WO2019065533A1 - Cutting device for glass substrate, cutting method, program, and storage medium - Google Patents

Cutting device for glass substrate, cutting method, program, and storage medium Download PDF

Info

Publication number
WO2019065533A1
WO2019065533A1 PCT/JP2018/035188 JP2018035188W WO2019065533A1 WO 2019065533 A1 WO2019065533 A1 WO 2019065533A1 JP 2018035188 W JP2018035188 W JP 2018035188W WO 2019065533 A1 WO2019065533 A1 WO 2019065533A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
light
glass substrate
spot
lens
Prior art date
Application number
PCT/JP2018/035188
Other languages
French (fr)
Japanese (ja)
Inventor
淳史 井村
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Priority to JP2019545077A priority Critical patent/JPWO2019065533A1/en
Priority to CN201880061130.2A priority patent/CN111108072B/en
Priority to KR1020207003332A priority patent/KR20200058380A/en
Publication of WO2019065533A1 publication Critical patent/WO2019065533A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/10Glass-cutting tools, e.g. scoring tools
    • C03B33/102Glass-cutting tools, e.g. scoring tools involving a focussed radiation beam, e.g. lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock

Definitions

  • the present invention relates to a glass substrate cutting apparatus, a cutting method, a program that causes a computer to execute the cutting method, and a storage medium that stores the program.
  • a cutting device which generates a cutting line by scanning a laser beam along the cutting direction of the glass substrate, and cuts the glass substrate along the cutting line (for example, Patent Document 1).
  • This device can cut a large glass substrate relatively quickly.
  • the laser beam when cutting the glass substrate, only the laser beam is reciprocated on the glass substrate, and no other control is performed on the laser beam irradiated to the glass substrate.
  • the scanning range of the laser light on the glass substrate is considered to be unchanged regardless of whether or not the cutting line is formed on the glass substrate.
  • the laser beam was continued to be radiated wastefully to the portion where the cutting line was formed by the irradiation of the sufficient laser beam.
  • An object of the present invention is to efficiently irradiate the light to a portion where the cutting line of the glass substrate is desired to be formed, in an apparatus for cutting the glass substrate by irradiating the light.
  • An apparatus for cutting a glass substrate includes a light generating device and an optical scanning device.
  • the light generator outputs cutting light for cutting the glass substrate.
  • the light scanning device is a device that reciprocates the spot of the cutting light along the cutting direction of the glass substrate.
  • the optical scanning device limits the range of reciprocating movement of the spot of the cutting light to the uncut area where the cutting line of the glass substrate is not formed.
  • the light scanning device performs an area of reciprocation of the spot of the cutting light for cutting the glass substrate on the glass substrate, an uncut area where the cutting line of the glass substrate is not formed. Restricted to Thereby, cutting light can be irradiated only to the field which should form a cutting line of a glass substrate. As a result, the cutting light generated from the light generator can be efficiently applied to the area where the cutting line of the glass substrate is to be formed without wasting the energy of the cutting light.
  • the glass substrate cutting device may further include a lens device.
  • the lens arrangement adjusts the size of the spot of the cutting light on the glass substrate. Thereby, the cutting light which has the optimal energy density which can form a cutting line efficiently can be efficiently irradiated to the area
  • the lens apparatus may change the size of the spot of the cutting light on the glass substrate according to the length in the cutting direction of the uncut area. Therefore, the cutting light which has the optimal energy density which can form a cutting line efficiently can be efficiently irradiated to the area
  • the lens apparatus may increase the size of the spot of the cutting light as the length of the uncut area in the cutting direction decreases, thereby cutting the uncut area in which the length in the cutting direction decreases. It can suppress that light is irradiated by excess energy density.
  • the glass substrate cutting device may further include a light correction device.
  • the light correction device moves the spot of the cutting light in a correction direction perpendicular to the cutting direction.
  • the spot of the cutting light can be reciprocated along the appropriate cutting direction by moving the spot of the cutting light whose movement direction is deviated from the cutting direction in the correction direction.
  • the optical scanning device may narrow the range of reciprocating movement of the spot of the cutting light according to the formation of the cutting line. Thereby, the cutting light can be efficiently irradiated to the uncut region without wasting the energy of the cutting light.
  • the cutting method according to another aspect of the present invention is a method of cutting a glass substrate by reciprocating a spot of cutting light for cutting the glass substrate along the cutting direction of the glass substrate.
  • the cutting method comprises the following steps. ⁇ ⁇ ⁇ ⁇ Step of outputting cutting light. ⁇ ⁇ ⁇ ⁇ Limiting the range of reciprocation of the spot of the cutting light to the uncut area where the cutting line of the glass substrate is not formed.
  • the cutting light can be irradiated only to the region where the cutting line of the glass substrate is to be formed, and the energy of the cutting light can be efficiently irradiated to the glass substrate without wasting it.
  • the cutting light generated from the light generator can be efficiently applied to the area where the cutting line of the glass substrate is to be formed without wasting the energy of the cutting light.
  • FIG. 7 is a view showing an example of a moving method of the cutting light by the light scanning device.
  • FIG. 8 is a view showing another example of the moving method of the cutting light by the light scanning device.
  • FIG. 7 is a view schematically showing how the optical path length in the x-axis direction of the cutting light L changes. The side view when the cutting device is seen from the x-axis direction.
  • FIG. 1 is a top view of the cutting device according to the first embodiment.
  • the cutting apparatus 100 is configured to cut the glass substrate G along the cutting direction by irradiating light having a predetermined spot size along the cutting direction of the glass substrate G (hereinafter, referred to as cutting light L). It is an apparatus which forms a crack of line C. The glass substrate G is cut by the crack of the cutting line C.
  • the glass substrate G examples include soda glass and alkali-free glass used for displays and instrument panels, but the type is not limited thereto.
  • the glass substrate G is cut by the cutting device 100 while being transferred by the substrate transfer device 10. Therefore, when cutting the glass substrate G, the cutting apparatus 100 of the present embodiment moves in the same direction as the conveyance direction of the glass substrate G at the same speed as the conveyance speed of the glass substrate G.
  • the conveyance direction of the glass substrate G is, for example, the negative direction of the y-axis in FIG. 1 (in the downward direction of the paper surface in FIG. 1).
  • the cutting direction of the glass substrate G is a direction parallel to the x-axis direction as shown in FIG. That is, the cutting device 100 of the present embodiment is applied to, for example, crossing (cutting in the width direction of the glass substrate G) the glass substrate G manufactured by the down flow.
  • the cutting device 100 includes a light generating device 1, a light scanning device 3, a lens device 5, and a light correcting device 7.
  • the cutting light L generated by the light generating device 1 is transmitted to the lens device 5, the light scanning device 3 and the light correcting device.
  • the spot S of the cutting light L is formed on the surface of the glass substrate G by irradiating the glass substrate G through 7 and the spot S of the cutting light L is moved along the cutting direction of the glass substrate G.
  • the light generator 1 is a device that generates the cutting light L described above.
  • a light generation device for example, a light source capable of outputting a cutting light L having an energy enough to form a crack of the cutting line C capable of cutting the glass substrate G to the glass substrate G can be used.
  • a light source for example, there is a CO 2 laser oscillator.
  • the light scanning device 3 reciprocates the spot S of the cutting light L output from the light generating device 1 along the cutting direction.
  • the light scanning device 3 of the present embodiment is a device having a mirror that reflects the cutting light L, and a rotation mechanism that rotates the mirror about the z axis.
  • the above-mentioned rotation mechanism is, for example, a motor in which an output rotation axis is connected to an axis extending in the z-axis direction from the mirror.
  • there is a galvano scanner for example.
  • the above-described light scanning device 3 is provided on the light path of the cutting light L. Therefore, as shown in FIG. 1, the cutting light L is reflected by the mirror of the light scanning device 3.
  • the light scanning device 3 rotates the above mirror about the z axis to change the incident angle of the cutting light L on the mirror (that is, the reflection angle of the cutting light L at the mirror), thereby the incident angle
  • the spot S of the cutting light L can be irradiated to the position on the glass substrate G determined by the above.
  • the incident angle of the cutting light L on the mirror ie, the cutting light L on the mirror The reflection angle increases.
  • the cutting light L is incident on the negative direction (left direction of the paper surface of FIG. 2A) of the x axis of the mirror of the light correction device 7.
  • FIG. 2A is a diagram showing an example of a moving method of the cutting light by the light scanning device.
  • FIG. 2B is a view showing another example of the method of moving the cutting light by the light scanning device.
  • the spot S of the cutting light L on the glass substrate G can be obtained by rotating the mirror of the light scanning device 3 right and left at high speed around the z axis within a predetermined angle range using the above principle. It can reciprocate at high speed on the reciprocating movement locus (FIG. 1) of the cutting light along the cutting direction.
  • the lens device 5 is a device that adjusts the focal position of the cutting light L on the glass substrate G side to form a spot S of the cutting light L on the glass substrate G.
  • the lens device 5 has a first lens 51 and a second lens 53.
  • the first lens 51 is a lens that expands the diameter of the cutting light L output from the light generating device 1. As shown in FIG. 1, the light generator 1 of the present embodiment outputs the cutting light L in the x-axis direction. Therefore, the first lens 51 is movable along the x-axis direction in which the cutting light L propagates.
  • the first lens 51 is, for example, a diverging lens.
  • the second lens 53 receives the cutting light L that has passed through the first lens 51, and focuses the cutting light L at a predetermined position on the optical path on the opposite side of the first lens 51.
  • the lens device 5 having the first lens 51 and the second lens 53 described above changes the position of the first lens 51 in the x-axis direction, and the cutting light L by the first lens 51 is changed.
  • the focal position of the cutting light L on the opposite side to the first lens 51 with respect to the second lens 53 is changed by changing the focal position of the lens.
  • the first lens 51 is moved in the negative direction of the x axis to move the first lens 51 closer to the second lens 53, and the focal position of the cutting light L by the first lens 51 is set to the second lens 53.
  • the cutting light L can be focused at a position farther from the first lens 51 on the optical path opposite to the first lens 51.
  • the first lens 51 is moved away from the second lens 53, and the focal position of the cutting light L by the first lens 51 is moved away from the second lens 53.
  • the cutting light L can be focused at a position closer to the second lens 53 on the optical path opposite to the first lens 51.
  • the optical path length of the cutting light L in the x-axis direction from the lens device 5 to the surface of the glass substrate G is perpendicular to the z-axis direction (height direction) from the light scanning device 3 to the glass substrate G. Is lowered at the position in the x-axis direction of the point where the perpendicular intersects the glass substrate G. Moreover, the optical path length in the x-axis direction of the cutting light L becomes larger as it is closer to the end of the glass substrate G in the x-axis direction.
  • FIG. 3 is a view schematically showing how the optical path length in the x-axis direction of the cutting light L changes, and the light correction device 7 is omitted for convenience of explanation.
  • the controller 9 moves the first lens 51 in accordance with the position of the spot S of the cutting light L on the glass substrate G to adjust the focal position of the cutting light L. .
  • the size of the spot S of the cutting light L on the glass substrate G can be always optimized regardless of the position of the spot S of the cutting light L on the glass substrate G.
  • the light correction device 7 is a device having a mirror that reflects the cutting light L, and a rotation mechanism that rotates the mirror about the x axis.
  • the rotation mechanism described above is, for example, a motor in which an output rotation shaft is connected to an axis extending in the x-axis direction from the mirror.
  • a galvano scanner can be used as such an apparatus.
  • the light correction device 7 is disposed at the same position as the arrangement position of the light scanning device 3 in the x-axis direction in the x-axis direction. Also in the z-axis direction (height direction), it is disposed at substantially the same position as the light scanning device 3. On the other hand, in the y-axis direction, it is disposed at a position separated from the light scanning device 3 by a predetermined distance. Furthermore, as shown in FIG. 4, the mirror of the light correction device 7 is inclined by a predetermined angle so that the normal of the reflecting surface is directed in the negative direction (downward direction) in the z-axis direction. FIG. 4 is a side view of the cutting device as viewed from the x-axis direction.
  • the light correction device 7 thus arranged reflects the cutting light L incident from the light scanning device 3 by the mirror, and causes the spot S of the cutting light L to reach the glass substrate G.
  • the mirror of the light correction device 7 is rotatable around the x axis. Therefore, the light correction device 7 can move the spot S of the cutting light L in the y-axis direction by changing the rotation angle of the mirror about the x-axis.
  • the y-axis direction is perpendicular to the x-axis direction which is the cutting direction of the glass substrate G.
  • the y-axis direction of the present embodiment will be referred to as the “correction direction”.
  • FIG. 5A is a view showing an example of the movement of the cutting light by the light correction device.
  • FIG. 5B is a view showing another example of the movement of the cutting light by the light correction device.
  • the cutting device 100 includes a controller 9.
  • the controller 9 is a computer having a processor (for example, CPU), a storage device (for example, ROM, RAM, HDD, SSD, etc.), and various interfaces (for example, A / D converter, D / A converter, communication interface, etc.) It is a system.
  • the controller 9 performs various control operations by executing the program stored in the storage unit (corresponding to a part or all of the storage area of the storage device).
  • the controller 9 may be configured by a single processor, but may be configured by a plurality of independent processors for each control.
  • the controller 9 can control the light generation device 1, the light scanning device 3, the first lens 51 of the lens device 5, and the light correction device 7. Further, the controller 9 may control movement of the substrate transfer apparatus 10 and the cutting apparatus 100.
  • controller 9 is connected with sensors and switches for detecting the state of each device, and an information input device. Further, although not shown, a sensor and / or a camera for detecting the length of the crack of the cutting line C formed in the glass substrate G may be connected to the controller 9.
  • the cutting device 100 can move the spot S of the cutting light L generated from the light generating device 1 in the three axial directions of the x axis, the y axis, and the z axis. That is, the cutting device 100 can cause the spot S of the cutting light L forming the crack of the cutting line C on the glass substrate G to reach a desired position on the glass substrate G with a desired size.
  • a crack called “initial crack” is formed as a start point of cutting of the glass substrate G by the cutting light L.
  • the initial crack is physically formed, for example, using a cutter such as a diamond cutter or a ceramic cutter.
  • the initial crack can also be formed by intensively irradiating the spot S of the cutting light L with high energy density on the side of the end in the cutting direction of the glass substrate G on which the initial crack is to be formed.
  • the controller 9 controls the first lens 51 so that the cutting light L focuses in the vicinity of the end portion of the glass substrate G before the crack of the cutting line C is fully formed. Adjust the position and then control the light scanning device 3 to reciprocate the spot S of the cutting light L in a narrow range in the x-axis direction near the end of the glass substrate G, or Stop at the end of the substrate G.
  • the spot of the cutting light L is from the end where the initial crack is formed on the reciprocating movement trajectory parallel to the cutting direction (x-axis direction) to the opposite end
  • the heat is moved back and forth to heat the glass substrate G, and a thermal stress is generated on the glass substrate G to propagate a crack from the initial crack to form a crack of the cutting line C in the glass substrate G.
  • the range of the reciprocating movement of the spot S of the cutting light L is narrowed in a range in which the crack of the cutting line C is not formed.
  • the range of reciprocation of the spot S of the cutting light L may be determined by detecting the range in which the crack of the cutting line C is formed, or the speed at which the crack of the cutting line C develops is measured in advance by experiment.
  • the cutting apparatus 100 may be operated so as to gradually narrow the range of the reciprocation of the spot S of the cutting light L based on the measurement result.
  • the controller 9 grasps the length of the crack of the cutting line C currently formed in the glass substrate G.
  • the crack length of the cutting line C is, for example, after photographing the glass substrate G in which the crack of the cutting line C is being formed with a camera or the like, the crack of the cutting line C is identified by image recognition or the like, and image processing etc. It can grasp by measuring the length of the crack of cutting line C by this.
  • the controller 9 uses, for example, an optical sensor to measure the intensity of light having passed through the crack of the cutting line C (where the glass substrate G is not present) and the intensity of light having passed through the glass substrate G.
  • the crack length of the cutting line C may be grasped based on the difference of.
  • the crack formation process of the cutting line C by the cutting device 100 is grasped in advance by simulation or experiment, and the elapsed time from the start of the crack formation of the cutting line C and the cutting line C
  • the relationship with the crack (crack growth rate) is calculated, and from the elapsed time since the controller 9 started reciprocating movement of the spot S of the cutting light L and the above relationship (ie, crack growth rate)
  • the length of the crack of the formed cutting line C may be calculated.
  • the controller 9 After grasping the current length of the crack of the formed cutting line C, the controller 9 determines the range in which the spot S of the cutting light L is reciprocated on the reciprocating movement trajectory.
  • the controller 9 detects the spot of the cutting light L from the x-coordinate value of the end of the glass substrate G on the side where the initial crack is not formed to the x-coordinate value of the end of the crack of the cutting line C formed. It is determined as the range of reciprocating movement in the cutting direction (x-axis direction) of S. That is, the controller 9 sets the range of the reciprocation of the spot S of the cutting light L as a range in which the crack of the cutting line C of the glass substrate G is not formed (referred to as an uncut area).
  • the x-coordinate value of the end of the crack of the formed cutting line C is, for example, the x-coordinate value of the side of the glass substrate G on which the initial crack is formed, and the current length of the crack calculated above. It can be calculated as the difference between
  • the range in which the spot S of the cutting light L reciprocates may overlap with a part of the crack of the cutting line C already formed. That is, the controller 9 may make the range for reciprocating the spot S of the cutting light L slightly larger than the length of the uncut area in the x-axis direction. Thereby, the cutting light L can be reliably irradiated to the uncut area in which the crack of the cutting line C is not formed.
  • the controller 9 calculates the rotation angle range of the mirror of the optical scanning device 3 from the x-coordinate values of the both ends, and the rotation angle range Output control signal to the light scanning device 3 to reverse the mirror forward and reverse. Thereby, the spot S of the cutting light L reciprocates along the cutting direction in the uncut area.
  • the crack length of the cutting line C, the determination of the reciprocating movement range of the spot S of the cutting light L, and the change of the reciprocating movement range of the spot S of the cutting light L are described above. Repeat until almost the entire area of G in the x-axis direction (width direction).
  • the controller 9 sets the range of reciprocating movement of the spot S of the cutting light L according to the formation of the crack of the cutting line C from L1 to L4 (L1> It can be narrowed to L2> L3> L4). That is, the range of reciprocating movement of the cutting light L on the glass substrate G can be limited to only the uncut region. As a result, the cutting light L generated from the light generation device 1 can be efficiently concentrated on the area of the cutting line C of the glass substrate G where the crack should be formed, without wasting the energy of the cutting light L.
  • FIG. 6: is a figure which shows typically the irradiation method of the cutting light to a glass substrate by the cutting device which concerns on 1st Embodiment.
  • the controller 9 reciprocates the spot S of the cutting light L at a constant speed on the glass substrate G by rotating the mirror of the light scanning device 3 at a fixed rotation speed. Therefore, by narrowing the range of reciprocating movement of the spot S of the cutting light L in accordance with the formation of the crack of the cutting line C, it is possible to increase the passing frequency of the spot S of the cutting light L at a predetermined position in the uncut area. That is, as the uncut region becomes narrower, the cutting light L can be irradiated to the surface of the glass substrate G at a higher energy density.
  • the cutting apparatus 100 particularly starts cutting the glass substrate G because the surface of the glass substrate G can be irradiated with the cutting light L at a higher energy density as the uncut region becomes narrower. As time passes from the point of time, the growth rate of the crack in the cutting line C can be increased. As a result, even if a crack of the cutting line C is formed, the glass substrate G can be cut in a shorter time as compared with the case where the whole area in the width direction of the glass substrate is irradiated with the cutting light.
  • the controller 9 changes the size of the spot S of the cutting light L on the glass substrate G according to the length of the uncut area in the cutting direction (x-axis direction). The lens 51 is moved.
  • the controller 9 sets the size of the spot S of the cutting light L constant regardless of the position of the spot S in the x-axis direction, but does not cut it.
  • the position of the first lens 51 so that the size of the spot S of the cutting light L is increased from S1 to S4 (S1 ⁇ S2 ⁇ S3 ⁇ S4) as the length in the cutting direction of the region decreases from L1 to L4 Adjust the Thereby, it is possible to suppress the irradiation of the cutting light L with an excessive energy density to the uncut area in which the length in the cutting direction is shortened, and to prevent the glass substrate G from being unintentionally damaged. .
  • the light correction device 7 included in the cutting apparatus 100 according to the first embodiment described above reaches the spot S of the cutting light L on the surface of the glass substrate G in the step of cutting the glass substrate G. It was only However, as described in the first embodiment, the light correction device 7 can move the spot S of the cutting light L in the y-axis direction perpendicular to the forming direction (cutting direction) of the crack of the cutting line C.
  • the mirror of the light scanning device 3 is reversed in a predetermined angle range and / or the position of the first lens 51 is adjusted to cut the spot S of the cutting light L on the glass substrate G
  • the spot S of the cutting light L may deviate from the original reciprocating movement trajectory as shown in FIG.
  • the locus of the reciprocating movement of the spot S of the cutting light L is deviated in the y-axis direction from the original reciprocating locus.
  • FIG. 7 is a view showing an example of a locus on the glass substrate of the spot S of the cutting light deviated from the original reciprocal movement locus.
  • the deviation of the locus is caused by the installation situation of the light scanning device 3 and / or the lens device 5, an error in the structure, etc. and can be resolved only by adjusting the light scanning device 3 and / or the lens device 5. It is difficult or takes a lot of time to adjust.
  • the controller 9 determines the amount of deviation between the original reciprocating movement trajectory and the actual trajectory when the spot S of the cutting light L reciprocates. In response, the spot S of the cutting light L is moved in the correction direction to correct the deviation of the trajectory.
  • the deviation of the trajectory of the spot S of the cutting light L is corrected as follows.
  • the mirror of the light scanning device 3 is The position of the first lens 51 is adjusted while rotating forward and reverse in a predetermined angle range, and the spot S of the cutting light L is grasped by actually reciprocating in the cutting direction.
  • the x coordinate value of the spot S of the cutting light L and the y axis direction of the spot S of the cutting light L at each x coordinate value The relationship with the amount of deviation is calculated, for example, as a function of the x-coordinate value.
  • the controller 9 reciprocates the cutting light L in order to cut the glass substrate G, while using the current x-coordinate value of the spot S of the cutting light L and the above function, The amount of deviation of the spot S of the cutting light L at the x-coordinate value in the y-axis direction is calculated.
  • FIG. 8 is a view schematically showing an example of a method of correcting a trajectory of reciprocating movement of cutting light.
  • the deviation of the locus of the spot S of the cutting light L in the y-axis direction due to the installation situation of the light scanning device 3 and / or the lens device 5, a structural error, etc. Can be corrected.
  • the spot S of the cutting light L can be reciprocated along the appropriate cutting direction without adjusting the light scanning device 3 and / or the lens device 5.
  • An apparatus 100 for cutting a glass substrate G (an example of a glass substrate) according to the first embodiment and the second embodiment (an example of a cutting apparatus) includes a light generator 1 (an example of a light generator) and an optical scanning device 3 An example of an optical scanning device).
  • the light generator 1 outputs a cutting light L (an example of a cutting light) for cutting the glass substrate G.
  • the optical scanning device 3 is a device that reciprocates the spot S of cutting light L (an example of a spot of cutting light) along the cutting direction of the glass substrate G.
  • the light scanning device 3 limits the range of the reciprocation of the spot S of the cutting light L to the uncut area where the crack (an example of the cutting line) of the cutting line C of the glass substrate G is not formed.
  • a crack of the cutting line C of the glass substrate G is formed in the range of reciprocating movement of the spot S of the cutting light L for cutting the glass substrate G on the glass substrate G in the cutting apparatus 100. Not limited to uncut area.
  • the cutting light L can be irradiated only to the area
  • the cutting light L generated from the light generation device 1 can be efficiently irradiated to the area of the cutting line C of the glass substrate G where the crack should be formed without wasting the energy of the cutting light L.
  • the lens device 5 may be configured of one lens as long as the focal position of the cutting light L can be changed.
  • a lens capable of changing the focal position (focal length) of light it is possible to use, for example, an electric variable focus lens in which the focal length is variable by changing the curvature of the lens by an electric signal or the like.
  • the cutting device 100 is moved in the y-axis direction.
  • the present invention is not limited thereto.
  • the light correction device 7 may move the spot S of the cutting light L in the y-axis direction according to the conveyance of the glass substrate G in the y-axis direction. This eliminates the need to move the cutting device 100 in the y-axis direction.
  • the present invention can be widely applied to a glass substrate cutting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Laser Beam Processing (AREA)

Abstract

Provided is a device that cuts a glass substrate by projecting light, and projects the light efficiently onto a location on the glass substrate where a cut line is to be formed. A cutting device 100 for a glass substrate G is provided with a light projecting device 1 and a light scanning device 3. The light projecting device 1 outputs cutting light L that cuts the glass substrate G. The light scanning device 3 moves a spot S of the cutting light L back and forth along the cutting direction of the glass substrate G. The light scanning device 3 limits the range in which the spot S of the cutting light L moves back and forth to a non-cut region, which is a region of the glass substrate G where no cut line C crack has been formed yet.

Description

ガラス基板の切断装置、切断方法、プログラム、及び記憶媒体Glass substrate cutting apparatus, cutting method, program, and storage medium
 本発明は、ガラス基板の切断装置、切断方法、当該切断方法をコンピュータに実行させるプログラム、及び、当該プログラムを記憶する記憶媒体に関する。 The present invention relates to a glass substrate cutting apparatus, a cutting method, a program that causes a computer to execute the cutting method, and a storage medium that stores the program.
 従来、ガラス基板の切断方向に沿ってレーザ光を走査することにより切断ラインを発生させて、当該切断ラインにてガラス基板を切断する切断装置が知られている(例えば、特許文献1)。この装置により、大きなガラス基板を比較的高速に切断できる。 Conventionally, a cutting device is known which generates a cutting line by scanning a laser beam along the cutting direction of the glass substrate, and cuts the glass substrate along the cutting line (for example, Patent Document 1). This device can cut a large glass substrate relatively quickly.
特開平4-224091号公報Unexamined-Japanese-Patent No. 4-224091
 上記の装置においては、ガラス基板を切断する際に、レーザ光をガラス基板上にて往復移動させるのみで、ガラス基板に照射するレーザ光に関する他の制御は行われていなかった。例えば、上記の装置では、ガラス基板に切断ラインが形成されたか否かに関わらず、ガラス基板上におけるレーザ光の走査範囲は不変とされていた。その結果、十分なレーザ光が照射されて切断ラインが形成された箇所にも、無駄にレーザ光が照射され続けていた。 In the above-described apparatus, when cutting the glass substrate, only the laser beam is reciprocated on the glass substrate, and no other control is performed on the laser beam irradiated to the glass substrate. For example, in the above-described apparatus, the scanning range of the laser light on the glass substrate is considered to be unchanged regardless of whether or not the cutting line is formed on the glass substrate. As a result, the laser beam was continued to be radiated wastefully to the portion where the cutting line was formed by the irradiation of the sufficient laser beam.
 本発明の目的は、光を照射することによりガラス基板を切断する装置において、当該光をガラス基板の切断ラインを形成したい箇所に効率よく照射することにある。 An object of the present invention is to efficiently irradiate the light to a portion where the cutting line of the glass substrate is desired to be formed, in an apparatus for cutting the glass substrate by irradiating the light.
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
 本発明の一見地に係るガラス基板の切断装置は、光発生装置と、光走査装置と、を備える。光発生装置は、ガラス基板を切断する切断光を出力する。光走査装置は、切断光のスポットをガラス基板の切断方向に沿って往復移動させる装置である。光走査装置は、切断光のスポットの往復移動の範囲を、ガラス基板の切断ラインが形成されていない未切断領域に制限する。
Below, a plurality of modes are explained as a means to solve a subject. These aspects can be arbitrarily combined as needed.
An apparatus for cutting a glass substrate according to an aspect of the present invention includes a light generating device and an optical scanning device. The light generator outputs cutting light for cutting the glass substrate. The light scanning device is a device that reciprocates the spot of the cutting light along the cutting direction of the glass substrate. The optical scanning device limits the range of reciprocating movement of the spot of the cutting light to the uncut area where the cutting line of the glass substrate is not formed.
 上記のガラス基板の切断装置においては、光走査装置が、ガラス基板を切断するための切断光のスポットのガラス基板上における往復移動の範囲を、ガラス基板の切断ラインが形成されていない未切断領域に制限している。これにより、切断光を、ガラス基板の切断ラインを形成すべき領域にのみ照射できる。その結果、光発生装置から発生する切断光を、当該切断光のエネルギーを無駄にすることなく効率よくガラス基板の切断ラインを形成すべき領域に照射できる。 In the above-described glass substrate cutting apparatus, the light scanning device performs an area of reciprocation of the spot of the cutting light for cutting the glass substrate on the glass substrate, an uncut area where the cutting line of the glass substrate is not formed. Restricted to Thereby, cutting light can be irradiated only to the field which should form a cutting line of a glass substrate. As a result, the cutting light generated from the light generator can be efficiently applied to the area where the cutting line of the glass substrate is to be formed without wasting the energy of the cutting light.
 ガラス基板の切断装置は、レンズ装置をさらに備えてもよい。レンズ装置は、切断光のスポットのガラス基板上におけるサイズを調節する。これにより、切断ラインを効率よく形成できる最適なエネルギー密度を有する切断光を、ガラス基板の切断ラインを形成すべき領域に効率よく照射できる。 The glass substrate cutting device may further include a lens device. The lens arrangement adjusts the size of the spot of the cutting light on the glass substrate. Thereby, the cutting light which has the optimal energy density which can form a cutting line efficiently can be efficiently irradiated to the area | region which should form a cutting line of a glass substrate.
 レンズ装置は、ガラス基板上における切断光のスポットのサイズを、未切断領域の切断方向における長さに従って変化させてもよい。これにより、切断ラインを効率よく形成できる最適なエネルギー密度を有する切断光を、ガラス基板の切断ラインを形成すべき領域に効率よく照射できる。 The lens apparatus may change the size of the spot of the cutting light on the glass substrate according to the length in the cutting direction of the uncut area. Thereby, the cutting light which has the optimal energy density which can form a cutting line efficiently can be efficiently irradiated to the area | region which should form a cutting line of a glass substrate.
 レンズ装置は、未切断領域の切断方向における長さが短くなるに従って、切断光のスポットのサイズを大きくしてもよい、これにより、切断方向のおける長さが短くなった未切断領域に、切断光が過剰なエネルギー密度にて照射されることを抑制できる。 The lens apparatus may increase the size of the spot of the cutting light as the length of the uncut area in the cutting direction decreases, thereby cutting the uncut area in which the length in the cutting direction decreases. It can suppress that light is irradiated by excess energy density.
 ガラス基板の切断装置は、光補正装置をさらに備えてもよい。光補正装置は、切断光のスポットを切断方向とは垂直な補正方向に移動させる。これにより、その移動方向が切断方向から外れた切断光のスポットを補正方向に移動させることで、切断光のスポットを適切な切断方向に沿って往復移動できる。 The glass substrate cutting device may further include a light correction device. The light correction device moves the spot of the cutting light in a correction direction perpendicular to the cutting direction. Thus, the spot of the cutting light can be reciprocated along the appropriate cutting direction by moving the spot of the cutting light whose movement direction is deviated from the cutting direction in the correction direction.
 光走査装置は、切断ラインの形成に従って、切断光のスポットの往復移動の範囲を狭めてもよい。これにより、切断光のエネルギーを無駄にすることなく、未切断領域に効率よく切断光を照射できる。 The optical scanning device may narrow the range of reciprocating movement of the spot of the cutting light according to the formation of the cutting line. Thereby, the cutting light can be efficiently irradiated to the uncut region without wasting the energy of the cutting light.
 本発明の他の見地に係る切断方法は、ガラス基板を切断する切断光のスポットをガラス基板の切断方向に沿って往復移動させることにより、ガラス基板を切断する方法である。切断方法は、以下のステップを備える。
 ◎切断光を出力するステップ。
 ◎切断光のスポットの往復移動の範囲を、ガラス基板の切断ラインが形成されていない未切断領域に制限するステップ。
The cutting method according to another aspect of the present invention is a method of cutting a glass substrate by reciprocating a spot of cutting light for cutting the glass substrate along the cutting direction of the glass substrate. The cutting method comprises the following steps.
ス テ ッ プ Step of outputting cutting light.
ス テ ッ プ Limiting the range of reciprocation of the spot of the cutting light to the uncut area where the cutting line of the glass substrate is not formed.
 これにより、ガラス基板の切断ラインを形成すべき領域にのみ切断光を照射して、切断光のエネルギーを無駄にすることなく効率よくガラス基板に照射できる。 Thus, the cutting light can be irradiated only to the region where the cutting line of the glass substrate is to be formed, and the energy of the cutting light can be efficiently irradiated to the glass substrate without wasting it.
 光発生装置から発生する切断光を、当該切断光のエネルギーを無駄にすることなく効率よくガラス基板の切断ラインを形成すべき領域に照射できる。 The cutting light generated from the light generator can be efficiently applied to the area where the cutting line of the glass substrate is to be formed without wasting the energy of the cutting light.
第1実施形態に係る切断装置の上面図。The top view of the cutting device concerning a 1st embodiment. 光走査装置による切断光の移動方法の一例を示す図。FIG. 7 is a view showing an example of a moving method of the cutting light by the light scanning device. 光走査装置による切断光の移動方法の他の一例を示す図。FIG. 8 is a view showing another example of the moving method of the cutting light by the light scanning device. 切断光Lのx軸方向における光路長が変化する様子を模式的に示す図。FIG. 7 is a view schematically showing how the optical path length in the x-axis direction of the cutting light L changes. 切断装置をx軸方向から見たときの側面図。The side view when the cutting device is seen from the x-axis direction. 光補正装置による切断光の移動の一例を示す図。The figure which shows an example of a movement of the cutting light by a light correction apparatus. 光補正装置による切断光の移動の他の一例を示す図。The figure which shows another example of a movement of the cutting light by a light correction apparatus. 第1実施形態に係る切断装置による、ガラス基板への切断光の照射方法を模式的に示す図。The figure which shows typically the irradiation method of the cutting light to the glass substrate by the cutting device which concerns on 1st Embodiment. 本来の往復移動軌跡から外れた切断光のガラス基板上における軌跡の一例を示す図。The figure which shows an example of the locus | trajectory on the glass substrate of the cutting light which remove | deviated from the original reciprocating movement locus | trajectory. 切断光の往復移動の軌跡の補正方法の一例を模式的に示す図。The figure which shows typically an example of the correction method of the locus | trajectory of reciprocation of cutting light.
1.第1実施形態
(1)切断装置
 以下、本発明の一実施形態によるガラス基板Gの切断装置100の全体構成を、図1を用いて説明する。図1は、第1実施形態に係る切断装置の上面図である。切断装置100は、ガラス基板Gの切断方向に沿って所定のスポットサイズを有する光(以下、切断光Lと呼ぶことにする)を照射することで、当該切断方向に沿ってガラス基板Gに切断ラインCの亀裂を形成する装置である。ガラス基板Gは、当該切断ラインCの亀裂により切断される。
1. First Embodiment (1) Cutting Device Hereinafter, the entire configuration of a glass substrate G cutting device 100 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a top view of the cutting device according to the first embodiment. The cutting apparatus 100 is configured to cut the glass substrate G along the cutting direction by irradiating light having a predetermined spot size along the cutting direction of the glass substrate G (hereinafter, referred to as cutting light L). It is an apparatus which forms a crack of line C. The glass substrate G is cut by the crack of the cutting line C.
 ガラス基板Gは、例えば、ディスプレイやインパネ等に使われるソーダガラス、無アルカリガラスが挙げられるが、種類はこれらに限定されない。ガラス基板Gは、基板搬送装置10により搬送されながら、切断装置100により切断される。そのため、本実施形態の切断装置100は、ガラス基板Gを切断する時に、ガラス基板Gの搬送方向と同一方向に、ガラス基板Gの搬送速度と同一速度にて移動する。ガラス基板Gの搬送方向は、例えば、図1のy軸の負方向(図1においては、紙面の下方向)である。 Examples of the glass substrate G include soda glass and alkali-free glass used for displays and instrument panels, but the type is not limited thereto. The glass substrate G is cut by the cutting device 100 while being transferred by the substrate transfer device 10. Therefore, when cutting the glass substrate G, the cutting apparatus 100 of the present embodiment moves in the same direction as the conveyance direction of the glass substrate G at the same speed as the conveyance speed of the glass substrate G. The conveyance direction of the glass substrate G is, for example, the negative direction of the y-axis in FIG. 1 (in the downward direction of the paper surface in FIG. 1).
 また、本実施形態において、ガラス基板Gの切断方向は、図1に示すように、x軸方向と平行な方向である。すなわち、本実施形態の切断装置100は、例えば、ダウンフローにて製造されるガラス基板Gの横切り(ガラス基板Gの幅方向の切断)に適用されるものである。 In the present embodiment, the cutting direction of the glass substrate G is a direction parallel to the x-axis direction as shown in FIG. That is, the cutting device 100 of the present embodiment is applied to, for example, crossing (cutting in the width direction of the glass substrate G) the glass substrate G manufactured by the down flow.
 切断装置100は、光発生装置1、光走査装置3、レンズ装置5及び光補正装置7を備え、光発生装置1で発生させた切断光Lをレンズ装置5、光走査装置3及び光補正装置7を介してガラス基板Gに照射してガラス基板Gの表面に切断光LのスポットSを形成し、切断光LのスポットSをガラス基板Gの切断方向に沿って移動させる。 The cutting device 100 includes a light generating device 1, a light scanning device 3, a lens device 5, and a light correcting device 7. The cutting light L generated by the light generating device 1 is transmitted to the lens device 5, the light scanning device 3 and the light correcting device. The spot S of the cutting light L is formed on the surface of the glass substrate G by irradiating the glass substrate G through 7 and the spot S of the cutting light L is moved along the cutting direction of the glass substrate G.
 光発生装置1は、上記の切断光Lを発生する装置である。光発生装置1としては、例えば、ガラス基板Gに、ガラス基板Gを切断可能な切断ラインCの亀裂を形成できる程度のエネルギーを有する切断光Lを出力できる光源を使用できる。このような光源としては、例えば、COレーザ発振器などがある。 The light generator 1 is a device that generates the cutting light L described above. As the light generation device 1, for example, a light source capable of outputting a cutting light L having an energy enough to form a crack of the cutting line C capable of cutting the glass substrate G to the glass substrate G can be used. As such a light source, for example, there is a CO 2 laser oscillator.
 光走査装置3は、光発生装置1から出力した切断光LのスポットSを、切断方向に沿って往復移動させる。本実施形態の光走査装置3は、切断光Lを反射させるミラーと、当該ミラーをz軸周りに回転させる回転機構と、を有する装置である。上記の回転機構は、例えば、当該ミラーからz軸方向に延びる軸に出力回転軸が接続されたモータである。このような装置としては、例えば、ガルバノスキャナがある。 The light scanning device 3 reciprocates the spot S of the cutting light L output from the light generating device 1 along the cutting direction. The light scanning device 3 of the present embodiment is a device having a mirror that reflects the cutting light L, and a rotation mechanism that rotates the mirror about the z axis. The above-mentioned rotation mechanism is, for example, a motor in which an output rotation axis is connected to an axis extending in the z-axis direction from the mirror. As such an apparatus, there is a galvano scanner, for example.
 上記の光走査装置3は、切断光Lの光路上に設けられている。従って、図1に示すように、切断光Lは、光走査装置3のミラーにて反射する。光走査装置3は、上記のミラーをz軸周りに回転させて切断光Lの当該ミラーへの入射角(すなわち、切断光Lの当該ミラーでの反射角)を変更することで、当該入射角にて決定されるガラス基板G上の位置に切断光LのスポットSを照射できる。 The above-described light scanning device 3 is provided on the light path of the cutting light L. Therefore, as shown in FIG. 1, the cutting light L is reflected by the mirror of the light scanning device 3. The light scanning device 3 rotates the above mirror about the z axis to change the incident angle of the cutting light L on the mirror (that is, the reflection angle of the cutting light L at the mirror), thereby the incident angle The spot S of the cutting light L can be irradiated to the position on the glass substrate G determined by the above.
 具体的には、例えば、図2Aに示すように、光走査装置3のミラーをz軸周りに右回転させると、切断光Lの当該ミラーへの入射角(すなわち、切断光Lの当該ミラーにおける反射角)が大きくなる。これにより、切断光Lは、光補正装置7のミラーのx軸の負方向(図2Aの紙面の左方向)側に入射される。 Specifically, for example, as shown in FIG. 2A, when the mirror of the light scanning device 3 is rotated to the right around the z axis, the incident angle of the cutting light L on the mirror (ie, the cutting light L on the mirror The reflection angle increases. Thereby, the cutting light L is incident on the negative direction (left direction of the paper surface of FIG. 2A) of the x axis of the mirror of the light correction device 7.
 光補正装置のミラーのx軸の負方向側に切断光Lが入射されることにより、切断光Lは、図2Aに示すように、当該ミラーによりx軸の負方向側に反射される。この結果、切断光LのスポットSは、ガラス基板G上において、x軸の負方向側に到達する。図2Aは、光走査装置による切断光の移動方法の一例を示す図である。 When the cutting light L is incident on the negative direction side of the x axis of the mirror of the light correction device, the cutting light L is reflected to the negative direction side of the x axis by the mirror as shown in FIG. 2A. As a result, the spot S of the cutting light L reaches the negative direction side of the x axis on the glass substrate G. FIG. 2A is a diagram showing an example of a moving method of the cutting light by the light scanning device.
 一方、図2Bに示すように、光走査装置3のミラーをz軸周りに左回転させると、切断光Lの当該ミラーへの入射角が小さくなる。これにより、切断光Lは、光補正装置7のミラーのx軸の正方向(図2Aの紙面の右方向)側に入射される。 On the other hand, as shown in FIG. 2B, when the mirror of the light scanning device 3 is rotated counterclockwise around the z axis, the incident angle of the cutting light L on the mirror decreases. Thereby, the cutting light L is incident on the positive direction (right direction of the paper surface of FIG. 2A) of the x axis of the mirror of the light correction device 7.
 光補正装置のミラーのx軸の正方向側に切断光Lが入射されることにより、切断光Lは、図2Bに示すように、当該ミラーによりx軸の正方向側に反射される。この結果、切断光LのスポットSは、ガラス基板G上において、x軸の正方向側に到達する。図2Bは、光走査装置による切断光の移動方法の他の一例を示す図である。 As shown in FIG. 2B, the cutting light L is reflected by the mirror in the positive direction side of the x axis by the cutting light L being incident on the positive direction side of the x axis of the mirror of the light correction device. As a result, the spot S of the cutting light L reaches the positive direction side of the x axis on the glass substrate G. FIG. 2B is a view showing another example of the method of moving the cutting light by the light scanning device.
 上記の原理を利用して、光走査装置3のミラーをz軸周りに所定の角度範囲にて高速に右回転及び左回転させることで、切断光LのスポットSは、ガラス基板G上において、切断方向に沿った切断光の往復移動軌跡(図1)上にて高速に往復移動できる。 The spot S of the cutting light L on the glass substrate G can be obtained by rotating the mirror of the light scanning device 3 right and left at high speed around the z axis within a predetermined angle range using the above principle. It can reciprocate at high speed on the reciprocating movement locus (FIG. 1) of the cutting light along the cutting direction.
 レンズ装置5は、切断光Lのガラス基板G側における焦点位置を調節して、ガラス基板G上に切断光LのスポットSを形成する装置である。具体的には、レンズ装置5は、第1レンズ51と、第2レンズ53と、を有する。 The lens device 5 is a device that adjusts the focal position of the cutting light L on the glass substrate G side to form a spot S of the cutting light L on the glass substrate G. Specifically, the lens device 5 has a first lens 51 and a second lens 53.
 第1レンズ51は、光発生装置1から出力した切断光Lの径を拡げるレンズである。図1に示すように、本実施形態の光発生装置1はx軸方向に切断光Lを出力している。従って、第1レンズ51は、切断光Lが伝搬するx軸方向に沿って移動可能である。第1レンズ51は、例えば、発散レンズである。第2レンズ53は、第1レンズ51を通過した切断光Lを入射して、第1レンズ51とは反対側の光路上の所定位置に切断光Lの焦点を結ぶ。 The first lens 51 is a lens that expands the diameter of the cutting light L output from the light generating device 1. As shown in FIG. 1, the light generator 1 of the present embodiment outputs the cutting light L in the x-axis direction. Therefore, the first lens 51 is movable along the x-axis direction in which the cutting light L propagates. The first lens 51 is, for example, a diverging lens. The second lens 53 receives the cutting light L that has passed through the first lens 51, and focuses the cutting light L at a predetermined position on the optical path on the opposite side of the first lens 51.
 上記にて説明した第1レンズ51と第2レンズ53とを有するレンズ装置5は、具体的には、第1レンズ51のx軸方向における位置を変化させて、第1レンズ51による切断光Lの焦点位置を変化させることで、第2レンズ53に対して第1レンズ51とは反対側にある切断光Lの焦点位置を変化させる。 Specifically, the lens device 5 having the first lens 51 and the second lens 53 described above changes the position of the first lens 51 in the x-axis direction, and the cutting light L by the first lens 51 is changed. The focal position of the cutting light L on the opposite side to the first lens 51 with respect to the second lens 53 is changed by changing the focal position of the lens.
 例えば、図1において、第1レンズ51をx軸の負方向に移動させることで第1レンズ51を第2レンズ53に近づけて、第1レンズ51による切断光Lの焦点位置を第2レンズ53に近づけることで、第2レンズ53に対して第1レンズ51とは反対側の光路上のより遠い位置に、切断光Lの焦点を結ぶことができる。 For example, in FIG. 1, the first lens 51 is moved in the negative direction of the x axis to move the first lens 51 closer to the second lens 53, and the focal position of the cutting light L by the first lens 51 is set to the second lens 53. By bringing the second lens 53 close to the second lens 53, the cutting light L can be focused at a position farther from the first lens 51 on the optical path opposite to the first lens 51.
 一方、第1レンズ51をx軸の正方向に移動させることで第1レンズ51を第2レンズ53から遠ざけて、第1レンズ51による切断光Lの焦点位置を第2レンズ53から遠ざけることで、第2レンズ53に対して第1レンズ51とは反対側の光路上のより近い位置に、切断光Lの焦点を結ぶことができる。 On the other hand, by moving the first lens 51 in the positive direction of the x axis, the first lens 51 is moved away from the second lens 53, and the focal position of the cutting light L by the first lens 51 is moved away from the second lens 53. The cutting light L can be focused at a position closer to the second lens 53 on the optical path opposite to the first lens 51.
 図3に示すように、例えば、レンズ装置5からガラス基板G表面までのx軸方向における切断光Lの光路長は、光走査装置3からガラス基板Gにz軸方向(高さ方向)に垂線を下ろしたときに当該垂線がガラス基板Gと交わる点のx軸方向の位置において最小となる。また、x軸方向においてガラス基板Gの端部に近いほど、切断光Lのx軸方向における光路長は大きくなる。図3は、切断光Lのx軸方向における光路長が変化する様子を模式的に示す図であり、説明の便宜上、光補正装置7を省略している。 As shown in FIG. 3, for example, the optical path length of the cutting light L in the x-axis direction from the lens device 5 to the surface of the glass substrate G is perpendicular to the z-axis direction (height direction) from the light scanning device 3 to the glass substrate G. Is lowered at the position in the x-axis direction of the point where the perpendicular intersects the glass substrate G. Moreover, the optical path length in the x-axis direction of the cutting light L becomes larger as it is closer to the end of the glass substrate G in the x-axis direction. FIG. 3 is a view schematically showing how the optical path length in the x-axis direction of the cutting light L changes, and the light correction device 7 is omitted for convenience of explanation.
 その結果、例えば、光路長が最小であるときにガラス基板Gの表面における切断光LのスポットSのサイズが最適となるように切断光Lの焦点位置を調整した場合、この焦点位置は、切断光Lがガラス基板G上の他の位置に到達したときには、ガラス基板G上の当該他の位置において最適なサイズのスポットSを形成するものでなくなっている。 As a result, for example, when the focal position of the cutting light L is adjusted so that the size of the spot S of the cutting light L on the surface of the glass substrate G becomes optimal when the optical path length is minimum, this focal position is cut When the light L reaches another position on the glass substrate G, the spot S having the optimum size is not formed at the other position on the glass substrate G.
 従って、本実施形態においては、コントローラ9(後述)は、ガラス基板G上における切断光LのスポットSの位置に応じて、第1レンズ51を移動させて、切断光Lの焦点位置を調整する。これにより、ガラス基板G上における切断光LのスポットSのサイズを、ガラス基板G上における切断光LのスポットSの位置によらず、常に最適とできる。 Therefore, in the present embodiment, the controller 9 (described later) moves the first lens 51 in accordance with the position of the spot S of the cutting light L on the glass substrate G to adjust the focal position of the cutting light L. . Thereby, the size of the spot S of the cutting light L on the glass substrate G can be always optimized regardless of the position of the spot S of the cutting light L on the glass substrate G.
 光補正装置7は、切断光Lを反射させるミラーと、当該ミラーをx軸周りに回転させる回転機構と、を有する装置である。上記の回転機構は、例えば、当該ミラーからx軸方向に延びる軸に出力回転軸が接続されたモータである。このような装置としては、例えば、ガルバノスキャナを使用できる。 The light correction device 7 is a device having a mirror that reflects the cutting light L, and a rotation mechanism that rotates the mirror about the x axis. The rotation mechanism described above is, for example, a motor in which an output rotation shaft is connected to an axis extending in the x-axis direction from the mirror. As such an apparatus, for example, a galvano scanner can be used.
 図1に示すように、光補正装置7は、x軸方向においては、光走査装置3のx軸方向における配置位置と同じ位置に配置されている。また、z軸方向(高さ方向)においても、光走査装置3とほぼ同じ位置に配置される。一方、y軸方向においては、光走査装置3から所定の距離だけ離れた位置に配置される。さらに、図4に示すように、光補正装置7のミラーは、反射面の法線がz軸方向の負方向(下方向)に向くように、所定の角度だけ傾けられている。図4は、切断装置をx軸方向から見たときの側面図である。 As shown in FIG. 1, the light correction device 7 is disposed at the same position as the arrangement position of the light scanning device 3 in the x-axis direction in the x-axis direction. Also in the z-axis direction (height direction), it is disposed at substantially the same position as the light scanning device 3. On the other hand, in the y-axis direction, it is disposed at a position separated from the light scanning device 3 by a predetermined distance. Furthermore, as shown in FIG. 4, the mirror of the light correction device 7 is inclined by a predetermined angle so that the normal of the reflecting surface is directed in the negative direction (downward direction) in the z-axis direction. FIG. 4 is a side view of the cutting device as viewed from the x-axis direction.
 このように配置された光補正装置7は、光走査装置3から入射した切断光Lをミラーにて反射して、切断光LのスポットSをガラス基板G上に到達させる。 The light correction device 7 thus arranged reflects the cutting light L incident from the light scanning device 3 by the mirror, and causes the spot S of the cutting light L to reach the glass substrate G.
 光補正装置7のミラーは、x軸周りに回転可能となっている。従って、光補正装置7は、ミラーをx軸周りの回転角度を変化させることで、切断光LのスポットSをy軸方向に移動できる。本実施形態において、y軸方向は、ガラス基板Gの切断方向であるx軸方向とは垂直である。以後、本実施形態のy軸方向を「補正方向」と呼ぶことにする。 The mirror of the light correction device 7 is rotatable around the x axis. Therefore, the light correction device 7 can move the spot S of the cutting light L in the y-axis direction by changing the rotation angle of the mirror about the x-axis. In the present embodiment, the y-axis direction is perpendicular to the x-axis direction which is the cutting direction of the glass substrate G. Hereinafter, the y-axis direction of the present embodiment will be referred to as the “correction direction”.
 具体的には、例えば、光補正装置7のミラーの回転角度を図4に示す角度から右回転にて変化させた場合には、図5Aに示すように、切断光Lの当該ミラーへの入射角が大きくなる。その結果、切断光LのスポットSは、図4に示す位置からy軸の負方向(図5Aにおいては紙面左方向)に移動する。図5Aは、光補正装置による切断光の移動の一例を示す図である。 Specifically, for example, when the rotation angle of the mirror of the light correction device 7 is changed from the angle shown in FIG. 4 by right rotation, as shown in FIG. 5A, incidence of the cutting light L on the mirror The corners get bigger. As a result, the spot S of the cutting light L moves from the position shown in FIG. 4 in the negative direction of the y axis (in the left direction in the drawing in FIG. 5A). FIG. 5A is a view showing an example of the movement of the cutting light by the light correction device.
 一方、光補正装置7のミラーの回転角度を図4に示す角度から左回転にて変化させた場合には、図5Bに示すように、切断光Lの当該ミラーへの入射角が小さくなる。その結果、切断光LのスポットSは、図4に示す位置からy軸の正方向(図5Bにおいては紙面右方向)に移動する。図5Bは、光補正装置による切断光の移動の他の一例を示す図である。 On the other hand, when the rotation angle of the mirror of the light correction device 7 is changed from the angle shown in FIG. 4 by left rotation, the incident angle of the cutting light L on the mirror decreases as shown in FIG. 5B. As a result, the spot S of the cutting light L moves from the position shown in FIG. 4 in the positive direction of the y axis (in the right direction in FIG. 5B). FIG. 5B is a view showing another example of the movement of the cutting light by the light correction device.
 切断装置100は、コントローラ9を備える。コントローラ9は、プロセッサ(例えば、CPU)と、記憶装置(例えば、ROM、RAM、HDD、SSDなど)と、各種インターフェース(例えば、A/Dコンバータ、D/Aコンバータ、通信インターフェースなど)を有するコンピュータシステムである。コントローラ9は、記憶部(記憶装置の記憶領域の一部又は全部に対応)に保存されたプログラムを実行することで、各種制御動作を行う。 The cutting device 100 includes a controller 9. The controller 9 is a computer having a processor (for example, CPU), a storage device (for example, ROM, RAM, HDD, SSD, etc.), and various interfaces (for example, A / D converter, D / A converter, communication interface, etc.) It is a system. The controller 9 performs various control operations by executing the program stored in the storage unit (corresponding to a part or all of the storage area of the storage device).
 コントローラ9は、単一のプロセッサで構成されていてもよいが、各制御のために独立した複数のプロセッサから構成されていてもよい。 The controller 9 may be configured by a single processor, but may be configured by a plurality of independent processors for each control.
 コントローラ9は、光発生装置1、光走査装置3、レンズ装置5の第1レンズ51、及び、光補正装置7を制御できる。また、コントローラ9は、基板搬送装置10、及び、切断装置100の移動を制御可能となっていてもよい。 The controller 9 can control the light generation device 1, the light scanning device 3, the first lens 51 of the lens device 5, and the light correction device 7. Further, the controller 9 may control movement of the substrate transfer apparatus 10 and the cutting apparatus 100.
 図示しないが、コントローラ9には、各装置の状態を検出するためのセンサ及びスイッチ、並びに情報入力装置が接続されている。また、図示しないが、コントローラ9には、ガラス基板Gに形成された切断ラインCの亀裂の長さを検出するセンサ及び/又はカメラが接続されていてもよい。 Although not shown, the controller 9 is connected with sensors and switches for detecting the state of each device, and an information input device. Further, although not shown, a sensor and / or a camera for detecting the length of the crack of the cutting line C formed in the glass substrate G may be connected to the controller 9.
 上記の構成を有することにより、切断装置100は、光発生装置1から発生した切断光LのスポットSを、x軸、y軸、及びz軸の3軸方向に移動できる。すなわち、切断装置100は、ガラス基板Gに切断ラインCの亀裂を形成する切断光LのスポットSを、ガラス基板G上の所望の位置に、所望のサイズにて到達させることができる。 By having the above configuration, the cutting device 100 can move the spot S of the cutting light L generated from the light generating device 1 in the three axial directions of the x axis, the y axis, and the z axis. That is, the cutting device 100 can cause the spot S of the cutting light L forming the crack of the cutting line C on the glass substrate G to reach a desired position on the glass substrate G with a desired size.
(2)切断装置の動作
 以下、基板搬送装置10にて搬送されているガラス基板Gを切断する際の、切断装置100の動作について説明する。
 最初に、ガラス基板Gの切断方向(x軸方向)の端部に、「初期亀裂」と呼ばれる、切断光Lによるガラス基板Gの切断の開始点となる亀裂を形成する。当該初期亀裂は、例えば、ダイヤモンドカッター、セラミックカッターなどのカッターを用いて物理的に形成される。
(2) Operation of Cutting Device Hereinafter, the operation of the cutting device 100 when cutting the glass substrate G conveyed by the substrate conveyance device 10 will be described.
First, at the end of the glass substrate G in the cutting direction (x-axis direction), a crack called “initial crack” is formed as a start point of cutting of the glass substrate G by the cutting light L. The initial crack is physically formed, for example, using a cutter such as a diamond cutter or a ceramic cutter.
 その他、エネルギー密度を高くした切断光LのスポットSを、ガラス基板Gの切断方向の端部の初期亀裂を形成する側に集中的に照射することによっても、初期亀裂を形成できる。具体的には、例えば、本格的な切断ラインCの亀裂の形成を行う前に、コントローラ9が、ガラス基板Gの当該端部の近傍にて切断光Lが焦点を結ぶよう第1レンズ51の位置を調整し、その後、光走査装置3を制御して、切断光LのスポットSを、ガラス基板Gの当該端部の近傍のx軸方向の狭い範囲にて往復移動させるか、又は、ガラス基板Gの当該端部において停止させる。 Alternatively, the initial crack can also be formed by intensively irradiating the spot S of the cutting light L with high energy density on the side of the end in the cutting direction of the glass substrate G on which the initial crack is to be formed. Specifically, for example, the controller 9 controls the first lens 51 so that the cutting light L focuses in the vicinity of the end portion of the glass substrate G before the crack of the cutting line C is fully formed. Adjust the position and then control the light scanning device 3 to reciprocate the spot S of the cutting light L in a narrow range in the x-axis direction near the end of the glass substrate G, or Stop at the end of the substrate G.
 ガラス基板Gの端部に初期亀裂を形成後、切断光Lのスポットを、切断方向(x軸方向)に平行な往復移動軌跡上にて初期亀裂を形成した端部から反対側の端部まで往復移動させてガラス基板Gを加熱し、ガラス基板Gに熱応力を生じさせることにより初期亀裂から亀裂を進展させてガラス基板Gに切断ラインCの亀裂を形成する。 After an initial crack is formed at the end of the glass substrate G, the spot of the cutting light L is from the end where the initial crack is formed on the reciprocating movement trajectory parallel to the cutting direction (x-axis direction) to the opposite end The heat is moved back and forth to heat the glass substrate G, and a thermal stress is generated on the glass substrate G to propagate a crack from the initial crack to form a crack of the cutting line C in the glass substrate G.
 切断光LのスポットSを切断方向に往復移動させる際、切断ラインCの亀裂の形成に従って、切断ラインCの亀裂の形成されていない範囲に切断光LのスポットSの往復移動の範囲を狭める。切断光LのスポットSの往復移動の範囲は、切断ラインCの亀裂が形成された範囲を検出して決定することとしてもよいし、実験で切断ラインCの亀裂が進展する速度を予め測定しておき、その測定結果に基づいて切断光LのスポットSの往復移動の範囲を次第に狭くするように切断装置100を動作させることとしてもよい。 When the spot S of the cutting light L is reciprocated in the cutting direction, the range of the reciprocating movement of the spot S of the cutting light L is narrowed in a range in which the crack of the cutting line C is not formed. The range of reciprocation of the spot S of the cutting light L may be determined by detecting the range in which the crack of the cutting line C is formed, or the speed at which the crack of the cutting line C develops is measured in advance by experiment. Alternatively, the cutting apparatus 100 may be operated so as to gradually narrow the range of the reciprocation of the spot S of the cutting light L based on the measurement result.
 具体的には、コントローラ9は、ガラス基板Gに現在形成されている切断ラインCの亀裂の長さを把握する。切断ラインCの亀裂の長さは、例えば、切断ラインCの亀裂を形成中のガラス基板Gをカメラなどにて撮影した後、切断ラインCの亀裂を画像認識などにて識別し、画像処理などにより切断ラインCの亀裂の長さを測定することにより把握できる。 Specifically, the controller 9 grasps the length of the crack of the cutting line C currently formed in the glass substrate G. The crack length of the cutting line C is, for example, after photographing the glass substrate G in which the crack of the cutting line C is being formed with a camera or the like, the crack of the cutting line C is identified by image recognition or the like, and image processing etc. It can grasp by measuring the length of the crack of cutting line C by this.
 他の実施形態において、コントローラ9は、例えば、光センサを用いて、切断ラインCの亀裂(ガラス基板Gが存在しない箇所)を通過した光の強度と、ガラス基板Gを通過した光の強度との違いに基づいて、切断ラインCの亀裂の長さを把握してもよい。 In another embodiment, the controller 9 uses, for example, an optical sensor to measure the intensity of light having passed through the crack of the cutting line C (where the glass substrate G is not present) and the intensity of light having passed through the glass substrate G. The crack length of the cutting line C may be grasped based on the difference of.
 さらなる他の実施形態において、例えば、切断装置100による切断ラインCの亀裂の形成過程を予めシミュレーション又は実験で把握しておき、切断ラインCの亀裂の形成開始からの経過時刻と、切断ラインCの亀裂との関係(亀裂の進展速度)を算出し、コントローラ9が、切断光LのスポットSの往復移動を開始してからの経過時刻と、上記の関係(すなわち、亀裂の進展速度)とから、形成された切断ラインCの亀裂の長さを算出してもよい。 In yet another embodiment, for example, the crack formation process of the cutting line C by the cutting device 100 is grasped in advance by simulation or experiment, and the elapsed time from the start of the crack formation of the cutting line C and the cutting line C The relationship with the crack (crack growth rate) is calculated, and from the elapsed time since the controller 9 started reciprocating movement of the spot S of the cutting light L and the above relationship (ie, crack growth rate) The length of the crack of the formed cutting line C may be calculated.
 形成された切断ラインCの亀裂の現在の長さを把握後、コントローラ9は、切断光LのスポットSを往復移動軌跡上にて往復移動させる範囲を決定する。コントローラ9は、上記の初期亀裂を形成しなかった側のガラス基板Gの端部のx座標値から、形成された切断ラインCの亀裂の端部のx座標値までを、切断光LのスポットSの切断方向(x軸方向)における往復移動の範囲と決定する。すなわち、コントローラ9は、切断光LのスポットSの往復移動の範囲を、ガラス基板Gの切断ラインCの亀裂が形成されていない範囲(未切断領域と呼ぶことにする)とする。 After grasping the current length of the crack of the formed cutting line C, the controller 9 determines the range in which the spot S of the cutting light L is reciprocated on the reciprocating movement trajectory. The controller 9 detects the spot of the cutting light L from the x-coordinate value of the end of the glass substrate G on the side where the initial crack is not formed to the x-coordinate value of the end of the crack of the cutting line C formed. It is determined as the range of reciprocating movement in the cutting direction (x-axis direction) of S. That is, the controller 9 sets the range of the reciprocation of the spot S of the cutting light L as a range in which the crack of the cutting line C of the glass substrate G is not formed (referred to as an uncut area).
 形成された切断ラインCの亀裂の端部のx座標値は、例えば、ガラス基板Gの初期亀裂を形成した側のx座標値と、上記にて算出した切断ラインCの亀裂の現在の長さとの差分として算出できる。 The x-coordinate value of the end of the crack of the formed cutting line C is, for example, the x-coordinate value of the side of the glass substrate G on which the initial crack is formed, and the current length of the crack calculated above. It can be calculated as the difference between
 他の実施形態において、切断光LのスポットSを往復移動させる範囲は、すでに形成された切断ラインCの亀裂の一部と重複していてもよい。すなわち、コントローラ9は、切断光LのスポットSを往復移動させる範囲を、未切断領域のx軸方向の長さよりも若干広くしてもよい。これにより、切断ラインCの亀裂が形成されていない未切断領域に確実に切断光Lを照射できる。 In another embodiment, the range in which the spot S of the cutting light L reciprocates may overlap with a part of the crack of the cutting line C already formed. That is, the controller 9 may make the range for reciprocating the spot S of the cutting light L slightly larger than the length of the uncut area in the x-axis direction. Thereby, the cutting light L can be reliably irradiated to the uncut area in which the crack of the cutting line C is not formed.
 切断光LのスポットSを往復移動させる範囲の両端のx座標値を算出後、コントローラ9は、当該両端のx座標値から光走査装置3のミラーの回転角度範囲を算出し、当該回転角度範囲にてミラーを正逆転させる制御信号を光走査装置3に出力する。これにより、切断光LのスポットSは、未切断領域において切断方向に沿って往復移動する。 After calculating the x-coordinate values of both ends of the range for reciprocating the spot S of the cutting light L, the controller 9 calculates the rotation angle range of the mirror of the optical scanning device 3 from the x-coordinate values of the both ends, and the rotation angle range Output control signal to the light scanning device 3 to reverse the mirror forward and reverse. Thereby, the spot S of the cutting light L reciprocates along the cutting direction in the uncut area.
 上記の切断ラインCの亀裂の長さの把握、切断光LのスポットSの往復移動範囲の決定、及び、切断光LのスポットSの往復移動範囲の変更を、切断ラインCの亀裂がガラス基板Gのx軸方向(幅方向)のほぼ全域にわたるまで繰り返す。 The crack length of the cutting line C, the determination of the reciprocating movement range of the spot S of the cutting light L, and the change of the reciprocating movement range of the spot S of the cutting light L are described above. Repeat until almost the entire area of G in the x-axis direction (width direction).
 これにより、コントローラ9は、図6の(1)~(4)に示すように、切断ラインCの亀裂の形成に従って、切断光LのスポットSの往復移動の範囲を、L1からL4(L1>L2>L3>L4)へと狭めることができる。すなわち、切断光Lのガラス基板G上における往復移動の範囲を、未切断領域のみに制限できる。その結果、光発生装置1から発生する切断光Lを、切断光Lのエネルギーを無駄にすることなく、効率よくガラス基板Gの切断ラインCの亀裂を形成すべき領域に集中的に照射できる。図6は、第1実施形態に係る切断装置による、ガラス基板への切断光の照射方法を模式的に示す図である。 Thereby, as shown in (1) to (4) of FIG. 6, the controller 9 sets the range of reciprocating movement of the spot S of the cutting light L according to the formation of the crack of the cutting line C from L1 to L4 (L1> It can be narrowed to L2> L3> L4). That is, the range of reciprocating movement of the cutting light L on the glass substrate G can be limited to only the uncut region. As a result, the cutting light L generated from the light generation device 1 can be efficiently concentrated on the area of the cutting line C of the glass substrate G where the crack should be formed, without wasting the energy of the cutting light L. FIG. 6: is a figure which shows typically the irradiation method of the cutting light to a glass substrate by the cutting device which concerns on 1st Embodiment.
 本実施形態において、コントローラ9は、光走査装置3のミラーを一定の回転速度にて回転させることにより、切断光LのスポットSをガラス基板G上において一定の速度にて往復移動させている。従って、切断ラインCの亀裂の形成に従って切断光LのスポットSの往復移動の範囲を狭めることで、未切断領域内の所定の位置における切断光LのスポットSの通過頻度を増加できる。すなわち、未切断領域が狭くなるほど、ガラス基板Gの表面に切断光Lをより高いエネルギー密度にて照射できる。 In the present embodiment, the controller 9 reciprocates the spot S of the cutting light L at a constant speed on the glass substrate G by rotating the mirror of the light scanning device 3 at a fixed rotation speed. Therefore, by narrowing the range of reciprocating movement of the spot S of the cutting light L in accordance with the formation of the crack of the cutting line C, it is possible to increase the passing frequency of the spot S of the cutting light L at a predetermined position in the uncut area. That is, as the uncut region becomes narrower, the cutting light L can be irradiated to the surface of the glass substrate G at a higher energy density.
 未切断領域が狭くなるほど、ガラス基板Gの表面に切断光Lをより高いエネルギー密度にて照射可能であることにより、本実施形態の切断装置100は、特に、ガラス基板Gの切断を開始してから時間が経過するほど、切断ラインCの亀裂の進展速度を大きくできる。その結果、切断ラインCの亀裂が形成されてもガラス基板の幅方向の全域に切断光を照射する場合と比較して、より短時間にガラス基板Gを切断できる。 The cutting apparatus 100 according to the present embodiment particularly starts cutting the glass substrate G because the surface of the glass substrate G can be irradiated with the cutting light L at a higher energy density as the uncut region becomes narrower. As time passes from the point of time, the growth rate of the crack in the cutting line C can be increased. As a result, even if a crack of the cutting line C is formed, the glass substrate G can be cut in a shorter time as compared with the case where the whole area in the width direction of the glass substrate is irradiated with the cutting light.
 ただし、切断光Lを未切断領域に過剰なエネルギー密度にて照射した場合には、当該過剰なエネルギーにより、ガラス基板Gに意図しないダメージが生じる場合がある。従って、本実施形態の切断装置100において、コントローラ9は、未切断領域の切断方向(x軸方向)における長さに従ってガラス基板G上における切断光LのスポットSのサイズを変化させるよう、第1レンズ51を移動させる。 However, when the cutting light L is irradiated to the uncut area at an excess energy density, the excess energy may cause an unintended damage to the glass substrate G. Therefore, in the cutting apparatus 100 of the present embodiment, the controller 9 changes the size of the spot S of the cutting light L on the glass substrate G according to the length of the uncut area in the cutting direction (x-axis direction). The lens 51 is moved.
 具体的には、図6の(1)~(4)に示すように、コントローラ9は、切断光LのスポットSのサイズをスポットSのx軸方向の位置によらず一定としつつ、未切断領域の切断方向における長さがL1からL4へと短くなるに従って、切断光LのスポットSのサイズをS1からS4(S1<S2<S3<S4)へと増加させるよう、第1レンズ51の位置を調整する。これにより、切断方向のおける長さが短くなった未切断領域に、切断光Lが過剰なエネルギー密度にて照射されることを抑制して、ガラス基板Gに意図しないダメージが生じることを防止できる。 Specifically, as shown in (1) to (4) of FIG. 6, the controller 9 sets the size of the spot S of the cutting light L constant regardless of the position of the spot S in the x-axis direction, but does not cut it. The position of the first lens 51 so that the size of the spot S of the cutting light L is increased from S1 to S4 (S1 <S2 <S3 <S4) as the length in the cutting direction of the region decreases from L1 to L4 Adjust the Thereby, it is possible to suppress the irradiation of the cutting light L with an excessive energy density to the uncut area in which the length in the cutting direction is shortened, and to prevent the glass substrate G from being unintentionally damaged. .
2.第2実施形態
 上記にて説明した第1実施形態に係る切断装置100が備える光補正装置7は、ガラス基板Gを切断する工程においては、切断光LのスポットSをガラス基板Gの表面に到達させるのみであった。しかしながら、光補正装置7は、第1実施形態において説明したように、切断ラインCの亀裂の形成方向(切断方向)とは垂直なy軸方向に、切断光LのスポットSを移動できる。
2. Second Embodiment The light correction device 7 included in the cutting apparatus 100 according to the first embodiment described above reaches the spot S of the cutting light L on the surface of the glass substrate G in the step of cutting the glass substrate G. It was only However, as described in the first embodiment, the light correction device 7 can move the spot S of the cutting light L in the y-axis direction perpendicular to the forming direction (cutting direction) of the crack of the cutting line C.
 切断装置100において、光走査装置3のミラーを所定の角度範囲にて正逆転し、及び/又は、第1レンズ51の位置を調整して、切断光LのスポットSをガラス基板G上において切断方向に沿って往復移動させる際に、切断光LのスポットSが、図7に示すように、本来の往復移動軌跡から外れることがある。具体的には、切断光LのスポットSの往復移動の軌跡が、本来の往復移動軌跡からy軸方向にずれる。図7は、本来の往復移動軌跡から外れた切断光のスポットSのガラス基板上における軌跡の一例を示す図である。 In the cutting device 100, the mirror of the light scanning device 3 is reversed in a predetermined angle range and / or the position of the first lens 51 is adjusted to cut the spot S of the cutting light L on the glass substrate G When reciprocated along the direction, the spot S of the cutting light L may deviate from the original reciprocating movement trajectory as shown in FIG. Specifically, the locus of the reciprocating movement of the spot S of the cutting light L is deviated in the y-axis direction from the original reciprocating locus. FIG. 7 is a view showing an example of a locus on the glass substrate of the spot S of the cutting light deviated from the original reciprocal movement locus.
 この軌跡のずれは、光走査装置3及び/又はレンズ装置5の設置状況、構造上の誤差などが原因となっており、光走査装置3及び/又はレンズ装置5の調整のみでは解消することが困難であるか、または、調整に多くの時間を必要とする。 The deviation of the locus is caused by the installation situation of the light scanning device 3 and / or the lens device 5, an error in the structure, etc. and can be resolved only by adjusting the light scanning device 3 and / or the lens device 5. It is difficult or takes a lot of time to adjust.
 従って、第2実施形態においては、コントローラ9が、ガラス基板Gの切断工程において、本来の往復移動軌跡と、切断光LのスポットSが往復移動しているときの実際の軌跡とのずれ量に応じて、切断光LのスポットSを補正方向に移動させることで、上記の軌跡のずれを補正する。 Therefore, in the second embodiment, in the step of cutting the glass substrate G, the controller 9 determines the amount of deviation between the original reciprocating movement trajectory and the actual trajectory when the spot S of the cutting light L reciprocates. In response, the spot S of the cutting light L is moved in the correction direction to correct the deviation of the trajectory.
 具体的には、以下のようにして、切断光LのスポットSの軌跡のずれを補正する。まず、切断光Lをy軸方向に移動させない場合の軌跡と本来の往復移動軌跡とのずれ量を、例えば、光補正装置7のミラーの角度を固定した上で、光走査装置3のミラーを所定の角度範囲にて正逆転させつつ、第1レンズ51の位置を調整し、切断光LのスポットSを実際に切断方向に往復移動させることにより把握する。 Specifically, the deviation of the trajectory of the spot S of the cutting light L is corrected as follows. First, for example, after fixing the angle of the mirror of the light correction device 7 with the deviation amount between the trajectory when the cutting light L is not moved in the y-axis direction and the original reciprocal movement trajectory, the mirror of the light scanning device 3 is The position of the first lens 51 is adjusted while rotating forward and reverse in a predetermined angle range, and the spot S of the cutting light L is grasped by actually reciprocating in the cutting direction.
 上記のようにして切断光LのスポットSのy軸方向におけるずれ量を把握後、切断光LのスポットSのx座標値と、各x座標値における切断光LのスポットSのy軸方向のずれ量との関係を、例えば、x座標値の関数として算出しておく。 After grasping the deviation amount of the spot S of the cutting light L in the y-axis direction as described above, the x coordinate value of the spot S of the cutting light L and the y axis direction of the spot S of the cutting light L at each x coordinate value The relationship with the amount of deviation is calculated, for example, as a function of the x-coordinate value.
 上記の関係を算出後、コントローラ9は、ガラス基板Gを切断するために切断光Lを往復移動させる間、切断光LのスポットSの現在のx座標値と上記の関数とを用いて、現在のx座標値における切断光LのスポットSのy軸方向のずれ量を算出する。 After calculating the above relationship, the controller 9 reciprocates the cutting light L in order to cut the glass substrate G, while using the current x-coordinate value of the spot S of the cutting light L and the above function, The amount of deviation of the spot S of the cutting light L at the x-coordinate value in the y-axis direction is calculated.
 その後、コントローラ9は、切断光LのスポットSを往復移動させながら、上記にて算出したy軸方向のずれ量に応じた角度だけ光補正装置7のミラーを回転させて、切断光LのスポットSをy軸方向に移動させることにより、図8に示すように、切断光LのスポットSを本来の往復移動軌跡上にて往復移動できる。図8は、切断光の往復移動の軌跡の補正方法の一例を模式的に示す図である。 Thereafter, while reciprocating the spot S of the cutting light L, the controller 9 rotates the mirror of the light correction device 7 by an angle according to the displacement amount in the y-axis direction calculated above, and the spot of the cutting light L By moving S in the y-axis direction, as shown in FIG. 8, the spot S of the cutting light L can be reciprocated on the original reciprocating movement trajectory. FIG. 8 is a view schematically showing an example of a method of correcting a trajectory of reciprocating movement of cutting light.
 このようにして、第2実施形態においては、光走査装置3及び/又はレンズ装置5の設置状況、構造上の誤差などを原因とする、切断光LのスポットSの軌跡のy軸方向のずれを補正できる。その結果、光走査装置3及び/又はレンズ装置5の調整を行うことなく、切断光LのスポットSを、適切な切断方向に沿って往復移動できる。 In this manner, in the second embodiment, the deviation of the locus of the spot S of the cutting light L in the y-axis direction due to the installation situation of the light scanning device 3 and / or the lens device 5, a structural error, etc. Can be corrected. As a result, the spot S of the cutting light L can be reciprocated along the appropriate cutting direction without adjusting the light scanning device 3 and / or the lens device 5.
3.実施形態の共通事項
 上記第1及び第2実施形態は、下記の構成及び機能を共通に有している。
 第1実施形態及び第2実施形態に係るガラス基板G(ガラス基板の一例)の切断装置100(切断装置の一例)は、光発生装置1(光発生装置の一例)と、光走査装置3(光走査装置の一例)と、を備える。光発生装置1は、ガラス基板Gを切断する切断光L(切断光の一例)を出力する。光走査装置3は、切断光LのスポットS(切断光のスポットの一例)をガラス基板Gの切断方向に沿って往復移動させる装置である。光走査装置3は、切断光LのスポットSの往復移動の範囲を、ガラス基板Gの切断ラインCの亀裂(切断ラインの一例)が形成されていない未切断領域に制限する。
3. Common Items of Embodiments The first and second embodiments have the following configurations and functions in common.
An apparatus 100 for cutting a glass substrate G (an example of a glass substrate) according to the first embodiment and the second embodiment (an example of a cutting apparatus) includes a light generator 1 (an example of a light generator) and an optical scanning device 3 An example of an optical scanning device). The light generator 1 outputs a cutting light L (an example of a cutting light) for cutting the glass substrate G. The optical scanning device 3 is a device that reciprocates the spot S of cutting light L (an example of a spot of cutting light) along the cutting direction of the glass substrate G. The light scanning device 3 limits the range of the reciprocation of the spot S of the cutting light L to the uncut area where the crack (an example of the cutting line) of the cutting line C of the glass substrate G is not formed.
 切断装置100においては、光走査装置3が、ガラス基板Gを切断するための切断光LのスポットSのガラス基板G上における往復移動の範囲を、ガラス基板Gの切断ラインCの亀裂が形成されていない未切断領域に制限している。これにより、切断光Lを、ガラス基板Gの切断ラインCの亀裂を形成すべき領域にのみ照射できる。その結果、光発生装置1から発生する切断光Lを、当該切断光Lのエネルギーを無駄にすることなく効率よくガラス基板Gの切断ラインCの亀裂を形成すべき領域に照射できる。 In the cutting apparatus 100, a crack of the cutting line C of the glass substrate G is formed in the range of reciprocating movement of the spot S of the cutting light L for cutting the glass substrate G on the glass substrate G in the cutting apparatus 100. Not limited to uncut area. Thereby, the cutting light L can be irradiated only to the area | region which should form the crack of the cutting line C of the glass substrate G. As shown in FIG. As a result, the cutting light L generated from the light generation device 1 can be efficiently irradiated to the area of the cutting line C of the glass substrate G where the crack should be formed without wasting the energy of the cutting light L.
4.他の実施形態
 以上、本発明の複数の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
 (A)レンズ装置5は、切断光Lの焦点位置を変更できれば、1つのレンズにて構成されていてもよい。このような、光の焦点位置(焦点距離)を変更可能なレンズとしては、例えば、当該レンズの曲率を電気信号などにより変更して焦点距離を可変とする電気式焦点可変レンズを使用できる。
4. Other Embodiments Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. In particular, the embodiments and modifications described herein may be arbitrarily combined as needed.
(A) The lens device 5 may be configured of one lens as long as the focal position of the cutting light L can be changed. As such a lens capable of changing the focal position (focal length) of light, it is possible to use, for example, an electric variable focus lens in which the focal length is variable by changing the curvature of the lens by an electric signal or the like.
 (B)上記の第1実施形態及び第2実施形態においては、基板搬送装置10によるガラス基板Gのy軸方向の移動とともに、切断装置100をy軸方向に移動させていた。しかし、これに限られず、例えば、短時間の切断光Lの照射によりガラス基板Gを切断できる場合(例えば、ガラス基板Gの幅寸法が小さい場合、ガラス基板Gの搬送速度が遅い場合など)には、光補正装置7が、ガラス基板Gのy軸方向の搬送に従って、y軸方向に切断光LのスポットSを移動させてもよい。これにより、切断装置100をy軸方向に移動する必要がなくなる。 (B) In the first and second embodiments described above, along with the movement of the glass substrate G in the y-axis direction by the substrate transfer apparatus 10, the cutting device 100 is moved in the y-axis direction. However, the present invention is not limited thereto. For example, when the glass substrate G can be cut by irradiation of the cutting light L for a short time (for example, when the width dimension of the glass substrate G is small, the conveyance speed of the glass substrate G is slow) The light correction device 7 may move the spot S of the cutting light L in the y-axis direction according to the conveyance of the glass substrate G in the y-axis direction. This eliminates the need to move the cutting device 100 in the y-axis direction.
 本発明は、ガラス基板の切断装置に広く適用できる。 The present invention can be widely applied to a glass substrate cutting device.
100 切断装置
1     光発生装置
3     光走査装置
5     レンズ装置
51   第1レンズ
53   第2レンズ
7     光補正装置
9     コントローラ
10   基板搬送装置
C     切断ライン
G     ガラス基板
L     切断光
S     スポット
100 cutting device 1 light generating device 3 light scanning device 5 lens device 51 first lens 53 second lens 7 light correction device 9 controller 10 substrate conveyance device C cutting line G glass substrate L cutting light S spot

Claims (9)

  1.  ガラス基板を切断する切断光を出力する光発生装置と
     前記切断光のスポットを前記ガラス基板の切断方向に沿って往復移動させる装置であって、前記切断光のスポットの往復移動の範囲を、前記ガラス基板の切断ラインが形成されていない未切断領域に制限する光走査装置と、
     を備える、ガラス基板の切断装置。
    A light generator for outputting a cutting light for cutting a glass substrate and an apparatus for reciprocating the spot of the cutting light along the cutting direction of the glass substrate, wherein the range of the reciprocating movement of the spot of the cutting light is An optical scanning device that restricts to a non-cut area where a cut line of the glass substrate is not formed;
    A glass substrate cutting apparatus comprising:
  2.  前記切断光のスポットの前記ガラス基板上におけるサイズを調節するレンズ装置をさらに備える、請求項1に記載のガラス基板の切断装置。 The apparatus for cutting a glass substrate according to claim 1, further comprising a lens device that adjusts the size of the spot of the cutting light on the glass substrate.
  3.  前記レンズ装置は、前記ガラス基板上における前記切断光のスポットのサイズを、前記未切断領域の前記切断方向における長さに従って変化させる、請求項2に記載のガラス基板の切断装置。 The apparatus for cutting a glass substrate according to claim 2, wherein the lens device changes the size of the spot of the cutting light on the glass substrate in accordance with the length of the uncut area in the cutting direction.
  4.  前記レンズ装置は、前記未切断領域の前記切断方向における長さが短くなるに従って、前記切断光のスポットのサイズを大きくする、請求項2又は3に記載のガラス基板の切断装置。 The apparatus for cutting a glass substrate according to claim 2, wherein the lens apparatus increases the size of the spot of the cutting light as the length of the uncut area in the cutting direction decreases.
  5.  前記切断光のスポットを前記切断方向とは垂直な補正方向に移動させる光補正装置をさらに備える、請求項1~4のいずれかに記載のガラス基板の切断装置。 The apparatus for cutting a glass substrate according to any one of claims 1 to 4, further comprising a light correction device for moving the spot of the cutting light in a correction direction perpendicular to the cutting direction.
  6.  前記光走査装置は、前記切断ラインの形成に従って、前記切断光のスポットの往復移動の範囲を狭める、請求項1~5のいずれかに記載のガラス基板の切断装置。 The apparatus for cutting a glass substrate according to any one of claims 1 to 5, wherein the light scanning device narrows the range of reciprocating movement of the spot of the cutting light according to the formation of the cutting line.
  7.  ガラス基板を切断する切断光のスポットをガラス基板の切断方向に沿って往復移動させることにより、前記ガラス基板を切断する方法であって、
     前記切断光を出力するステップと、
     前記切断光のスポットの往復移動の範囲を、前記ガラス基板の切断ラインが形成されていない未切断領域に制限するステップと、
     を備える、ガラス基板の切断方法。
    A method of cutting the glass substrate by reciprocating a spot of cutting light for cutting the glass substrate along the cutting direction of the glass substrate,
    Outputting the cutting light;
    Restricting the range of reciprocation of the spot of the cutting light to an uncut area where the cutting line of the glass substrate is not formed;
    And a method of cutting a glass substrate.
  8.  請求項7に記載の切断方法をコンピュータに実行させるプログラム。 A program that causes a computer to execute the disconnection method according to claim 7.
  9.  請求項8に記載のプログラムを記憶する記憶媒体。
     
    A storage medium storing the program according to claim 8.
PCT/JP2018/035188 2017-09-27 2018-09-21 Cutting device for glass substrate, cutting method, program, and storage medium WO2019065533A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019545077A JPWO2019065533A1 (en) 2017-09-27 2018-09-21 Glass substrate cutting device, cutting method, program, and storage medium
CN201880061130.2A CN111108072B (en) 2017-09-27 2018-09-21 Glass substrate cutting device, glass substrate cutting method, and storage medium
KR1020207003332A KR20200058380A (en) 2017-09-27 2018-09-21 Glass substrate cutting device, cutting method, program, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017185747 2017-09-27
JP2017-185747 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019065533A1 true WO2019065533A1 (en) 2019-04-04

Family

ID=65903693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035188 WO2019065533A1 (en) 2017-09-27 2018-09-21 Cutting device for glass substrate, cutting method, program, and storage medium

Country Status (5)

Country Link
JP (1) JPWO2019065533A1 (en)
KR (1) KR20200058380A (en)
CN (1) CN111108072B (en)
TW (1) TW201920021A (en)
WO (1) WO2019065533A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213745A (en) * 2021-03-24 2021-08-06 重庆惠科金渝光电科技有限公司 Cutting machine and cutting method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224091A (en) * 1990-03-21 1992-08-13 Philips Gloeilampenfab:Nv Method and apparatus for dividing brittle plate
JPH1119784A (en) * 1997-07-02 1999-01-26 Matsushita Electric Ind Co Ltd Method and device for cutting brittle material
WO2016081330A1 (en) * 2014-11-19 2016-05-26 Corning Incorporated Methods of separating a glass web
WO2017091529A1 (en) * 2015-11-25 2017-06-01 Corning Incorporated Methods of separating a glass web

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201737838U (en) * 2010-05-06 2011-02-09 湖北扬子江光电仪器有限公司 Ultraviolet laser cutting device
JP5409711B2 (en) * 2011-06-29 2014-02-05 三星ダイヤモンド工業株式会社 Laser beam workpiece processing equipment
JP2013078780A (en) * 2011-10-04 2013-05-02 Mitsuboshi Diamond Industrial Co Ltd Laser beam machining apparatus
JP5922906B2 (en) * 2011-10-18 2016-05-24 三星ダイヤモンド工業株式会社 Glass substrate processing equipment by laser beam
JP5879106B2 (en) * 2011-11-25 2016-03-08 三星ダイヤモンド工業株式会社 Method for scribing a brittle material substrate
KR101388181B1 (en) * 2012-09-04 2014-04-30 (주)하드램 Laser cutting apparatus for glass substrate and method for cutting glass substrate
WO2014192482A1 (en) * 2013-05-28 2014-12-04 旭硝子株式会社 Glass substrate cutting method and glass substrate manufacturing method
JP2014231071A (en) * 2013-05-29 2014-12-11 三星ダイヤモンド工業株式会社 Substrate cutting device by using laser beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224091A (en) * 1990-03-21 1992-08-13 Philips Gloeilampenfab:Nv Method and apparatus for dividing brittle plate
JPH1119784A (en) * 1997-07-02 1999-01-26 Matsushita Electric Ind Co Ltd Method and device for cutting brittle material
WO2016081330A1 (en) * 2014-11-19 2016-05-26 Corning Incorporated Methods of separating a glass web
WO2017091529A1 (en) * 2015-11-25 2017-06-01 Corning Incorporated Methods of separating a glass web

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213745A (en) * 2021-03-24 2021-08-06 重庆惠科金渝光电科技有限公司 Cutting machine and cutting method thereof

Also Published As

Publication number Publication date
TW201920021A (en) 2019-06-01
CN111108072A (en) 2020-05-05
CN111108072B (en) 2022-06-17
JPWO2019065533A1 (en) 2020-11-05
KR20200058380A (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6595558B2 (en) Laser processing system
JP5100827B2 (en) Processing control device and laser processing device
JP5994807B2 (en) Laser processing apparatus, control method, and program
JP2010082663A (en) Laser beam machine
JP2011212727A (en) Laser beam machining apparatus
JP2013019790A (en) Laser radar device
JP5248205B2 (en) Laser marking device
JP2007222902A (en) Laser machining apparatus and laser machining method
WO2019065533A1 (en) Cutting device for glass substrate, cutting method, program, and storage medium
JP6604078B2 (en) Laser processing equipment
WO2016136945A1 (en) Laser processing device, control program for laser processing device, and control method
JP5460934B1 (en) Curvature control device and laser processing machine
JP2008062259A (en) Laser beam machining apparatus, method and program for laser beam machining
WO2022003978A1 (en) Laser processing device
JP6633297B2 (en) Laser processing apparatus and method for setting condensing angle of laser processing apparatus
JP2013226590A (en) Laser cutting apparatus and laser cutting method
JP6269554B2 (en) Beam processing equipment
JP5897825B2 (en) Laser irradiation apparatus and laser irradiation method
JP6613769B2 (en) Laser beam emitting device
JP2020044553A (en) Laser marker
JP2020001081A (en) Laser processing method of substrate, and laser processing device
JP6287929B2 (en) Laser processing data creation device
JP2012030251A (en) Laser beam machining device
JP6107779B2 (en) Laser processing equipment
JP2003236692A (en) Method and device for controlling galvano-scanner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861509

Country of ref document: EP

Kind code of ref document: A1