.
 本発明における有機イソシアネート成分(B)としては、第1の発明における有機イソシアネート成分(B)と同様であり、好ましいものも同様である。 The organic isocyanate component (B) in the present invention is the same as the organic isocyanate component (B) in the first invention, and the preferred ones are also the same.
 工程(1)で用いる水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)としては、第1の発明におけるビニル系モノマー(m1)~(m7)と同様である。 The monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group used in the step (1) is the same as the vinyl-based monomers (m1) to (m7) in the first invention. Is.
 これらの内、ウレタンプレポリマー(P)の溶解性の観点から好ましいのは(m1)、(m4)、(m5)及び(m6)であり、更に好ましいのはメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート及び(メタ)アクリル酸である。工程(1)で用いるビニル系モノマー(M11)は、1種を単独で用いても2種以上を併用してもよい。 Among these, (m1), (m4), (m5) and (m6) are preferable from the viewpoint of solubility of the urethane prepolymer (P), and more preferable are methyl (meth) acrylate and ethyl (meth). ) Acrylate, propyl (meth) acrylate, butyl (meth) acrylate and (meth) acrylic acid. The vinyl-based monomer (M11) used in the step (1) may be used alone or in combination of two or more kinds.
 工程(1)におけるウレタンプレポリマー(P)は、水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)の存在下で、活性水素成分(A)と有機イソシアネート成分(B)とを、活性水素含有基(カルボキシル基、スルホ基及びスルファミン酸基を除く)に対するイソシアネート基の当量比率(イソシアネート基/活性水素含有基)が好ましくは1.01~3、更に好ましくは1.1~2となる割合でウレタン化反応させることにより形成される。 The urethane prepolymer (P) in step (1) contains an active hydrogen component (A) and an organic compound in the presence of a monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group. The isocyanate component (B) preferably has an equivalent ratio (isocyanate group / active hydrogen-containing group) of isocyanate groups to active hydrogen-containing groups (excluding carboxyl group, sulfo group and sulfamic acid group) of 1.01 to 3, It is preferably formed by a urethanization reaction at a ratio of 1.1 to 2.
 工程(1)開始時の活性水素成分(A)及び有機イソシアネート成分(B)の合計重量と水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)の重量比[{(A)+(B)}:(M11)]は、好ましくは40:60~90:10、更に好ましくは50:50~80:20、特に好ましくは55:45~75:25である。 Total weight of active hydrogen component (A) and organic isocyanate component (B) at the start of step (1) and weight of monofunctional vinyl monomer (M11) having no hydroxyl group, amino group, imino group or thiol group. The ratio [{(A) + (B)} :( M11)] is preferably 40:60 to 90:10, more preferably 50:50 to 80:20, and particularly preferably 55:45 to 75:25. is there.
 ウレタンプレポリマー化反応は、好ましくは20~150℃、更に好ましくは60~110℃の反応温度で行われ、反応時間は好ましくは2~30時間である。ウレタンプレポリマーは好ましくは0.1~5重量%のイソシアネート基を有する。 The urethane prepolymerization reaction is preferably carried out at a reaction temperature of 20 to 150 ° C., more preferably 60 to 110 ° C., and a reaction time is preferably 2 to 30 hours. The urethane prepolymer preferably has 0.1 to 5% by weight of isocyanate groups.
 ウレタンプレポリマー化反応に際し、反応促進のため必要により触媒を用いることができる。触媒の具体例としては、例えば有機金属化合物(ジブチルスズジラウレート、ジオクチルスズジラウレート、ビスマスカルボキシレート、ビスマスアルコキシド及びジカルボニル基を有する化合物とビスマスとのキレート化合物等)、無機金属化合物(酸化ビスマス、水酸化ビスマス、ハロゲン化ビスマス等);アミン(トリエチルアミン、トリエチレンジアミン及び1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等)及びこれらの2種以上の併用が挙げられる。 A catalyst can be used as needed to accelerate the reaction during the urethane prepolymerization reaction. Specific examples of the catalyst include, for example, organometallic compounds (dibutyltin dilaurate, dioctyltin dilaurate, bismuth carboxylate, bismuth alkoxide and chelate compounds of compounds having a dicarbonyl group with bismuth), inorganic metal compounds (bismuth oxide, hydroxide). Bismuth, bismuth halide, etc.); amines (triethylamine, triethylenediamine, 1,8-diazabicyclo [5.4.0] -7-undecene, etc.) and a combination of two or more thereof.
 また、ウレタンプレポリマー化反応に際し、反応系の粘度の異常上昇を抑制するために、ラジカル捕捉剤を用いることが好ましい。 Also, it is preferable to use a radical scavenger in order to suppress an abnormal increase in the viscosity of the reaction system during the urethane prepolymerization reaction.
 ラジカル捕捉剤としては、2,6-ジ-t-ブチル-4-メチルフェノール、6-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,6,10-テトラ-ブチルジベンズ[d,f][1,3,2]ジオキサフォスフェピン、3-4’-ヒドロキシ-3’-5’-ジ-t-ブチルフェニル)プロピオン酸-n-オクタデシル、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート、3,9-ビス[2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5・5]ウンデカン、2,2’-メチレンビス(6-t-ブチル-4-メチルフェノール)、4,4’ブチリデンビス(6-t-ブチル-3-メチルフェノール)、3,6-ジオキサオクタメチレン=ビス[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオナート]、4,4’-チオビス(2-t-ブチル-5-メチルフェノール)、4,4’-チオビス(6-t-ブチル-3-メチルフェノール)、チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオナート、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)イソシアヌル酸、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]及び1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)等のヒンダードフェノール系化合物等が挙げられる。ラジカル捕捉剤は、1種を単独で用いても2種以上を併用してもよい。 Radical scavengers include 2,6-di-t-butyl-4-methylphenol, 6- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,6 , 10-Tetra-butyldibenz [d, f] [1,3,2] dioxaphosphepine, 3-4′-hydroxy-3′-5′-di-t-butylphenyl) propionic acid-n-octadecyl , Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate, 3,9-bis [2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl ) Propionyloxy] -1,1dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, 2,2′-methylenebis (6-t-butyl-4-methylphenol), 4 , 4'butylidene bis (6-t-butyl-3-methylphenol), 3,6-dioxaoctamethylene = bis [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate], 4 , 4'-thiobis (2-t-butyl-5-methylphenol), 4,4'-thiobis (6-t-butyl-3-methylphenol), thiodiethylenebis [3- (3,5-di- t-Butyl-4-hydroxyphenyl) propionate, 1,3,5-tris (3 ′, 5′-di-t-butyl-4′-hydroxybenzyl) isocyanuric acid, 1,1,3-tris (2- Methyl-4-hydroxy-5-t-butylphenyl) butane, pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] and 1,3,5-trimethyl- Examples thereof include hindered phenol compounds such as 2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl). The radical scavengers may be used alone or in combination of two or more.
 ラジカル捕捉剤の使用量は、異常な粘度上昇抑止の観点からビニル系モノマー(M1)の重量を基準として、好ましくは0.01~2重量%、更に好ましくは0.02~1重量%である。 The amount of the radical scavenger used is preferably 0.01 to 2% by weight, more preferably 0.02 to 1% by weight, based on the weight of the vinyl-based monomer (M1) from the viewpoint of suppressing an abnormal increase in viscosity. ..
 本発明における工程(2)は、工程(1)と工程(3)の間で実施される任意の工程であって、水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)を追加する工程である。 The step (2) in the present invention is an optional step performed between the step (1) and the step (3), and is a monofunctional vinyl having no hydroxyl group, amino group, imino group or thiol group. This is a step of adding a system monomer (M11).
 工程(1)においては暴走反応の危険性の観点から、ウレタンプレポリマー(P)に対して多くのビニル系モノマー(M11)を使用することができないので、本発明における複合樹脂水性分散体中のポリウレタン樹脂(U)とビニル系樹脂(V)との重量比を所望の値にするためにビニル系モノマー(M11)を追加する必要がある場合がある。工程(2)はこのために実施する工程である。 In the step (1), from the viewpoint of the risk of a runaway reaction, many vinyl-based monomers (M11) cannot be used for the urethane prepolymer (P). Therefore, in the composite resin aqueous dispersion of the present invention, In some cases, it is necessary to add a vinyl-based monomer (M11) in order to bring the weight ratio of the polyurethane resin (U) and the vinyl-based resin (V) to a desired value. Step (2) is a step performed for this purpose.
 追加するビニル系モノマー(M11)は、工程(1)で使用したビニル系モノマー(M11)と同一でも異なっていてもよい。また、工程(2)で用いるビニル系モノマー(M11)は、1種を単独で用いても2種以上を併用してもよい。 The added vinyl-based monomer (M11) may be the same as or different from the vinyl-based monomer (M11) used in the step (1). The vinyl-based monomer (M11) used in the step (2) may be used alone or in combination of two or more.
 工程(2)におけるビニル系モノマー(M11)として好ましいものは、工程(1)において好ましいものとして挙げたものと同様のものが挙げられる。
 また、工程(1)においては、ビニル系モノマー(M11)の内、ビニル系炭化水素(m2)はウレタンプレポリマー(P)の溶解性があまり良くないことから、好ましいモノマーに挙げられていないが、工程(2)における追加用のビニル系モノマー(M11)として、特に(m2)の内の炭素数8~20の芳香族ビニル系炭化水素(特にスチレン)を乾燥皮膜の機械的強度の観点から好ましく用いることができる。
Preferable examples of the vinyl-based monomer (M11) in the step (2) include the same ones as the preferable ones in the step (1).
Further, in the step (1), among the vinyl-based monomers (M11), the vinyl-based hydrocarbon (m2) is not listed as a preferred monomer because the solubility of the urethane prepolymer (P) is not so good. As the additional vinyl-based monomer (M11) in the step (2), in particular, an aromatic vinyl-based hydrocarbon having 8 to 20 carbon atoms (especially styrene) in (m2) is used from the viewpoint of mechanical strength of the dry film. It can be preferably used.
 本発明における工程(3)は、工程(1)で得られたウレタンプレポリマー(P)の溶液又は工程(2)を実施した場合には工程(2)で得られたウレタンプレポリマー(P)の溶液を水性媒体に分散させて水性分散体(α)を得る工程である。 The step (3) in the present invention is a solution of the urethane prepolymer (P) obtained in the step (1) or the urethane prepolymer (P) obtained in the step (2) when the step (2) is carried out. In this step, the solution of (1) is dispersed in an aqueous medium to obtain an aqueous dispersion (α).
 工程(3)で用いる水性媒体としては、水及び水と有機溶剤との混合物が挙げられる。
 有機溶剤としては、ケトン系溶剤(例えばアセトン及びメチルエチルケトン)、エステル系溶剤(例えば酢酸エチル)、エーテル系溶剤(例えばテトラヒドロフラン)、アミド系溶剤(例えばN,N-ジメチルホルムアミド及びN-メチルピロリドン)、アルコール系溶剤(例えばイソプロピルアルコール)及び芳香族炭化水素系溶剤(例えばトルエン)等が挙げられる。有機溶剤は1種を単独で用いても2種以上を併用してもよい。
Examples of the aqueous medium used in the step (3) include water and a mixture of water and an organic solvent.
Examples of the organic solvent include ketone solvents (eg acetone and methyl ethyl ketone), ester solvents (eg ethyl acetate), ether solvents (eg tetrahydrofuran), amide solvents (eg N, N-dimethylformamide and N-methylpyrrolidone), Examples thereof include alcohol solvents (for example, isopropyl alcohol) and aromatic hydrocarbon solvents (for example, toluene). The organic solvent may be used alone or in combination of two or more.
 反応液を水性媒体に分散させる際、分散安定性の観点から界面活性剤(C)を使用することが好ましい。また、分散安定性の観点からポリウレタン樹脂(U)の構成単量体としてイオン性基と活性水素原子を有する化合物(a3)を用いることが好ましい。 When dispersing the reaction liquid in an aqueous medium, it is preferable to use a surfactant (C) from the viewpoint of dispersion stability. From the viewpoint of dispersion stability, it is preferable to use the compound (a3) having an ionic group and an active hydrogen atom as a constituent monomer of the polyurethane resin (U).
 界面活性剤(C)としては、ラジカル反応性基を有する反応性界面活性剤(C1)及び非反応性界面活性剤(C2)が挙げられ、1種を単独で使用してもよいし、反応性界面活性剤(C1)と非反応性界面活性剤(C2)の併用を含めて2種以上を併用してもよい。これらの内、乾燥皮膜の耐水性の観点から反応性界面活性剤(C1)が好ましい。 Examples of the surfactant (C) include a reactive surfactant (C1) having a radical reactive group and a non-reactive surfactant (C2), and one kind may be used alone, or a reaction may be performed. Two or more kinds may be used in combination, including the combination use of the surface active agent (C1) and the non-reactive surface active agent (C2). Among these, the reactive surfactant (C1) is preferable from the viewpoint of water resistance of the dry film.
 反応性界面活性剤(C1)としては、ラジカル反応性を有するものであれば特に制限されるものではないが、具体的にはアデカリアソープ[登録商標、(株)ADEKA製]SE-10N、SR-10、SR-20、SR-30、ER-20、ER-30、アクアロン[登録商標、第一工業製薬(株)製]HS-10、KH-05、KH-10、KH-1025、エレミノール[登録商標、三洋化成工業(株)製]JS-20、ラテムル[登録商標、花王(株)製]PD-104、PD-420、PD-430、イオネット[登録商標、三洋化成工業(株)製]MO-200等が挙げられる。 The reactive surfactant (C1) is not particularly limited as long as it has radical reactivity, but specifically, Adecaria Soap [registered trademark, manufactured by ADEKA] SE-10N, SR-10, SR-20, SR-30, ER-20, ER-30, Aqualon [registered trademark, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.] HS-10, KH-05, KH-10, KH-1025, Eleminol [registered trademark, Sanyo Chemical Industry Co., Ltd.] JS-20, Latemur [registered trademark, Kao Corporation] PD-104, PD-420, PD-430, Ionette [registered trademark, Sanyo Chemical Industry Co., Ltd. )) MO-200 and the like.
 非反応性活性剤(C2)としては、ノニオン性界面活性剤(C21)、アニオン性界面活性剤(C22)、カチオン性界面活性剤(C23)、両性界面活性剤(C24)及びその他の乳化分散剤(C25)が挙げられる。 As the non-reactive surfactant (C2), nonionic surfactant (C21), anionic surfactant (C22), cationic surfactant (C23), amphoteric surfactant (C24) and other emulsion dispersions. An agent (C25) can be mentioned.
 ノニオン性界面活性剤(C21)としては、例えばAO付加型ノニオン性界面活性剤及び多価アルコール型ノニオン性界面活性剤が挙げられる。AO付加型としては、炭素数10~20の脂肪族アルコールのエチレンオキサイド(以下、EOと略記)付加物、フェノールのEO付加物、ノニルフェノールのEO付加物、炭素数8~22のアルキルアミンのEO付加物及びポリ(オキシプロピレン)グリコールのEO付加物等が挙げられ、多価アルコール型としては、多価(3~8価又はそれ以上)アルコール(炭素数2~30)の脂肪酸(炭素数8~24)エステル(例えばグリセリンモノステアレート、グリセリンモノオレエート、ソルビタンモノラウレート及びソルビタンモノオレエート等)及びアルキル(炭素数4~24)ポリ(重合度1~10)グリコシド等が挙げられる。 Examples of the nonionic surfactant (C21) include AO addition type nonionic surfactants and polyhydric alcohol type nonionic surfactants. Examples of the AO addition type include ethylene oxide (hereinafter abbreviated as EO) adducts of aliphatic alcohols having 10 to 20 carbon atoms, EO adducts of phenol, EO adducts of nonylphenol, and EO of alkylamines having 8 to 22 carbon atoms. Examples thereof include adducts and EO adducts of poly (oxypropylene) glycol. As the polyhydric alcohol type, polyhydric (3 to 8 or higher) alcohol (C2 to C30) fatty acid (C8) To 24) esters (for example, glycerin monostearate, glycerin monooleate, sorbitan monolaurate and sorbitan monooleate) and alkyl (C4-24) poly (polymerization degree 1-10) glycosides.
 アニオン性界面活性剤(C22)としては、例えば炭素数8~24の炭化水素基を有するエーテルカルボン酸又はその塩[ラウリルエーテル酢酸ナトリウム及び(ポリ)オキシエチレン(付加モル数1~100)ラウリルエーテル酢酸ナトリウム等];炭素数8~24の炭化水素基を有する硫酸エステル又はエーテル硫酸エステル及びそれらの塩[ラウリル硫酸ナトリウム、(ポリ)オキシエチレン(付加モル数1~100)ラウリル硫酸ナトリウム、(ポリ)オキシエチレン(付加モル数1~100)ラウリル硫酸トリエタノールアミン及び(ポリ)オキシエチレン(付加モル数1~100)ヤシ油脂肪酸モノエタノールアミド硫酸ナトリウム等];炭素数8~24の炭化水素基を有するスルホン酸塩[ドデシルベンゼンスルホン酸ナトリウム等];炭素数8~24の炭化水素基を1個又は2個有するスルホコハク酸塩;炭素数8~24の炭化水素基を有するリン酸エステル又はエーテルリン酸エステル及びそれらの塩[ラウリルリン酸ナトリウム及び(ポリ)オキシエチレン(付加モル数1~100)ラウリルエーテルリン酸ナトリウム等];炭素数8~24の炭化水素基を有する脂肪酸塩[ラウリン酸ナトリウム及びラウリン酸トリエタノールアミン等];炭素数8~24の炭化水素基を有するアシル化アミノ酸塩[ヤシ油脂肪酸メチルタウリンナトリウム、ヤシ油脂肪酸サルコシンナトリウム、ヤシ油脂肪酸サルコシントリエタノールアミン、N-ヤシ油脂肪酸アシル-L-グルタミン酸トリエタノールアミン、N-ヤシ油脂肪酸アシル-L-グルタミン酸ナトリウム及びラウロイルメチル-β-アラニンナトリウム等]が挙げられる。 Examples of the anionic surfactant (C22) include ethercarboxylic acid having a hydrocarbon group having 8 to 24 carbon atoms or a salt thereof [sodium lauryl ether acetate and (poly) oxyethylene (additional mole number: 1 to 100) lauryl ether. Sodium acetate and the like]; sulfate ester or ether sulfate having a hydrocarbon group having 8 to 24 carbon atoms and salts thereof [sodium lauryl sulfate, (poly) oxyethylene (additional mole number 1 to 100) sodium lauryl sulfate, (poly ) Oxyethylene (additional mole number 1 to 100) lauryl sulfate triethanolamine and (poly) oxyethylene (additional mole number 1 to 100) coconut oil fatty acid monoethanolamide sodium sulfate, etc.]; hydrocarbon group having 8 to 24 carbon atoms [Sodium dodecylbenzene sulfonate, etc.] having; sulfosuccinate having one or two hydrocarbon groups having 8 to 24 carbon atoms; phosphoric acid ester or ether having hydrocarbon group having 8 to 24 carbon atoms Phosphoric acid esters and salts thereof [sodium lauryl phosphate and sodium (poly) oxyethylene (additional mole number 1 to 100) sodium lauryl ether phosphate, etc.]; fatty acid salt having a hydrocarbon group having 8 to 24 carbon atoms [lauric acid Sodium and lauric acid triethanolamine, etc.]; acylated amino acid salt having a hydrocarbon group having 8 to 24 carbon atoms [coconut oil fatty acid methyl taurine sodium, coconut oil fatty acid sarcosine sodium, coconut oil fatty acid sarcosine triethanolamine, N-coconut Oil fatty acid acyl-L-glutamic acid triethanolamine, N-coconut oil fatty acid acyl-L-glutamate sodium, lauroylmethyl-β-alanine sodium, and the like].
 カチオン性界面活性剤(C23)としては、例えば、第4級アンモニウム塩型[塩化ステアリルトリメチルアンモニウム、塩化ベヘニルトリメチルアンモニウム、塩化ジステアリルジメチルアンモニウム及びエチル硫酸ラノリン脂肪酸アミノプロピルエチルジメチルアンモニウム等]並びにアミン塩型[ステアリン酸ジエチルアミノエチルアミド乳酸塩、ジラウリルアミン塩酸塩及びオレイルアミン乳酸塩等]が挙げられる。 Examples of the cationic surfactant (C23) include quaternary ammonium salt type [stearyltrimethylammonium chloride, behenyltrimethylammonium chloride, distearyldimethylammonium chloride and lanolin fatty acid aminopropylethyldimethylammonium ethylsulfate] and amine salts. Type [stearic acid diethylaminoethylamide lactate, dilaurylamine hydrochloride and oleylamine lactate, etc.].
 両性界面活性剤(C24)としては、例えば、ベタイン型両性界面活性剤[ヤシ油脂肪酸アミドプロピルジメチルアミノ酢酸ベタイン、ラウリルジメチルアミノ酢酸ベタイン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、ラウリルヒドロキシスルホベタイン及びラウロイルアミドエチルヒドロキシエチルカルボキシメチルベタインヒドロキシプロピルリン酸ナトリウム等]並びにアミノ酸型両性界面活性剤[β-ラウリルアミノプロピオン酸ナトリウム等]が挙げられる。 Examples of the amphoteric surfactant (C24) include betaine-type amphoteric surfactants [coconut oil fatty acid amide propyldimethylaminoacetic acid betaine, lauryldimethylaminoacetic acid betaine, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazole And sodium laurylhydroxysulfobetaine and lauroylamidoethyl hydroxyethyl carboxymethyl betaine hydroxypropyl phosphate] and amino acid type amphoteric surfactants [sodium β-laurylaminopropionate].
 その他の乳化分散剤(C25)としては、例えばポリビニルアルコール、デンプン及びその誘導体、カルボキシメチルセルロース、メチルセルロース及びヒドロキシエチルセルロース等のセルロース誘導体並びにポリアクリル酸ソーダ等のカルボキシル基含有(共)重合体及び米国特許第5906704号明細書に記載のウレタン基又はエステル基を有する乳化分散剤[例えばポリカプロラクトンポリオールとポリエーテルジオールをポリイソシアネートで連結させたもの]等が挙げられる。 Other emulsifying dispersants (C25) include, for example, polyvinyl alcohol, starch and its derivatives, cellulose derivatives such as carboxymethyl cellulose, methyl cellulose and hydroxyethyl cellulose, and carboxyl group-containing (co) polymers such as sodium polyacrylate and US Pat. Emulsifying dispersants having urethane groups or ester groups described in the specification of 5906704 [for example, polycaprolactone polyol and polyether diol linked by polyisocyanate] and the like can be mentioned.
 界面活性剤(C)の使用量は、乾燥皮膜の耐水性及び分散安定性の観点から、ビニル系モノマー(M11)の重量又は後述の工程(5)で単官能のビニル系モノマー(M1)を用いる場合は(M11)及び(M1)の合計重量を基準として、好ましくは0.5~10重量%、好ましくは1~5重量%である。 The amount of the surfactant (C) used is the weight of the vinyl-based monomer (M11) or the monofunctional vinyl-based monomer (M1) in the step (5) described below, from the viewpoint of water resistance and dispersion stability of the dry film. When used, it is preferably 0.5 to 10% by weight, preferably 1 to 5% by weight, based on the total weight of (M11) and (M1).
 工程(1)における活性水素成分(A)にイオン性基と活性水素原子を有する化合物(a3)を用いた場合、アニオン性基と活性水素原子を含有する化合物(a31)及びカチオン性基と活性水素原子を含有する化合物(a32)の塩に用いられる中和剤は、ウレタンプレポリマー化反応前、ウレタンプレポリマー化反応中、ウレタンプレポリマー化反応後、水分散工程[工程(3)]前、水分散工程中又は水分散工程後のいずれの時期に添加してもよいが、水性分散体(α)の安定性の観点から水分散工程前又は水分散工程中に添加することが好ましい。
 工程(3)の実施温度は好ましくは0~100℃であり、時間は好ましくは1~180分である。
When the compound (a3) having an ionic group and an active hydrogen atom is used as the active hydrogen component (A) in the step (1), the compound (a31) containing an anionic group and an active hydrogen atom and the cationic group and the active group The neutralizing agent used in the salt of the compound (a32) containing a hydrogen atom is, before the urethane prepolymerization reaction, during the urethane prepolymerization reaction, after the urethane prepolymerization reaction, and before the water dispersion step [step (3)]. Although it may be added at any time during or after the water dispersion step, it is preferably added before or during the water dispersion step from the viewpoint of the stability of the aqueous dispersion (α).
The temperature at which step (3) is carried out is preferably 0 to 100 ° C., and the time is preferably 1 to 180 minutes.
 本発明における工程(4)は、工程(3)で得られた水性分散体(α)中のウレタンプレポリマー(P)を鎖伸長剤(E)で伸長させる工程である。 The step (4) in the present invention is a step of extending the urethane prepolymer (P) in the aqueous dispersion (α) obtained in the step (3) with a chain extender (E).
 鎖伸長剤(E)としては、第1の発明における鎖伸長剤(E)と同様であり、好ましいものも同様である。 The chain extender (E) is the same as the chain extender (E) in the first invention, and the preferred ones are also the same.
 鎖伸長剤(E)は、1種を単独で用いても2種以上を併用してもよい。
 尚、鎖伸長剤(E)は、工程(1)における活性水素成分(A)として用いることもできる。
 工程(4)の実施温度は好ましくは0~100℃であり、時間は好ましくは1~120分である。
As the chain extender (E), one type may be used alone, or two or more types may be used in combination.
The chain extender (E) can also be used as the active hydrogen component (A) in the step (1).
The temperature for carrying out step (4) is preferably 0 to 100 ° C., and the time is preferably 1 to 120 minutes.
 本発明における工程(5)は、工程(4)と下記工程(6)の間で実施される任意の工程であって、単官能のビニル系モノマー(M1)を追加する工程である。 The step (5) in the present invention is an optional step performed between the step (4) and the following step (6), and is a step of adding a monofunctional vinyl-based monomer (M1).
 工程(1)で用いるビニル系モノマー(M11)は、ポリウレタン樹脂(U)にエチレン性不飽和結合基が導入されないように水酸基、アミノ基、イミノ基又はチオール基のいずれも有しないものを用いる必要があるが、工程(5)で用いるビニル系モノマー(M1)には、水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12)を用いることができる。これらのビニル系モノマーを用いることにより、ビニル系樹脂(V)に水酸基、アミノ基、イミノ基又はチオール基が導入され、乾燥皮膜の基材への密着性が向上し、また、複合樹脂水性分散体に水酸基、アミノ基、イミノ基又はチオール基と反応性を有する後述の架橋剤を併用することにより、乾燥皮膜の機械的強度を向上させることができる。 The vinyl-based monomer (M11) used in the step (1) needs to have no hydroxyl group, amino group, imino group or thiol group so that the ethylenically unsaturated bond group is not introduced into the polyurethane resin (U). However, as the vinyl-based monomer (M1) used in the step (5), a monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group can be used. By using these vinyl-based monomers, a hydroxyl group, an amino group, an imino group or a thiol group is introduced into the vinyl-based resin (V), the adhesion of the dry film to the substrate is improved, and the aqueous dispersion of the composite resin is improved. The mechanical strength of the dry film can be improved by using a cross-linking agent described below having reactivity with a hydroxyl group, an amino group, an imino group or a thiol group in the body.
 水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12)としては、第1の発明における水酸基含有ビニル系モノマー(m8)、アミノ基又はイミノ基含有ビニル系モノマー(m9)及びチオール基含有ビニル系モノマー(m10)と同様であり、好ましいものも同様である。 Examples of the monofunctional vinyl-based monomer (M12) having a hydroxyl group, an amino group, an imino group or a thiol group include a hydroxyl group-containing vinyl monomer (m8), an amino group- or imino group-containing vinyl monomer (m9) in the first invention. And the thiol group-containing vinyl-based monomer (m10), and preferred ones are also the same.
 ビニル系モノマー(M1)には、水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)を用いることもできる。この場合、工程(1)で使用したビニル系モノマー(M11)と同一でも異なっていてもよい。ビニル系モノマー(M1)は、1種を単独で用いても2種以上を併用してもよい。
 工程(5)の実施温度は好ましくは0~100℃であり、時間は好ましくは1~180分である。
As the vinyl-based monomer (M1), a monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group may be used. In this case, it may be the same as or different from the vinyl-based monomer (M11) used in step (1). The vinyl-based monomer (M1) may be used alone or in combination of two or more.
The temperature for carrying out step (5) is preferably 0 to 100 ° C., and the time is preferably 1 to 180 minutes.
 本発明における工程(6)は、水性分散体(α)中のビニル系モノマー(M11)又は工程(5)を実施した場合にはビニル系モノマー(M11)及び(M1)を重合させる工程である。 The step (6) in the present invention is a step of polymerizing the vinyl monomer (M11) in the aqueous dispersion (α) or the vinyl monomer (M11) and (M1) when the step (5) is carried out. ..
 工程(6)での重合に用いられる重合開始剤としては、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等の過硫酸塩系開始剤;アゾビスイソブチロニトリル等のアゾ系開始剤;過酸化ベンゾイル、クメンヒドロパーオキサイド、tert-ブチルパーオキシベンゾエート及びtert-ブチルヒドロパーオキサイド等の有機過酸化物類;過酸化水素;等一般的なラジカル重合開始剤を用いることができ、これらを単独で使用してもよいし、2種以上を混合して使用してもよい。また、重合開始剤の使用量は、重合に使用するビニル系モノマー(M11)及び(M1)の合計重量を基準として、0.05~5重量%であることが好ましい。
 これら開始剤は重合開始時に必要量を一括して使用してもよいし、分割して任意の時間ごとに添加してもよい。
Examples of the polymerization initiator used in the polymerization in the step (6) include persulfate-based initiators such as sodium persulfate, potassium persulfate and ammonium persulfate; azo-based initiators such as azobisisobutyronitrile; Organic radicals such as benzoyl, cumene hydroperoxide, tert-butyl peroxybenzoate and tert-butyl hydroperoxide; hydrogen peroxide; and other general radical polymerization initiators can be used, and these can be used alone. They may be used, or two or more kinds may be mixed and used. Further, the amount of the polymerization initiator used is preferably 0.05 to 5% by weight based on the total weight of the vinyl monomers (M11) and (M1) used for the polymerization.
The required amount of these initiators may be used all at once at the start of polymerization, or may be divided and added at any time.
 重合においては、必要に応じて上記重合開始剤と共に還元剤を使用してもよい。このような還元剤としては、アスコルビン酸、酒石酸、クエン酸、ブドウ糖及びホルムアルデヒドスルホキシラート金属塩等の還元性有機化合物並びにチオ硫酸ナトリウム、亜硫酸ナトリウム、重亜硫酸ナトリウム及びメタ重亜硫酸ナトリウム等の還元性無機化合物等が挙げられる。 In polymerization, a reducing agent may be used together with the above-mentioned polymerization initiator, if necessary. Such reducing agents include reducing organic compounds such as ascorbic acid, tartaric acid, citric acid, glucose and formaldehyde sulfoxylate metal salts, and reducing agents such as sodium thiosulfate, sodium sulfite, sodium bisulfite and sodium metabisulfite. Examples thereof include inorganic compounds.
 また、重合においては、必要に応じて連鎖移動剤を使用してもよい。このような連鎖移動剤としては、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、n-ブチルメルカプタン、2-エチルヘキシルチオグリコレート、2-メルカプトエタノール、β-メルカプトプロピオン酸及びα-メチルスチレンダイマー等が挙げられる。
 更に必要に応じて、緩衝剤として、酢酸ナトリウム、クエン酸ナトリウム、重炭酸ナトリウム等が、また、保護コロイドとしてポリビニルアルコール、水溶性セルロース誘導体及びポリメタクリル酸のアルカリ金属塩等が適量使用できる。
Further, in the polymerization, a chain transfer agent may be used if necessary. Examples of such chain transfer agents include n-dodecyl mercaptan, tert-dodecyl mercaptan, n-butyl mercaptan, 2-ethylhexyl thioglycolate, 2-mercaptoethanol, β-mercaptopropionic acid and α-methylstyrene dimer. Be done.
Further, if necessary, sodium acetate, sodium citrate, sodium bicarbonate or the like can be used as a buffering agent, and polyvinyl alcohol, a water-soluble cellulose derivative, an alkali metal salt of polymethacrylic acid or the like can be used in an appropriate amount as a protective colloid.
 重合反応は、好ましくは20℃~150℃、更に好ましくは40℃~100℃の範囲で行われる。温度が20℃未満の場合は、重合速度が遅くなる場合がある。また、温度が150℃を超えると重合反応を制御することが難しくなる場合がある。反応時間は好ましくは1分~50時間である。重合反応は不活性ガス存在下で行うことが好ましい。 The polymerization reaction is preferably carried out in the range of 20 ° C to 150 ° C, more preferably 40 ° C to 100 ° C. If the temperature is lower than 20 ° C, the polymerization rate may be slow. If the temperature exceeds 150 ° C, it may be difficult to control the polymerization reaction. The reaction time is preferably 1 minute to 50 hours. The polymerization reaction is preferably carried out in the presence of an inert gas.
 工程(1)~(6)に用いる製造装置は特に限定されず、混合・分散能力のある装置であれば使用可能であるが、温度調整及び混合・分散能力等の観点から、回転式混合・分散装置を用いることが好ましい。
 回転式混合・分散装置としては、例えばマックスブレンドやヘリカル翼等の一般的な攪拌羽を有する混合装置、TKホモミキサー[プライミクス(株)製]、クレアミックス[エムテクニック(株)製]、フィルミックス[プライミクス(株)製]、ウルトラターラックス[IKA(株)製]、エバラマイルダー[荏原製作所(株)製]、キャビトロン(ユーロテック社製)及びバイオミキサー[日本精機(株)製]等が例示される。
The manufacturing apparatus used in steps (1) to (6) is not particularly limited, and any apparatus having a mixing / dispersing ability can be used, but from the viewpoint of temperature adjustment and mixing / dispersing ability, rotary mixing / It is preferable to use a dispersing device.
As the rotary mixing / dispersing device, for example, a mixing device having a general stirring blade such as Maxblend or a helical blade, TK Homomixer [manufactured by PRIMIX Co., Ltd.], CLEARMIX [manufactured by M Technique Co., Ltd.], fill Mix [Primix Co., Ltd.], Ultra Turrax [IKA Co., Ltd.], Ebara Milder [Ebara Corporation], Cavitron (Eurotech Co., Ltd.) and Biomixer [Nippon Seiki Co., Ltd.] Etc. are illustrated.
 本発明においては、その任意の製造工程において有機溶剤を使用することができ、その後の工程で脱溶剤することもできる。
 有機溶剤としては特に限定されず、炭素数3~10のケトン系溶剤(アセトン、メチルエチルケトン及びメチルイソブチルケトン等)、炭素数2~10のエステル系溶剤(酢酸エチル、酢酸ブチル及びγ-ブチロラクトン等)、炭素数4~10のエーテル系溶剤(ジオキサン、テトラヒドロフラン、エチルセロソルブ及びジエチレングリコールジメチルエーテル等)、炭素数3~10のアミド系溶剤(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン及びN-メチルカプロラクタム等)、炭素数2~10のスルホキシド系溶剤(ジメチルスルホキシド等)、炭素数1~8のアルコール系溶剤(メタノール、エタノール、イソプロピルアルコール及びオクタノール等)及び炭素数4~10の炭化水素系溶剤(シクロヘキサン、トルエン及びキシレン等)等が挙げられる。有機溶剤を使用した場合、その後の工程で脱溶剤を行ってもよい。
In the present invention, an organic solvent can be used in any of the manufacturing steps, and the solvent can be removed in the subsequent step.
The organic solvent is not particularly limited, and ketone solvents having 3 to 10 carbon atoms (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), ester solvents having 2 to 10 carbon atoms (ethyl acetate, butyl acetate, γ-butyrolactone, etc.) , Ether solvents having 4 to 10 carbon atoms (dioxane, tetrahydrofuran, ethyl cellosolve, diethylene glycol dimethyl ether, etc.), amide solvents having 3 to 10 carbon atoms (N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl) -2-pyrrolidone and N-methylcaprolactam, etc.), sulfoxide solvents having 2-10 carbon atoms (dimethyl sulfoxide, etc.), alcohol solvents having 1-8 carbon atoms (methanol, ethanol, isopropyl alcohol, octanol, etc.), and carbon numbers Examples include 4 to 10 hydrocarbon solvents (cyclohexane, toluene, xylene, etc.). When an organic solvent is used, solvent removal may be performed in the subsequent step.
 上述の通り、本発明においては、活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の内の少なくとも1種に3官能以上の化合物を用いることにより、ポリウレタン樹脂(U)に架橋構造を導入する。 As described above, in the present invention, at least one of the active hydrogen component (A), the organic isocyanate component (B), and the chain extender (E) is a polyurethane resin (U Introducing a crosslinked structure into
 活性水素成分(A)、有機イソシアネート成分(B)、鎖伸長剤(E)の内、上記目的に用いる3官能以上の化合物として好ましいのは、第1の発明における3官能以上の化合物として好ましいものと同様である。 Among the active hydrogen component (A), the organic isocyanate component (B), and the chain extender (E), the trifunctional or higher functional compound used for the above purpose is preferable as the trifunctional or higher functional compound in the first invention. Is the same as.
 乾燥皮膜の機械的強度の観点から、鎖伸長剤(E)に3官能以上の化合物を用いることによりポリウレタン樹脂(U)に架橋構造を導入することが好ましい。 From the viewpoint of the mechanical strength of the dry film, it is preferable to introduce a crosslinked structure into the polyurethane resin (U) by using a trifunctional or higher functional compound as the chain extender (E).
 本発明における複合樹脂水性分散体中のポリウレタン樹脂(U)とビニル系樹脂(V)の重量比[(U):(V)]は、分散安定性及び乾燥皮膜の柔軟性、機械的強度、可とう性、透明性及び光沢性の観点から、好ましくは20:80~80:20、更に好ましくは30:70~70:30、特に好ましくは40:60~60:40である。 The weight ratio [(U) :( V)] of the polyurethane resin (U) and the vinyl resin (V) in the aqueous composite resin dispersion of the present invention is dispersion stability and flexibility of the dry film, mechanical strength, From the viewpoint of flexibility, transparency and glossiness, it is preferably 20:80 to 80:20, more preferably 30:70 to 70:30, and particularly preferably 40:60 to 60:40.
 本発明における複合樹脂水性分散体は、架橋剤、粘度調整剤、消泡剤、防腐剤、耐候安定化剤及び凍結防止剤等を含有することができ、具体例は第1の発明におけるものと同様であり、好ましい含有量も同様である。 The composite resin aqueous dispersion in the present invention may contain a crosslinking agent, a viscosity modifier, an antifoaming agent, an antiseptic, a weathering stabilizer, an antifreezing agent and the like, and specific examples are those in the first invention. The same applies to the preferable content.
 本発明における複合樹脂水性分散体中の粒子の体積平均粒子径(Dv)は、複合樹脂水性分散体のハンドリング性及び分散安定性の観点から、好ましくは0.01~1μm、更に好ましくは0.02~0.7μm、特に好ましくは0.03~0.4μmである。(Dv)は、光散乱粒度分布測定装置[ELS-8000{大塚電子(株)製}]を用いて測定される。 The volume average particle diameter (Dv) of the particles in the composite resin aqueous dispersion in the present invention is preferably 0.01 to 1 μm, more preferably 0. 1 μm from the viewpoint of handling property and dispersion stability of the composite resin aqueous dispersion. The thickness is from 02 to 0.7 μm, particularly preferably from 0.03 to 0.4 μm. (Dv) is measured using a light scattering particle size distribution analyzer [ELS-8000 {manufactured by Otsuka Electronics Co., Ltd.}].
 本発明における複合樹脂水性分散体の固形分濃度(揮発性成分以外の成分の含有量)は、水性分散体の取り扱い易さの観点から、好ましくは20~65重量%、更に好ましくは25~55重量%である。固形分濃度は、水性分散体約1gをペトリ皿上にうすく伸ばし、精秤した後、循環式定温乾燥機を用いて130℃で、45分間加熱した後の重量を精秤し、加熱前の重量に対する加熱後の残存重量の割合(百分率)を計算することにより得ることができる。 The solid content concentration (content of components other than the volatile component) of the composite resin aqueous dispersion in the present invention is preferably 20 to 65% by weight, more preferably 25 to 55% from the viewpoint of easy handling of the aqueous dispersion. % By weight. The solid content concentration was about 1 g of the aqueous dispersion, which was thinly spread on a Petri dish and precisely weighed, and then the weight after heating for 45 minutes at 130 ° C. using a circulation type constant temperature dryer was precisely weighed. It can be obtained by calculating the ratio (percentage) of the residual weight after heating to the weight.
 本発明における複合樹脂水性分散体の25℃における粘度は、好ましくは10~100,000mPa・s、更に好ましくは10~5,000mPa・sである。粘度はBL型粘度計を用いて測定することができる。
 本発明における複合樹脂水性分散体の25℃におけるpHは、好ましくは2~12、更に好ましくは4~10である。pHは、pH Meter M-12[堀場製作所(株)製]を用いて測定することができる。
The viscosity of the composite resin aqueous dispersion of the present invention at 25 ° C. is preferably 10 to 100,000 mPa · s, more preferably 10 to 5,000 mPa · s. The viscosity can be measured using a BL type viscometer.
The pH of the composite resin aqueous dispersion in the present invention at 25 ° C. is preferably 2 to 12, and more preferably 4 to 10. The pH can be measured using pH Meter M-12 [manufactured by Horiba, Ltd.].
 以下本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、以下において部は重量部を表す。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the following, “part” means “part by weight”.
<実施例1>(第2の発明の製造方法)
 撹拌機及び加熱装置を備えた簡易加圧反応装置に表1に記載の種類と量の活性水素成分(A)、有機イソシアネート成分(B)、ラジカル捕捉剤及び工程(1)におけるビニル系モノマー(M11)を仕込んで80℃で10時間攪拌してウレタン化反応を行ってウレタンプレポリマー(P-1)を得た後、工程(2)におけるビニル系モノマー(M11)を仕込んで撹拌均一化することでウレタンプレポリマー(P-1)の溶液を得た。
 表2に記載の処方に従って、得られたウレタンプレポリマー(P-1)の溶液500.0部に中和剤としてのトリエチルアミン15.7部及び反応性界面活性剤(C1)としてのエレミノールJS-20[三洋化成工業(株)製]26.0部(固形分:10.0部)を加えて均一溶液とした後、200rpmで撹拌しながらイオン交換水828.0部を加えて(P-1)の溶液を分散させた。得られた分散液に鎖伸長剤(E)としてのエチレンジアミン5.0重量%水溶液4.7部及びジエチレントリアミン5.0重量%水溶液40.7部を加えて25℃で鎖伸長反応を行った。窒素気流下で80℃まで昇温し、重合開始剤としての過硫酸ナトリウム10重量%水溶液8.0部を添加して、80℃で3時間重合させ複合樹脂水性分散体(Q-1)を得た。
<Example 1> (Production method of the second invention)
In a simple pressure reactor equipped with a stirrer and a heating device, the types and amounts of active hydrogen component (A), organic isocyanate component (B), radical scavenger and vinyl monomer in step (1) shown in Table 1 ( After charging M11) and stirring at 80 ° C. for 10 hours to carry out a urethanization reaction to obtain a urethane prepolymer (P-1), the vinyl-based monomer (M11) in the step (2) is charged to homogenize by stirring. Thus, a solution of urethane prepolymer (P-1) was obtained.
According to the formulation shown in Table 2, 15.0 parts of triethylamine as a neutralizing agent and 500.0 parts of a solution of the obtained urethane prepolymer (P-1) and Eleminol JS- as a reactive surfactant (C1) were used. 20 [manufactured by Sanyo Chemical Industry Co., Ltd.] was added to 26.0 parts (solid content: 10.0 parts) to make a uniform solution, and 828.0 parts of ion-exchanged water was added thereto while stirring at 200 rpm (P- The solution of 1) was dispersed. To the obtained dispersion liquid, 4.7 parts of a 5.0 wt% aqueous solution of ethylenediamine as a chain extender (E) and 40.7 parts of a 5.0 wt% aqueous solution of diethylenetriamine were added, and a chain extension reaction was carried out at 25 ° C. The temperature was raised to 80 ° C. under a nitrogen stream, 8.0 parts of a 10% by weight aqueous solution of sodium persulfate as a polymerization initiator was added, and the mixture was polymerized at 80 ° C. for 3 hours to give a composite resin aqueous dispersion (Q-1) Obtained.
<実施例2~4>(第2の発明の製造方法)
 表1に記載の各原料を用いて、実施例1と同様にしてウレタンプレポリマー(P-2)~(P-4)溶液を製造し、表2に記載の各原料を用いて、実施例1と同様にして複合樹脂水性分散体(Q-2)~(Q-4)を得た。実施例2は工程(2)を省略した。
<Examples 2 to 4> (Production method of the second invention)
Using each raw material shown in Table 1, urethane prepolymers (P-2) to (P-4) solutions were produced in the same manner as in Example 1, and each raw material shown in Table 2 was used. Composite resin aqueous dispersions (Q-2) to (Q-4) were obtained in the same manner as in 1. In Example 2, the step (2) was omitted.
<実施例5>(第2の発明の製造方法)
 表1に記載の各原料を用いて、実施例1と同様にしてウレタンプレポリマー(P-5)溶液を製造した。表2に記載の各原料を用いて、実施例1と同様にして(P-5)の溶液を分散させた後、鎖伸長反応を行った。次いで、工程(5)におけるビニル系モノマー(M12)としてヒドロキシエチルメタクリレート17.0部を添加して、窒素気流下で80℃まで昇温し、重合開始剤としての過硫酸カリウム10重量%水溶液11.0部を添加して、80℃で3時間重合させ複合樹脂水性分散体(Q-5)を得た。
<Example 5> (Production method of the second invention)
A urethane prepolymer (P-5) solution was produced in the same manner as in Example 1 using each of the raw materials listed in Table 1. A solution of (P-5) was dispersed in the same manner as in Example 1 using each of the raw materials listed in Table 2, and then a chain extension reaction was performed. Then, 17.0 parts of hydroxyethyl methacrylate was added as the vinyl-based monomer (M12) in step (5), the temperature was raised to 80 ° C. under a nitrogen stream, and a 10 wt% aqueous solution of potassium persulfate as a polymerization initiator 11 0.0 parts was added and the mixture was polymerized at 80 ° C. for 3 hours to obtain an aqueous composite resin dispersion (Q-5).
<実施例6>(第2の発明の製造方法)
 撹拌機及び加熱装置を備えた簡易加圧反応装置に表1に記載の種類と量の活性水素成分(A)、有機イソシアネート成分(B)、ラジカル捕捉剤、工程(1)におけるビニル系モノマー(M11)及び有機溶剤を仕込んで80℃で10時間攪拌してウレタン化反応を行ってウレタンプレポリマー(P-6)を得た後、工程(2)におけるビニル系モノマー(M11)を仕込んで撹拌均一化することでウレタンプレポリマー(P-6)の溶液を得た。
 表2に記載の処方に従って、得られたウレタンプレポリマー(P-6)の溶液500.0部に中和剤としてのトリエチルアミン8.9部及び反応性界面活性剤(C1)としてのエレミノールJS-20[三洋化成工業(株)製]15.6部(固形分:6.0部)を加えて均一溶液とした後、200rpmで撹拌しながらイオン交換水905.0部を加えて(P-6)の溶液を分散させた。得られた分散液に鎖伸長剤としてのジエチレントリアミン5.0重量%水溶液16.7部を加えて25℃で鎖伸長反応を行った。窒素気流下80℃まで昇温し、開始剤としての過硫酸カリウム10重量%水溶液5.0部を添加して、80℃で3時間重合させた。その後、減圧下に65℃で8時間かけて有機溶剤を留去して複合樹脂水性分散体(Q-6)を得た。
<Example 6> (Production method of the second invention)
In a simple pressure reactor equipped with a stirrer and a heating device, the types and amounts of active hydrogen component (A), organic isocyanate component (B), radical scavenger, vinyl monomer in step (1) ( After charging M11) and an organic solvent and stirring at 80 ° C. for 10 hours to carry out a urethanization reaction to obtain a urethane prepolymer (P-6), the vinyl-based monomer (M11) in the step (2) is charged and stirred. By homogenizing, a solution of urethane prepolymer (P-6) was obtained.
According to the formulation shown in Table 2, 8.9 parts of triethylamine as a neutralizing agent and 500.0 parts of a solution of the obtained urethane prepolymer (P-6) and Eleminol JS- as a reactive surfactant (C1) were used. 20 [manufactured by Sanyo Chemical Industry Co., Ltd.] was added to 15.6 parts (solid content: 6.0 parts) to form a uniform solution, and 905.0 parts of ion-exchanged water was added thereto while stirring at 200 rpm (P- The solution of 6) was dispersed. 16.7 parts of a 5.0 wt% aqueous solution of diethylenetriamine as a chain extender was added to the obtained dispersion, and a chain extension reaction was carried out at 25 ° C. The temperature was raised to 80 ° C. under a nitrogen stream, 5.0 parts of a 10 wt% potassium persulfate aqueous solution as an initiator was added, and polymerization was carried out at 80 ° C. for 3 hours. Then, the organic solvent was distilled off under reduced pressure at 65 ° C. for 8 hours to obtain a composite resin aqueous dispersion (Q-6).
<実施例7~9>(第2の発明の製造方法)
 表1に記載の各原料を用いて、実施例1と同様にしてウレタンプレポリマー(P-7)~(P-9)溶液を製造し、表2に記載の各原料を用いて、実施例1と同様にして複合樹脂水性分散体(Q-7)~(Q-9)を得た。
<Examples 7 to 9> (Production method of the second invention)
Using each raw material shown in Table 1, urethane prepolymers (P-7) to (P-9) solutions were produced in the same manner as in Example 1, and each raw material shown in Table 2 was used. Composite resin aqueous dispersions (Q-7) to (Q-9) were obtained in the same manner as in 1.
<実施例10>((II)の製造方法)
 撹拌機及び加熱装置を備えた簡易加圧反応装置に表1に記載の種類と量の活性水素成分(A)、有機イソシアネート成分(B)、ラジカル捕捉剤及び有機溶剤を仕込んで80℃で10時間攪拌してウレタン化反応を行ってウレタンプレポリマー(P-10)の溶液を得た。
 表2に記載の処方に従って、得られたウレタンプレポリマー(P-10)の溶液500.0部に中和剤としてのトリエチルアミン7.1部を加えて均一溶液とした後、200rpmで撹拌しながらイオン交換水640.0部を加えて(P-10)の溶液を分散させた。得られた分散液に鎖伸長剤としてのジエチレントリアミン5.0重量%水溶液95.5部を加えて25℃で鎖伸長反応を行った。その後、減圧下に65℃で8時間かけて有機溶剤を留去してウレタン樹脂水性分散体を得た。
 別途、モノマー分散液用滴下ロート、開始剤溶液用滴下ロート、攪拌装置、還流冷却管、温度計及び窒素導入管を備えたセパラブルフラスコに、得られたウレタン樹脂水性分散体を全量仕込み、窒素気流下で攪拌し、70℃に昇温した。次にメチルメタクリレート122.5部、n-ブチルアクリレート27.3部、反応性界面活性剤(C1)としてのアクアロンKH-1025[第一工業製薬(株)製]18.0部(固形分:4.5部)及びイオン交換水184.5部からなるモノマー分散液を調製してモノマー分散液用滴下ロートに仕込み、開始剤としての過硫酸カリウム10重量%水溶液5.0部を開始剤溶液用滴下ロートに仕込み、反応系内の温度を70±2℃に維持しながら、モノマー分散液及び開始剤溶液を3時間かけて等速度で滴下した。その後も同温度で90分間撹拌を継続した後、室温まで冷却し、複合樹脂水性分散体(Q-10)を得た。
<Example 10> (Production method of (II))
A simple pressure reactor equipped with a stirrer and a heating device was charged with the active hydrogen component (A), organic isocyanate component (B), radical scavenger and organic solvent in the types and amounts shown in Table 1 at 80 ° C. A urethane reaction was carried out by stirring for a time to obtain a solution of a urethane prepolymer (P-10).
According to the formulation shown in Table 2, 7.1 parts of triethylamine as a neutralizing agent was added to 500.0 parts of the obtained solution of the urethane prepolymer (P-10) to form a uniform solution, which was then stirred at 200 rpm. 640.0 parts of ion-exchanged water was added to disperse the solution of (P-10). 95.5 parts of a 5.0 wt% aqueous solution of diethylenetriamine as a chain extender was added to the obtained dispersion, and a chain extension reaction was carried out at 25 ° C. Then, the organic solvent was distilled off under reduced pressure at 65 ° C. for 8 hours to obtain a urethane resin aqueous dispersion.
Separately, in a separable flask equipped with a dropping funnel for monomer dispersion, a dropping funnel for initiator solution, a stirrer, a reflux condenser, a thermometer and a nitrogen introduction tube, the entire amount of the urethane resin aqueous dispersion obtained was charged, and nitrogen was added. The mixture was stirred under a stream of air and heated to 70 ° C. Next, 122.5 parts of methyl methacrylate, 27.3 parts of n-butyl acrylate, 18.0 parts of Aqualon KH-1025 [Daiichi Kogyo Seiyaku Co., Ltd.] as a reactive surfactant (C1) (solid content: 4.5 parts) and 184.5 parts of ion-exchanged water were prepared and charged into a dropping funnel for monomer dispersion, and 5.0 parts of a 10 wt% potassium persulfate aqueous solution as an initiator solution was prepared. The monomer dispersion liquid and the initiator solution were added dropwise at a constant rate over 3 hours while the temperature in the reaction system was maintained at 70 ± 2 ° C. After that, stirring was continued at the same temperature for 90 minutes and then cooled to room temperature to obtain an aqueous composite resin dispersion (Q-10).
<実施例11及び12>((I)の製造方法)
 表1に記載の各原料を用いて、実施例1と同様にしてウレタンプレポリマー(P-11)及び(P-12)溶液を製造し、表2に記載の各原料を用いて、実施例1と同様にして複合樹脂水性分散体(Q-11)及び(Q-12)を得た。
<Examples 11 and 12> (Production method of (I))
Using each raw material shown in Table 1, urethane prepolymer (P-11) and (P-12) solutions were produced in the same manner as in Example 1, and each raw material shown in Table 2 was used. Aqueous composite resin dispersions (Q-11) and (Q-12) were obtained in the same manner as in 1.
<比較例1>
 撹拌機及び加熱装置を備えた簡易加圧反応装置に表1に記載の種類と量の活性水素成分(A)、有機イソシアネート成分(B)、ラジカル捕捉剤及び有機溶剤を仕込んで80℃で10時間攪拌してウレタン化反応を行い、ウレタンプレポリマー(P’-1)の溶液を得た。
 表2に記載の処方に従って、得られたウレタンプレポリマー(P’-1)の溶液500.0部に中和剤としてのトリエチルアミン8.9部を加えて均一溶液とした後、200rpmで撹拌しながらイオン交換水563.0部を加えて(P’-1)の溶液を分散させた。得られた分散液に鎖伸長剤としてのジエチレントリアミン5.0重量%水溶液35.7部を加えて25℃で鎖伸長反応を行った後、減圧下に65℃で8時間かけて有機溶剤を留去してポリウレタン樹脂水性分散体(1)を得た。
 別途、モノマー分散液用滴下ロート、開始剤溶液用滴下ロート、攪拌装置、還流冷却管、温度計及び窒素導入管を備えたセパラブルフラスコに、イオン交換水120.8部及び反応性界面活性剤(C1)としてのエレミノールJS-20[三洋化成工業(株)製]1.3部(固形分:0.5部)を仕込み、窒素気流下で攪拌し、70℃に昇温した。
 次に、イオン交換水226.4部、反応性界面活性剤(C1)としてのエレミノールJS-20[三洋化成工業(株)製]24.7部(固形分:9.5部)、メチルメタクリレート301.5部、n-ブチルアクリレート143.7部、スチレン50.0部及びメタクリル酸7.7部からなるモノマー分散液を調製してモノマー分散液用滴下ロートに仕込み、この内の30.2部をセパラブルフラスコに加えた。
 次に、開始剤としての過硫酸ナトリウム10重量%水溶液8.0部を添加して重合を開始し、反応系内の温度を70±2℃に維持しながら、残りのモノマー分散液及び開始剤溶液を3時間かけて等速度で滴下した。その後も同温度で90分間撹拌を継続した後、室温まで冷却し、ビニル系樹脂水性分散体(1)を得た。
 得られたポリウレタン樹脂水性分散体(1)100部とビニル系樹脂水性分散体(1)100部を均一に混合することで複合樹脂水性分散体(Q’-1)を得た。
 尚、比較例1の複合樹脂水性分散体(Q’-1)は、ポリウレタン樹脂水性分散体(1)とビニル系樹脂水性分散体(1)の混合物であり、本発明の製造方法で製造したものではないが、表1及び表2に原材料の種類と使用量を記載した。
<Comparative Example 1>
A simple pressure reactor equipped with a stirrer and a heating device was charged with the active hydrogen component (A), organic isocyanate component (B), radical scavenger and organic solvent in the types and amounts shown in Table 1 at 80 ° C. A urethane reaction was carried out by stirring for a time to obtain a solution of urethane prepolymer (P'-1).
According to the formulation shown in Table 2, 8.9 parts of triethylamine as a neutralizing agent was added to 500.0 parts of the obtained solution of the urethane prepolymer (P′-1) to form a uniform solution, which was then stirred at 200 rpm. While adding 563.0 parts of ion-exchanged water, the solution of (P'-1) was dispersed. After adding 35.7 parts of a 5.0 wt% aqueous solution of diethylenetriamine as a chain extender to the obtained dispersion liquid and carrying out a chain extension reaction at 25 ° C, the organic solvent was distilled off under reduced pressure at 65 ° C for 8 hours. After that, an aqueous polyurethane resin dispersion (1) was obtained.
Separately, in a separable flask equipped with a dropping funnel for monomer dispersion, a dropping funnel for initiator solution, a stirrer, a reflux condenser, a thermometer and a nitrogen introducing tube, 120.8 parts of ion-exchanged water and a reactive surfactant. Eleminol JS-20 (manufactured by Sanyo Chemical Industry Co., Ltd.) 1.3 parts (solid content: 0.5 part) as (C1) was charged, and the mixture was stirred under a nitrogen stream and heated to 70 ° C.
Next, 226.4 parts of ion-exchanged water, Eleminol JS-20 [manufactured by Sanyo Chemical Industry Co., Ltd.] as a reactive surfactant (C1), 24.7 parts (solid content: 9.5 parts), methyl methacrylate. A monomer dispersion liquid containing 301.5 parts, 143.7 parts of n-butyl acrylate, 50.0 parts of styrene and 7.7 parts of methacrylic acid was prepared and charged into a dropping funnel for the monomer dispersion liquid. Parts were added to a separable flask.
Next, 8.0 parts of a 10% by weight aqueous solution of sodium persulfate as an initiator was added to initiate polymerization, and the temperature of the reaction system was maintained at 70 ± 2 ° C. while maintaining the remaining monomer dispersion and initiator. The solution was added dropwise at a constant rate over 3 hours. After that, stirring was continued at the same temperature for 90 minutes and then cooled to room temperature to obtain an aqueous vinyl resin dispersion (1).
100 parts of the obtained polyurethane resin aqueous dispersion (1) and 100 parts of the vinyl resin aqueous dispersion (1) were uniformly mixed to obtain a composite resin aqueous dispersion (Q'-1).
The composite resin aqueous dispersion (Q'-1) of Comparative Example 1 was a mixture of the polyurethane resin aqueous dispersion (1) and the vinyl resin aqueous dispersion (1), and was produced by the production method of the present invention. Table 1 and Table 2 show the types of raw materials and the amounts used, although not necessarily.
<比較例2~4>
 表1に記載の各原料を用いて、実施例1と同様にしてウレタンプレポリマー(P’-2)~(P’-4)の溶液を製造し、表2に記載の各原料を用いて、実施例1と同様にして複合樹脂水性分散体(Q’-2)~(Q’-4)を得た。
<Comparative Examples 2 to 4>
A solution of urethane prepolymers (P'-2) to (P'-4) was produced in the same manner as in Example 1 using each raw material shown in Table 1, and each raw material shown in Table 2 was used. In the same manner as in Example 1, composite resin aqueous dispersions (Q′-2) to (Q′-4) were obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 尚、表1において商品名で表した原料の組成は以下の通りである。
・ニッポラン980R:Mn=2,000のポリヘキサメチレンカーボネートジオール[日本ポリウレタン工業(株)製]
・クラレポリオールC-3090[Mn=3,000のポリ(3-メチル-5-ペンタンジオール/ヘキサメチレン)カーボネートジオール][(株)クラレ製]
・デュラノールG4672:Mn=2,000のポリ(テトラメチレン/ヘキサメチレン)カーボネートジオール[旭化成ケミカルズ(株)製]
・PTMG2000:Mn=2,000のポリ(オキシテトラメチレン)グリコール[三菱化学(株)製]
・PTMG3000:Mn=3,000のポリ(オキシテトラメチレン)グリコール[三菱化学(株)製]
・クラレポリオールP-2010:Mn=2,000のポリ-3-メチル-1,5-ペンタンアジペートジオール[(株)クラレ製]
・デュラネートTKA-100:ヘキサメチレンジイソシアネートのイソシアヌレート体[旭化成ケミカルズ(株)製]
・IRGANOX 1010:ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート][BASFジャパン(株)製]
・IRGANOX 245:3,6-ジオキサオクタメチレン=ビス[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオナート][BASFジャパン(株)製]
The compositions of the raw materials represented by trade names in Table 1 are as follows.
-Nipporan 980R: polyhexamethylene carbonate diol with Mn = 2,000 [manufactured by Nippon Polyurethane Industry Co., Ltd.]
Kuraray polyol C-3090 [poly (3-methyl-5-pentanediol / hexamethylene) carbonate diol with Mn = 3,000] [manufactured by Kuraray Co., Ltd.]
Duranol G4672: poly (tetramethylene / hexamethylene) carbonate diol with Mn = 2,000 [manufactured by Asahi Kasei Chemicals Corporation]
PTMG2000: poly (oxytetramethylene) glycol with Mn = 2,000 [manufactured by Mitsubishi Chemical Corporation]
-PTMG3000: poly (oxytetramethylene) glycol with Mn = 3,000 [manufactured by Mitsubishi Chemical Corporation]
Kuraray polyol P-2010: poly-3-methyl-1,5-pentane adipate diol with Mn = 2,000 [manufactured by Kuraray Co., Ltd.]
Duranate TKA-100: isocyanurate of hexamethylene diisocyanate [manufactured by Asahi Kasei Chemicals Corporation]
IRGANOX 1010: pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] [manufactured by BASF Japan Ltd.]
IRGANOX 245: 3,6-dioxaoctamethylene = bis [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate] [manufactured by BASF Japan Ltd.]
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~12の複合樹脂水性分散体(Q-1)~(Q-12)及び比較例1~4の複合樹脂水性分散体(Q’-1)~(Q’-4)を用いて下記方法により測定した乾燥皮膜の物性(DMFに対するゲル分率、25℃における貯蔵弾性率E’、100%応力、破断強度及び破断伸度、エタノール膨潤率、ケーニッヒ硬度、180℃折り曲げ試験)、及び塗装物の評価結果(ヘイズ及び光沢度)を表3に示す。 Using the composite resin aqueous dispersions (Q-1) to (Q-12) of Examples 1 to 12 and the composite resin aqueous dispersions (Q'-1) to (Q'-4) of Comparative Examples 1 to 4, Physical properties of the dry film measured by the following methods (gel fraction with respect to DMF, storage modulus E ′ at 25 ° C., 100% stress, breaking strength and breaking elongation, ethanol swelling ratio, König hardness, 180 ° C. bending test), and Table 3 shows the evaluation results (haze and gloss) of the coated product.
<2官能以上のビニル系モノマー(M2)及びポリウレタン樹脂(U)と共有結合している単官能のビニル系モノマー(M12’)の重量割合>
○ビニル系樹脂(V)の水酸基の測定
 JIS K1557-1に準拠して水酸基価を求めた。
○熱分解ガスクロマトグラフィー質量分析
 下記「乾燥皮膜の製造」で得た乾燥皮膜を用いて、下記熱分解ガスクロマトグラフィー質量分析条件で、ビニル系樹脂(V)を構成する全てのビニル系モノマー(M)のそれぞれのモノマーの重量割合を求めた。
[熱分解ガスクロマトグラフィー質量分析条件]
機器:GCMS QP-2010PLUS[島津製作所(株)製]
カラム:Ultra Alloy-5[フロンティア・ラボ(株)製]
温度:480℃
 得られた水酸基価の結果と、熱分解ガスクロマトグラフィー質量分析の結果から、2官能以上のビニル系モノマー(M2)及び(U)と共有結合している単官能のビニル系モノマー(M12’)の重量割合を算出した。
<Weight ratio of bifunctional or higher vinyl monomer (M2) and monofunctional vinyl monomer (M12 ′) covalently bonded to polyurethane resin (U)>
○ Measurement of Hydroxyl Group of Vinyl Resin (V) The hydroxyl group value was determined according to JIS K1557-1.
Pyrolysis Gas Chromatography / Mass Spectroscopy Using the dry film obtained in the following "Production of dry film", all vinyl-based monomers (constituting vinyl resin (V) ( The weight ratio of each monomer of M) was determined.
[Pyrolysis gas chromatography mass spectrometry conditions]
Equipment: GCMS QP-2010PLUS [Shimadzu Corporation]
Column: Ultra Alloy-5 [manufactured by Frontier Lab. Ltd.]
Temperature: 480 ° C
From the results of the obtained hydroxyl value and the result of the thermal decomposition gas chromatography mass spectrometry, the monofunctional vinyl-based monomer (M12 ′) covalently bonded to the bifunctional or higher-functional vinyl-based monomers (M2) and (U). Was calculated.
<乾燥皮膜の物性>
[乾燥皮膜の製造]
 ポリプロピレン製モールドに予め固形分濃度20重量%に調製した複合樹脂水性分散体を乾燥後の膜厚が約200μmとなるように静かに流し込み、全体が均一になる様に広げ、25℃で24時間静置後、循風乾燥機を用いて105℃で3時間乾燥後、更に105℃、圧力1.3kPaで1時間減圧乾燥して乾燥皮膜を得た。
<Physical properties of dry film>
[Production of dry film]
A polypropylene resin mold was gently poured into a polypropylene resin mold to have a solid content concentration of 20% by weight so that the film thickness after drying would be about 200 μm, and the mixture was spread so as to be uniform throughout, then at 25 ° C. for 24 hours. After standing still, it was dried at 105 ° C. for 3 hours using a circulating air drier, and further dried under reduced pressure at 105 ° C. and a pressure of 1.3 kPa for 1 hour to obtain a dried film.
[ゲル分率の測定]
 上記で得た乾燥皮膜を0.035~0.045g程度になるように切り出したサンプルを、20mlのDMFに入れ、23℃で24時間浸漬した。浸漬後、四フッ化エチレン樹脂(PTFE)フィルター(商品名:TORAST Disc GLCTD-PTFE2522、(株)島津ジーエルシー製)を用いてサンプルを含むDMFを濾過した。更に上記フィルター及び残渣物を105℃で3時間乾燥した後冷却して、「DMF浸漬後のフィルターと残渣物の総重量」を測定した。「DMF浸漬前の皮膜の重量」、「フィルターの重量」、「DMF浸漬後のフィルターと残渣物の総重量」を下記式(1)に代入して、ゲル分率を求めた。
ゲル分率(%)=(「DMF浸漬後のフィルターと残渣物の総重量」-「フィルターの重量」)/「DMF浸漬前の皮膜の重量」)×100  ・・・(1)
[Measurement of gel fraction]
The sample obtained by cutting out the dried film obtained above to about 0.035 to 0.045 g was put in 20 ml of DMF and immersed at 23 ° C. for 24 hours. After the dipping, the DMF containing the sample was filtered using a tetrafluoroethylene resin (PTFE) filter (trade name: TOLAST Disc GLCTD-PTFE2522, manufactured by Shimadzu GC). Further, the above filter and the residue were dried at 105 ° C. for 3 hours and then cooled, and the “total weight of the filter and the residue after DMF immersion” was measured. The "gel weight before immersion in DMF", "weight of filter", and "total weight of filter and residue after immersion in DMF" were substituted into the following formula (1) to determine the gel fraction.
Gel fraction (%) = (“total weight of filter and residue after immersion in DMF” − “weight of filter”) / “weight of coating before immersion in DMF” × 100 (1)
[貯蔵弾性率E’]
 上記で得た乾燥皮膜について、貯蔵弾性率測定装置[Rheogel E4000{UBM(株)製}]を使用して周波数11Hzで測定した。
[Storage elastic modulus E ']
The dry film obtained above was measured at a frequency of 11 Hz using a storage elastic modulus measuring device [Rheogel E4000 {manufactured by UBM Co., Ltd.]].
[100%応力、破断強度及び破断伸度]
 上記で得た乾燥皮膜をJIS K6251に準拠して、試験片の形状をダンベル状3号形とし、オートグラフ[島津製作所(株)製「AGS-500D」]を用いて、引張速度500mm/分で100%応力、破断強度及び破断伸度を測定した。なお、比較例4で得た複合樹脂水性分散体は、破断伸度が100%未満であったので、100%応力は測定できなかった。
[100% stress, breaking strength and breaking elongation]
Based on JIS K6251, the dry film obtained above was used as a dumbbell-shaped No. 3 test piece, and an autograph [Shimadzu Corporation's "AGS-500D"] was used to pull at a speed of 500 mm / min. 100% stress, breaking strength and breaking elongation were measured. The composite resin aqueous dispersion obtained in Comparative Example 4 had a breaking elongation of less than 100%, so 100% stress could not be measured.
 [エタノール膨潤率]
 上記で得た乾燥皮膜を1cm×4cmに切り出しエタノールに浸漬し、25℃で24時間静置した。その後浸漬した皮膜を取り出し、ろ紙で皮膜表面に付着したエタノールを拭き取り「エタノール浸漬後の皮膜の重量」を測定した。エタノール浸漬後の皮膜を130℃、45分乾燥させ、「乾燥後の皮膜の重量」を測定した。下記式(4)にてエタノール膨潤率を求めた。
 エタノール膨潤率(%)=(「エタノール浸漬後の皮膜の重量」-「乾燥後の皮膜の重量」)/「乾燥後の皮膜の重量」×100 ・・・(4)
[Ethanol swelling rate]
The dried film obtained above was cut into 1 cm × 4 cm, immersed in ethanol, and allowed to stand at 25 ° C. for 24 hours. After that, the immersed film was taken out, and the ethanol adhering to the surface of the film was wiped off with a filter paper, and the “weight of the film after ethanol immersion” was measured. The film after immersion in ethanol was dried at 130 ° C. for 45 minutes, and the “weight of the film after drying” was measured. The swelling ratio of ethanol was calculated by the following formula (4).
Ethanol swelling rate (%) = (“weight of film after immersion in ethanol” − “weight of film after drying”) / “weight of film after drying” × 100 (4)
[ケーニッヒ硬度]
 上記で得た乾燥皮膜をASTM D 4366に準拠して、ペンドラム硬度計[BYK gardner(株)製{Pendulum Hardness Tester}]でケーニッヒ式振り子を用いて測定した。測定結果は数値が大きい程、硬度が高いことを示す。
[König hardness]
The dry film obtained above was measured by a Pendrum hardness meter [manufactured by BYK Gardner Co., Ltd. {Pendulum Hardness Tester}] using a König-type pendulum according to ASTM D4366. The larger the numerical value of the measurement result, the higher the hardness.
[180度折り曲げ試験]
 上記で得た乾燥皮膜を180度折り曲げ試験を10回繰り返し、亀裂の有無を目視にて確認し、亀裂が無いものを○、亀裂があるものを×とした。
[180 degree bending test]
The 180 ° bending test was repeated 10 times for the dried film obtained above, and the presence or absence of cracks was visually confirmed.
<塗装物の評価>
[ヘイズ]
 複合樹脂水性分散体をポリエチレンテレフタレートフィルム(ルミラーL-38T60[東レ(株)製])上に乾燥後の膜厚が25μmとなるようにバーコーターで塗布し、105℃で60分加熱して塗装物を作製した。JIS-K7136に準拠し、全光線透過率測定装置[商品名「haze-garddual」BYK gardner(株)製]を用いて塗装物のヘイズを測定した。
<Evaluation of coated objects>
[Haze]
The composite resin aqueous dispersion was applied onto a polyethylene terephthalate film (Lumirror L-38T60 [manufactured by Toray Industries, Inc.]) with a bar coater so that the film thickness after drying would be 25 μm, and heated at 105 ° C. for 60 minutes for coating. I made things. Based on JIS-K7136, the haze of the coated article was measured using a total light transmittance measuring device [trade name "haze-gardual" BYK gardner Co., Ltd.].
[光沢度]
 複合樹脂水性分散体をポリエチレンテレフタレートフィルム(ルミラーL-38T60[東レ(株)製])上に乾燥後の膜厚が25μmとなるようにバーコーターで塗布し、105℃で60分加熱して塗装物を作製した。塗装面の60°光沢度を光沢度計(BYK社製)により測定した。
[Glossiness]
The composite resin aqueous dispersion was applied onto a polyethylene terephthalate film (Lumirror L-38T60 [manufactured by Toray Industries, Inc.]) with a bar coater so that the film thickness after drying would be 25 μm, and heated at 105 ° C. for 60 minutes for coating. I made things. The 60 ° glossiness of the coated surface was measured by a gloss meter (manufactured by BYK).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、ゲル分率が35~100%、破断伸度が200~1,000%及び25℃における貯蔵弾性率E’が100~3,000MPaであることにより、エタノール膨潤率が113%以下と低く塗料やインクにした際の貯蔵安定性に優れていることが分かる。また、折り曲げ試験の結果も優れており、柔軟性及び可とう性に優れていることがわかる。また、破断強度が31MPa以上と高く、ケーニッヒ硬度が15回以上と高く、硬度及び機械的強度に優れていることがわかる。また、ヘイズが1.1%以下と小さく、光沢度も78以上と大きく、透明性及び光沢性に優れていることがわかる。 From the results of Table 3, the gel fraction is 35 to 100%, the elongation at break is 200 to 1,000%, and the storage elastic modulus E ′ at 25 ° C. is 100 to 3,000 MPa, so that the ethanol swelling ratio is 113. It can be seen that the storage stability is low when it is used as a paint or ink, which is as low as 0.1% or less. Moreover, the result of the bending test is also excellent, and it is understood that it is excellent in flexibility and flexibility. Further, it can be seen that the breaking strength is as high as 31 MPa or more and the König hardness is as high as 15 times or more, which is excellent in hardness and mechanical strength. Further, it can be seen that the haze is as small as 1.1% or less and the glossiness is as large as 78 or more, which is excellent in transparency and glossiness.
 本発明の複合樹脂水性分散体及び本発明の製造方法で得られる複合樹脂水性分散体は品質が一定しており、また、貯蔵安定性、硬度、可とう性、機械的強度、耐水性、耐溶剤性、透明度及び光沢性等の性能に優れるため、塗料、コーティング剤(防錆コーティング剤、防水コーティング剤、撥水コーティング剤及び防汚コーティング剤等)、接着剤、繊維加工処理剤(顔料捺染用バインダー、不織布用バインダー、補強繊維用集束剤、抗菌剤用バインダー及び人工皮革・合成皮革用原料等)、紙処理剤やインキ等に幅広く使用することができ、特に水性塗料、水性防錆コーティング剤、水性繊維加工処理剤及び水性接着剤用の複合樹脂水性分散体として好適に使用することができる。 The composite resin aqueous dispersion of the present invention and the composite resin aqueous dispersion obtained by the production method of the present invention have constant quality, and storage stability, hardness, flexibility, mechanical strength, water resistance, and resistance Due to its excellent properties such as solvent resistance, transparency and gloss, paints, coating agents (anti-rust coating agents, waterproof coating agents, water repellent coating agents, anti-fouling coating agents, etc.), adhesives, textile processing agents (pigment printing) Binders, non-woven fabric binders, reinforcing fiber sizing agents, antibacterial agent binders, artificial leather / synthetic leather raw materials, etc.), paper treatment agents, inks, etc., especially water-based paints, water-based anticorrosion coatings It can be suitably used as a composite resin aqueous dispersion for an agent, an aqueous fiber processing agent and an aqueous adhesive.

Claims (13)

  1.  ポリウレタン樹脂(U)とビニル系樹脂(V)とを同一粒子内に含む複合樹脂粒子を含有する複合樹脂水性分散体であって、ポリウレタン樹脂(U)が活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の反応物であり、活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の内の少なくとも1種が3官能以上の化合物を含有し、複合樹脂水性分散体を乾燥させた皮膜が以下の(1)~(3)を全て満足するものである複合樹脂水性分散体:
    (1)N,N-ジメチルホルムアミドに対するゲル分率が35~100%である;
    (2)破断伸度が200~1,000%である;
    (3)25℃における貯蔵弾性率E’が100~3,000MPaである。
    A composite resin aqueous dispersion containing composite resin particles containing a polyurethane resin (U) and a vinyl resin (V) in the same particle, wherein the polyurethane resin (U) is an active hydrogen component (A) and an organic isocyanate component. (B) and a chain extender (E), wherein at least one of the active hydrogen component (A), the organic isocyanate component (B) and the chain extender (E) contains a trifunctional or higher functional compound. Then, the film obtained by drying the composite resin aqueous dispersion satisfies all of the following (1) to (3):
    (1) The gel fraction relative to N, N-dimethylformamide is 35 to 100%;
    (2) The breaking elongation is 200 to 1,000%;
    (3) The storage elastic modulus E ′ at 25 ° C. is 100 to 3,000 MPa.
  2.  活性水素成分(A)における3官能以上の化合物が、炭素数3~20の3価アルコール、炭素数5~20の4~8価アルコール及び/又は糖類である請求項1に記載の複合樹脂水性分散体。 The composite resin aqueous solution according to claim 1, wherein the tri- or more-functional compound in the active hydrogen component (A) is a trihydric alcohol having 3 to 20 carbon atoms, a 4 to 8 alcohol having 5 to 20 carbon atoms and / or a saccharide. Dispersion.
  3.  有機イソシアネート成分(B)における3官能以上の化合物が、ヘキサメチレンジイソシアネートのイソシアヌレート体及び/又はイソホロンジイソシアネートのイソシアヌレート体である請求項1又は2に記載の複合樹脂水性分散体。 The composite resin aqueous dispersion according to claim 1 or 2, wherein the trifunctional or higher functional compound in the organic isocyanate component (B) is an isocyanurate body of hexamethylene diisocyanate and / or an isocyanurate body of isophorone diisocyanate.
  4.  鎖伸長剤(E)における3官能以上の化合物が、アルキレン基の炭素数が2~6で窒素原子の数が3~7であるポリアルキレンポリアミンである請求項1~3のいずれか1項に記載の複合樹脂水性分散体。 The tri- or higher-functional compound in the chain extender (E) is a polyalkylene polyamine having an alkylene group having 2 to 6 carbon atoms and 3 to 7 nitrogen atoms. The composite resin aqueous dispersion described.
  5.  複合樹脂水性分散体中のポリウレタン樹脂(U)とビニル系樹脂(V)との重量比[(U):(V)]が、30:70~70:30である請求項1~4のいずれか1項に記載の複合樹脂水性分散体。 5. The weight ratio [(U) :( V)] of the polyurethane resin (U) and the vinyl resin (V) in the aqueous composite resin dispersion is 30:70 to 70:30. The composite resin aqueous dispersion according to item 1.
  6.  ビニル系樹脂(V)を構成する単量体のうち、2官能以上のビニル系モノマー(M2)及びウレタン樹脂(U)と共有結合している水酸基、アミノ基、イミノ基又はチオール基を有する単官能のビニル系モノマー(M12’)の合計[(M2)+(M12’)]が、ビニル系樹脂(V)を構成する単量体の合計重量に基づいて、4重量%以下である請求項1~5のいずれか1項に記載の複合樹脂水性分散体。 Monomers having a hydroxyl group, an amino group, an imino group or a thiol group covalently bonded to a bifunctional or higher functional vinyl monomer (M2) and a urethane resin (U) among the monomers constituting the vinyl resin (V). The total [(M2) + (M12 ')] of the functional vinyl monomers (M12') is 4% by weight or less based on the total weight of the monomers constituting the vinyl resin (V). 6. The composite resin aqueous dispersion according to any one of 1 to 5.
  7.  ポリウレタン樹脂(U)とビニル系樹脂(V)とを同一粒子内に含む複合樹脂粒子を含有する複合樹脂水性分散体の製造方法であって、下記工程(1)~(6)を含み、活性水素成分(A)、有機イソシアネート成分(B)及び鎖伸長剤(E)の内の少なくとも1種が3官能以上の化合物を含有する複合樹脂水性分散体の製造方法。
    工程(1):水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)の存在下で、活性水素成分(A)及び有機イソシアネート成分(B)を反応させて末端にイソシアネート基を有するウレタンプレポリマー(P)を製造する工程;
    工程(2):工程(1)と下記工程(3)との間で実施される任意の工程であって、水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)を追加する工程;
    工程(3):工程(1)で得られたウレタンプレポリマー(P)の溶液又は工程(2)を実施した場合には工程(2)で得られたウレタンプレポリマー(P)の溶液を水性媒体に分散させて水性分散体(α)を得る工程;
    工程(4):水性分散体(α)中のウレタンプレポリマー(P)を鎖伸長剤(E)で伸長させる工程;
    工程(5):工程(4)と下記工程(6)との間で実施される任意の工程であって、単官能のビニル系モノマー(M1)を追加する工程;
    工程(6):水性分散体(α)中のビニル系モノマー(M11)又は工程(5)を実施した場合にはビニル系モノマー(M11)及び単官能のビニル系モノマー(M1)を重合させる工程。
    A method for producing an aqueous composite resin dispersion containing composite resin particles containing a polyurethane resin (U) and a vinyl resin (V) in the same particle, comprising the following steps (1) to (6): A method for producing a composite resin aqueous dispersion, wherein at least one of a hydrogen component (A), an organic isocyanate component (B) and a chain extender (E) contains a trifunctional or higher functional compound.
    Step (1): reacting the active hydrogen component (A) and the organic isocyanate component (B) in the presence of a monofunctional vinyl-based monomer (M11) having no hydroxyl group, amino group, imino group or thiol group. To produce a urethane prepolymer (P) having an isocyanate group at the end;
    Step (2): an optional step carried out between the step (1) and the following step (3), which is a monofunctional vinyl-based monomer having no hydroxyl group, amino group, imino group or thiol group. A step of adding (M11);
    Step (3): The solution of the urethane prepolymer (P) obtained in the step (1) or the solution of the urethane prepolymer (P) obtained in the step (2) is aqueous when the step (2) is carried out. Dispersing in a medium to obtain an aqueous dispersion (α);
    Step (4): Step of extending the urethane prepolymer (P) in the aqueous dispersion (α) with a chain extender (E);
    Step (5): an optional step performed between the step (4) and the following step (6), in which a monofunctional vinyl-based monomer (M1) is added;
    Step (6): a step of polymerizing the vinyl-based monomer (M11) in the aqueous dispersion (α) or the vinyl-based monomer (M11) and the monofunctional vinyl-based monomer (M1) when the step (5) is performed. ..
  8.  活性水素成分(A)における3官能以上の化合物が、炭素数3~20の3価アルコール、炭素数5~20の4~8価アルコール及び/又は糖類である請求項7記載の製造方法。 The production method according to claim 7, wherein the trifunctional or higher functional compound in the active hydrogen component (A) is a trihydric alcohol having 3 to 20 carbon atoms, a 4 to 8hydric alcohol having 5 to 20 carbon atoms, and / or a saccharide.
  9.  有機イソシアネート成分(B)における3官能以上の化合物が、ヘキサメチレンジイソシアネートのイソシアヌレート体及び/又はイソホロンジイソシアネートのイソシアヌレート体である請求項7又は8に記載の製造方法。 The method according to claim 7 or 8, wherein the tri- or more-functional compound in the organic isocyanate component (B) is an isocyanurate body of hexamethylene diisocyanate and / or an isocyanurate body of isophorone diisocyanate.
  10.  鎖伸長剤(E)における3官能以上の化合物が、アルキレン基の炭素数が2~6で窒素原子の数が3~7であるポリアルキレンポリアミンである請求項7~9のいずれか1項に記載の製造方法。 10. The trifunctional or higher functional compound in the chain extender (E) is a polyalkylene polyamine having an alkylene group having 2 to 6 carbon atoms and 3 to 7 nitrogen atoms. The manufacturing method described.
  11.  工程(1)開始時の活性水素成分(A)及び有機イソシアネート成分(B)の合計重量と水酸基、アミノ基、イミノ基又はチオール基のいずれも有しない単官能のビニル系モノマー(M11)の重量比[{(A)+(B)}:(M11)]が、40:60~90:10である請求項7~10のいずれか1項に記載の製造方法。 Total weight of active hydrogen component (A) and organic isocyanate component (B) at the start of step (1) and weight of monofunctional vinyl monomer (M11) having no hydroxyl group, amino group, imino group or thiol group. The production method according to any one of claims 7 to 10, wherein the ratio [{(A) + (B)} :( M11)] is 40:60 to 90:10.
  12.  工程(1)をラジカル捕捉剤の存在下で行う請求項7~11のいずれか1項に記載の製造方法。 The production method according to any one of claims 7 to 11, wherein the step (1) is performed in the presence of a radical scavenger.
  13.  複合樹脂水性分散体中のポリウレタン樹脂(U)とビニル系樹脂(V)の重量比[(U):(V)]が、30:70~70:30である請求項7~12のいずれか1項に記載の製造方法。 13. The weight ratio [(U) :( V)] of the polyurethane resin (U) and the vinyl resin (V) in the composite resin aqueous dispersion is 30:70 to 70:30. The method according to item 1.
PCT/JP2019/045001 2018-11-21 2019-11-18 Aqueous composite resin dispersion and method for producing aqueous composite resin dispersion WO2020105569A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980076418.1A CN113166289B (en) 2018-11-21 2019-11-18 Composite resin aqueous dispersion and method for producing composite resin aqueous dispersion
JP2020558361A JP7266045B2 (en) 2018-11-21 2019-11-18 Composite resin aqueous dispersion and method for producing composite resin aqueous dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018218341 2018-11-21
JP2018-218341 2018-11-21

Publications (1)

Publication Number Publication Date
WO2020105569A1 true WO2020105569A1 (en) 2020-05-28

Family

ID=70774418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045001 WO2020105569A1 (en) 2018-11-21 2019-11-18 Aqueous composite resin dispersion and method for producing aqueous composite resin dispersion

Country Status (3)

Country Link
JP (1) JP7266045B2 (en)
CN (1) CN113166289B (en)
WO (1) WO2020105569A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045245A1 (en) * 2020-08-27 2022-03-03 三井化学株式会社 Polyurethane resin, synthetic leather, and ink
CN115536806A (en) * 2022-09-28 2022-12-30 江苏第二师范学院 Production process of aqueous polyurethane emulsion of coating film with ultrahigh stretching rate
US20230123404A1 (en) * 2021-10-15 2023-04-20 Epsitek LLC Materials with varying flexural modulus
WO2024024812A1 (en) * 2022-07-27 2024-02-01 三洋化成工業株式会社 Aqueous dispersion for moisture-permeable waterproof material, and method for producing same
WO2024024814A1 (en) * 2022-07-27 2024-02-01 サンノプコ株式会社 Aqueous dispersion and production method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644030A (en) * 1985-02-01 1987-02-17 Witco Corporation Aqueous polyurethane - polyolefin compositions
JPH01104651A (en) * 1987-09-14 1989-04-21 Polyvinil Chem Holland Bv Polymer aqueous dispersion
JP2014167036A (en) * 2013-02-28 2014-09-11 Chuo Rika Kogyo Corp Agglomerated particle and cosmetic using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5815845B2 (en) * 2012-03-29 2015-11-17 三洋化成工業株式会社 Vinyl resin and resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644030A (en) * 1985-02-01 1987-02-17 Witco Corporation Aqueous polyurethane - polyolefin compositions
JPH01104651A (en) * 1987-09-14 1989-04-21 Polyvinil Chem Holland Bv Polymer aqueous dispersion
JP2014167036A (en) * 2013-02-28 2014-09-11 Chuo Rika Kogyo Corp Agglomerated particle and cosmetic using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045245A1 (en) * 2020-08-27 2022-03-03 三井化学株式会社 Polyurethane resin, synthetic leather, and ink
US20230123404A1 (en) * 2021-10-15 2023-04-20 Epsitek LLC Materials with varying flexural modulus
WO2024024812A1 (en) * 2022-07-27 2024-02-01 三洋化成工業株式会社 Aqueous dispersion for moisture-permeable waterproof material, and method for producing same
WO2024024814A1 (en) * 2022-07-27 2024-02-01 サンノプコ株式会社 Aqueous dispersion and production method therefor
CN115536806A (en) * 2022-09-28 2022-12-30 江苏第二师范学院 Production process of aqueous polyurethane emulsion of coating film with ultrahigh stretching rate
CN115536806B (en) * 2022-09-28 2024-02-09 江苏第二师范学院 Production process of aqueous polyurethane emulsion of ultrahigh-elongation coating film

Also Published As

Publication number Publication date
CN113166289A (en) 2021-07-23
JPWO2020105569A1 (en) 2021-11-11
CN113166289B (en) 2023-04-07
JP7266045B2 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
JP7266045B2 (en) Composite resin aqueous dispersion and method for producing composite resin aqueous dispersion
JP5815845B2 (en) Vinyl resin and resin composition
CA2800120C (en) Radiation curable aqueous compositions
JP2015086366A (en) Composite resin particle and composite resin particle aqueous dispersion
JPWO2017115804A1 (en) Water-based coating composition and coating film forming method
JPWO2013191104A1 (en) Water-based paint composition and coating method using the same
CN108884349A (en) Bottom-coating composition and coating film-forming methods
JP3885279B2 (en) Water-based curable resin composition, paint and adhesive
JP6600508B2 (en) Polyisocyanate composition, coating composition, water-based coating composition, and coating substrate
JP6522303B2 (en) Composite resin particle and composite resin particle aqueous dispersion
JP2007016193A (en) Aqueous crosslinkable coating composition
JP6544612B2 (en) Aqueous resin composition, coating agent and article
JP3808047B2 (en) Water dispersion powder slurry paint
JP2007186690A (en) Resin composition for powder coating
JP6411552B2 (en) Polyisocyanate composition and method for producing the same, coating composition, water-based coating composition, and coating substrate
EP3655486B1 (en) Aqueous crosslinkable coating composition
JP6409626B2 (en) COATING AGENT FOR GLASS AND GLASS LAMINATE
JP3068081B1 (en) Aqueous resin composition
JP2007091782A (en) Cross-linkable water-based coating composition
JP6965093B2 (en) Resin composition for inkjet ink Aqueous dispersion
JP4832775B2 (en) Water dispersion slurry paint
JP2004263145A (en) Water-dispersed powder slurry coating material
KR20210144830A (en) Organic resins having tertiary amine and carboxylic acid groups for two-component crosslinkable compositions, and aqueous dispersions comprising same
Wu et al. Influence of an oligomer polyol and monomers on the structure and properties of core–shell polyurethane–poly (n‐butyl acrylate‐co‐styrene) hybrid emulsions
JP2003226735A (en) Water-dispersion of acrylic-urethane copolymer and paint and adhesive containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886500

Country of ref document: EP

Kind code of ref document: A1