WO2018105674A1 - Release layer production method - Google Patents

Release layer production method Download PDF

Info

Publication number
WO2018105674A1
WO2018105674A1 PCT/JP2017/043907 JP2017043907W WO2018105674A1 WO 2018105674 A1 WO2018105674 A1 WO 2018105674A1 JP 2017043907 W JP2017043907 W JP 2017043907W WO 2018105674 A1 WO2018105674 A1 WO 2018105674A1
Authority
WO
WIPO (PCT)
Prior art keywords
release layer
substrate
resin substrate
heating
polyamic acid
Prior art date
Application number
PCT/JP2017/043907
Other languages
French (fr)
Japanese (ja)
Inventor
江原 和也
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201780075610.XA priority Critical patent/CN110049827A/en
Priority to KR1020197019447A priority patent/KR102439472B1/en
Priority to JP2018555052A priority patent/JP6897690B2/en
Publication of WO2018105674A1 publication Critical patent/WO2018105674A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a method for producing a release layer.
  • Patent Documents 1, 2, and 3 an amorphous silicon thin film layer is formed on a glass substrate, a plastic substrate is formed on the thin film layer, and then laser irradiation is performed from the glass substrate side to crystallize amorphous silicon.
  • a method of peeling a plastic substrate from a glass substrate by hydrogen gas generated along with the crystallization is disclosed.
  • Patent Document 4 a layer to be peeled (described as “transfer target layer” in Patent Document 4) is attached to a plastic film by using the techniques disclosed in Patent Documents 1 to 3, and a liquid crystal display device is formed. A method of completion is disclosed.
  • JP 10-125929 A Japanese Patent Laid-Open No. 10-125931 International Publication No. 2005/050754 JP-A-10-125930
  • This invention is made
  • the present inventor has obtained a composition comprising a polyamic acid in which one or both of the tetracarboxylic acid ends are sealed with 2-aminophenol, and an organic solvent.
  • the firing temperature at the time of forming the release layer being equal to or higher than the predetermined maximum temperature, excellent adhesion to the substrate and appropriate adhesion to the resin substrate used in the flexible electronic device and appropriate release properties are achieved.
  • the present invention has been completed by finding that a release layer can be formed.
  • a release layer-forming composition comprising a polyamic acid having both ends derived from tetracarboxylic acid and one or both of both ends sealed with 2-aminophenol and an organic solvent is formed on a substrate.
  • a method for producing a release layer comprising a step of applying and baking at a maximum temperature of 400 ° C. or higher, 2.
  • a method for producing a flexible electronic device comprising a resin substrate, characterized by using a release layer formed by using any one of production methods 1 to 4; 6).
  • a flexible electronic device comprising a step of applying a composition for forming a resin substrate on a release layer formed by using any one of production methods 1 to 4 and then firing the resin substrate at a maximum temperature of 450 ° C. to form a resin substrate Manufacturing method, 7).
  • the method for producing a release layer of the present invention it is possible to obtain a release layer having excellent adhesion to a substrate, moderate adhesion to a resin substrate, and moderate release with good reproducibility. Therefore, by implementing the manufacturing method of the present invention, in the manufacturing process of the flexible electronic device, the circuit or the like without damaging the resin substrate formed on the substrate or the circuit provided on the substrate. At the same time, the resin substrate can be separated from the substrate. Therefore, the manufacturing method of this invention can contribute to the simplification of the manufacturing process of a flexible electronic device provided with a resin substrate, the yield improvement, etc.
  • the method for producing a release layer according to the present invention comprises a polyamic acid having both ends derived from tetracarboxylic acid, one or both of which are sealed with 2-aminophenol, and an organic solvent.
  • the method further comprises a step of applying the release layer-forming composition to the substrate and baking at a maximum temperature of 400 ° C. or higher.
  • the release layer in the present invention is a layer provided immediately above a glass substrate for a predetermined purpose.
  • a flexible electronic made of a substrate and a resin such as polyimide is used.
  • the resin substrate can be easily peeled from the substrate.
  • a release layer may be used.
  • the polyamic acid used in the present invention is obtained by reacting and sealing one or both of the polymer chain ends of polyamic acid having both ends derived from tetracarboxylic acid with the amino group of 2-aminophenol. Can do. That is, in the polyamic acid obtained here, one or both of the molecular chain ends are sealed with a hydroxy group-containing phenyl group.
  • the skeleton can be different from the flexible substrate used for the upper layer, so that the function of the resulting film as a release layer can be improved.
  • a hydroxy group derived from 2-aminophenol may be present at either one of the polymer chain ends of the polyamic acid, but a hydroxy group derived from 2-aminophenol is present at both of the polymer chain ends. Preferably it is present.
  • a diamine component and an acid dianhydride component used when producing a polyamic acid from the viewpoint of improving the function as a release layer of the obtained film, a diamine component containing an aromatic diamine and an aromatic tetracarboxylic acid dicarboxylic acid are used.
  • a polyamic acid obtained by reacting an acid dianhydride component containing an anhydride is preferred.
  • the aromatic diamine is not particularly limited as long as it has two amino groups in the molecule and has an aromatic ring, but an aromatic diamine containing 1 to 5 benzene nuclei is preferable. Specific examples thereof include 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene (m-phenylenediamine), 1,2-diaminobenzene (o-phenylenediamine), 2,4-diamino.
  • Group diamines are preferred. Specifically, p-phenylenediamine, m-phenylenediamine, 2- (3-aminophenyl) -5-aminobenzimidazole, 2- (4-aminophenyl) -5-aminobenzooxol, 4,4 ′ '-Diamino-p-terphenyl and the like are preferred.
  • aromatic tetracarboxylic dianhydride is not particularly limited as long as it has two dicarboxylic anhydride sites in the molecule and has an aromatic ring, but an aromatic tetracarboxylic dianhydride contains 1 to 5 benzene nuclei.
  • aromatic tetracarboxylic dianhydrides are preferred.
  • pyromellitic dianhydride benzene-1,2,3,4-tetracarboxylic dianhydride, naphthalene-1,2,3,4-tetracarboxylic dianhydride, naphthalene-1 , 2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, naphthalene-1,2,7,8-tetracarboxylic dianhydride, naphthalene- 2,3,5,6-tetracarboxylic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, biphenyl -2,2 ', 3,3'-tetracarboxylic dianhydride, biphenyl-2,3,3', 4'-tetracarboxylic dianhydride,
  • aromatic carboxylic dianhydrides having one or two benzene nuclei are preferred from the viewpoint of improving the function of the resulting film as a release layer.
  • an aromatic tetracarboxylic dianhydride represented by any one of formulas (C1) to (C12) is preferred, and any one of formulas (C1) to (C7) and (C9) to (C11)
  • the aromatic tetracarboxylic dianhydride shown is more preferred.
  • the diamine component used in the present invention may contain a diamine other than an aromatic diamine, and the tetracarboxylic dianhydride component used in the present invention is Further, tetracarboxylic dianhydrides other than aromatic tetracarboxylic dianhydrides may be included.
  • the amount of aromatic diamine in the diamine component is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, still more preferably 95 mol% or more, and most preferably 100 mol%.
  • the amount of aromatic tetracarboxylic dianhydride in the tetracarboxylic acid component is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and still more preferably 95 mol%. Above, most preferably 100 mol%.
  • the resulting polyamic acid and 2-aminophenol are reacted to be included in the composition for forming a release layer of the present invention.
  • a polyamic acid in which the polymer chain ends are sealed with 2-aminophenol can be obtained.
  • the charging ratio of the diamine component and the tetracarboxylic dianhydride component is appropriately determined in consideration of the target molecular weight and molecular weight distribution, the type of diamine and the type of tetracarboxylic dianhydride, etc.
  • the molar ratio of the tetracarboxylic dianhydride component is preferably 1.02 to 3.0 mol, more preferably 1.07 to 2.5 mol, with respect to 1 mol of the diamine component. 2.0 mol is even more preferable.
  • the organic solvent used for synthesizing the polyamic acid and sealing the molecular chain end of the synthesized polyamic acid is not particularly limited as long as it does not adversely affect the reaction.
  • Specific examples thereof include m-cresol, 2-pyrrolidone, N— Methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, 3-methoxy-N, N-dimethylpropylamide, 3- Ethoxy-N, N-dimethylpropylamide, 3-propoxy-N, N-dimethylpropylamide, 3-isopropoxy-N, N-dimethylpropylamide, 3-butoxy-N, N-dimethylpropylamide, 3-sec -Butoxy-N, N-dimethylpropylamide, 3-tert-butoxy-N, N-dimethyl Propyl amide, .gam
  • amides represented by formula (S1), amides represented by formula (S2) and formula ( At least one selected from amides represented by S3) is preferred.
  • R 1 and R 2 each independently represent an alkyl group having 1 to 10 carbon atoms.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • h represents a natural number, preferably 1 to 3, more preferably 1 or 2.
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, n- Examples include hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and the like. Of these, alkyl groups having 1 to 3 carbon atoms are preferable, and alkyl groups having 1 or 2 carbon atoms are more preferable.
  • the reaction temperature during the synthesis of the polyamic acid may be appropriately set in the range from the melting point to the boiling point of the solvent to be used, and is usually about 0 to 100 ° C. However, it prevents imidization of the resulting polyamic acid in the solution. From the viewpoint of maintaining a high content of polyamic acid units, the temperature can be preferably about 0 to 70 ° C, more preferably about 0 to 60 ° C, and still more preferably about 0 to 50 ° C.
  • the reaction time depends on the reaction temperature and the reactivity of the raw material, it cannot be defined unconditionally, but is usually about 1 to 100 hours.
  • the reaction temperature at the time of sealing the molecular chain end of the polyamic acid may be appropriately set in the range from the melting point to the boiling point of the solvent used, as in the synthesis of the polyamic acid, and is usually about 0 to 100 ° C. From the viewpoint of securely sealing the molecular chain terminal of the synthesized polyamic acid, the temperature can be preferably about 0 to 70 ° C, more preferably about 0 to 60 ° C, and still more preferably about 0 to 50 ° C.
  • the reaction time depends on the reaction temperature and the reactivity of the raw material, it cannot be defined unconditionally, but is usually about 1 to 100 hours.
  • the weight average molecular weight of the polyamic acid obtained in this manner and having either or both of the molecular chain ends sealed with 2-aminophenol is usually about 5,000 to 500,000. From the viewpoint of improving the function of the film as a release layer, it is preferably about 6,000 to 200,000, more preferably about 7,000 to 150,000.
  • a weight average molecular weight is a polystyrene conversion value by a gel permeation chromatography (GPC) measurement.
  • the reaction solution after end-capping can be used as it is, or a solution obtained by diluting or concentrating can be used as the release layer forming composition of the present invention.
  • the solvent in this case include organic solvents used in the above-described reaction.
  • the solvent used for dilution is not particularly limited, and specific examples thereof include those similar to the specific examples of the reaction solvent for the reaction.
  • the solvent used for dilution may be used singly or in combination of two or more.
  • N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-ethyl-2 are used because they dissolve polyamic acid well.
  • -Pyrrolidone and ⁇ -butyrolactone are preferred, and N-methyl-2-pyrrolidone is more preferred.
  • ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy -2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxy A solvent having a low surface tension such as propoxy) propanol, methyl lactate, ethyl lactate, n-propyl lactate, n
  • the concentration of the polyamic acid in the composition for forming a release layer of the present invention is appropriately set in consideration of the thickness of the release layer to be produced, the viscosity of the composition, etc., but is usually about 1 to 30% by mass, preferably It is about 1 to 20% by mass. By setting such a concentration, a release layer having a thickness of about 0.05 to 5 ⁇ m can be obtained with good reproducibility.
  • the concentration of polyamic acid is adjusted to adjust the amount of diamine and tetracarboxylic dianhydride used as raw materials for polyamic acid, and after filtering the reaction solution, the filtrate is diluted or concentrated, and the isolated polyamic acid is used as a solvent. The amount can be adjusted by, for example, adjusting the amount when dissolved in the aqueous solution.
  • the viscosity of the release layer-forming composition of the present invention is appropriately set in consideration of the thickness of the release layer to be produced, etc., and in particular, a film having a thickness of about 0.05 to 5 ⁇ m can be obtained with good reproducibility. Is usually about 10 to 10,000 mPa ⁇ s, preferably about 20 to 5,000 mPa ⁇ s at 25 ° C.
  • the viscosity can be measured using a commercially available liquid viscosity measurement viscometer, for example, with reference to the procedure described in JIS K7117-2 at a temperature of the composition of 25 ° C. .
  • a conical plate type (cone plate type) rotational viscometer is used as the viscometer, and preferably the composition temperature is 25 ° C. using 1 ° 34 ′ ⁇ R24 as a standard cone rotor. It can be measured under the condition of ° C.
  • An example of such a rotational viscometer is TVE-25L manufactured by Toki Sangyo Co., Ltd.
  • composition for forming a release layer of the present invention may contain a crosslinking agent or the like in order to improve the film strength, for example, in addition to the polyamic acid and the organic solvent.
  • the adhesiveness to the substrate is excellent by thermally imidizing polyamic acid by a baking method including a step of baking at a maximum temperature of 400 ° C. or higher.
  • a baking method including a step of baking at a maximum temperature of 400 ° C. or higher.
  • the maximum temperature at the time of firing is not particularly limited as long as it is in the range of 400 ° C. or higher and not higher than the heat resistant temperature of polyimide.
  • 450 ° C. or higher is preferable, and 500 ° C. or higher is more preferable.
  • the upper limit is usually about 550 ° C., preferably about 510 ° C.
  • the heating time varies depending on the heating temperature and cannot be defined generally, but is usually 1 minute to 5 hours.
  • the imidization rate may be in the range of 50 to 100%.
  • the temperature at the time of the said baking may include the process baked at the temperature below it.
  • the heating mode in the present invention there is a method of heating at 50 to 150 ° C., then raising the heating temperature stepwise as it is, and finally heating at 400 ° C. or higher.
  • a method of heating at 50 to 100 ° C., heating at a temperature higher than 100 ° C. to less than 400 ° C., and heating at 400 ° C. or higher can be mentioned.
  • heating mode after heating at 50 to 150 ° C., heating at 150 to 350 ° C., then heating at 350 to 450 ° C., and finally 450 to 510 ° C.
  • a method of heating at 0 ° C. can be mentioned.
  • the heating mode in consideration of the firing time, after heating at 50 to 150 ° C. for 1 minute to 2 hours, the heating temperature is increased stepwise and finally at 400 ° C. or higher for 30 minutes.
  • a method of heating for up to 4 hours can be mentioned.
  • heating is performed at 50 to 100 ° C. for 1 minute to 2 hours, heating is performed above 100 ° C. to less than 400 ° C. for 5 minutes to 2 hours, and heating is performed at 400 ° C. or higher for 30 minutes to 4 hours.
  • the technique to do is mentioned.
  • after heating at 50 to 150 ° C. for 1 minute to 2 hours after exceeding 150 ° C. to 350 ° C. for 5 minutes to 2 hours, then, exceeding 350 ° C. to 450 ° C. for 30 minutes
  • a method of heating at 450 ° C. to 510 ° C. for 30 minutes to 4 hours is mentioned.
  • the peeling layer of this invention when forming the peeling layer of this invention on a base
  • a release layer is formed in a pattern such as a dot pattern or a line and space pattern on the entire surface of the substrate.
  • substrate means what is used for manufacture of a flexible electronic device etc. by which the composition for peeling layer formation of this invention is applied to the surface.
  • the substrate examples include glass, metal (silicon wafer, etc.), slate, and the like.
  • glass is preferable because the release layer of the present invention has sufficient adhesion to it.
  • substrate surface may be comprised with the single material and may be comprised with two or more materials.
  • the substrate surface is composed of two or more materials, a certain range of the substrate surface is composed of a certain material, and the other surface is composed of other materials.
  • a dot pattern is formed on the entire surface of the substrate. There is a mode in which a material in a pattern such as a line and space pattern is present in other materials.
  • the method for applying the release layer-forming composition of the present invention to the substrate is not particularly limited, and examples thereof include cast coating, spin coating, blade coating, dip coating, roll coating, and bar coating.
  • Method, die coating method, ink jet method, printing method eg, relief printing, intaglio printing, planographic printing, screen printing, etc.
  • Examples of the appliance used for heating include a hot plate and an oven.
  • the heating atmosphere may be under air or under an inert gas, and may be under normal pressure or under reduced pressure.
  • the thickness of the release layer is usually about 0.01 to 50 ⁇ m, and preferably about 0.05 to 20 ⁇ m from the viewpoint of productivity.
  • desired thickness is implement
  • the release layer described above has excellent adhesion to a substrate, particularly a glass substrate, moderate adhesion to a resin substrate, and moderate release. Therefore, the release layer of the present invention peels the resin substrate from the substrate together with the circuit formed on the resin substrate without damaging the resin substrate of the device in the manufacturing process of the flexible electronic device. Therefore, it can be suitably used.
  • a release layer is formed on a glass substrate by the method described above.
  • a resin substrate forming solution for forming a resin substrate is applied, and this coating film is baked, so that the resin substrate fixed to the glass substrate via the release layer of the present invention is obtained.
  • the firing temperature of the coating film is appropriately set according to the type of resin and the like. In the present invention, the maximum temperature during firing is preferably 450 ° C. or higher, and preferably 480 ° C. or higher. Is more preferably 490 ° C. or higher, and further preferably 500 ° C. or higher.
  • the adhesiveness between the release layer and the substrate as the base, and the appropriate adhesiveness and peelability between the release layer and the resin substrate are further improved be able to.
  • a step of baking at a temperature lower than that may be included.
  • the heating mode at the time of preparing the resin substrate there is a method of heating at 50 to 150 ° C., then increasing the heating temperature step by step, and finally heating at 450 ° C. or higher.
  • a method of heating at 50 to 100 ° C., heating at a temperature exceeding 100 ° C. to less than 400 ° C., and heating at 450 ° C. or higher can be mentioned.
  • after heating at 50 to 100 ° C. heating is performed at over 100 ° C. to 200 ° C., then over 200 ° C. to less than 300 ° C., and heating is performed at 300 ° C. to less than 400 ° C.
  • heating at 400 to 450 ° C., and finally heating at 450 to 510 ° C. can be mentioned.
  • the heating mode in consideration of the firing time, after heating at 50 to 150 ° C. for 1 minute to 2 hours, the heating temperature is increased stepwise and finally at 450 ° C. or higher for 30 minutes.
  • a method of heating for up to 4 hours can be mentioned.
  • heating is performed at 50 to 100 ° C. for 1 minute to 2 hours, heating is performed above 100 ° C. to less than 400 ° C. for 5 minutes to 2 hours, and heating is performed at 450 ° C. or higher for 30 minutes to 4 hours.
  • the technique to do is mentioned.
  • the resin substrate covers the entire release layer, and the substrate is formed with an area larger than the area of the release layer.
  • the resin substrate include a resin substrate made of polyimide, which is a typical resin substrate for flexible electronic devices, and examples of the resin solution for forming the resin substrate include a polyimide solution and a polyamic acid solution.
  • the method for forming the resin substrate may follow a conventional method.
  • a desired circuit is formed on the resin substrate fixed to the base via the release layer of the present invention, and then the resin substrate is cut along the release layer, for example. It peels from a peeling layer, and a resin substrate and a base
  • the LLO method is characterized in that light having a specific wavelength, for example, light having a wavelength of 308 nm, is irradiated from the surface opposite to the surface on which a circuit or the like is formed from the glass substrate side.
  • the irradiated light passes through the glass substrate, and only the polymer (polyimide) in the vicinity of the glass substrate absorbs this light and evaporates (sublimates).
  • the polymer polyimide
  • the release layer of the present invention has a feature of sufficiently absorbing light having a specific wavelength (for example, 308 nm) that enables application of the above LLO method, and therefore can be used as a sacrificial layer of the LLO method. Therefore, when a desired circuit is formed on a resin substrate fixed to a glass substrate through a release layer formed by using the composition according to the present invention, and then an LLO method is performed to irradiate a light beam of 308 nm. Only the release layer absorbs this light and evaporates (sublimates). Thereby, the release layer is sacrificed (acts as a sacrifice layer), and the resin substrate can be selectively peeled from the glass substrate.
  • a specific wavelength for example, 308 nm
  • NMP N-methylpyrrolidone
  • BCS butyl cellosolve
  • p-PDA p-phenylenediamine
  • 2AP 2-aminophenol
  • BPDA 3,3-4,4-biphenyltetracarboxylic dianhydride
  • PMDA pyromerit Acid dianhydride
  • Mw polymer weight average molecular weight
  • Mw polymer weight average molecular weight
  • Mw molecular weight distribution
  • a GPC apparatus Shidex (registered trademark) columns KF803L and KF805L
  • dimethylformamide was measured under the conditions of a flow rate of 1 ml / min and a column temperature of 50 ° C.
  • Mw was made into the polystyrene conversion value.
  • composition for forming release layer [Example 1-1] BCS and NMP were added to the reaction solution obtained in Synthesis Example L1, and diluted such that the polymer concentration was 5 wt% and BCS was 20 mass%, to obtain a release layer forming composition.
  • Examples 1-2 to 1-3 A composition for forming a release layer was obtained in the same manner as in Example 1-1 except that the reaction solutions obtained in Synthesis Examples L2 to L3 were used in place of the reaction solution obtained in Synthesis Example L1, respectively. It was.
  • Example 1-1 A composition for forming a release layer was obtained in the same manner as in Example 1-1, except that the reaction solution obtained in Comparative Synthesis Example HL1 was used instead of the reaction solution obtained in Synthesis Example L1. .
  • Example 2-1 Production of release layer and resin substrate [Example 2-1] Using a spin coater (conditions: about 3,000 rpm for about 30 seconds), the release layer forming composition L1 obtained in Example 1-1 was used as a glass substrate of 100 mm ⁇ 100 mm glass substrate (hereinafter the same). It was applied on top. The obtained coating film was heated at 100 ° C. for 2 minutes using a hot plate, and then heated at 300 ° C. for 30 minutes using an oven, and the heating temperature was raised to 400 ° C. (10 ° C./min. And then heated to 400 ° C. for 30 minutes, further heated to 500 ° C. (10 ° C./min), and heated at 500 ° C. for 10 minutes to form a release layer having a thickness of about 0.1 ⁇ m on the glass substrate. A glass substrate with a release layer was obtained. During the temperature increase, the film-coated substrate was not removed from the oven but heated in the oven.
  • the resin substrate forming composition S2 was applied on the release layer (resin thin film) on the glass substrate obtained above. Then, the obtained coating film was heated at 80 ° C. for 30 minutes using a hot plate, and then the atmosphere was changed to a nitrogen atmosphere using an oven, followed by heating at 140 ° C. for 30 minutes, and the heating temperature was raised to 210 ° C. Temperature (2 ° C./min, the same applies hereinafter), 210 ° C. for 30 minutes, heating temperature to 300 ° C., 300 ° C. for 30 minutes, heating temperature to 400 ° C., 400 ° C. for 30 minutes, The heating temperature was raised to 500 ° C. and heated at 500 ° C.
  • Examples 2-2 to 2-3 Except that the release layer-forming composition L2 and L3 obtained in Examples 1-2 to 1-3 were used in place of the release layer-forming composition L1 obtained in Example 1-1, respectively.
  • a release layer and a polyimide resin substrate were formed to obtain a glass substrate with a release layer and a resin substrate / glass substrate with a release layer.
  • Example 2-1 The same procedure as in Example 2-1 except that the release layer forming composition HL1 obtained in Comparative Example 1-1 was used instead of the release layer forming composition L1 obtained in Example 1-1.
  • a release layer and a polyimide resin substrate were formed, and a glass substrate with a release layer and a glass substrate with a resin substrate / release layer were obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electroluminescent Light Sources (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

A release layer production method is provided which involves a step for coating a substrate with a release layer forming composition and firing at a maximum temperature of no less than 400°C, wherein the release layer forming composition contains an organic solvent, and a polyamic acid having both ends derived from a tetracarboxylic acid, with either one or both of said ends sealed with 2-aminophenol.

Description

剥離層の製造方法Method for producing release layer
 本発明は、剥離層の製造方法に関する。 The present invention relates to a method for producing a release layer.
 近年、電子デバイスには薄型化及び軽量化という特性に加え、曲げることができるという機能を付与することが求められている。このことから、従来の重く脆弱で曲げることができないガラス基板に代わって、軽量なフレキシブルプラスチック基板を用いることが求められる。
 特に、新世代ディスプレイでは、軽量なフレキシブルプラスチック基板(以下、樹脂基板と表記する)を用いたアクティブマトリクス型フルカラーTFTディスプレイパネルの開発が求められている。この新世代ディスプレイに関する技術は、フレキシブルディスプレイや、フレキシブルスマートフォン、ミラーディスプレイ等の様々な分野への転用が期待されている。
In recent years, electronic devices have been required to have a function of being able to bend in addition to the characteristics of thinning and lightening. For this reason, it is required to use a lightweight flexible plastic substrate in place of the conventional glass substrate that is fragile and cannot be bent.
In particular, in the new generation display, development of an active matrix type full color TFT display panel using a lightweight flexible plastic substrate (hereinafter referred to as a resin substrate) is required. This new generation display technology is expected to be diverted to various fields such as flexible displays, flexible smartphones, and mirror displays.
 そこで、樹脂フィルムを基板とした電子デバイスの製造方法が各種検討され始めており、新世代ディスプレイでは、既存のTFTディスプレイパネル製造用の設備が転用可能なプロセスの検討が進められている。 Therefore, various methods for manufacturing electronic devices using a resin film as a substrate are being studied, and in the new generation display, a process for diverting existing facilities for manufacturing TFT display panels is being investigated.
 例えば、特許文献1、2及び3では、ガラス基板上にアモルファスシリコン薄膜層を形成し、その薄膜層上にプラスチック基板を形成した後に、ガラス基板側からレーザーを照射してアモルファスシリコンを結晶化させ、その結晶化に伴い発生する水素ガスによりプラスチック基板をガラス基板から剥離する方法が開示されている。 For example, in Patent Documents 1, 2, and 3, an amorphous silicon thin film layer is formed on a glass substrate, a plastic substrate is formed on the thin film layer, and then laser irradiation is performed from the glass substrate side to crystallize amorphous silicon. A method of peeling a plastic substrate from a glass substrate by hydrogen gas generated along with the crystallization is disclosed.
 また、特許文献4では、特許文献1~3で開示された技術を用いて被剥離層(特許文献4において「被転写層」と記載されている)をプラスチックフィルムに貼りつけて液晶表示装置を完成させる方法が開示されている。 In Patent Document 4, a layer to be peeled (described as “transfer target layer” in Patent Document 4) is attached to a plastic film by using the techniques disclosed in Patent Documents 1 to 3, and a liquid crystal display device is formed. A method of completion is disclosed.
 しかし、特許文献1~4で開示された方法、特に特許文献4で開示された方法では、レーザー光を透過させるために透光性の高い基板を使用することが必須であること、基板を通過させ、更にアモルファスシリコンに含まれる水素を放出させるのに十分な、比較的大きなエネルギーのレーザー光の照射が必要とされること、レーザー光の照射によって被剥離層に損傷を与えてしまう場合があること、といった問題がある。
 しかも、被剥離層が大面積である場合には、レーザー処理に長時間を要するため、デバイス作製の生産性を上げることが難しい。
However, in the methods disclosed in Patent Documents 1 to 4, particularly the method disclosed in Patent Document 4, it is essential to use a highly light-transmitting substrate in order to transmit laser light, and the substrate passes through the substrate. In addition, it is necessary to irradiate laser light with a relatively large energy sufficient to release hydrogen contained in amorphous silicon, and the layer to be peeled may be damaged by the laser light irradiation. There is a problem.
In addition, when the layer to be peeled has a large area, it takes a long time for the laser treatment, and it is difficult to increase the productivity of device fabrication.
特開平10-125929号公報JP 10-125929 A 特開平10-125931号公報Japanese Patent Laid-Open No. 10-125931 国際公開第2005/050754号International Publication No. 2005/050754 特開平10-125930号公報JP-A-10-125930
 本発明は、上記事情に鑑みてなされたものであり、フレキシブル電子デバイスの樹脂基板に損傷を与えることなく剥離することができる剥離層の製造方法を提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the manufacturing method of the peeling layer which can peel without damaging the resin substrate of a flexible electronic device.
 本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、テトラカルボン酸末端のいずれか一方又は両方が2-アミノフェノールで封止されているポリアミック酸と、有機溶媒とを含む組成物を用い、剥離層形成時の焼成温度を所定の最高到達温度以上とすることで、基体との優れた密着性及びフレキシブル電子デバイスに用いられる樹脂基板との適度な密着性と適度な剥離性を有する剥離層を形成できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventor has obtained a composition comprising a polyamic acid in which one or both of the tetracarboxylic acid ends are sealed with 2-aminophenol, and an organic solvent. With the firing temperature at the time of forming the release layer being equal to or higher than the predetermined maximum temperature, excellent adhesion to the substrate and appropriate adhesion to the resin substrate used in the flexible electronic device and appropriate release properties are achieved. The present invention has been completed by finding that a release layer can be formed.
 すなわち、本発明は、
1. テトラカルボン酸由来の両末端を有し、この両末端のいずれか一方又は両方が2-アミノフェノールで封止されているポリアミック酸と、有機溶媒とを含む剥離層形成用組成物を基体上に塗布し、最高温度400℃以上で焼成する工程を含むことを特徴とする剥離層の製造方法、
2. 上記ポリアミック酸が、芳香族ジアミンを含むジアミン成分と芳香族テトラカルボン酸二無水物を含む酸二無水物成分とを反応させて得られたポリアミック酸である1の剥離層の製造方法、
3. 上記芳香族ジアミンが、ベンゼン核を1~5つ含む芳香族ジアミンである2の剥離層の製造方法、
4. 上記芳香族テトラカルボン酸二無水物が、ベンゼン核を1~5つ含む芳香族テトラカルボン酸二無水物である2又は3の剥離層の製造方法、
5. 1~4のいずれかの製造方法を用いて形成される剥離層を用いることを特徴とする、樹脂基板を備えるフレキシブル電子デバイスの製造方法、
6. 1~4のいずれかの製造方法を用いて形成した剥離層上に、樹脂基板形成用組成物を塗布した後、最高温度450℃以上で焼成して樹脂基板を形成する工程を含むフレキシブル電子デバイスの製造方法、
7. 上記樹脂基板が、ポリイミド樹脂基板である5又は6のフレキシブル電子デバイスの製造方法
を提供する。
That is, the present invention
1. A release layer-forming composition comprising a polyamic acid having both ends derived from tetracarboxylic acid and one or both of both ends sealed with 2-aminophenol and an organic solvent is formed on a substrate. A method for producing a release layer, comprising a step of applying and baking at a maximum temperature of 400 ° C. or higher,
2. The method for producing a release layer according to claim 1, wherein the polyamic acid is a polyamic acid obtained by reacting a diamine component containing an aromatic diamine with an acid dianhydride component containing an aromatic tetracarboxylic dianhydride,
3. A method for producing a release layer of 2, wherein the aromatic diamine is an aromatic diamine containing 1 to 5 benzene nuclei,
4). A method for producing a release layer of 2 or 3, wherein the aromatic tetracarboxylic dianhydride is an aromatic tetracarboxylic dianhydride containing 1 to 5 benzene nuclei,
5). A method for producing a flexible electronic device comprising a resin substrate, characterized by using a release layer formed by using any one of production methods 1 to 4;
6). A flexible electronic device comprising a step of applying a composition for forming a resin substrate on a release layer formed by using any one of production methods 1 to 4 and then firing the resin substrate at a maximum temperature of 450 ° C. to form a resin substrate Manufacturing method,
7). The method for producing a flexible electronic device according to 5 or 6, wherein the resin substrate is a polyimide resin substrate.
 本発明の剥離層の製造方法を採用することで、基体との優れた密着性及び樹脂基板との適度な密着性と適度な剥離性を有する剥離層を再現性よく得ることができる。それ故、本発明の製造方法を実施することで、フレキシブル電子デバイスの製造プロセスにおいて、基体上に形成された樹脂基板や、更にその上に設けられる回路等に損傷を与えることなく、当該回路等とともに当該樹脂基板を、当該基体から分離することが可能となる。したがって、本発明の製造方法は、樹脂基板を備えるフレキシブル電子デバイスの製造プロセスの簡便化やその歩留り向上等に寄与し得る。 By adopting the method for producing a release layer of the present invention, it is possible to obtain a release layer having excellent adhesion to a substrate, moderate adhesion to a resin substrate, and moderate release with good reproducibility. Therefore, by implementing the manufacturing method of the present invention, in the manufacturing process of the flexible electronic device, the circuit or the like without damaging the resin substrate formed on the substrate or the circuit provided on the substrate. At the same time, the resin substrate can be separated from the substrate. Therefore, the manufacturing method of this invention can contribute to the simplification of the manufacturing process of a flexible electronic device provided with a resin substrate, the yield improvement, etc.
 以下、本発明について、より詳細に説明する。
 本発明に係る剥離層の製造方法は、テトラカルボン酸由来の両末端を有し、この両末端のいずれか一方又は両方が2-アミノフェノールで封止されているポリアミック酸と、有機溶媒とを含む剥離層形成用組成物を基体上に塗布し、最高温度400℃以上で焼成する工程を含むことを特徴とする。
 ここで、本発明における剥離層とは、所定の目的でガラス基体直上に設けられる層であって、その典型例としては、フレキシブル電子デバイスの製造プロセスにおいて、基体と、ポリイミドといった樹脂からなるフレキシブル電子デバイスの樹脂基板との間に当該樹脂基板を所定のプロセス中において固定するために設けられ、且つ、当該樹脂基板上に電子回路等の形成した後において当該樹脂基板が当該基体から容易に剥離できるようにするために設けられる剥離層が挙げられる。
Hereinafter, the present invention will be described in more detail.
The method for producing a release layer according to the present invention comprises a polyamic acid having both ends derived from tetracarboxylic acid, one or both of which are sealed with 2-aminophenol, and an organic solvent. The method further comprises a step of applying the release layer-forming composition to the substrate and baking at a maximum temperature of 400 ° C. or higher.
Here, the release layer in the present invention is a layer provided immediately above a glass substrate for a predetermined purpose. As a typical example, in a manufacturing process of a flexible electronic device, a flexible electronic made of a substrate and a resin such as polyimide is used. Provided between the device resin substrate and the resin substrate in a predetermined process, and after the electronic circuit or the like is formed on the resin substrate, the resin substrate can be easily peeled from the substrate. For example, a release layer may be used.
 本発明で用いるポリアミック酸は、テトラカルボン酸由来の両末端を有するポリアミック酸の重合体鎖末端のいずれか一方又は両方を、2-アミノフェノールのアミノ基と反応させて封止することにより得ることができる。即ち、ここで得られるポリアミック酸は、ヒドロキシ基含有フェニル基で分子鎖末端のいずれか一方又は両方が封止されている。 The polyamic acid used in the present invention is obtained by reacting and sealing one or both of the polymer chain ends of polyamic acid having both ends derived from tetracarboxylic acid with the amino group of 2-aminophenol. Can do. That is, in the polyamic acid obtained here, one or both of the molecular chain ends are sealed with a hydroxy group-containing phenyl group.
 重合体末端がヒドロキシ基を有することで、上層に用いるフレキシブル基板と骨格の相違ができるために、得られる膜の剥離層としての機能の向上を図ることができる。 Since the polymer terminal has a hydroxy group, the skeleton can be different from the flexible substrate used for the upper layer, so that the function of the resulting film as a release layer can be improved.
 本発明においては、ポリアミック酸の重合体鎖末端のいずれか一方に2-アミノフェノールに由来するヒドロキシ基が存在すればよいが、重合体鎖末端の両方に2-アミノフェノールに由来するヒドロキシ基が存在することが好ましい。 In the present invention, a hydroxy group derived from 2-aminophenol may be present at either one of the polymer chain ends of the polyamic acid, but a hydroxy group derived from 2-aminophenol is present at both of the polymer chain ends. Preferably it is present.
 また、ポリアミック酸を製造する際に用いるジアミン成分及び酸二無水物成分としては、得られる膜の剥離層としての機能を向上させる観点から、芳香族ジアミンを含むジアミン成分と芳香族テトラカルボン酸二無水物を含む酸二無水物成分とを反応させて得られるポリアミック酸が好ましい。 Moreover, as a diamine component and an acid dianhydride component used when producing a polyamic acid, from the viewpoint of improving the function as a release layer of the obtained film, a diamine component containing an aromatic diamine and an aromatic tetracarboxylic acid dicarboxylic acid are used. A polyamic acid obtained by reacting an acid dianhydride component containing an anhydride is preferred.
 芳香族ジアミンとしては、分子内に2つのアミノ基を有し、かつ、芳香環を有する限り特に限定されるものではないが、ベンゼン核を1~5つ含む芳香族ジアミンが好ましい。
 その具体例としては、1,4-ジアミノベンゼン(p-フェニレンジアミン)、1,3-ジアミノベンゼン(m-フェニレンジアミン)、1,2-ジアミノベンゼン(o-フェニレンジアミン)、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、4,6-ジメチル-m-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、2,6-ジメチル-p-フェニレンジアミン、2,4,6-トリメチル-1,3-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、5-トリフルオロメチルベンゼン-1,3-ジアミン、5-トリフルオロメチルベンゼン-1,2-ジアミン、3,5-ビス(トリフルオロメチル)ベンゼン-1,2-ジアミン等のベンゼン核が1つのジアミン;1,2-ナフタレンジアミン、1,3-ナフタレンジアミン、1,4-ナフタレンジアミン、1,5-ナフタレンジアミン、1,6-ナフタレンジアミン、1,7-ナフタレンジアミン、1,8-ナフタレンジアミン、2,3-ナフタレンジアミン、2,6-ナフタレンジアミン、4,4’-ビフェニルジアミン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンズアニリド、3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ビス(トリフルオロメチル)ビフェニル-4,4’-ジアミン、3,3’,5,5’-テトラフルオロビフェニル-4,4’-ジアミン、4,4’-ジアミノオクタフルオロビフェニル、2-(3-アミノフェニル)-5-アミノベンズイミダゾール、2-(4-アミノフェニル)-5-アミノベンゾオキゾール等のベンゼン核が2つのジアミン;1,5-ジアミノアントラセン、2,6-ジアミノアントラセン、9,10-ジアミノアントラセン、1,8-ジアミノフェナントレン、2,7-ジアミノフェナントレン、3,6-ジアミノフェナントレン、9,10-ジアミノフェナントレン、1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(3-アミノフェニルスルフィド)ベンゼン、1,3-ビス(4-アミノフェニルスルフィド)ベンゼン、1,4-ビス(4-アミノフェニルスルフィド)ベンゼン、1,3-ビス(3-アミノフェニルスルホン)ベンゼン、1,3-ビス(4-アミノフェニルスルホン)ベンゼン、1,4-ビス(4-アミノフェニルスルホン)ベンゼン、1,3-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(3-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼン、4,4’’-ジアミノ-p-ターフェニル、4,4’’-ジアミノ-m-ターフェニル等のベンゼン核が3つのジアミン等を挙げることができるが、これらに限定されない。これらは単独でも、2種以上を組み合わせて用いることもできる。なお、本発明において、上記芳香族ジアミンはエーテル結合及びエステル結合を含まないものを使用することが好ましい。
The aromatic diamine is not particularly limited as long as it has two amino groups in the molecule and has an aromatic ring, but an aromatic diamine containing 1 to 5 benzene nuclei is preferable.
Specific examples thereof include 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene (m-phenylenediamine), 1,2-diaminobenzene (o-phenylenediamine), 2,4-diamino. Toluene, 2,5-diaminotoluene, 2,6-diaminotoluene, 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,6-dimethyl-p-phenylenediamine, 2 , 4,6-trimethyl-1,3-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, m-xylylenediamine, p-xylylenediamine, 5-trifluoromethylbenzene-1 , 3-diamine, 5-trifluoromethylbenzene-1,2-diamine, 3,5-bis (trifluoromethyl A diamine having one benzene nucleus such as benzene-1,2-diamine; 1,2-naphthalenediamine, 1,3-naphthalenediamine, 1,4-naphthalenediamine, 1,5-naphthalenediamine, 1,6-naphthalenediamine 1,7-naphthalenediamine, 1,8-naphthalenediamine, 2,3-naphthalenediamine, 2,6-naphthalenediamine, 4,4′-biphenyldiamine, 2,2′-bis (trifluoromethyl) -4 , 4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 3,3 ', 5,5'-tetramethyl -4,4'-diaminodiphenylmethane, 4,4'-diaminobenzanilide, 3,3'-dichlorobenzidine, 3,3'-dimethylbenz 2,2'-dimethylbenzidine, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 2,2-bis (3-aminophenyl) propane, 2,2 -Bis (4-aminophenyl) propane, 2,2-bis (3-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-bis (4-aminophenyl)- 1,1,1,3,3,3-hexafluoropropane, 3,3′-diaminodiphenyl sulfoxide, 3,4′-diaminodiphenyl sulfoxide, 4,4′-diaminodiphenyl sulfoxide, 3,3′-bis ( Trifluoromethyl) biphenyl-4,4′-diamine, 3,3 ′, 5,5′-tetrafluorobiphenyl-4,4′-diamine, 4,4′-diaminoocta Benzene nuclei having two diamines such as luorobiphenyl, 2- (3-aminophenyl) -5-aminobenzimidazole, 2- (4-aminophenyl) -5-aminobenzoxazole; 1,5-diaminoanthracene, 2,6-diaminoanthracene, 9,10-diaminoanthracene, 1,8-diaminophenanthrene, 2,7-diaminophenanthrene, 3,6-diaminophenanthrene, 9,10-diaminophenanthrene, 1,3-bis (3- Aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (3-aminophenyl) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis ( 3-aminophenylsulfide) benzene, 1,3-bis (4-aminophenylsulfide) benze 1,4-bis (4-aminophenylsulfide) benzene, 1,3-bis (3-aminophenylsulfone) benzene, 1,3-bis (4-aminophenylsulfone) benzene, 1,4-bis (4 -Aminophenylsulfone) benzene, 1,3-bis [2- (4-aminophenyl) isopropyl] benzene, 1,4-bis [2- (3-aminophenyl) isopropyl] benzene, 1,4-bis [2 -(4-Aminophenyl) isopropyl] benzene, 4,4 ″ -diamino-p-terphenyl, 4,4 ″ -diamino-m-terphenyl and the like, and benzene nuclei having three diamines can be mentioned. However, it is not limited to these. These can be used alone or in combination of two or more. In the present invention, the aromatic diamine preferably does not contain an ether bond or an ester bond.
 中でも、得られる膜の剥離層としての機能を向上させる観点から、芳香環及びそれに縮合する複素環上にメチル基等の置換基を有しない芳香族環及び複素芳香族環のみから構成される芳香族ジアミンが好ましい。具体的には、p-フェニレンジアミン、m-フェニレンジアミン、2-(3-アミノフェニル)-5-アミノベンズイミダゾール、2-(4-アミノフェニル)-5-アミノベンゾオキゾール、4,4’’-ジアミノ-p-ターフェニル等が好ましい。 Among them, from the viewpoint of improving the function of the resulting film as a release layer, an aromatic ring and an aromatic ring composed only of an aromatic ring having no substituent such as a methyl group and a heteroaromatic ring on the heterocyclic ring condensed thereto. Group diamines are preferred. Specifically, p-phenylenediamine, m-phenylenediamine, 2- (3-aminophenyl) -5-aminobenzimidazole, 2- (4-aminophenyl) -5-aminobenzooxol, 4,4 ′ '-Diamino-p-terphenyl and the like are preferred.
 芳香族テトラカルボン酸二無水物としては、分子内に2つのジカルボン酸無水物部位を有し、かつ、芳香環を有する限り特に限定されるものではないが、ベンゼン核を1~5つ含む芳香族テトラカルボン酸二無水物が好ましい。 The aromatic tetracarboxylic dianhydride is not particularly limited as long as it has two dicarboxylic anhydride sites in the molecule and has an aromatic ring, but an aromatic tetracarboxylic dianhydride contains 1 to 5 benzene nuclei. Group tetracarboxylic dianhydrides are preferred.
 その具体例としては、ピロメリット酸二無水物、ベンゼン-1,2,3,4-テトラカルボン酸二無水物、ナフタレン-1,2,3,4-テトラカルボン酸二無水物、ナフタレン-1,2,5,6-テトラカルボン酸二無水物、ナフタレン-1,2,6,7-テトラカルボン酸二無水物、ナフタレン-1,2,7,8-テトラカルボン酸二無水物、ナフタレン-2,3,5,6-テトラカルボン酸二無水物、ナフタレン-2,3,6,7-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、ビフェニル-2,2’,3,3’-テトラカルボン酸二無水物、ビフェニル-2,3,3’,4’-テトラカルボン酸二無水物、ビフェニル-3,3’,4,4’-テトラカルボン酸二無水物、アントラセン-1,2,3,4-テトラカルボン酸二無水物、アントラセン-1,2,5,6-テトラカルボン酸二無水物、アントラセン-1,2,6,7-テトラカルボン酸二無水物、アントラセン-1,2,7,8-テトラカルボン酸二無水物、アントラセン-2,3,6,7-テトラカルボン酸二無水物、フェナントレン-1,2,3,4-テトラカルボン酸二無水物、フェナントレン-1,2,5,6-テトラカルボン酸二無水物、フェナントレン-1,2,6,7-テトラカルボン酸二無水物、フェナントレン-1,2,7,8-テトラカルボン酸二無水物、フェナントレン-1,2,9,10-テトラカルボン酸二無水物、フェナントレン-2,3,5,6-テトラカルボン酸二無水物、フェナントレン-2,3,6,7-テトラカルボン酸二無水物、フェナントレン-2,3,9,10-テトラカルボン酸二無水物、フェナントレン-3,4,5,6-テトラカルボン酸二無水物、フェナントレン-3,4,9,10-テトラカルボン酸二無水物等を挙げることができるが、これらに限定されない。これらは単独でも、2種以上を組み合わせて用いることもできる。 Specific examples thereof include pyromellitic dianhydride, benzene-1,2,3,4-tetracarboxylic dianhydride, naphthalene-1,2,3,4-tetracarboxylic dianhydride, naphthalene-1 , 2,5,6-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, naphthalene-1,2,7,8-tetracarboxylic dianhydride, naphthalene- 2,3,5,6-tetracarboxylic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, biphenyl -2,2 ', 3,3'-tetracarboxylic dianhydride, biphenyl-2,3,3', 4'-tetracarboxylic dianhydride, biphenyl-3,3 ', 4,4'-tetra Carboxylic dianhydride, anthracene-1 2,3,4-tetracarboxylic dianhydride, anthracene-1,2,5,6-tetracarboxylic dianhydride, anthracene-1,2,6,7-tetracarboxylic dianhydride, anthracene-1 , 2,7,8-tetracarboxylic dianhydride, anthracene-2,3,6,7-tetracarboxylic dianhydride, phenanthrene-1,2,3,4-tetracarboxylic dianhydride, phenanthrene- 1,2,5,6-tetracarboxylic dianhydride, phenanthrene-1,2,6,7-tetracarboxylic dianhydride, phenanthrene-1,2,7,8-tetracarboxylic dianhydride, phenanthrene -1,2,9,10-tetracarboxylic dianhydride, phenanthrene-2,3,5,6-tetracarboxylic dianhydride, phenanthrene-2,3,6,7-tetracarboxylic dianhydride Phenanthrene-2,3,9,10-tetracarboxylic dianhydride, phenanthrene-3,4,5,6-tetracarboxylic dianhydride, phenanthrene-3,4,9,10-tetracarboxylic dianhydride Although an anhydride etc. can be mentioned, it is not limited to these. These can be used alone or in combination of two or more.
 中でも、得られる膜の剥離層としての機能を向上させる観点から、ベンゼン核が1つ又は2つの芳香族カルボン酸二無水物が好ましい。具体的には、式(C1)~(C12)のいずれかで示される芳香族テトラカルボン酸二無水物が好ましく、式(C1)~(C7)及び(C9)~(C11)のいずれかで示される芳香族テトラカルボン酸二無水物がより好ましい。 Of these, aromatic carboxylic dianhydrides having one or two benzene nuclei are preferred from the viewpoint of improving the function of the resulting film as a release layer. Specifically, an aromatic tetracarboxylic dianhydride represented by any one of formulas (C1) to (C12) is preferred, and any one of formulas (C1) to (C7) and (C9) to (C11) The aromatic tetracarboxylic dianhydride shown is more preferred.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、得られる剥離層の柔軟性、耐熱性等を向上させる観点から、本発明で用いるジアミン成分は、芳香族ジアミン以外のジアミンを含んでもよく、本発明で用いるテトラカルボン酸二無水物成分は、芳香族テトラカルボン酸二無水物以外のテトラカルボン酸二無水物を含んでもよい。 In addition, from the viewpoint of improving the flexibility, heat resistance, etc. of the resulting release layer, the diamine component used in the present invention may contain a diamine other than an aromatic diamine, and the tetracarboxylic dianhydride component used in the present invention is Further, tetracarboxylic dianhydrides other than aromatic tetracarboxylic dianhydrides may be included.
 本発明において、ジアミン成分中の芳香族ジアミンの量は、好ましくは70モル%以上、より好ましくは80モル%以上、より一層好ましくは90モル%以上、更に好ましくは95モル%以上、最も好ましくは100モル%である。また、テトラカルボン酸成分中の芳香族テトラカルボン酸二無水物の量は、好ましくは70モル%以上、より好ましくは80モル%以上、より一層好ましくは90モル%以上、更に好ましくは95モル%以上、最も好ましくは100モル%である。このような使用量を採用することで、基体との優れた密着性及び樹脂基板との適度な密着性と適度な剥離性を有する膜を再現性よく得ることができる。 In the present invention, the amount of aromatic diamine in the diamine component is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, still more preferably 95 mol% or more, and most preferably 100 mol%. The amount of aromatic tetracarboxylic dianhydride in the tetracarboxylic acid component is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and still more preferably 95 mol%. Above, most preferably 100 mol%. By adopting such a use amount, it is possible to obtain a film having excellent adhesion to the substrate, moderate adhesion to the resin substrate, and moderate peelability with good reproducibility.
 以上説明したジアミン成分とテトラカルボン酸二無水物成分とを反応させた後、得られたポリアミック酸と、2-アミノフェノールとを反応させることで、本発明の剥離層形成用組成物に含まれるその重合体鎖末端が2-アミノフェノールで封止されたポリアミック酸を得ることができる。 After reacting the diamine component and the tetracarboxylic dianhydride component described above, the resulting polyamic acid and 2-aminophenol are reacted to be included in the composition for forming a release layer of the present invention. A polyamic acid in which the polymer chain ends are sealed with 2-aminophenol can be obtained.
 ジアミン成分とテトラカルボン酸二無水物成分の仕込み比は、目的とする分子量や分子量分布、ジアミンの種類やテトラカルボン酸二無水物の種類等を考慮して適宜決定されるため一概に規定できないが、テトラカルボン酸由来の分子鎖両末端とするため、ジアミン成分のモル数に対してテトラカルボン酸二無水物成分のモル数を多めにすることが好ましい。具体的なモル比としては、ジアミン成分1モルに対して、テトラカルボン酸二無水物成分1.02~3.0モルが好ましく、1.07~2.5モルがより好ましく、1.1~2.0モルがより一層好ましい。 The charging ratio of the diamine component and the tetracarboxylic dianhydride component is appropriately determined in consideration of the target molecular weight and molecular weight distribution, the type of diamine and the type of tetracarboxylic dianhydride, etc. In order to obtain both ends of the molecular chain derived from tetracarboxylic acid, it is preferable to increase the number of moles of the tetracarboxylic dianhydride component relative to the number of moles of the diamine component. Specifically, the molar ratio of the tetracarboxylic dianhydride component is preferably 1.02 to 3.0 mol, more preferably 1.07 to 2.5 mol, with respect to 1 mol of the diamine component. 2.0 mol is even more preferable.
 ポリアミック酸の合成及び合成したポリアミック酸の分子鎖末端の封止において用いる有機溶媒は、反応に悪影響を及ぼさない限り特に限定されないが、その具体例としては、m-クレゾール、2-ピロリドン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、3-メトキシ-N,N-ジメチルプロピルアミド、3-エトキシ-N,N-ジメチルプロピルアミド、3-プロポキシ-N,N-ジメチルプロピルアミド、3-イソプロポキシ-N,N-ジメチルプロピルアミド、3-ブトキシ-N,N-ジメチルプロピルアミド、3-sec-ブトキシ-N,N-ジメチルプロピルアミド、3-tert-ブトキシ-N,N-ジメチルプロピルアミド、γ-ブチロラクトン等が挙げられる。なお、有機溶媒は、1種単独で又は2種以上を組み合わせて使用してもよい。 The organic solvent used for synthesizing the polyamic acid and sealing the molecular chain end of the synthesized polyamic acid is not particularly limited as long as it does not adversely affect the reaction. Specific examples thereof include m-cresol, 2-pyrrolidone, N— Methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, 3-methoxy-N, N-dimethylpropylamide, 3- Ethoxy-N, N-dimethylpropylamide, 3-propoxy-N, N-dimethylpropylamide, 3-isopropoxy-N, N-dimethylpropylamide, 3-butoxy-N, N-dimethylpropylamide, 3-sec -Butoxy-N, N-dimethylpropylamide, 3-tert-butoxy-N, N-dimethyl Propyl amide, .gamma.-butyrolactone. In addition, you may use an organic solvent individually by 1 type or in combination of 2 or more types.
 特に、反応に用いる有機溶媒は、ジアミン及びテトラカルボン酸二無水物並びにポリアミック酸をよく溶解することから、式(S1)で表されるアミド類、(S2)で表されるアミド類及び式(S3)で表されるアミド類から選ばれる少なくとも1種が好ましい。 In particular, since the organic solvent used in the reaction dissolves diamine, tetracarboxylic dianhydride and polyamic acid well, amides represented by formula (S1), amides represented by formula (S2) and formula ( At least one selected from amides represented by S3) is preferred.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式中、R1及びR2は、互いに独立して、炭素数1~10のアルキル基を表す。R3は、水素原子、又は炭素数1~10のアルキル基を表す。hは、自然数を表すが、好ましくは1~3、より好ましくは1又は2である。 In the formula, R 1 and R 2 each independently represent an alkyl group having 1 to 10 carbon atoms. R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. h represents a natural number, preferably 1 to 3, more preferably 1 or 2.
 炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。これらのうち、炭素数1~3のアルキル基が好ましく、炭素数1又は2のアルキル基がより好ましい。 Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, n- Examples include hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and the like. Of these, alkyl groups having 1 to 3 carbon atoms are preferable, and alkyl groups having 1 or 2 carbon atoms are more preferable.
 ポリアミック酸の合成時の反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよく、通常0~100℃程度であるが、得られるポリアミック酸の溶液中でのイミド化を防いでポリアミック酸単位の高含有量を維持する観点から、好ましくは0~70℃程度、より好ましくは0~60℃程度、更に好ましくは0~50℃程度とすることができる。反応時間は、反応温度や原料物質の反応性に依存するため一概に規定できないが、通常1~100時間程度である。 The reaction temperature during the synthesis of the polyamic acid may be appropriately set in the range from the melting point to the boiling point of the solvent to be used, and is usually about 0 to 100 ° C. However, it prevents imidization of the resulting polyamic acid in the solution. From the viewpoint of maintaining a high content of polyamic acid units, the temperature can be preferably about 0 to 70 ° C, more preferably about 0 to 60 ° C, and still more preferably about 0 to 50 ° C. Although the reaction time depends on the reaction temperature and the reactivity of the raw material, it cannot be defined unconditionally, but is usually about 1 to 100 hours.
 ポリアミック酸の分子鎖末端を封止する際の反応温度は、ポリアミック酸の合成時と同様に、用いる溶媒の融点から沸点までの範囲で適宜設定すればよく、通常0~100℃程度であるが、合成したポリアミック酸の分子鎖末端を確実に封止する観点から、好ましくは0~70℃程度、より好ましくは0~60℃程度、更に好ましくは0~50℃程度とすることができる。反応時間は、反応温度や原料物質の反応性に依存するため一概に規定できないが、通常1~100時間程度である。 The reaction temperature at the time of sealing the molecular chain end of the polyamic acid may be appropriately set in the range from the melting point to the boiling point of the solvent used, as in the synthesis of the polyamic acid, and is usually about 0 to 100 ° C. From the viewpoint of securely sealing the molecular chain terminal of the synthesized polyamic acid, the temperature can be preferably about 0 to 70 ° C, more preferably about 0 to 60 ° C, and still more preferably about 0 to 50 ° C. Although the reaction time depends on the reaction temperature and the reactivity of the raw material, it cannot be defined unconditionally, but is usually about 1 to 100 hours.
 このようにして得られる、分子鎖末端のいずれか一方又は両方が2-アミノフェノールで封止されているポリアミック酸の重量平均分子量は、通常5,000~500,000程度であるが、得られる膜の剥離層としての機能を向上させる観点から、好ましくは6,000~200,000程度、より好ましくは7,000~150,000程度である。なお、本発明において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)測定によるポリスチレン換算値である。 The weight average molecular weight of the polyamic acid obtained in this manner and having either or both of the molecular chain ends sealed with 2-aminophenol is usually about 5,000 to 500,000. From the viewpoint of improving the function of the film as a release layer, it is preferably about 6,000 to 200,000, more preferably about 7,000 to 150,000. In addition, in this invention, a weight average molecular weight is a polystyrene conversion value by a gel permeation chromatography (GPC) measurement.
 本発明においては、通常、末端封止後の反応溶液をそのまま、又は希釈若しくは濃縮して得られる溶液を、本発明の剥離層形成用組成物として用いることができる。なお、上記反応溶液は必要に応じてろ過してもよい。ろ過することで、得られる剥離層の密着性、剥離性等の悪化の原因となり得る不純物の混入を低減できるだけでなく、効率よく剥離層形成用組成物を得ることができる。また、前記反応溶液からポリアミック酸を単離した後、再度溶媒に溶解して剥離層形成用組成物としてもよい。この場合の溶媒としては、前述した反応に用いる有機溶媒等が挙げられる。 In the present invention, usually, the reaction solution after end-capping can be used as it is, or a solution obtained by diluting or concentrating can be used as the release layer forming composition of the present invention. In addition, you may filter the said reaction solution as needed. By filtering, not only can mixing of impurities that may cause deterioration of the adhesion and peelability of the resulting release layer, but also a composition for forming a release layer can be obtained efficiently. Further, after isolating the polyamic acid from the reaction solution, it may be dissolved again in a solvent to form a release layer forming composition. Examples of the solvent in this case include organic solvents used in the above-described reaction.
 希釈に用いる溶媒は、特に限定されず、その具体例としては、前記反応の反応溶媒の具体例と同様のものが挙げられる。希釈に用いる溶媒は、1種単独で又は2種以上を組み合わせて使用してもよい。中でも、ポリアミック酸をよく溶解することから、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-エチル-2-ピロリドン、γ-ブチロラクトンが好ましく、N-メチル-2-ピロリドンがより好ましい。 The solvent used for dilution is not particularly limited, and specific examples thereof include those similar to the specific examples of the reaction solvent for the reaction. The solvent used for dilution may be used singly or in combination of two or more. Among them, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-ethyl-2 are used because they dissolve polyamic acid well. -Pyrrolidone and γ-butyrolactone are preferred, and N-methyl-2-pyrrolidone is more preferred.
 また、単独ではポリアミック酸を溶解しない溶媒であっても、ポリアミック酸が析出しない範囲であれば、本発明の剥離層形成用組成物に混合することができる。特に、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル等の低表面張力を有する溶媒を適度に混在させることができる。これにより、基板への塗布時に塗膜均一性が向上することが知られており、本発明の剥離層形成用組成物においても好適に用いられる。 Further, even if the solvent alone does not dissolve the polyamic acid, it can be mixed with the release layer forming composition of the present invention as long as the polyamic acid does not precipitate. In particular, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy -2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxy A solvent having a low surface tension such as propoxy) propanol, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate and isoamyl lactate can be mixed appropriately. Thereby, it is known that the coating film uniformity is improved upon application to the substrate, and it is also suitably used in the composition for forming a release layer of the present invention.
 本発明の剥離層形成用組成物におけるポリアミック酸の濃度は、作製する剥離層の厚み、組成物の粘度等を勘案して適宜設定するものではあるが、通常1~30質量%程度、好ましくは1~20質量%程度である。このような濃度とすることで、0.05~5μm程度の厚さの剥離層を再現性よく得ることができる。ポリアミック酸の濃度は、ポリアミック酸の原料であるジアミンとテトラカルボン酸二無水物の使用量を調整する、上記反応溶液をろ過した後そのろ液を希釈又は濃縮する、単離したポリアミック酸を溶媒に溶解させる際にその量を調整する等して調整することができる。 The concentration of the polyamic acid in the composition for forming a release layer of the present invention is appropriately set in consideration of the thickness of the release layer to be produced, the viscosity of the composition, etc., but is usually about 1 to 30% by mass, preferably It is about 1 to 20% by mass. By setting such a concentration, a release layer having a thickness of about 0.05 to 5 μm can be obtained with good reproducibility. The concentration of polyamic acid is adjusted to adjust the amount of diamine and tetracarboxylic dianhydride used as raw materials for polyamic acid, and after filtering the reaction solution, the filtrate is diluted or concentrated, and the isolated polyamic acid is used as a solvent. The amount can be adjusted by, for example, adjusting the amount when dissolved in the aqueous solution.
 本発明の剥離層形成用組成物の粘度は、作製する剥離層の厚み等を勘案して適宜設定するものではあるが、特に0.05~5μm程度の厚さの膜を再現性よく得ることを目的とする場合、通常、25℃で10~10,000mPa・s程度、好ましくは20~5,000mPa・s程度である。 The viscosity of the release layer-forming composition of the present invention is appropriately set in consideration of the thickness of the release layer to be produced, etc., and in particular, a film having a thickness of about 0.05 to 5 μm can be obtained with good reproducibility. Is usually about 10 to 10,000 mPa · s, preferably about 20 to 5,000 mPa · s at 25 ° C.
 ここで、粘度は、市販の液体の粘度測定用粘度計を使用して、例えば、JIS K7117-2に記載の手順を参照して、組成物の温度25℃の条件にて測定することができる。好ましくは、粘度計としては、円錐平板型(コーンプレート型)回転粘度計を使用し、好ましくは同型の粘度計で標準コーンロータとして1°34’×R24を使用して、組成物の温度25℃の条件にて測定することができる。このような回転粘度計としては、例えば、東機産業(株)製TVE-25Lが挙げられる。 Here, the viscosity can be measured using a commercially available liquid viscosity measurement viscometer, for example, with reference to the procedure described in JIS K7117-2 at a temperature of the composition of 25 ° C. . Preferably, a conical plate type (cone plate type) rotational viscometer is used as the viscometer, and preferably the composition temperature is 25 ° C. using 1 ° 34 ′ × R24 as a standard cone rotor. It can be measured under the condition of ° C. An example of such a rotational viscometer is TVE-25L manufactured by Toki Sangyo Co., Ltd.
 なお、本発明の剥離層形成用組成物は、ポリアミック酸と有機溶媒の他に、例えば膜強度を向上させるために、架橋剤等を含んでいてもよい。 The composition for forming a release layer of the present invention may contain a crosslinking agent or the like in order to improve the film strength, for example, in addition to the polyamic acid and the organic solvent.
 以上説明した剥離層形成用組成物を基体上に塗布した後、最高温度400℃以上で焼成する工程を含む焼成法にて、ポリアミック酸を熱イミド化することで、基体との優れた密着性及び樹脂基板との適度な密着性と適度な剥離性とを有する、ポリイミド膜からなる剥離層を得ることができる。
 本発明において、上記焼成時の最高温度は400℃以上、かつ、ポリイミドの耐熱温度以下の範囲であれば特に限定されるものではないが、上述した基体との密着性や、樹脂基板との適度な密着性及び剥離性を向上させることを考慮すると、450℃以上が好ましく、500℃以上がより好ましい。また、その上限は通常550℃程度であるが、510℃程度が好ましい。加熱温度を上記範囲とすることで、得られる膜の脆弱化を防ぎつつ、イミド化反応を十分に進行させることも可能となる。
 加熱時間は、加熱温度によって異なるため一概に規定できないが、通常1分~5時間である。また、イミド化率は、50~100%の範囲であればよい。
After the composition for forming a release layer described above is applied on a substrate, the adhesiveness to the substrate is excellent by thermally imidizing polyamic acid by a baking method including a step of baking at a maximum temperature of 400 ° C. or higher. In addition, it is possible to obtain a release layer made of a polyimide film having appropriate adhesion to the resin substrate and appropriate peelability.
In the present invention, the maximum temperature at the time of firing is not particularly limited as long as it is in the range of 400 ° C. or higher and not higher than the heat resistant temperature of polyimide. In view of improving the excellent adhesion and peelability, 450 ° C. or higher is preferable, and 500 ° C. or higher is more preferable. The upper limit is usually about 550 ° C., preferably about 510 ° C. By making heating temperature into the said range, it becomes possible to fully advance an imidation reaction, preventing weakening of the film | membrane obtained.
The heating time varies depending on the heating temperature and cannot be defined generally, but is usually 1 minute to 5 hours. The imidization rate may be in the range of 50 to 100%.
 また、上記焼成時の温度は、最高温度が上記範囲となる限り、それ以下の温度で焼成する工程を含んでいてもよい。
 本発明における加熱態様の好ましい一例としては、50~150℃で加熱した後に、そのまま段階的に加熱温度を上昇させて最終的に400℃以上で加熱する手法が挙げられる。特に、加熱態様のより好ましい一例としては、50~100℃で加熱し、100℃超~400℃未満で加熱し、400℃以上で加熱する手法が挙げられる。更に、加熱態様のより好ましい他の一例としては、50~150℃で加熱した後に、150℃超~350℃で加熱し、次いで350℃超~450℃で加熱し、最後に450℃超~510℃で加熱する手法が挙げられる。
Moreover, as long as the maximum temperature becomes the said range, the temperature at the time of the said baking may include the process baked at the temperature below it.
As a preferred example of the heating mode in the present invention, there is a method of heating at 50 to 150 ° C., then raising the heating temperature stepwise as it is, and finally heating at 400 ° C. or higher. In particular, as a more preferable example of the heating mode, a method of heating at 50 to 100 ° C., heating at a temperature higher than 100 ° C. to less than 400 ° C., and heating at 400 ° C. or higher can be mentioned. Furthermore, as another more preferable example of the heating mode, after heating at 50 to 150 ° C., heating at 150 to 350 ° C., then heating at 350 to 450 ° C., and finally 450 to 510 ° C. A method of heating at 0 ° C. can be mentioned.
 また、焼成時間を考慮した場合の加熱態様の好ましい一例としては、50~150℃で1分~2時間加熱した後に、そのまま段階的に加熱温度を上昇させて最終的に400℃以上で30分~4時間加熱する手法が挙げられる。特に、加熱態様のより好ましい一例としては、50~100℃で1分~2時間加熱し、100℃超~400℃未満で5分~2時間加熱し、400℃以上で30分~4時間加熱する手法が挙げられる。更に、加熱態様のより好ましい他の一例としては、50~150℃で1分間~2時間加熱した後に、150℃超~350℃で5分~2時間、次いで350℃超~450℃で30分~4時間、最後に450℃超~510℃で30分~4時間加熱する手法が挙げられる。 In addition, as a preferable example of the heating mode in consideration of the firing time, after heating at 50 to 150 ° C. for 1 minute to 2 hours, the heating temperature is increased stepwise and finally at 400 ° C. or higher for 30 minutes. A method of heating for up to 4 hours can be mentioned. In particular, as a more preferable example of the heating mode, heating is performed at 50 to 100 ° C. for 1 minute to 2 hours, heating is performed above 100 ° C. to less than 400 ° C. for 5 minutes to 2 hours, and heating is performed at 400 ° C. or higher for 30 minutes to 4 hours. The technique to do is mentioned. Further, as another more preferable example of the heating mode, after heating at 50 to 150 ° C. for 1 minute to 2 hours, after exceeding 150 ° C. to 350 ° C. for 5 minutes to 2 hours, then, exceeding 350 ° C. to 450 ° C. for 30 minutes For example, a method of heating at 450 ° C. to 510 ° C. for 30 minutes to 4 hours is mentioned.
 なお、本発明の剥離層を基体上に形成する場合、剥離層は基体の一部表面に形成されていてもよいし、全面に形成されていてもよい。基体の一部表面に剥離層を形成する態様としては、基体表面のうち所定の範囲にのみ剥離層を形成する態様、基体表面全面にドットパターン、ラインアンドスペースパターン等のパターン状に剥離層を形成する態様等がある。なお、本発明において、基体とは、その表面に本発明の剥離層形成用組成物が塗られるものであって、フレキシブル電子デバイス等の製造に用いられるものを意味する。 In addition, when forming the peeling layer of this invention on a base | substrate, the peeling layer may be formed in the partial surface of a base | substrate, and may be formed in the whole surface. As an aspect of forming a release layer on a part of the surface of the substrate, an embodiment in which the release layer is formed only within a predetermined range of the substrate surface, a release layer is formed in a pattern such as a dot pattern or a line and space pattern on the entire surface of the substrate. There are forms to be formed. In addition, in this invention, a base | substrate means what is used for manufacture of a flexible electronic device etc. by which the composition for peeling layer formation of this invention is applied to the surface.
 基体(基材)としては、例えば、ガラス、金属(シリコンウエハ等)、スレート等が挙げられるが、特に、本発明の剥離層がそれに対する十分な密着性を有することから、ガラスが好ましい。なお、基体表面は、単一の材料で構成されていてもよく、2以上の材料で構成されていてもよい。2以上の材料で基体表面が構成される態様としては、基体表面のうちのある範囲はある材料で構成され、その余の表面はその他の材料で構成されている態様、基体表面全体にドットパターン、ラインアンドスペースパターン等のパターン状にある材料がその他の材料中に存在する態様等がある。 Examples of the substrate (base material) include glass, metal (silicon wafer, etc.), slate, and the like. In particular, glass is preferable because the release layer of the present invention has sufficient adhesion to it. In addition, the base | substrate surface may be comprised with the single material and may be comprised with two or more materials. As an aspect in which the substrate surface is composed of two or more materials, a certain range of the substrate surface is composed of a certain material, and the other surface is composed of other materials. A dot pattern is formed on the entire surface of the substrate. There is a mode in which a material in a pattern such as a line and space pattern is present in other materials.
 本発明の剥離層形成用組成物を基体に塗布する方法は、特に限定されるものではないが、例えば、キャストコート法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、インクジェット法、印刷法(凸版、凹版、平版、スクリーン印刷等)等が挙げられる。 The method for applying the release layer-forming composition of the present invention to the substrate is not particularly limited, and examples thereof include cast coating, spin coating, blade coating, dip coating, roll coating, and bar coating. Method, die coating method, ink jet method, printing method (eg, relief printing, intaglio printing, planographic printing, screen printing, etc.).
 加熱に用いる器具は、例えばホットプレート、オーブン等が挙げられる。加熱雰囲気は、空気下であっても不活性ガス下であってもよく、また、常圧下であっても減圧下であってもよい。 Examples of the appliance used for heating include a hot plate and an oven. The heating atmosphere may be under air or under an inert gas, and may be under normal pressure or under reduced pressure.
 剥離層の厚さは、通常0.01~50μm程度、生産性の観点から好ましくは0.05~20μm程度である。なお、所望の厚さは、加熱前の塗膜の厚さを調整することによって実現する。 The thickness of the release layer is usually about 0.01 to 50 μm, and preferably about 0.05 to 20 μm from the viewpoint of productivity. In addition, desired thickness is implement | achieved by adjusting the thickness of the coating film before a heating.
 以上説明した剥離層は、基体、特にガラスの基体との優れた密着性及び樹脂基板との適度な密着性と適度な剥離性を有する。それ故、本発明の剥離層は、フレキシブル電子デバイスの製造プロセスにおいて、当該デバイスの樹脂基板に損傷を与えることなく、当該樹脂基板を、その樹脂基板上に形成された回路等とともに、基体から剥離させるために好適に用いることができる。 The release layer described above has excellent adhesion to a substrate, particularly a glass substrate, moderate adhesion to a resin substrate, and moderate release. Therefore, the release layer of the present invention peels the resin substrate from the substrate together with the circuit formed on the resin substrate without damaging the resin substrate of the device in the manufacturing process of the flexible electronic device. Therefore, it can be suitably used.
 以下、本発明の剥離層を用いたフレキシブル電子デバイスの製造方法の一例について説明する。
 本発明の剥離層形成用組成物を用いて、上述の方法によって、ガラス基体上に剥離層を形成する。この剥離層の上に、樹脂基板を形成するための樹脂基板形成用溶液を塗布し、この塗膜を焼成することで、本発明の剥離層を介して、ガラス基体に固定された樹脂基板を形成する。
 上記塗膜の焼成温度は、樹脂の種類等に応じて適宜設定されるものであるが、本発明では、この焼成時の最高温度を450℃以上とすることが好ましく、480℃以上とすることがより好ましく、490℃以上とすることがより一層好ましく、500℃以上とすることがさらに好ましい。樹脂基板作製の際の焼成時の最高温度をこの範囲とすることで、下地である剥離層と基体との密着性や、剥離層と樹脂基板との適度な密着性及び剥離性をより向上させることができる。
 この場合も、最高温度が上記範囲となる限り、それ以下の温度で焼成する工程を含んでいてもよい。
Hereinafter, an example of the manufacturing method of the flexible electronic device using the peeling layer of this invention is demonstrated.
Using the composition for forming a release layer of the present invention, a release layer is formed on a glass substrate by the method described above. On this release layer, a resin substrate forming solution for forming a resin substrate is applied, and this coating film is baked, so that the resin substrate fixed to the glass substrate via the release layer of the present invention is obtained. Form.
The firing temperature of the coating film is appropriately set according to the type of resin and the like. In the present invention, the maximum temperature during firing is preferably 450 ° C. or higher, and preferably 480 ° C. or higher. Is more preferably 490 ° C. or higher, and further preferably 500 ° C. or higher. By setting the maximum temperature during firing at the time of resin substrate production within this range, the adhesiveness between the release layer and the substrate as the base, and the appropriate adhesiveness and peelability between the release layer and the resin substrate are further improved be able to.
In this case, as long as the maximum temperature falls within the above range, a step of baking at a temperature lower than that may be included.
 樹脂基板作製時の加熱態様の好ましい一例としては、50~150℃で加熱した後に、そのまま段階的に加熱温度を上昇させて最終的に450℃以上で加熱する手法が挙げられる。特に、加熱態様のより好ましい一例としては、50~100℃で加熱し、100℃超~400℃未満で加熱し、450℃以上で加熱する手法が挙げられる。更に、加熱態様のより好ましい他の一例としては、50~100℃で加熱した後に、100℃超~200℃で、次いで200℃超~300℃未満で加熱し、300℃~400℃未満で加熱し、400℃~450℃未満で加熱し、最後に450~510℃で加熱する手法が挙げられる。 As a preferable example of the heating mode at the time of preparing the resin substrate, there is a method of heating at 50 to 150 ° C., then increasing the heating temperature step by step, and finally heating at 450 ° C. or higher. In particular, as a more preferable example of the heating mode, a method of heating at 50 to 100 ° C., heating at a temperature exceeding 100 ° C. to less than 400 ° C., and heating at 450 ° C. or higher can be mentioned. Furthermore, as another more preferable example of the heating mode, after heating at 50 to 100 ° C., heating is performed at over 100 ° C. to 200 ° C., then over 200 ° C. to less than 300 ° C., and heating is performed at 300 ° C. to less than 400 ° C. And heating at 400 to 450 ° C., and finally heating at 450 to 510 ° C. can be mentioned.
 また、焼成時間を考慮した場合の加熱態様の好ましい一例としては、50~150℃で1分間~2時間加熱した後に、そのまま段階的に加熱温度を上昇させて最終的に450℃以上で30分~4時間加熱する手法が挙げられる。特に、加熱態様のより好ましい一例としては、50~100℃で1分間~2時間加熱し、100℃超~400℃未満で5分間~2時間加熱し、450℃以上で30分間~4時間加熱する手法が挙げられる。更に、加熱態様のより好ましい他の一例としては、50~100℃で1分間~2時間加熱した後に、100℃超~200℃で5分間~2時間、次いで200℃超~300℃未満で30分間~4時間、300℃~400℃未満で30分間~4時間、400℃~450℃未満で30分間~4時間、最後に450~510℃で30分間~4時間加熱する手法が挙げられる。 Further, as a preferable example of the heating mode in consideration of the firing time, after heating at 50 to 150 ° C. for 1 minute to 2 hours, the heating temperature is increased stepwise and finally at 450 ° C. or higher for 30 minutes. A method of heating for up to 4 hours can be mentioned. In particular, as a more preferable example of the heating mode, heating is performed at 50 to 100 ° C. for 1 minute to 2 hours, heating is performed above 100 ° C. to less than 400 ° C. for 5 minutes to 2 hours, and heating is performed at 450 ° C. or higher for 30 minutes to 4 hours. The technique to do is mentioned. Furthermore, as another more preferable example of the heating mode, after heating at 50 to 100 ° C. for 1 minute to 2 hours, after heating at 100 ° C. to 200 ° C. for 5 minutes to 2 hours, then above 200 ° C. to less than 300 ° C. 30 For example, a method of heating at 300 to 400 ° C. for 30 minutes to 4 hours, 400 to 450 ° C. for 30 minutes to 4 hours, and finally 450 to 510 ° C. for 30 minutes to 4 hours may be mentioned.
 樹脂基板は剥離層を全て覆うようにして、剥離層の面積と比較して大きい面積で、基板を形成する。樹脂基板としては、フレキシブル電子デバイスの樹脂基板として代表的なポリイミドからなる樹脂基板が挙げられ、それを形成するための樹脂溶液としては、ポリイミド溶液やポリアミック酸溶液が挙げられる。当該樹脂基板の形成方法は、常法に従えばよい。 The resin substrate covers the entire release layer, and the substrate is formed with an area larger than the area of the release layer. Examples of the resin substrate include a resin substrate made of polyimide, which is a typical resin substrate for flexible electronic devices, and examples of the resin solution for forming the resin substrate include a polyimide solution and a polyamic acid solution. The method for forming the resin substrate may follow a conventional method.
 次に、本発明の剥離層を介して基体に固定された当該樹脂基板の上に、所望の回路を形成し、その後、例えば剥離層に沿って樹脂基板をカットし、この回路とともに樹脂基板を剥離層から剥離して、樹脂基板と基体とを分離する。この際、基体の一部を剥離層とともにカットしてもよい。 Next, a desired circuit is formed on the resin substrate fixed to the base via the release layer of the present invention, and then the resin substrate is cut along the release layer, for example. It peels from a peeling layer, and a resin substrate and a base | substrate are isolate | separated. At this time, a part of the substrate may be cut together with the release layer.
 なお、特開2013-147599号公報では、これまで高輝度LEDや三次元半導体パッケージ等の製造において使用されてきたレーザーリフトオフ法(LLO法)をフレキシブルディスプレイの製造に適用することが報告されている。上記LLO法は、回路等が形成された面とは反対の面から、特定の波長の光線、例えば、波長308nmの光線をガラス基体側から照射することを特徴とするものである。照射された光線は、ガラス基体を透過し、ガラス基体近傍のポリマー(ポリイミド)のみがこの光線を吸収して蒸発(昇華)する。その結果、ディスプレイの性能を決定づけることとなる、樹脂基板上に設けられた回路等に影響を与えることなく、ガラス基体から樹脂基板を選択的に剥離することが可能となる。 In JP 2013-147599 A, it is reported that the laser lift-off method (LLO method) that has been used in the manufacture of high-brightness LEDs, three-dimensional semiconductor packages and the like is applied to the manufacture of flexible displays. . The LLO method is characterized in that light having a specific wavelength, for example, light having a wavelength of 308 nm, is irradiated from the surface opposite to the surface on which a circuit or the like is formed from the glass substrate side. The irradiated light passes through the glass substrate, and only the polymer (polyimide) in the vicinity of the glass substrate absorbs this light and evaporates (sublimates). As a result, it is possible to selectively peel the resin substrate from the glass substrate without affecting the circuit or the like provided on the resin substrate, which determines the performance of the display.
 本発明の剥離層は、上記LLO法の適用が可能となる特定波長(例えば308nm)の光線を十分に吸収するという特徴を持つため、LLO法の犠牲層として用いることができる。そのため、本発明に組成物を用いて形成した剥離層を介してガラス基体に固定された樹脂基板の上に、所望の回路を形成し、その後、LLO法を実施して308nmの光線を照射すると、該剥離層のみがこの光線を吸収して蒸発(昇華)する。これにより、上記剥離層が犠牲となり(犠牲層として働く)、ガラス基体から樹脂基板を選択的に剥離することが可能となる。 The release layer of the present invention has a feature of sufficiently absorbing light having a specific wavelength (for example, 308 nm) that enables application of the above LLO method, and therefore can be used as a sacrificial layer of the LLO method. Therefore, when a desired circuit is formed on a resin substrate fixed to a glass substrate through a release layer formed by using the composition according to the present invention, and then an LLO method is performed to irradiate a light beam of 308 nm. Only the release layer absorbs this light and evaporates (sublimates). Thereby, the release layer is sacrificed (acts as a sacrifice layer), and the resin substrate can be selectively peeled from the glass substrate.
 以下、実施例を挙げて本発明を更に詳細に説明するが、本発明は、これら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[1]化合物の略語
NMP:N-メチルピロリドン
BCS:ブチルセロソルブ
p-PDA:p-フェニレンジアミン
2AP:2-アミノフェノール
BPDA:3,3-4,4-ビフェニルテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
[1] Abbreviations of compounds NMP: N-methylpyrrolidone BCS: butyl cellosolve p-PDA: p-phenylenediamine 2AP: 2-aminophenol BPDA: 3,3-4,4-biphenyltetracarboxylic dianhydride PMDA: pyromerit Acid dianhydride
[2]重量平均分子量及び分子量分布の測定
 ポリマーの重量平均分子量(以下Mwと略す)と分子量分布は、日本分光(株)製GPC装置(Shodex(登録商標)カラムKF803LおよびKF805L)を用い溶出溶媒としてジメチルホルムアミドを流量1ml/分、カラム温度50℃の条件で測定した。なお、Mwはポリスチレン換算値とした。
[2] Measurement of weight average molecular weight and molecular weight distribution The polymer weight average molecular weight (hereinafter abbreviated as Mw) and molecular weight distribution were measured using a GPC apparatus (Shodex (registered trademark) columns KF803L and KF805L) manufactured by JASCO Corporation. As a measurement, dimethylformamide was measured under the conditions of a flow rate of 1 ml / min and a column temperature of 50 ° C. In addition, Mw was made into the polystyrene conversion value.
[3]ポリマーの合成
 以下の方法によって、ポリアミック酸を合成した。
 なお、得られたポリマー含有反応液からポリマーを単離せず、後述の通りに、反応液を希釈することで、樹脂基板形成用組成物又は剥離層形成用組成物を調製した。
[3] Synthesis of polymer Polyamic acid was synthesized by the following method.
In addition, the polymer was not isolated from the obtained polymer containing reaction liquid, but the resin substrate formation composition or the peeling layer formation composition was prepared by diluting a reaction liquid as mentioned later.
<合成例S1 ポリアミック酸(S1の合成)>
 p-PDA3.176g(0.02937モル)をNMP88.2gに溶解し、BPDA 8.624g(0.02931モル)を添加した後、窒素雰囲気下、23℃で24時間反応させた。得られたポリマーのMwは107,300、分子量分布4.6であった。
<Synthesis Example S1 Polyamic Acid (Synthesis of S1)>
3.176 g (0.02937 mol) of p-PDA was dissolved in 88.2 g of NMP, and 8.624 g (0.02931 mol) of BPDA was added, followed by reaction at 23 ° C. for 24 hours in a nitrogen atmosphere. Mw of the obtained polymer was 107,300, and the molecular weight distribution was 4.6.
<合成例L1 ポリアミック酸(L1)の合成>
 p-PDA1.507g(0.0139モル)をNMP43.2gに溶解し、PMDA3.166g(0.01452モル)を添加した後、窒素雰囲気下、23℃で2時間反応させた。その後、更に2AP0.127g(0.0012モル)を添加し、窒素雰囲気下、23℃で24時間反応させた。得られたポリマーのMwは48,500、分子量分布2.05であった。
<Synthesis Example L1 Synthesis of polyamic acid (L1)>
p-PDA (1.507 g, 0.0139 mol) was dissolved in NMP (43.2 g), PMDA (3.166 g, 0.01452 mol) was added, and the mixture was reacted at 23 ° C. for 2 hours in a nitrogen atmosphere. Thereafter, 0.127 g (0.0012 mol) of 2AP was further added and reacted at 23 ° C. for 24 hours in a nitrogen atmosphere. Mw of the obtained polymer was 48,500 and molecular weight distribution was 2.05.
<合成例L2 ポリアミック酸(L2)の合成>
 p-PDA1.119g(0.01103モル)をNMP35.2gに溶解し、PMDA3.006g(0.01378モル)を添加した後、窒素雰囲気下、23℃で2時間反応させた。その後、更に2AP0.602g(0.00551モル)を添加し、窒素雰囲気下、23℃で24時間反応させた。得られたポリマーのMwは11,700、分子量分布1.76であった。
<Synthesis Example L2 Synthesis of polyamic acid (L2)>
1.119 g (0.01103 mol) of p-PDA was dissolved in 35.2 g of NMP, and 3.006 g (0.01378 mol) of PMDA was added, followed by reaction at 23 ° C. for 2 hours in a nitrogen atmosphere. Thereafter, 0.602 g (0.00551 mol) of 2AP was further added and reacted at 23 ° C. for 24 hours in a nitrogen atmosphere. Mw of the obtained polymer was 11,700 and molecular weight distribution was 1.76.
<合成例L3ポリアミック酸(L3)の合成>
 p-PDA0.681g(0.00629モル)をNMP35.2gに溶解し、PMDA2.746g(0.01259モル)を添加した後、窒素雰囲気下、23℃で2時間反応させた。その後、更に2AP1.373g(0.012588モル)を添加し、窒素雰囲気下、23℃で24時間反応させた。得られたポリマーのMwは8,000、分子量分布1.57であった。
<Synthesis Example L3 Synthesis of polyamic acid (L3)>
0.681 g (0.00629 mol) of p-PDA was dissolved in 35.2 g of NMP, and 2.746 g (0.01259 mol) of PMDA was added, followed by reaction at 23 ° C. for 2 hours in a nitrogen atmosphere. Thereafter, 1.373 g (0.012588 mol) of 2AP was further added, and the mixture was reacted at 23 ° C. for 24 hours in a nitrogen atmosphere. Mw of the obtained polymer was 8,000 and molecular weight distribution was 1.57.
<比較合成例HL1 ポリアミック酸(HL1)の合成>
 p-PDA1.29g(0.00107モル)をNMP43.2gに溶解し、BPDA3.509g(0.00119モル)を添加した後、窒素雰囲気下、23℃で24時間反応させた。得られたポリマーのMwは34,000、分子量分布2.03であった。
<Synthesis of Comparative Synthesis Example HL1 Polyamic Acid (HL1)>
1.29 g (0.00107 mol) of p-PDA was dissolved in 43.2 g of NMP, and 3.509 g (0.00119 mol) of BPDA was added, followed by reaction at 23 ° C. for 24 hours in a nitrogen atmosphere. Mw of the obtained polymer was 34,000 and molecular weight distribution was 2.03.
<比較合成例HL2 ポリアミック酸(HL2)の合成>
 p-PDA1.325g(0.00123モル)をNMP36gに溶解し、PMDA2.674g(0.00123モル)を添加した後、窒素雰囲気下、23℃で2時間反応させた。残念ながら、ゲル化したため、使用できなかった。
<Synthesis of Comparative Synthesis Example HL2 Polyamic Acid (HL2)>
1.325 g (0.00123 mol) of p-PDA was dissolved in 36 g of NMP, and 2.674 g (0.00123 mol) of PMDA was added, followed by reaction at 23 ° C. for 2 hours in a nitrogen atmosphere. Unfortunately, it was gelled and could not be used.
[4]樹脂基板形成用組成物の調製
 合成例S1で得られた反応液を、それぞれ、そのまま樹脂基板形成用組成物として用いた。
[4] Preparation of Resin Substrate Forming Composition Each of the reaction solutions obtained in Synthesis Example S1 was directly used as a resin substrate forming composition.
[5]剥離層形成用組成物の調製
[実施例1-1]
 合成例L1で得られた反応液に、BCSとNMPを加え、ポリマー濃度が5wt%、BCSが20質量%となるように希釈し、剥離層形成用組成物を得た。
[5] Preparation of composition for forming release layer [Example 1-1]
BCS and NMP were added to the reaction solution obtained in Synthesis Example L1, and diluted such that the polymer concentration was 5 wt% and BCS was 20 mass%, to obtain a release layer forming composition.
[実施例1-2~1-3]
 合成例L1で得られた反応液の代わりに、それぞれ合成例L2~L3で得られた反応液を用いた以外は、実施例1-1と同様の方法で、剥離層形成用組成物を得た。
[Examples 1-2 to 1-3]
A composition for forming a release layer was obtained in the same manner as in Example 1-1 except that the reaction solutions obtained in Synthesis Examples L2 to L3 were used in place of the reaction solution obtained in Synthesis Example L1, respectively. It was.
[比較例1-1]
 合成例L1で得られた反応液の代わりに、それぞれ比較合成例HL1で得られた反応液を用いた以外は、実施例1-1と同様の方法で、剥離層形成用組成物を得た。
[Comparative Example 1-1]
A composition for forming a release layer was obtained in the same manner as in Example 1-1, except that the reaction solution obtained in Comparative Synthesis Example HL1 was used instead of the reaction solution obtained in Synthesis Example L1. .
[6]剥離層及び樹脂基板の作製
[実施例2-1]
 スピンコーター(条件:回転数3,000rpmで約30秒)を用いて、実施例1-1で得られた剥離層形成用組成物L1を、ガラス基体としての100mm×100mmガラス基板(以下同様)の上に塗布した。
 そして、得られた塗膜を、ホットプレートを用いて100℃で2分間加熱し、その後、オーブンを用いて、300℃で30分間加熱し、加熱温度を400℃まで昇温(10℃/分)し、400℃で30分間加熱し、さらに、500℃まで昇温(10℃/分)し、500℃で10分間加熱し、ガラス基板上に厚さ約0.1μmの剥離層を形成し、剥離層付きガラス基板を得た。なお、昇温の間、膜付き基板をオーブンから取り出すことはせず、オーブン内で加熱した。
[6] Production of release layer and resin substrate [Example 2-1]
Using a spin coater (conditions: about 3,000 rpm for about 30 seconds), the release layer forming composition L1 obtained in Example 1-1 was used as a glass substrate of 100 mm × 100 mm glass substrate (hereinafter the same). It was applied on top.
The obtained coating film was heated at 100 ° C. for 2 minutes using a hot plate, and then heated at 300 ° C. for 30 minutes using an oven, and the heating temperature was raised to 400 ° C. (10 ° C./min. And then heated to 400 ° C. for 30 minutes, further heated to 500 ° C. (10 ° C./min), and heated at 500 ° C. for 10 minutes to form a release layer having a thickness of about 0.1 μm on the glass substrate. A glass substrate with a release layer was obtained. During the temperature increase, the film-coated substrate was not removed from the oven but heated in the oven.
 バーコーター(ギャップ:250μm)を用いて、上記で得られたガラス基板上の剥離層(樹脂薄膜)の上に樹脂基板形成用組成物S2を塗布した。そして、得られた塗膜を、ホットプレートを用いて80℃で30分間加熱し、その後、オーブンを用いて、窒素雰囲気にした後、140℃で30分間加熱し、加熱温度を210℃まで昇温(2℃/分、以下同様)し、210℃で30分間、加熱温度を300℃まで昇温し、300℃で30分間、加熱温度を400℃まで昇温し、400℃で30分間、加熱温度を500℃まで昇温し、500℃で60分間加熱し、剥離層上に厚さ約20μmのポリイミド樹脂基板を形成し、樹脂基板・剥離層付きガラス基板を得た。昇温の間、膜付き基板をオーブンから取り出すことはせず、オーブン内で加熱した。 Using a bar coater (gap: 250 μm), the resin substrate forming composition S2 was applied on the release layer (resin thin film) on the glass substrate obtained above. Then, the obtained coating film was heated at 80 ° C. for 30 minutes using a hot plate, and then the atmosphere was changed to a nitrogen atmosphere using an oven, followed by heating at 140 ° C. for 30 minutes, and the heating temperature was raised to 210 ° C. Temperature (2 ° C./min, the same applies hereinafter), 210 ° C. for 30 minutes, heating temperature to 300 ° C., 300 ° C. for 30 minutes, heating temperature to 400 ° C., 400 ° C. for 30 minutes, The heating temperature was raised to 500 ° C. and heated at 500 ° C. for 60 minutes to form a polyimide resin substrate having a thickness of about 20 μm on the release layer, thereby obtaining a glass substrate with a resin substrate / release layer. During the temperature increase, the film-coated substrate was not removed from the oven but heated in the oven.
[実施例2-2~2-3]
 実施例1-1で得られた剥離層形成用組成物L1の代わりに、それぞれ実施例1-2~1-3で得られた剥離層形成用組成物L2及びL3を用いた以外は、実施例2-1と同様の方法で、剥離層及びポリイミド樹脂基板を形成し、剥離層付きガラス基板及び樹脂基板・剥離層付きガラス基板を得た。
[Examples 2-2 to 2-3]
Except that the release layer-forming composition L2 and L3 obtained in Examples 1-2 to 1-3 were used in place of the release layer-forming composition L1 obtained in Example 1-1, respectively. In the same manner as in Example 2-1, a release layer and a polyimide resin substrate were formed to obtain a glass substrate with a release layer and a resin substrate / glass substrate with a release layer.
[比較例2-1]
 実施例1-1で得られた剥離層形成用組成物L1の代わりに、比較例1-1で得られた剥離層形成用組成物HL1を用いた以外は、実施例2-1と同様の方法で、剥離層及びポリイミド樹脂基板を形成し、剥離層付きガラス基板及び樹脂基板・剥離層付きガラス基板を得た。
[Comparative Example 2-1]
The same procedure as in Example 2-1 except that the release layer forming composition HL1 obtained in Comparative Example 1-1 was used instead of the release layer forming composition L1 obtained in Example 1-1. By the method, a release layer and a polyimide resin substrate were formed, and a glass substrate with a release layer and a glass substrate with a resin substrate / release layer were obtained.
[7]剥離性の評価
 上記実施例2-1~2-3及び比較例2-1で得られた剥離層付きガラス基板について、剥離層とガラス基板との剥離性を、下記手法にて確認した。なお、下記の試験は、同一のガラス基板で行った。
[7] Evaluation of peelability With respect to the glass substrate with a release layer obtained in Examples 2-1 to 2-3 and Comparative Example 2-1, the peelability between the release layer and the glass substrate was confirmed by the following method. did. In addition, the following test was done with the same glass substrate.
<樹脂薄膜のクロスカット試験剥離性評価>
 実施例2-1~2-3及び比較例2-1で得られた剥離層付きガラス基板上の剥離層をクロスカット(縦横1mm間隔、以下同様)し、100マスカットを行った。すなわち、このクロスカットにより、1mm四方のマス目を100個形成した。
 そして、この100マスカット部分に粘着テープを貼り付けて、そのテープを剥がし、以下の基準(5B~0B,B,A,AA)に基づき、剥離性を評価した。結果を表1に示す。
<判定基準>
5B:0%剥離(剥離なし)
4B:5%未満の剥離
3B:5~15%未満の剥離
2B:15~35%未満の剥離
1B:35~65%未満の剥離
0B:65%~80%未満の剥離
 B:80%~95%未満の剥離
 A:95%~100%未満の剥離
AA:100%剥離(すべて剥離)
<Cross-cut test peelability evaluation of resin thin film>
The release layer on the glass substrate with the release layer obtained in Examples 2-1 to 2-3 and Comparative Example 2-1 was cross-cut (1 mm in length and width, the same applies hereinafter), and 100 mass cuts were performed. That is, 100 crosses of 1 mm square were formed by this cross cut.
Then, an adhesive tape was affixed to the 100 muscat portion, the tape was peeled off, and peelability was evaluated based on the following criteria (5B to 0B, B, A, AA). The results are shown in Table 1.
<Criteria>
5B: 0% peeling (no peeling)
4B: Less than 5% peeling 3B: Less than 5-15% peeling 2B: 15-35% peeling 1B: 35-65% peeling 0B: 65% -80% peeling B: 80% -95 % Peeling A: 95% to less than 100% peeling AA: 100% peeling (all peeling)
<樹脂基板の剥離性の評価>
 実施例2-1~2-3及び比較例2-1で得られた樹脂基板・剥離層付きガラス基板の樹脂基板を、カッターを用いて25mm幅の短冊状にカットした。そして、カットした樹脂基板の先端にセロハンテープを貼り付け、これを試験片とした。この試験片を、(株)アトニック製プッシュプルテスターを用いて剥離角度が90°となるように剥離試験を行い、下記の基準に基づいて剥離性を評価した。結果を表1に示す。
<判定基準>
5B:0%剥離(剥離なし)
4B:5%未満の剥離
3B:5~15%未満の剥離
2B:15~35%未満の剥離
1B:35~65%未満の剥離
0B:65%~80%未満の剥離
 B:80%~95%未満の剥離
 A:95%~100%未満の剥離
AA:100%剥離(すべて剥離)
<Evaluation of peelability of resin substrate>
The resin substrate / glass substrate with release layer obtained in Examples 2-1 to 2-3 and Comparative Example 2-1 was cut into a 25 mm wide strip using a cutter. And the cellophane tape was affixed on the front-end | tip of the cut resin substrate, and this was made into the test piece. The test piece was subjected to a peel test using an Atonic Co., Ltd. push-pull tester so that the peel angle was 90 °, and peelability was evaluated based on the following criteria. The results are shown in Table 1.
<Criteria>
5B: 0% peeling (no peeling)
4B: Less than 5% peeling 3B: Less than 5-15% peeling 2B: 15-35% peeling 1B: 35-65% peeling 0B: 65% -80% peeling B: 80% -95 % Peeling A: 95% to less than 100% peeling AA: 100% peeling (all peeling)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果より、実施例2-1~2-3の剥離層は、ガラス基板から剥離層が剥がれることなく樹脂基板のみ剥離することができたが、比較例2-1では剥離できなかったことが確認された。 From the results shown in Table 1, the release layers of Examples 2-1 to 2-3 were able to peel only the resin substrate without peeling off the release layer from the glass substrate, but could not be peeled off in Comparative Example 2-1. It was confirmed.

Claims (7)

  1.  テトラカルボン酸由来の両末端を有し、この両末端のいずれか一方又は両方が2-アミノフェノールで封止されているポリアミック酸と、有機溶媒とを含む剥離層形成用組成物を基体上に塗布し、最高温度400℃以上で焼成する工程を含むことを特徴とする剥離層の製造方法。 A release layer-forming composition comprising a polyamic acid having both ends derived from tetracarboxylic acid and one or both of both ends sealed with 2-aminophenol and an organic solvent is formed on a substrate. A method for producing a release layer, comprising a step of applying and baking at a maximum temperature of 400 ° C. or higher.
  2.  上記ポリアミック酸が、芳香族ジアミンを含むジアミン成分と芳香族テトラカルボン酸二無水物を含む酸二無水物成分とを反応させて得られたポリアミック酸である請求項1記載の剥離層の製造方法。 The method for producing a release layer according to claim 1, wherein the polyamic acid is a polyamic acid obtained by reacting a diamine component containing an aromatic diamine and an acid dianhydride component containing an aromatic tetracarboxylic dianhydride. .
  3.  上記芳香族ジアミンが、ベンゼン核を1~5つ含む芳香族ジアミンである請求項2記載の剥離層の製造方法。 The method for producing a release layer according to claim 2, wherein the aromatic diamine is an aromatic diamine containing 1 to 5 benzene nuclei.
  4.  上記芳香族テトラカルボン酸二無水物が、ベンゼン核を1~5つ含む芳香族テトラカルボン酸二無水物である請求項2又は3記載の剥離層の製造方法。 The method for producing a release layer according to claim 2 or 3, wherein the aromatic tetracarboxylic dianhydride is an aromatic tetracarboxylic dianhydride containing 1 to 5 benzene nuclei.
  5.  請求項1~4のいずれか1項記載の製造方法を用いて形成される剥離層を用いることを特徴とする、樹脂基板を備えるフレキシブル電子デバイスの製造方法。 A method for producing a flexible electronic device comprising a resin substrate, comprising using a release layer formed using the production method according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか1項記載の製造方法を用いて形成した剥離層上に、樹脂基板形成用組成物を塗布した後、最高温度450℃以上で焼成して樹脂基板を形成する工程を含むフレキシブル電子デバイスの製造方法。 A process of forming a resin substrate by applying a resin substrate-forming composition on a release layer formed by using the manufacturing method according to any one of claims 1 to 4 and then baking it at a maximum temperature of 450 ° C or higher. A method for manufacturing a flexible electronic device.
  7.  上記樹脂基板が、ポリイミド樹脂基板である請求項5又は6記載のフレキシブル電子デバイスの製造方法。 The method for manufacturing a flexible electronic device according to claim 5 or 6, wherein the resin substrate is a polyimide resin substrate.
PCT/JP2017/043907 2016-12-08 2017-12-07 Release layer production method WO2018105674A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780075610.XA CN110049827A (en) 2016-12-08 2017-12-07 The manufacturing method of peeling layer
KR1020197019447A KR102439472B1 (en) 2016-12-08 2017-12-07 Method for producing a release layer
JP2018555052A JP6897690B2 (en) 2016-12-08 2017-12-07 Method of manufacturing the release layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-238647 2016-12-08
JP2016238647 2016-12-08

Publications (1)

Publication Number Publication Date
WO2018105674A1 true WO2018105674A1 (en) 2018-06-14

Family

ID=62491565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043907 WO2018105674A1 (en) 2016-12-08 2017-12-07 Release layer production method

Country Status (5)

Country Link
JP (1) JP6897690B2 (en)
KR (1) KR102439472B1 (en)
CN (1) CN110049827A (en)
TW (1) TWI823841B (en)
WO (1) WO2018105674A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160023436A1 (en) * 2014-07-22 2016-01-28 Brewer Science Inc. Polyimides as laser release materials for 3-d ic applications
JP2016068401A (en) * 2014-09-30 2016-05-09 東レ株式会社 Resin laminate, organic el element substrate, color filter substrate, method for producing them and flexible organic el display
WO2016129546A1 (en) * 2015-02-10 2016-08-18 日産化学工業株式会社 Composition for forming release layer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071667A (en) * 1995-04-13 2000-06-06 Hitachi Chemical Co., Ltd. Photosensitive resin composition containing a photosensitive polyamide resin
JP3809681B2 (en) 1996-08-27 2006-08-16 セイコーエプソン株式会社 Peeling method
JP4619461B2 (en) 1996-08-27 2011-01-26 セイコーエプソン株式会社 Thin film device transfer method and device manufacturing method
JP4619462B2 (en) 1996-08-27 2011-01-26 セイコーエプソン株式会社 Thin film element transfer method
GB0327093D0 (en) 2003-11-21 2003-12-24 Koninkl Philips Electronics Nv Active matrix displays and other electronic devices having plastic substrates
WO2011035920A1 (en) * 2009-09-24 2011-03-31 Corus Technology Bv A method of preparing a polyetherimide coating on a metallic substrate
JP5834930B2 (en) * 2011-09-09 2015-12-24 宇部興産株式会社 Polyimide precursor aqueous solution composition and method for producing polyimide precursor aqueous solution composition
JP5723498B1 (en) * 2013-10-23 2015-05-27 日本化薬株式会社 Polyimide resin composition and thermally conductive adhesive film using the same
KR20230023831A (en) * 2015-03-31 2023-02-17 닛산 가가쿠 가부시키가이샤 Composition for forming release layer, and release layer
JP6491742B2 (en) * 2015-04-17 2019-03-27 旭化成株式会社 Resin composition, polyimide resin film, and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160023436A1 (en) * 2014-07-22 2016-01-28 Brewer Science Inc. Polyimides as laser release materials for 3-d ic applications
JP2016068401A (en) * 2014-09-30 2016-05-09 東レ株式会社 Resin laminate, organic el element substrate, color filter substrate, method for producing them and flexible organic el display
WO2016129546A1 (en) * 2015-02-10 2016-08-18 日産化学工業株式会社 Composition for forming release layer

Also Published As

Publication number Publication date
JP6897690B2 (en) 2021-07-07
CN110049827A (en) 2019-07-23
TW201829668A (en) 2018-08-16
JPWO2018105674A1 (en) 2019-10-24
TWI823841B (en) 2023-12-01
KR102439472B1 (en) 2022-09-05
KR20190094197A (en) 2019-08-12

Similar Documents

Publication Publication Date Title
JP6939941B2 (en) Manufacturing method of flexible electronic device
KR102602473B1 (en) Composition for forming release layer
WO2018025954A1 (en) Composition for forming releasing layer for transparent resin substrate
WO2021125308A1 (en) Release layer forming composition
WO2016158988A1 (en) Composition for forming release layer, and release layer
JP7088023B2 (en) Method of manufacturing the release layer
KR102500563B1 (en) Composition for Forming a Substrate Protection Layer
JP6962323B2 (en) Composition for forming a release layer
JP6897690B2 (en) Method of manufacturing the release layer
WO2018105676A1 (en) Release layer production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018555052

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197019447

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17879538

Country of ref document: EP

Kind code of ref document: A1