WO2014133007A1 - Method for manufacturing electronic device - Google Patents

Method for manufacturing electronic device Download PDF

Info

Publication number
WO2014133007A1
WO2014133007A1 PCT/JP2014/054697 JP2014054697W WO2014133007A1 WO 2014133007 A1 WO2014133007 A1 WO 2014133007A1 JP 2014054697 W JP2014054697 W JP 2014054697W WO 2014133007 A1 WO2014133007 A1 WO 2014133007A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
electronic device
film
glass film
supporting
Prior art date
Application number
PCT/JP2014/054697
Other languages
French (fr)
Japanese (ja)
Inventor
保弘 松本
康夫 山崎
睦 深田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2014133007A1 publication Critical patent/WO2014133007A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing an electronic device such as a flat panel display such as a liquid crystal display or an organic EL display, organic EL lighting, a solar battery, a lithium ion battery, a digital signage, a touch panel, electronic paper, a mobile phone, or a smartphone.
  • a flat panel display such as a liquid crystal display or an organic EL display, organic EL lighting, a solar battery, a lithium ion battery, a digital signage, a touch panel, electronic paper, a mobile phone, or a smartphone.
  • flat panel displays such as a liquid crystal display, a plasma display, an organic EL display and a field emission display have become popular in recent years.
  • These flat panel displays are required to be thinner.
  • organic EL displays are required to be easily carried by folding or winding, and to be usable not only on flat surfaces but also on curved surfaces.
  • it is not limited to a display that can be used not only on a flat surface but also on a curved surface.
  • it has a curved surface such as the surface of a car body, the roof of a building, or a pillar or an outer wall. If a solar cell or organic EL illumination can be formed on the surface of an object, its application will be expanded. Therefore, the substrate and cover glass used in these devices are required to be further thinned and highly flexible.
  • the light emitter used in the organic EL display is deteriorated by contact with a gas such as oxygen or water vapor. Accordingly, since a high gas barrier property is required for a substrate used in an organic EL display, it is expected to use a glass substrate.
  • glass substrates used in such applications are less flexible because they are less susceptible to tensile stress than resin films, and breakage occurs when the glass substrate surface is subjected to tensile stress by bending the glass substrate. .
  • the glass substrate used for electronic devices such as flat panel displays and solar cells is subjected to various processing related to electronic device manufacturing such as processing and cleaning.
  • processing and cleaning if the glass substrate used in these electronic devices is made thin and made into a film, the glass is a brittle material, which leads to breakage due to a slight change in stress. There is a problem that is very difficult.
  • a glass film having a thickness of 200 ⁇ m or less is rich in flexibility, it is difficult to perform positioning when performing processing, and there is a problem that displacement or the like occurs during patterning.
  • Patent Document 2 proposes a glass film laminate in which a glass film is laminated on a supporting glass. According to this, even if a glass film having low strength and rigidity is used alone, the supporting glass has high rigidity, so that the entire glass film laminate can be easily positioned during processing. Moreover, after completion
  • the various manufacturing-related processes described above include processes involving heating, such as a film forming process or a sealing process of a transparent conductive film.
  • a process involving heating is performed, the support glass and the glass film that are directly laminated in the glass film laminate are bonded to each other, which makes it difficult to peel the glass film from the support glass.
  • Patent Document 3 proposes a glass film laminate in which an inorganic thin film is formed on a supporting glass and then a glass film is laminated. Thereby, even if the electronic device manufacturing related process with heating is performed on the glass film laminate, the supporting glass and the glass film are not bonded, and the glass film is removed from the supporting glass after the electronic device manufacturing related process with heating. It can be peeled off.
  • JP 2010-132531 A WO2011 / 048979 JP 2011-184284 A
  • Patent Document 3 it is necessary to form an inorganic thin film very uniformly on the surface of the supporting glass.
  • the formation of the inorganic thin film on the supporting glass has a problem of requiring a lot of time and cost. Therefore, it is desired that the supporting glass and the glass film are peeled from the glass film laminate by a simple and inexpensive method after the electronic device manufacturing-related process involving heating.
  • the present invention has been made to solve the above-described problems of the prior art, and easily and inexpensively peels a glass film from a supporting glass even after processing related to electronic device manufacturing involving heating.
  • the purpose is to make it possible.
  • the present invention devised to solve the above-mentioned problems is that the surface roughness Ra of the surfaces of the glass film and the supporting glass which are in contact with each other is set to 2.0 nm or less, and both the surfaces are brought into contact with each other.
  • a device is formed on the glass film of the glass film laminate by performing a first process for producing a glass film laminate in which a glass film and a supporting glass are laminated, and an electronic device manufacturing related process involving heating.
  • the second step of producing the electronic device with supporting glass by sealing the element with a cover glass, and applying a liquid containing water to the interface between the glass film and the supporting glass of the electronic device with supporting glass
  • a third step of peeling the electronic device from the supporting glass is a third step of peeling the electronic device from the supporting glass.
  • the glass film and the supporting glass can be directly fixed and laminated.
  • the element formed on the glass film can be sealed by sealing the element with the cover glass after the electronic device manufacturing related process. Even if an electronic device manufacturing related process involving heating is performed by applying a liquid containing water to the interface between the supporting glass and the glass film, the supporting glass and the glass film can be favorably peeled off. Even if the liquid is used at the time of peeling, the liquid is not attached to the element in the electronic device because the cover glass is sealed to make the periphery of the element a sealed space. The internal elements are not deteriorated.
  • the third step is preferably performed by immersing the electronic device with a supporting glass in a liquid containing water.
  • the liquid containing water is preferably alkaline.
  • the supporting glass can be peeled from the electronic device with supporting glass more efficiently.
  • an ultrasonic wave may be applied to the electronic device with a supporting glass.
  • the ultrasonic wave is applied to the electronic device with a supporting glass in the third step, the liquid containing water efficiently penetrates into the interface between the supporting glass and the glass film.
  • the support glass and the glass film can be peeled off more favorably.
  • a peeling member may be inserted at the interface between the glass film and the supporting glass.
  • the liquid containing water can penetrate efficiently into the interface of support glass and glass film.
  • the supporting glass and the glass film can be peeled off more favorably.
  • the peeling member can be a hydrophobic resin sheet.
  • the peeling member is a hydrophobic resin sheet, it is excellent in handling the resin sheet in a liquid containing water, and efficiently contains water at the interface between the glass film and the supporting glass. Liquid can enter.
  • an inorganic thin film can be formed on the surface of the supporting glass that is in contact with the glass film.
  • the inorganic thin film is formed on the surface of the supporting glass that comes into contact with the glass film, the supporting glass and the glass film can be more efficiently separated.
  • the cover glass may be laminated on a carrier glass, and the cover glass and the carrier glass may be peeled off in the third step.
  • the cover glass is supported by the carrier glass, it is possible to perform processing related to electronic device manufacturing on the cover glass side as well, even if the cover glass has flexibility.
  • the element can be sealed, and the cover glass and the carrier glass can be peeled off at the same time as the supporting glass and the glass film are peeled off in the third step.
  • the peeling member in the third step, may be inserted into the interface between the cover glass and the carrier glass.
  • the 3rd process inserts a peeling member in the interface of a cover glass and carrier glass, the liquid containing water efficiently penetrates also into the interface of a cover glass and carrier glass.
  • the cover glass and the carrier glass can be peeled off satisfactorily.
  • the present invention it is possible to easily and inexpensively peel the glass film from the supporting glass even after processing related to electronic device manufacturing involving heating, and by sealing with a cover glass,
  • the elements in the electronic device are preferably protected.
  • the method for manufacturing an electronic device sets the surface roughness Ra of the glass film 11 and the supporting glass 12 on the side in contact with each other to 2.0 nm or less, and both surfaces thereof.
  • the glass of the glass film laminated body 1 by performing the electronic device manufacturing related process with a 1st process which laminates
  • a second step of forming the electronic device 3 with supporting glass by forming the element 51 on the film 11 and sealing the element 51 with the cover glass 2, and the glass film 11 and the supporting glass of the electronic device 3 with supporting glass
  • the glass film 11 is made of silicate glass or silica glass, preferably borosilicate glass, most preferably non-alkali glass. If the glass film 11 contains an alkali component, cations are dropped on the surface, so-called soda blowing phenomenon occurs, and the structure becomes rough. In this case, if the glass film 11 is curved and used, there is a possibility that it will be damaged from a portion that has become rough due to deterioration over time.
  • the alkali-free glass is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, a glass having an alkali component of 3000 ppm or less.
  • the content of the alkali component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
  • the thickness of the glass film 11 is preferably 300 ⁇ m or less, more preferably 5 ⁇ m to 200 ⁇ m, and most preferably 5 ⁇ m to 100 ⁇ m. Thereby, the thickness of the glass film 11 can be made thinner and appropriate flexibility can be imparted, handling properties are difficult, and problems such as misalignment and bending during patterning are likely to occur. On the other hand, processing related to electronic device manufacturing can be easily performed by using the supporting glass 12 described later. If the thickness of the glass film 11 is less than 5 ⁇ m, the strength of the glass film 11 tends to be insufficient, and the glass film 11 may be difficult to peel from the support glass 12.
  • silicate glass, silica glass, borosilicate glass, non-alkali glass, or the like is used similarly to the glass film 11.
  • the thickness of the support glass 12 is preferably 400 ⁇ m or more. When the thickness of the supporting glass 12 is less than 400 ⁇ m, there is a possibility that a problem may occur in terms of strength when the supporting glass 12 is handled alone.
  • the thickness of the support glass 12 is preferably 400 ⁇ m to 700 ⁇ m, and most preferably 500 ⁇ m to 700 ⁇ m. As a result, the glass film 11 can be reliably supported, and breakage of the glass film 11 that can occur when the glass film 11 is peeled from the support glass 12 can be effectively suppressed.
  • the thickness of the support glass 12 may be less than 400 ⁇ m (for example, 300 ⁇ m or the like, the same thickness as the glass film 11). .
  • the glass film 11 and the supporting glass 12 used in the present invention are preferably formed by a down draw method, and more preferably formed by an overflow down draw method.
  • the overflow downdraw method shown in FIG. 2 is a molding method in which both surfaces of the glass plate do not come into contact with the molded member at the time of molding, and the both surfaces (translucent surface) of the obtained glass plate are hardly scratched and polished. Even if not, high surface quality can be obtained.
  • the glass film 11 and / or the supporting glass 12 may be formed by a float method, a slot down draw method, a roll out method, an up draw method, a redraw method, or the like.
  • the glass ribbon G immediately after flowing down from the lower end portion 81 of the wedge-shaped molded body 8 is drawn downward while the shrinkage in the width direction is restricted by the cooling roller 82 to be predetermined.
  • the glass ribbon G that has reached the predetermined thickness is gradually cooled in a slow cooling furnace (annealer), the thermal distortion of the glass ribbon (G) is removed, and the glass ribbon (G) is cut into a predetermined size, thereby forming a glass film. 11 and the support glass 12 are respectively formed.
  • the 1st process based on this invention is laminated
  • the surface roughness Ra of the contact surface 11a of the glass film 11 with the support glass 12 and the contact surface 12a of the support glass 12 with the glass film 11 is 2.0 nm or less, respectively.
  • surface roughness Ra exceeds 2.0 nm, adhesiveness will fall and it will become impossible to laminate
  • the surface roughness Ra of each of the contact surfaces 11a and 12a of the glass film 11 and the supporting glass 12 is preferably 1.0 nm or less, more preferably 0.5 nm or less, and 0.2 nm or less. Most preferred.
  • the roughness Ra is preferably 2.0 nm or less, more preferably 1.0 nm or less, further preferably 0.5 nm or less, and most preferably 0.2 nm or less.
  • the surface roughness of the conveyance surface 12b of the support glass 12 is not particularly limited.
  • the glass film 11 having substantially the same area is laminated on the support glass 12, but in order to further facilitate the peeling of the glass film 11 from the support glass 12, the glass film 11 is supported by the support glass 12. It may be laminated so as to protrude from.
  • the protruding amount of the glass film 11 from the supporting glass 12 is preferably 1 to 20 mm, more preferably 1 to 10 mm, and most preferably 1 to 5 mm. Even if the protruding amount of the glass film 11 is about 1 mm, the end portion of the glass film 11 can be used as the starting point of the peeling, while the protruding amount of the glass film 11 exceeds 20 mm. May cause damage or drooping.
  • the portion of the glass film 11 protruding from the support glass 12 may be all four sides of the glass film laminate 1, or may be only two sides or only one side facing each other.
  • the support glass 12 may be laminated so as to protrude from the glass film 11.
  • the amount of protrusion of the support glass 12 from the glass film 11 is preferably 0.5 to 10 mm, and more preferably 0.5 to 1 mm.
  • the area of the effective surface 11b of the glass film 11 can be secured more widely.
  • the support glass 12 protrudes from the glass film 11 in all four sides.
  • the form in which the glass film 11 protrudes from the support glass 12 only on one side, and the support glass 12 protrudes from the glass film 11 in the remaining three sides is more preferable.
  • the step of laminating the glass film 11 on the support glass 12 may be performed under reduced pressure. Thereby, the bubble produced when the glass film 11 and the support glass 12 are laminated
  • the second step according to the present invention is an effective surface 11b of the glass film 11 of the glass film laminate 1 produced in the first step as shown in FIG.
  • the device 51 is formed on the support glass 2 by sealing the device 51 formed on the effective surface 11 b of the glass film 11 with the cover glass 2.
  • Examples of the electronic device manufacturing related process involving heating in the second step include a film forming process by a CVD method, a sputtering method, and the like.
  • a film forming process by a CVD method As elements formed on the effective surface 11b of the glass film 11, liquid crystal elements, organic EL elements, touch panel elements, solar cell elements, piezoelectric elements, light receiving elements, battery elements such as lithium ion secondary batteries, MEMS elements, and semiconductors An element etc. are mentioned.
  • the cover glass 2 is made of silicate glass, silica glass, borosilicate glass, alkali-free glass or the like.
  • the cover glass 2 it is preferable to use a glass having a difference in thermal expansion coefficient at 30 to 380 ° C. with respect to the glass film 11 within 5 ⁇ 10 ⁇ 7 / ° C. Thereby, even if the temperature of the surrounding environment of the produced electronic device 5 changes, it is hard to produce the thermal warp by the difference of an expansion coefficient, the crack of the glass film 11 and the cover glass 2, etc., and it is set as the electronic device 5 which is hard to be damaged. It becomes possible.
  • the cover glass 2 and the glass film 11 are most preferably glass having the same composition.
  • the thickness of the cover glass 2 is preferably 300 ⁇ m or less, more preferably 5 ⁇ m to 200 ⁇ m, and most preferably 5 ⁇ m to 100 ⁇ m. Thereby, thickness of a cover glass can be made thinner and appropriate flexibility can be provided. When the thickness of the cover glass 2 is less than 5 ⁇ m, the strength of the cover glass 2 tends to be insufficient.
  • FIG. 4 shows an organic EL panel as an example of the electronic device 3 with a supporting glass manufactured in the second step.
  • the anode layer 52a, the hole transport layer 52b, the light emitting layer 52c, the electron transport layer 52d, and the cathode layer 52e are laminated in this order on the effective surface 11b of the glass film 11 by a known film formation method such as CVD or sputtering.
  • the organic EL element 52 is formed.
  • the organic EL element 52 is sealed by bonding the cover glass 2 and the glass film 11 using a known laser sealing or the like, and the electronic device 3 with supporting glass (this time organic EL with supporting glass). Panel).
  • the cover glass 2 and the glass film 11 are directly bonded, but the cover glass 2 and the glass film 11 may be bonded appropriately using a known glass frit, a spacer, or the like.
  • the third step according to the present invention is to apply the electronic device 5 while applying the liquid 4 containing water to the interface 13 between the glass film 11 and the supporting glass 12 of the electronic device 3 with supporting glass. This is a step of peeling from the support glass 12.
  • the liquid 4 containing water may contain other components as long as it contains at least water, and may be in an aqueous solution or a micelle state in which the solute is dissolved in water as well as pure water. It may be a mixture with water or may contain a component that does not dissolve in water, such as oil.
  • the liquid state may be any shape such as liquid columnar, granular, mist, or steam.
  • the liquid 4 containing water is sprayed on the interface 13 between the glass film 11 and the support glass 12 by spraying the liquid 4 containing water from the nozzle 41 onto the interface 13 between the glass film 11 and the support glass 12.
  • the glass film 11 and the support glass 12 are peeled off. Thereby, even if the electronic device manufacturing related process with heating is performed, the glass film 11 and the support glass 12 can be smoothly peeled off.
  • the glass film 11 and the support glass 12 can be favorably peeled by applying the liquid 4 containing water, it is speculated that the reason is as follows.
  • the smooth contact surfaces 11a and 12a of these two glass substrates are brought into close contact with each other.
  • the glass substrates adhere to each other without an adhesive to form the glass film laminate 1.
  • This phenomenon is presumed to be due to the following mechanism. As shown in FIG. 5, it is considered that they are attracted by hydrogen bonding between hydroxyl groups formed on the contact surface 11 a of the glass film 11 and the contact surface 12 a of the support glass 12.
  • the glass film 11 and the support glass 12 may adhere to each other due to the formation of hydrogen bonds through water molecules present at the interface 13 between the glass film 11 and the support glass 12. It is believed that.
  • the electronic device manufacturing process includes a manufacturing-related process including heating such as a film forming process, it is manufactured with a heating process of at least 100 ° C. or higher. For example, in a TFT manufacturing process of a liquid crystal display or an organic EL display, an amorphous silicon TFT is heated to 300 ° C.
  • a low temperature polysilicon TFT is heated to at least 400 ° C. or higher.
  • a TFT composed of indium, gallium, zinc, and oxygen it is heated to at least 300 ° C. or higher.
  • the manufacturing process of the touch sensor substrate it is heated to at least 150 ° C. or higher.
  • the inventors of the present invention include at least water at the interface 13 between the glass film 11 and the support glass 12 in the glass film laminate 1 that has undergone the electronic device manufacturing-related treatment with heating.
  • peeling was performed in a state where a liquid was applied, it was found that the glass film 11 and the supporting glass 12 could be easily peeled, and the present invention was achieved.
  • the liquid 4 containing water is applied to the interface 13 between the glass film 11 and the support glass 12, Si-O-Si + H 2 O ⁇ Si-OH + HO-Si It is considered that the glass film 11 and the supporting glass 12 can be easily peeled off by promoting the hydrolysis reaction.
  • the dehydration reaction and hydrolysis reaction of the Si—OH group at the interface 13 between the glass film 11 and the support glass 12 described above are not limited to Si but exist in Al, In, Sn, Zn, Ti, Zr, Ga, and the like.
  • the OH group is considered to be generated similarly. Therefore, on the support glass 12, SiO, SiO 2, Al 2 O 3, MgO, Y 2 O 3, La 2 O 3, Pr 6 O 11, Sc 2 O 3, WO 3, HfO 2, In 2 O 3 Even when an inorganic thin film such as ITO, ZrO 2 , Nd 2 O 3 , Ta 2 O 5 , CeO 2 , Nb 2 O 5 , TiO, TiO 2 , Ti 3 O 5 , NiO, or ZnO is formed.
  • a similar effect can be expected.
  • the glass film 11 and the support glass 12 can be easily peeled off.
  • the glass film 11 and the support glass 12 can be more easily peeled off more efficiently.
  • the liquid 4 containing water can be more efficiently provided to the interface 13 between the support glass 12 and the glass film 11 at the time of peeling.
  • the liquid 4 containing water is stored in the water tank 42, and the support glass 12 and the glass film 11 are peeled off by immersing the electronic device 3 with support glass in the water tank 42. I do.
  • the liquid 4 containing water is preferably alkaline.
  • a monovalent base, a divalent base or the like can be used, and both strong alkali and weak alkali can be used.
  • the pH of the liquid 4 containing water may be adjusted by adding KOH, NaOH, or a surfactant to water or the like.
  • the pH of the liquid 4 containing water is preferably more than pH 7, more preferably 10 or more.
  • anionic surfactants cationic surfactants, nonionic surfactants, zwitterionic surfactants and the like can be used. Two or more kinds may be mixed, and a mixture of a pH adjusting agent that maintains alkalinity such as sodium carbonate can be used.
  • concentration of the surfactant in the liquid 4 containing water used in the present invention is preferably 0.001 to 2.0% by mass.
  • anionic surfactant carboxylate, sulfonate, sulfate ester salt and the like can be used.
  • anionic fatty acid salts alpha sulfo fatty acid ester salts, alkylbenzene sulfonates, alkyl sulfates, alkyl ether sulfate esters, alkyl sulfate triethanolamines and the like can be used.
  • cationic surfactant amine salt type and quaternary ammonium salt type can be used.
  • alkyltrimethylammonium salt, dialkyldimethylammonium chloride, alkylpyridinium chloride and the like can be used.
  • Nonionic surfactants include ester types in which polyhydric alcohols and fatty acids are ester-bonded, ether types such as polyoxyethylene alkyl ether, and ester / ether types that have both ester bonds and ether bonds in the molecule. can do.
  • ether types such as polyoxyethylene alkyl ether
  • ester / ether types that have both ester bonds and ether bonds in the molecule.
  • fatty acid diethanolamide, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether and the like can be used.
  • As the zwitterionic surfactant carboxylate type, amino acid type, betaine type and the like can be used.
  • the liquid 4 containing water can be more efficiently applied to the interface 13 between the glass film 11 and the support glass 12, and the separation between the glass film 11 and the support glass 12 can be further facilitated.
  • the applied wavelength of the ultrasonic wave is preferably 25 kHz to 950 kHz, and more preferably 25 kHz to 170 kHz where the vibration energy is large.
  • the time for applying the ultrasonic wave to the electronic device 3 with supporting glass immersed in the liquid 4 containing water is preferably performed until the electronic device 5 is completely peeled from the supporting glass 12.
  • ultrasonic waves may be used only at the start of peeling of the electronic device 5, and in this case, ultrasonic waves may be applied to the electronic device 3 with supporting glass for 1 to 5 seconds.
  • the ultrasonic wave may be applied by directly contacting the ultrasonic wave transmitter with the electronic device 3 with supporting glass or by applying ultrasonic wave to the electronic device 3 with supporting glass through the liquid 4 containing water. Also good.
  • the peeling member 6 is preferably inserted into the interface 13 between the glass film 11 and the supporting glass 12 when the glass film 11 and the supporting glass 12 are peeled off.
  • the liquid 4 containing water can be made to invade sequentially into the interface 13 between the glass film 11 and the support glass 12, Peeling of the glass film 11 and the support glass 12 can be further facilitated.
  • the shape of the peeling member 6 is preferably a sheet-like, belt-like, plate-like, strip-like, wedge-like or the like that has a small thickness and is wider than the electronic device 3 with supporting glass in the peeling progress direction.
  • the thickness of the peeling member is preferably 0.01 mm to 1 mm, and more preferably 0.1 mm to 0.5 mm.
  • the peeling member 6 can be inserted into a slight gap generated at the interface 13 between the glass film 11 and the support glass 12.
  • the length of the peeling member 6 is dependent also on the area of the electronic device 3 with support glass used as peeling object, it is preferable that it is long in the peeling progress direction at least rather than the electronic device 3 with support glass. In this way, the glass film 11 once peeled off and the supporting glass 12 come into contact again after passing through the peeling member 6 and are prevented as much as possible from partially or entirely becoming the electronic device 3 with supporting glass. be able to.
  • the material of the peeling member 6 can be a rigid metal such as aluminum or stainless steel, but it is preferable to use a flexible resin film such as polyethylene or acrylic, and a hydrophobic film such as a fluorine film.
  • the resin sheet is more preferable.
  • a hydrophobic resin sheet as the peeling member 6, there is little risk of damaging the end surfaces of the glass film 11 and the supporting glass 13, and the liquid 4 containing water even if immersed in water because it is hydrophobic. Inside, handling of the peeling member 6 becomes easy.
  • the hydrophobic resin sheet includes not only that the resin sheet itself is hydrophobic, but also that various sheets (resin sheet, metal sheet, etc.) are coated with a hydrophobic substance.
  • the material of the peeling member 6 is a rigid resin plate. Is preferably used, and the peeling member 6 can be smoothly inserted into the interface 13 between the glass film 11 and the support glass 12, and the glass film 11 and the support glass 12 are less likely to be damaged.
  • the desired electronic device 5 can finally be manufactured by peeling the support glass 12 from the electronic device 3 with a support glass by a 3rd process.
  • FIG. 9 is a diagram showing another embodiment according to the present invention.
  • the embodiment shown in FIG. 9 is different from the above-described embodiment in that the cover glass 2 is laminated on the carrier glass 21.
  • an electronic device manufacture related process can be performed also on the cover glass 2.
  • the liquid crystal element 53 can be sealed with the cover glass 2 formed.
  • the electronic device 3 with supporting glass also includes the carrier glass 21.
  • the carrier glass 21 is preferably made of the same material as the glass film 11, the cover glass 2 and the support glass 12 described above, and a glass having the same thickness as the support glass 12.
  • the carrier glass 21 and the cover glass 2 are preferably made of the same glass material.
  • the cover glass 2 and the carrier glass 21 are also peeled in the same process as the glass film 11 and the support glass 12 are peeled in the water tank 42 in which the liquid 4 containing water is stored. To do. Therefore, it is not necessary to provide a special process for peeling the carrier glass 21. Also when peeling the cover glass 2 and the carrier glass 21, it is preferable to apply an ultrasonic wave as above-mentioned, and it is preferable to use the peeling member 6 mentioned above.
  • the desired electronic device 5 can be finally manufactured by peeling the supporting glass 12 and the carrier glass 21 from the supporting glass-equipped electronic device 3 in the third step.
  • the method for manufacturing an electronic device can perform the first step, the second step, and the third step in succession, as schematically shown in FIG. Moreover, it is not limited to the structure performed continuously from a 1st process to a 3rd process, For example, the glass film laminated body 1 manufactured after the 1st process is packed and shipped, and an electronic device manufacturing related process is separately carried out.
  • the facility may be configured to perform the second step and the third step.
  • the support glass 12 and the carrier glass 21 are peeled off by packing and shipping the electronic device 3 with the support glass manufactured after the second step, and performing the third step in a separate facility. 5 may be manufactured.
  • the surface roughness Ra was measured under the conditions of a scan size of 10 ⁇ m, a scan rate of 1 Hz, and a sample line 512 using AFM (NanoScope) manufactured by Veeco.
  • the surface roughness Ra was 0.25 nm as calculated from the measured values in a 10 ⁇ m square measurement range.
  • This glass film and supporting glass were laminated at a temperature of 25 ° C. to produce a glass film laminate.
  • the obtained glass film laminate was placed in an electric furnace heated to 100 ° C., 150 ° C., 200 ° C., 300 ° C., 350 ° C., 400 ° C., and 450 ° C., heated for 30 minutes, and then unheated taken out of the electric furnace.
  • peeling surface energy (gamma) (J / m ⁇ 2 >) by a glass opening method with a glass film laminated body and the glass film laminated body heated at the above-mentioned temperature. ,evaluated.
  • the crack opening method inserts a peeling member 6 having a known thickness at the interface of the glass film laminate 1, and peels the surface from the separation distance c generated between the glass film 11 and the support glass 12.
  • the peeling surface energy ⁇ is calculated by the following equation.
  • h is the thickness (m) of the peeling member 6
  • Ta is the thickness (m) of the glass film 11
  • Ea is the Young's modulus (Pa) of the glass film 11
  • Tb is the thickness (m) of the support glass 12
  • Eb is the support.
  • c is the distance (m) peeled by inserting the peeling member 6.
  • Example 2 the peel surface energy ⁇ was measured in a state where the glass film laminate was immersed in an alkaline aqueous solution having a KOH concentration of 0.01 mol / kg (pH 10). As Example 3, the peeling surface energy ⁇ was measured while applying a 40 kHz ultrasonic wave in a state where the glass film laminate was immersed in water. As Comparative Example 1, peeling surface energy ⁇ was measured in the atmosphere. As a peeling member used for the measurement, a stainless steel cutter blade having a thickness of 40 ⁇ m was used. The results are shown in Table 1.
  • Example 1 As shown in Table 1, in Example 1, the surface energy of peeling was lowered by adding water, and it is clear that peeling can be performed more easily.
  • Example 2 shows that it becomes easier to peel by making water alkaline. Moreover, the surface energy at the time of peeling can also be lowered
  • a rectangular transparent glass plate having a length of 370 mm, a width of 470 mm, and a thickness of 500 ⁇ m was used as the supporting glass.
  • a glass film laminated on the supporting glass a glass film having a length of 370 mm, a width of 470 mm, and a thickness of 100 ⁇ m was used.
  • non-alkali glass product name: OA-10G, thermal expansion coefficient at 30 to 380 ° C .: 38 ⁇ 10 ⁇ 7 / ° C., Young's modulus 73 GPa
  • the surface roughness Ra was measured under the conditions of a scan size of 10 ⁇ m, a scan rate of 1 Hz, and a sample line 512 using AFM (NanoScope) manufactured by Veeco.
  • the surface roughness Ra was 0.25 nm as calculated from the measured values in a 10 ⁇ m square measurement range.
  • This glass film and supporting glass were laminated at a temperature of 20 ° C. to produce a glass film laminate.
  • the obtained glass film laminate was placed in an electric furnace heated to 100 ° C., 150 ° C., 200 ° C., 300 ° C., 350 ° C., 400 ° C., and 450 ° C., heated for 2 hours, and then taken out from the electric furnace.
  • Example 4 By making 100 glass film laminates under each heating condition and inserting a 100 ⁇ m thick fluororesin sheet (product name Yodoflon, manufactured by Yodogawa Hutec) at the interface between the glass film and the supporting glass, A peel test with the supporting glass was performed.
  • Example 4 a peel test was performed in a state where the glass film laminate was immersed in water.
  • Example 5 a peel test was performed in a state where the glass film laminate was immersed in an alkaline aqueous solution having a KOH concentration of 0.01 mol / kg (pH 10).
  • Example 6 a peel test was performed while applying a 40 kHz ultrasonic wave in a state where the glass film laminate was immersed in water.
  • Comparative Example 2 a peel test was performed in the air.
  • the probability of peeling success is 95% to 100%, 80 is 80% to 95%, ⁇ is 60% to 80%, and x is 60% or less.
  • Table 2 The results are shown in Table 2.
  • peeling was possible under any conditions with heating at 100 ° C. or lower, but in Examples 4 to 6, peeling was easy even when the heat treatment temperature became high due to the application of water. I understand that It has been clarified that the separation becomes even easier by using an alkaline aqueous solution or applying ultrasonic waves even if the heat treatment temperature is high.
  • the present invention is suitable for manufacturing electronic devices such as flat panel displays such as liquid crystal displays and organic EL displays, organic EL lighting, solar cells, lithium ion batteries, digital signage, touch panels, electronic paper, mobile phones and smartphones. Can be used for

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Photovoltaic Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

An electronic device (5) is manufactured by performing: a first step of setting the surface roughness (Ra) of sides (11a, 12a) of a glass film (11) and a support glass (12) that contact each other to 2.0 nm or less and bringing into contact the two sides (11a, 12a) to produce a glass film laminate (1) in which the glass film (11) and the support glass (12) are laminated; a second step of forming an element (51) on the glass film (11) of the glass film laminate (1) by performing an electronic device manufacturing-related process that entails heating, and sealing the element (51) with a cover glass (2) to produce an electronic device (3) with the support glass; and a step of applying a liquid (4) which comprises water to an interface between the glass film (11) and the support glass (12) of the electronic device (3) with the support glass and separating the electronic device (5) from the support glass (12).

Description

電子デバイスの製造方法Manufacturing method of electronic device
 本発明は、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイや、有機EL照明、太陽電池、リチウムイオン電池、デジタルサイネージ、タッチパネル、電子ペーパー、携帯電話やスマートフォン等の電子デバイスの製造方法に関する。 The present invention relates to a method of manufacturing an electronic device such as a flat panel display such as a liquid crystal display or an organic EL display, organic EL lighting, a solar battery, a lithium ion battery, a digital signage, a touch panel, electronic paper, a mobile phone, or a smartphone.
 省スペース化の観点から、従来普及していたCRT型ディスプレイに替わり、近年は液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ等のフラットパネルディスプレイが普及している。これらのフラットパネルディスプレイにおいては、さらなる薄型化が要請される。特に有機ELディスプレイには、折りたたみや巻き取ることによって持ち運びを容易にすると共に、平面だけでなく曲面にも使用可能とすることが求められている。また、平面だけでなく曲面にも使用可能とすることが求められているのはディスプレイには限られず、例えば、自動車の車体表面や建築物の屋根、あるいは柱や外壁等のような曲面を有する物体の表面に、太陽電池を形成したり、有機EL照明を形成したりすることができれば、その用途が広がることとなる。従って、これらデバイスに使用される基板やカバーガラスには、更なる薄板化と高い可撓性が要求される。 From the viewpoint of space saving, instead of the CRT type display which has been widely used in the past, flat panel displays such as a liquid crystal display, a plasma display, an organic EL display and a field emission display have become popular in recent years. These flat panel displays are required to be thinner. In particular, organic EL displays are required to be easily carried by folding or winding, and to be usable not only on flat surfaces but also on curved surfaces. Further, it is not limited to a display that can be used not only on a flat surface but also on a curved surface. For example, it has a curved surface such as the surface of a car body, the roof of a building, or a pillar or an outer wall. If a solar cell or organic EL illumination can be formed on the surface of an object, its application will be expanded. Therefore, the substrate and cover glass used in these devices are required to be further thinned and highly flexible.
 有機ELディスプレイに使用される発光体は、酸素や水蒸気等の気体が接触することにより劣化する。従って有機ELディスプレイに使用される基板には高いガスバリア性が求められるため、ガラス基板を使用することが期待されている。しかしながら、このような用途に使用されるガラス基板は、樹脂フィルムと比較して引っ張り応力に弱いため可撓性が低く、ガラス基板を曲げることによりガラス基板表面に引っ張り応力がかけられると破損に至る。ガラス基板に可撓性を付与するためにはガラス基板の超薄板化を行う必要があり、下記特許文献1に記載されているような厚み200μm以下のガラスフィルムが提案されている。 The light emitter used in the organic EL display is deteriorated by contact with a gas such as oxygen or water vapor. Accordingly, since a high gas barrier property is required for a substrate used in an organic EL display, it is expected to use a glass substrate. However, glass substrates used in such applications are less flexible because they are less susceptible to tensile stress than resin films, and breakage occurs when the glass substrate surface is subjected to tensile stress by bending the glass substrate. . In order to impart flexibility to the glass substrate, it is necessary to make the glass substrate ultra-thin, and a glass film having a thickness of 200 μm or less as described in Patent Document 1 has been proposed.
 フラットパネルディスプレイや太陽電池等の電子デバイスに使用されるガラス基板には、加工処理や洗浄処理等、様々な電子デバイス製造関連の処理がなされる。ところが、これら電子デバイスに使用されるガラス基板を薄肉にしてフィルム状にすると、ガラスは脆性材料であるため多少の応力変化により破損に至り、上述した各種電子デバイス製造関連処理を行う際に、取り扱いが大変困難であるという問題がある。加えて、厚み200μm以下のガラスフィルムは可撓性に富むため、処理を行う際に位置決めを行い難く、パターンニング時にずれ等が生じるという問題もある。 The glass substrate used for electronic devices such as flat panel displays and solar cells is subjected to various processing related to electronic device manufacturing such as processing and cleaning. However, if the glass substrate used in these electronic devices is made thin and made into a film, the glass is a brittle material, which leads to breakage due to a slight change in stress. There is a problem that is very difficult. In addition, since a glass film having a thickness of 200 μm or less is rich in flexibility, it is difficult to perform positioning when performing processing, and there is a problem that displacement or the like occurs during patterning.
 ガラスフィルムの取り扱い性を向上させるために、下記特許文献2では、支持ガラスの上にガラスフィルムを積層させたガラスフィルム積層体が提案されている。これによれば、単体では強度や剛性が低いガラスフィルムを用いても、支持ガラスの剛性が高いため、処理の際にガラスフィルム積層体全体として位置決めが容易となる。また、所望の処理の終了後は、ガラスフィルムを破損することなくすみやかに支持ガラスから剥離することが可能となっている。ガラスフィルム積層体の厚みを従来のガラス基板の厚みと同一とすれば、従来のガラス基板用液晶表示素子製造ラインを共用して、液晶表示素子を製造することも可能となる。 In order to improve the handleability of the glass film, the following Patent Document 2 proposes a glass film laminate in which a glass film is laminated on a supporting glass. According to this, even if a glass film having low strength and rigidity is used alone, the supporting glass has high rigidity, so that the entire glass film laminate can be easily positioned during processing. Moreover, after completion | finish of a desired process, it is possible to peel from a support glass immediately, without damaging a glass film. If the thickness of the glass film laminate is the same as that of a conventional glass substrate, a liquid crystal display element can be manufactured by sharing a conventional liquid crystal display element manufacturing line for glass substrates.
 一方、前記した様々な製造関連処理には、透明導電膜の成膜処理や封止処理等、加熱を伴うものが存在する。加熱を伴う処理を行った場合、前記ガラスフィルム積層体では直接積層させている支持ガラスとガラスフィルムとが接着してしまい、支持ガラスからガラスフィルムを剥離することが困難になるという問題が生じる。 On the other hand, the various manufacturing-related processes described above include processes involving heating, such as a film forming process or a sealing process of a transparent conductive film. When a process involving heating is performed, the support glass and the glass film that are directly laminated in the glass film laminate are bonded to each other, which makes it difficult to peel the glass film from the support glass.
 この問題を解決するために、下記特許文献3では、支持ガラス上に無機薄膜を形成し、その後にガラスフィルムを積層させたガラスフィルム積層体が提案されている。これにより、ガラスフィルム積層体に対して加熱を伴う電子デバイス製造関連処理を行ったとしても、支持ガラスとガラスフィルムとが接着せず、加熱を伴う電子デバイス製造関連処理後に支持ガラスからガラスフィルムを剥離することが可能となっている。 In order to solve this problem, Patent Document 3 below proposes a glass film laminate in which an inorganic thin film is formed on a supporting glass and then a glass film is laminated. Thereby, even if the electronic device manufacturing related process with heating is performed on the glass film laminate, the supporting glass and the glass film are not bonded, and the glass film is removed from the supporting glass after the electronic device manufacturing related process with heating. It can be peeled off.
特開2010-132531号公報JP 2010-132531 A WO2011/048979号公報WO2011 / 048979 特開2011-184284号公報JP 2011-184284 A
 しかしながら、特許文献3では、支持ガラスの表面上に極めて均一に無機薄膜を形成する必要がある。加えて、支持ガラス上への無機薄膜の形成は、多大な時間と費用を必要とするという問題もある。従って、加熱を伴う電子デバイス製造関連処理後に、ガラスフィルム積層体から支持ガラスとガラスフィルムとを簡便かつ安価な方法で剥離することが、望まれている。 However, in Patent Document 3, it is necessary to form an inorganic thin film very uniformly on the surface of the supporting glass. In addition, the formation of the inorganic thin film on the supporting glass has a problem of requiring a lot of time and cost. Therefore, it is desired that the supporting glass and the glass film are peeled from the glass film laminate by a simple and inexpensive method after the electronic device manufacturing-related process involving heating.
 本発明は、上述したような従来技術の問題点を解決するためになされたものであって、加熱を伴う電子デバイス製造関連処理後であっても、支持ガラスからガラスフィルムを容易かつ安価に剥離可能とすることを目的とする。 The present invention has been made to solve the above-described problems of the prior art, and easily and inexpensively peels a glass film from a supporting glass even after processing related to electronic device manufacturing involving heating. The purpose is to make it possible.
 上記課題を解決するために創案された本発明は、ガラスフィルムと支持ガラスとの相互に接触する側の面の表面粗さRaを夫々2.0nm以下にして、その両面を接触させて、前記ガラスフィルムと支持ガラスとを積層させたガラスフィルム積層体を作製する第1の工程と、加熱を伴う電子デバイス製造関連処理を行うことで前記ガラスフィルム積層体の前記ガラスフィルム上に素子を形成し、カバーガラスで前記素子を封止して支持ガラス付電子デバイスを作製する第2の工程と、前記支持ガラス付電子デバイスの前記ガラスフィルムと前記支持ガラスとの界面に水を含有する液体を付与して前記電子デバイスを前記支持ガラスから剥離する第3の工程とを有することに特徴づけられる。 The present invention devised to solve the above-mentioned problems is that the surface roughness Ra of the surfaces of the glass film and the supporting glass which are in contact with each other is set to 2.0 nm or less, and both the surfaces are brought into contact with each other. A device is formed on the glass film of the glass film laminate by performing a first process for producing a glass film laminate in which a glass film and a supporting glass are laminated, and an electronic device manufacturing related process involving heating. The second step of producing the electronic device with supporting glass by sealing the element with a cover glass, and applying a liquid containing water to the interface between the glass film and the supporting glass of the electronic device with supporting glass And a third step of peeling the electronic device from the supporting glass.
 このような構成によれば、支持ガラスとガラスフィルムとの相互に接触する側の面の夫々の表面粗さが2.0nm以下であるので、ガラスフィルムと支持ガラスとの密着性が良く、粘着剤を使用しなくてもガラスフィルムと支持ガラスとを直接固定して積層することが可能となる。また、電子デバイス製造関連処理後に素子をカバーガラスで封止することで、ガラスフィルム上に形成された素子を封止することができる。支持ガラスとガラスフィルムとの界面に水を含有する液体を付与することで、加熱を伴う電子デバイス製造関連処理を行ったとしても、支持ガラスとガラスフィルムとを良好に剥離させることができる。剥離の際に当該液体を使用したとしても、カバーガラスで素子の周囲を密閉空間とするための封止を行っているため、電子デバイス内の素子に当該液体が付着することがなく、電子デバイス内の素子が劣化することがない。 According to such a structure, since each surface roughness of the surface where the support glass and the glass film are in contact with each other is 2.0 nm or less, the adhesion between the glass film and the support glass is good, and the adhesive Even without using an agent, the glass film and the supporting glass can be directly fixed and laminated. Moreover, the element formed on the glass film can be sealed by sealing the element with the cover glass after the electronic device manufacturing related process. Even if an electronic device manufacturing related process involving heating is performed by applying a liquid containing water to the interface between the supporting glass and the glass film, the supporting glass and the glass film can be favorably peeled off. Even if the liquid is used at the time of peeling, the liquid is not attached to the element in the electronic device because the cover glass is sealed to make the periphery of the element a sealed space. The internal elements are not deteriorated.
 上記の方法において、前記第3の工程は、水を含有する液体中に前記支持ガラス付電子デバイスを浸漬することが好ましい。 In the above method, the third step is preferably performed by immersing the electronic device with a supporting glass in a liquid containing water.
 このようにすれば、水を含有する液体中に支持ガラス付電子デバイスを浸漬することから、剥離の際に、支持ガラスとガラスフィルムとの界面に対して、確実に水を含有する液体を付与することができる。 In this way, since the electronic device with the supporting glass is immersed in the liquid containing water, the liquid containing water is surely given to the interface between the supporting glass and the glass film at the time of peeling. can do.
 上記の方法において、前記水を含有する液体は、アルカリ性であることが好ましい。 In the above method, the liquid containing water is preferably alkaline.
 このようにすれば、水を含有する液体は、アルカリ性であることから、より効率的に支持ガラス付電子デバイスから支持ガラスを剥離することができる。 In this way, since the liquid containing water is alkaline, the supporting glass can be peeled from the electronic device with supporting glass more efficiently.
 上記の方法において、前記第3の工程は、前記支持ガラス付電子デバイスに超音波を印加するようにしてもよい。 In the above method, in the third step, an ultrasonic wave may be applied to the electronic device with a supporting glass.
 このようにすれば、第3の工程で、前記支持ガラス付電子デバイスに超音波を印加することから、支持ガラスとガラスフィルムとの界面に効率的に水を含有する液体が侵入していくことで、支持ガラスとガラスフィルムとをより良好に剥離することが可能となる。 If it does in this way, since the ultrasonic wave is applied to the electronic device with a supporting glass in the third step, the liquid containing water efficiently penetrates into the interface between the supporting glass and the glass film. Thus, the support glass and the glass film can be peeled off more favorably.
 上記の方法において、前記第3の工程は、前記ガラスフィルムと前記支持ガラスとの界面に剥離部材を挿入してもよい。 In the above method, in the third step, a peeling member may be inserted at the interface between the glass film and the supporting glass.
 このようにすれば、第3の工程で、ガラスフィルムと支持ガラスとの界面に剥離部材を挿入することから、支持ガラスとガラスフィルムとの界面に効率的に水を含有する液体を侵入させることができ支持ガラスとガラスフィルムとをより良好に剥離することが可能となる。 If it does in this way, in the 3rd process, since a peeling member is inserted in the interface of a glass film and support glass, the liquid containing water can penetrate efficiently into the interface of support glass and glass film. The supporting glass and the glass film can be peeled off more favorably.
 以上の方法において、前記剥離部材は、疎水性の樹脂シートとすることができる。 In the above method, the peeling member can be a hydrophobic resin sheet.
 このようにすれば、剥離部材は、疎水性の樹脂シートであることから、水を含有する液体中での樹脂シートの取り扱いに優れ、ガラスフィルムと支持ガラスとの界面に効率良く水を含有する液体を侵入させることができる。 In this way, since the peeling member is a hydrophobic resin sheet, it is excellent in handling the resin sheet in a liquid containing water, and efficiently contains water at the interface between the glass film and the supporting glass. Liquid can enter.
 上記の方法において、前記支持ガラスの前記ガラスフィルムと接触する側の表面上に、無機薄膜を形成することができる。 In the above method, an inorganic thin film can be formed on the surface of the supporting glass that is in contact with the glass film.
 このようにすれば、支持ガラスの前記ガラスフィルムと接触する側の表面上に、無機薄膜が形成されることから、支持ガラスとガラスフィルムとをより効率的に剥離することができる。 In this way, since the inorganic thin film is formed on the surface of the supporting glass that comes into contact with the glass film, the supporting glass and the glass film can be more efficiently separated.
 以上の方法において、前記カバーガラスはキャリアガラスに積層されており、前記第3の工程で前記カバーガラスと前記キャリアガラスとを剥離するようにしてもよい。 In the above method, the cover glass may be laminated on a carrier glass, and the cover glass and the carrier glass may be peeled off in the third step.
 このようにすれば、カバーガラスは、キャリアガラスに支持されることから、カバーガラス側にも電子デバイス製造関連処理を行うことができ、カバーガラスが可撓性を有していたとしても良好に素子を封止することができ、第3の工程で支持ガラスとガラスフィルムとを剥離すると同時に、カバーガラスとキャリアガラスとを剥離することができる。 In this way, since the cover glass is supported by the carrier glass, it is possible to perform processing related to electronic device manufacturing on the cover glass side as well, even if the cover glass has flexibility. The element can be sealed, and the cover glass and the carrier glass can be peeled off at the same time as the supporting glass and the glass film are peeled off in the third step.
 以上の方法において、前記第3の工程は、前記カバーガラスと前記キャリアガラスとの界面に前記剥離部材を挿入するようにしてもよい。 In the above method, in the third step, the peeling member may be inserted into the interface between the cover glass and the carrier glass.
 このようにすれば、第3の工程は、カバーガラスとキャリアガラスとの界面に剥離部材を挿入することから、カバーガラスとキャリアガラスとの界面にも、効率的に水を含有する液体を侵入させることができ、カバーガラスとキャリアガラスとを良好に剥離することが可能となる。 If it does in this way, since the 3rd process inserts a peeling member in the interface of a cover glass and carrier glass, the liquid containing water efficiently penetrates also into the interface of a cover glass and carrier glass. The cover glass and the carrier glass can be peeled off satisfactorily.
 以上のように本発明によれば、加熱を伴う電子デバイス製造関連処理後であっても、支持ガラスからガラスフィルムを容易かつ安価に剥離することが可能になると共に、カバーガラスによる封止によって、電子デバイス内の素子が好適に保護される。 As described above, according to the present invention, it is possible to easily and inexpensively peel the glass film from the supporting glass even after processing related to electronic device manufacturing involving heating, and by sealing with a cover glass, The elements in the electronic device are preferably protected.
本発明に係る電子デバイスの製造方法を示す概略図である。It is the schematic which shows the manufacturing method of the electronic device which concerns on this invention. ガラスフィルム、及び、支持ガラスの製造装置の主要部を示す縦断正面図である。It is a vertical front view which shows the principal part of the manufacturing apparatus of a glass film and support glass. ガラスフィルムの積層体の製造方法の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the manufacturing method of the laminated body of a glass film. 支持ガラス付電子デバイスの一例を示す要部縦断正面図である。It is a principal part longitudinal front view which shows an example of an electronic device with support glass. ガラスフィルム積層体に生じていると推察される現象を説明する概略図である。It is the schematic explaining the phenomenon guessed to have arisen in the glass film laminated body. ガラスフィルム積層体に生じていると推察される現象を説明する概略図である。It is the schematic explaining the phenomenon guessed to have arisen in the glass film laminated body. ガラスフィルムと支持ガラスとが接着すると推察される現象を説明する概略図である。It is the schematic explaining the phenomenon guessed that a glass film and support glass adhere | attach. 支持ガラス付電子デバイスから支持ガラスが剥離する過程を説明する概略図である。It is the schematic explaining the process in which support glass peels from the electronic device with support glass. 第3の工程において、カバーガラスとキャリアガラスとが剥離する過程を説明する概略図である。It is the schematic explaining the process in which a cover glass and carrier glass peel in a 3rd process. 剥離表面エネルギーの測定試験を説明する概略図である。It is the schematic explaining the measurement test of peeling surface energy.
 以下、本発明に係る電子デバイスの製造方法の好適な実施形態について、図面を参照しつつ説明する。但し、以下の実施形態は、単なる一例であり、本発明は、以下の実施形態に何ら限定されない。 Hereinafter, preferred embodiments of a method for manufacturing an electronic device according to the present invention will be described with reference to the drawings. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments.
 本発明に係る電子デバイスの製造方法は、図1に示すように、ガラスフィルム11と支持ガラス12との相互に接触する側の面の表面粗さRaを夫々2.0nm以下にし且つその両面を面接触させることでガラスフィルム11と支持ガラス12とを積層してガラスフィルム積層体1を作製する第1の工程と、加熱を伴う電子デバイス製造関連処理を行うことでガラスフィルム積層体1のガラスフィルム11上に素子51を形成し、カバーガラス2で素子51を封止することで支持ガラス付電子デバイス3を作製する第2の工程と、支持ガラス付電子デバイス3のガラスフィルム11と支持ガラス12との界面13に水を含有する液体を付与することで電子デバイス5を支持ガラス12から剥離する第3の工程とを備えている。 As shown in FIG. 1, the method for manufacturing an electronic device according to the present invention sets the surface roughness Ra of the glass film 11 and the supporting glass 12 on the side in contact with each other to 2.0 nm or less, and both surfaces thereof. The glass of the glass film laminated body 1 by performing the electronic device manufacturing related process with a 1st process which laminates | stacks the glass film 11 and the support glass 12 by making surface contact, and produces the glass film laminated body 1 and a heating. A second step of forming the electronic device 3 with supporting glass by forming the element 51 on the film 11 and sealing the element 51 with the cover glass 2, and the glass film 11 and the supporting glass of the electronic device 3 with supporting glass And a third step of peeling the electronic device 5 from the support glass 12 by applying a liquid containing water to the interface 13 with the substrate 12.
 ガラスフィルム11は、ケイ酸塩ガラス、シリカガラスが用いられ、好ましくはホウ珪酸ガラスが用いられ、最も好ましくは無アルカリガラスが用いられる。ガラスフィルム11にアルカリ成分が含有されていると、表面において陽イオンの脱落が発生し、いわゆるソーダ吹きの現象が生じ、構造的に粗となる。この場合、ガラスフィルム11を湾曲させて使用していると、経年劣化により粗となった部分から破損する可能性がある。尚、ここで無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分が3000ppm以下のガラスのことである。本発明でのアルカリ成分の含有量は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。 The glass film 11 is made of silicate glass or silica glass, preferably borosilicate glass, most preferably non-alkali glass. If the glass film 11 contains an alkali component, cations are dropped on the surface, so-called soda blowing phenomenon occurs, and the structure becomes rough. In this case, if the glass film 11 is curved and used, there is a possibility that it will be damaged from a portion that has become rough due to deterioration over time. Here, the alkali-free glass is a glass that does not substantially contain an alkali component (alkali metal oxide), and specifically, a glass having an alkali component of 3000 ppm or less. The content of the alkali component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
 ガラスフィルム11の厚みは、好ましくは300μm以下、より好ましくは5μm~200μm、最も好ましくは5μm~100μmである。これによりガラスフィルム11の厚みをより薄くして、適切な可撓性を付与することができるとともに、ハンドリング性が困難で、かつ、位置決めミスやパターニング時の撓み等の問題が生じやすいガラスフィルム11に対して、後述する支持ガラス12を使用することで電子デバイス製造関連処理等を容易に行うことができる。ガラスフィルム11の厚みが5μm未満であると、ガラスフィルム11の強度が不足がちになり、支持ガラス12からガラスフィルム11を剥離しにくくなるおそれがある。 The thickness of the glass film 11 is preferably 300 μm or less, more preferably 5 μm to 200 μm, and most preferably 5 μm to 100 μm. Thereby, the thickness of the glass film 11 can be made thinner and appropriate flexibility can be imparted, handling properties are difficult, and problems such as misalignment and bending during patterning are likely to occur. On the other hand, processing related to electronic device manufacturing can be easily performed by using the supporting glass 12 described later. If the thickness of the glass film 11 is less than 5 μm, the strength of the glass film 11 tends to be insufficient, and the glass film 11 may be difficult to peel from the support glass 12.
 支持ガラス12は、ガラスフィルム11と同様、ケイ酸塩ガラス、シリカガラス、ホウ珪酸ガラス、無アルカリガラス等が用いられる。支持ガラス12については、ガラスフィルム11との30~380℃における熱膨張係数の差が、5×10-7/℃以内のガラスを使用することが好ましい。これにより、電子デバイス製造関連処理の際に熱処理を伴ったとしても、膨張率の差による熱反りやガラスフィルム11の割れ等が生じ難く、安定した積層状態を維持できるガラスフィルム積層体1とすることが可能となる。支持ガラス12とガラスフィルム11とは、同一の組成を有するガラスを使用することが最も好ましい。 As the support glass 12, silicate glass, silica glass, borosilicate glass, non-alkali glass, or the like is used similarly to the glass film 11. For the supporting glass 12, it is preferable to use a glass having a difference in thermal expansion coefficient at 30 to 380 ° C. with respect to the glass film 11 within 5 × 10 −7 / ° C. Thereby, even if heat treatment is involved in the processing related to electronic device manufacturing, thermal warp due to a difference in expansion coefficient, cracking of the glass film 11, and the like hardly occur, and the glass film laminate 1 can maintain a stable laminated state. It becomes possible. The supporting glass 12 and the glass film 11 are most preferably glass having the same composition.
 支持ガラス12の厚みは、400μm以上であることが好ましい。支持ガラス12の厚みが400μm未満であると、支持ガラス12を単体で取り扱う場合に、強度の面で問題が生じるおそれがある。支持ガラス12の厚みは、400μm~700μmであることが好ましく、500μm~700μmであることが最も好ましい。これによりガラスフィルム11を確実に支持することが可能となるとともに、支持ガラス12からガラスフィルム11を剥離する際に生じ得るガラスフィルム11の破損を効果的に抑制することが可能となる。尚、電子デバイス製造関連処理時に、図示しないセッター上に、ガラスフィルム積層体1を載置する場合は、支持ガラス12の厚みは400μm未満(例えば300μm等、ガラスフィルム11と同一の厚み)でも良い。 The thickness of the support glass 12 is preferably 400 μm or more. When the thickness of the supporting glass 12 is less than 400 μm, there is a possibility that a problem may occur in terms of strength when the supporting glass 12 is handled alone. The thickness of the support glass 12 is preferably 400 μm to 700 μm, and most preferably 500 μm to 700 μm. As a result, the glass film 11 can be reliably supported, and breakage of the glass film 11 that can occur when the glass film 11 is peeled from the support glass 12 can be effectively suppressed. When the glass film laminate 1 is placed on a setter (not shown) during the electronic device manufacturing related process, the thickness of the support glass 12 may be less than 400 μm (for example, 300 μm or the like, the same thickness as the glass film 11). .
 本発明に使用されるガラスフィルム11及び支持ガラス12は、ダウンドロー法によって成形されていることが好ましく、オーバーフローダウンドロー法によって成形されていることがより好ましい。特に、図2に示すオーバーフローダウンドロー法は、成形時にガラス板の両面が、成形部材と接触しない成形法であり、得られたガラス板の両面(透光面)には傷が生じ難く、研磨しなくても高い表面品位を得ることができる。無論、フロート法やスロットダウンドロー法、ロールアウト法、アップドロー法、リドロー法等によって、ガラスフィルム11及び/または支持ガラス12が成形されていてもよい。 The glass film 11 and the supporting glass 12 used in the present invention are preferably formed by a down draw method, and more preferably formed by an overflow down draw method. In particular, the overflow downdraw method shown in FIG. 2 is a molding method in which both surfaces of the glass plate do not come into contact with the molded member at the time of molding, and the both surfaces (translucent surface) of the obtained glass plate are hardly scratched and polished. Even if not, high surface quality can be obtained. Of course, the glass film 11 and / or the supporting glass 12 may be formed by a float method, a slot down draw method, a roll out method, an up draw method, a redraw method, or the like.
 図2に示すオーバーフローダウンドロー法において、断面が楔型の成形体8の下端部81から流下した直後のガラスリボンGは、冷却ローラ82によって幅方向の収縮が規制されながら下方へ引き伸ばされて所定の厚みまで薄くなる。次に、前記所定厚みに達したガラスリボンGを徐冷炉(アニーラ)で徐々に冷却し、ガラスリボン(G)の熱歪を除き、ガラスリボン(G)を所定寸法に切断することにより、ガラスフィルム11及び支持ガラス12が夫々成形される。 In the overflow down draw method shown in FIG. 2, the glass ribbon G immediately after flowing down from the lower end portion 81 of the wedge-shaped molded body 8 is drawn downward while the shrinkage in the width direction is restricted by the cooling roller 82 to be predetermined. The thickness becomes thin. Next, the glass ribbon G that has reached the predetermined thickness is gradually cooled in a slow cooling furnace (annealer), the thermal distortion of the glass ribbon (G) is removed, and the glass ribbon (G) is cut into a predetermined size, thereby forming a glass film. 11 and the support glass 12 are respectively formed.
 図1及び図3に示す通り、本発明に係る第1の工程は、相互に接触する側の表面粗さRaが夫々2.0nm以下であるガラスフィルム11と支持ガラス12とを積層してガラスフィルム積層体1を作製する工程である。 As shown in FIG.1 and FIG.3, the 1st process based on this invention is laminated | stacked on the glass film 11 and support glass 12 which are surface roughness Ra of the side which mutually contacts is 2.0 nm or less, respectively, and glass. This is a process for producing the film laminate 1.
 本発明では、ガラスフィルム11の支持ガラス12との接触面11aと、支持ガラス12のガラスフィルム11との接触面12aの表面粗さRaが夫々2.0nm以下である。表面粗さRaが2.0nmを超えると、密着性が低下し、ガラスフィルム11と支持ガラス12とを接着剤無しでは強固に積層することができなくなる。ガラスフィルム11及び支持ガラス12の夫々の接触面11a、12aの表面粗さRaは、夫々1.0nm以下であることが好ましく、0.5nm以下であることがより好ましく、0.2nm以下であることが最も好ましい。一方、図1及び図3に示すガラスフィルム11の有効面11bの表面粗さは特には限定されないが、後述する第2の工程において、成膜等の電子デバイス製造関連処理を行うことから、表面粗さRaが2.0nm以下であることが好ましく、1.0nm以下がより好ましく、0.5nm以下がさらに好ましく、0.2nm以下が最も好ましい。支持ガラス12の搬送面12bの表面粗さは、特には限定されない。 In the present invention, the surface roughness Ra of the contact surface 11a of the glass film 11 with the support glass 12 and the contact surface 12a of the support glass 12 with the glass film 11 is 2.0 nm or less, respectively. When surface roughness Ra exceeds 2.0 nm, adhesiveness will fall and it will become impossible to laminate | stack strongly the glass film 11 and the support glass 12 without an adhesive agent. The surface roughness Ra of each of the contact surfaces 11a and 12a of the glass film 11 and the supporting glass 12 is preferably 1.0 nm or less, more preferably 0.5 nm or less, and 0.2 nm or less. Most preferred. On the other hand, the surface roughness of the effective surface 11b of the glass film 11 shown in FIG. 1 and FIG. 3 is not particularly limited, but in the second step to be described later, the processing related to electronic device manufacturing such as film formation is performed. The roughness Ra is preferably 2.0 nm or less, more preferably 1.0 nm or less, further preferably 0.5 nm or less, and most preferably 0.2 nm or less. The surface roughness of the conveyance surface 12b of the support glass 12 is not particularly limited.
 図3では、支持ガラス12上に略同一面積のガラスフィルム11が積層されているが、支持ガラス12からのガラスフィルム11の剥離をさらに容易なものとするために、ガラスフィルム11が支持ガラス12から食み出すように積層されていてもよい。この場合、ガラスフィルム11の支持ガラス12からの食み出し量は、1~20mmであることが好ましく、1~10mmであることがより好ましく、1~5mmであることが最も好ましい。ガラスフィルム11の食み出し量が1mm程度であったとしても、ガラスフィルム11の端部を剥離の起点とすることができる一方、ガラスフィルム11の食み出し量が20mmを超えるとガラスフィルム11の破損や垂れ下がりの原因となるおそれがある。ガラスフィルム11が支持ガラス12から食み出している部分は、ガラスフィルム積層体1の4辺全てでも良く、対向する2辺のみや1辺のみでも良い。 In FIG. 3, the glass film 11 having substantially the same area is laminated on the support glass 12, but in order to further facilitate the peeling of the glass film 11 from the support glass 12, the glass film 11 is supported by the support glass 12. It may be laminated so as to protrude from. In this case, the protruding amount of the glass film 11 from the supporting glass 12 is preferably 1 to 20 mm, more preferably 1 to 10 mm, and most preferably 1 to 5 mm. Even if the protruding amount of the glass film 11 is about 1 mm, the end portion of the glass film 11 can be used as the starting point of the peeling, while the protruding amount of the glass film 11 exceeds 20 mm. May cause damage or drooping. The portion of the glass film 11 protruding from the support glass 12 may be all four sides of the glass film laminate 1, or may be only two sides or only one side facing each other.
 一方、ガラスフィルム11の端部を保護する観点から、支持ガラス12がガラスフィルム11から食み出すように積層されていてもよい。この場合、支持ガラス12のガラスフィルム11からの食み出し量は、0.5~10mmであることが好ましく、0.5~1mmであることがより好ましい。支持ガラス12の食み出し量を少なくすることで、ガラスフィルム11の有効面11bの面積をより広く確保することができる。ガラスフィルム積層体1において、4辺全てにおいて、支持ガラス12がガラスフィルム11から食み出していることが好ましい。また、ガラスフィルム積層体1において、1辺のみガラスフィルム11が支持ガラス12から食み出しており、残りの3辺においては支持ガラス12がガラスフィルム11から食み出している形態がより好ましい。また、支持ガラス12上にガラスフィルム11を積層する工程は、減圧下で行っても良い。これにより、ガラスフィルム11と支持ガラス12とを積層させた際に生じる気泡を低減することができる。 On the other hand, from the viewpoint of protecting the end of the glass film 11, the support glass 12 may be laminated so as to protrude from the glass film 11. In this case, the amount of protrusion of the support glass 12 from the glass film 11 is preferably 0.5 to 10 mm, and more preferably 0.5 to 1 mm. By reducing the amount of protrusion of the support glass 12, the area of the effective surface 11b of the glass film 11 can be secured more widely. In the glass film laminated body 1, it is preferable that the support glass 12 protrudes from the glass film 11 in all four sides. Moreover, in the glass film laminated body 1, the form in which the glass film 11 protrudes from the support glass 12 only on one side, and the support glass 12 protrudes from the glass film 11 in the remaining three sides is more preferable. The step of laminating the glass film 11 on the support glass 12 may be performed under reduced pressure. Thereby, the bubble produced when the glass film 11 and the support glass 12 are laminated | stacked can be reduced.
 本発明に係る第2の工程は、加熱を伴う電子デバイス製造関連処理を行うことで、図4に示す通り、第1の工程で作製されたガラスフィルム積層体1のガラスフィルム11の有効面11b上に素子51を形成し、カバーガラス2でガラスフィルム11の有効面11b上に形成された素子51を封止することで支持ガラス付電子デバイス3を作製する工程である。 The second step according to the present invention is an effective surface 11b of the glass film 11 of the glass film laminate 1 produced in the first step as shown in FIG. In this process, the device 51 is formed on the support glass 2 by sealing the device 51 formed on the effective surface 11 b of the glass film 11 with the cover glass 2.
 第2の工程における加熱を伴う電子デバイス製造関連処理としては、例えば、CVD法やスパッタ法等による成膜処理等が挙げられる。ガラスフィルム11の有効面11b上に形成される素子としては、液晶素子、有機EL素子、タッチパネル素子、太陽電池素子、圧電素子、受光素子、リチウムイオン2次電池等の電池素子、MEMS素子、半導体素子等が挙げられる。 Examples of the electronic device manufacturing related process involving heating in the second step include a film forming process by a CVD method, a sputtering method, and the like. As elements formed on the effective surface 11b of the glass film 11, liquid crystal elements, organic EL elements, touch panel elements, solar cell elements, piezoelectric elements, light receiving elements, battery elements such as lithium ion secondary batteries, MEMS elements, and semiconductors An element etc. are mentioned.
 カバーガラス2は、前述のガラスフィルム11と同様、ケイ酸塩ガラス、シリカガラス、ホウ珪酸ガラス、無アルカリガラス等が用いられる。カバーガラス2については、ガラスフィルム11との30~380℃における熱膨張係数の差が、5×10-7/℃以内のガラスを使用することが好ましい。これにより、作製された電子デバイス5の周辺環境の温度が変化したとしても、膨張率の差による熱反りやガラスフィルム11及びカバーガラス2の割れ等が生じ難く、破損し難い電子デバイス5とすることが可能となる。カバーガラス2とガラスフィルム11とは、同一の組成を有するガラスを使用することが最も好ましい。 As the glass cover 11, the cover glass 2 is made of silicate glass, silica glass, borosilicate glass, alkali-free glass or the like. For the cover glass 2, it is preferable to use a glass having a difference in thermal expansion coefficient at 30 to 380 ° C. with respect to the glass film 11 within 5 × 10 −7 / ° C. Thereby, even if the temperature of the surrounding environment of the produced electronic device 5 changes, it is hard to produce the thermal warp by the difference of an expansion coefficient, the crack of the glass film 11 and the cover glass 2, etc., and it is set as the electronic device 5 which is hard to be damaged. It becomes possible. The cover glass 2 and the glass film 11 are most preferably glass having the same composition.
 カバーガラス2の厚みは、好ましくは300μm以下、より好ましくは5μm~200μm、最も好ましくは5μm~100μmである。これによりカバーガラスの厚みをより薄くして、適切な可撓性を付与することができる。カバーガラス2の厚みが5μm未満であると、カバーガラス2の強度が不足がちになるおそれがある。 The thickness of the cover glass 2 is preferably 300 μm or less, more preferably 5 μm to 200 μm, and most preferably 5 μm to 100 μm. Thereby, thickness of a cover glass can be made thinner and appropriate flexibility can be provided. When the thickness of the cover glass 2 is less than 5 μm, the strength of the cover glass 2 tends to be insufficient.
 第2の工程で作製される支持ガラス付電子デバイス3の一例として、図4に有機ELパネルを示す。ガラスフィルム11の有効面11b上にCVD法やスパッタリング法等の公知の成膜方法により、陽極層52a、正孔輸送層52b、発光層52c、電子輸送層52d、陰極層52eの順に積層して有機EL素子52の形成を行う。その後に、公知のレーザー封止等を使用してカバーガラス2とガラスフィルム11とを接着することにより、有機EL素子52を封止し、支持ガラス付電子デバイス3(今回は支持ガラス付有機ELパネル)を作製する。図4の形態では、カバーガラス2とガラスフィルム11とを直接接着しているが、適宜公知のガラスフリットやスペーサ等を使用してカバーガラス2とガラスフィルム11とを接着しても良い。 FIG. 4 shows an organic EL panel as an example of the electronic device 3 with a supporting glass manufactured in the second step. The anode layer 52a, the hole transport layer 52b, the light emitting layer 52c, the electron transport layer 52d, and the cathode layer 52e are laminated in this order on the effective surface 11b of the glass film 11 by a known film formation method such as CVD or sputtering. The organic EL element 52 is formed. Then, the organic EL element 52 is sealed by bonding the cover glass 2 and the glass film 11 using a known laser sealing or the like, and the electronic device 3 with supporting glass (this time organic EL with supporting glass). Panel). In the form of FIG. 4, the cover glass 2 and the glass film 11 are directly bonded, but the cover glass 2 and the glass film 11 may be bonded appropriately using a known glass frit, a spacer, or the like.
 本発明に係る第3の工程は、図1に示す通り、支持ガラス付電子デバイス3のガラスフィルム11と支持ガラス12との界面13に水を含有する液体4を付与しながら、電子デバイス5を支持ガラス12から剥離する工程である。 As shown in FIG. 1, the third step according to the present invention is to apply the electronic device 5 while applying the liquid 4 containing water to the interface 13 between the glass film 11 and the supporting glass 12 of the electronic device 3 with supporting glass. This is a step of peeling from the support glass 12.
 水を含有する液体4は、少なくとも水を含有していればその他の成分を含有していてもよく、純水はもちろんのこと、溶質が水に溶解した水溶液やミセル状態でも良く、有機溶媒と水との混合物でも良く、油分等のように水に溶解しない成分を含有していても良い。液体の状態としては、液柱状、粒状、霧状、湯気状等その形状は問わない。 The liquid 4 containing water may contain other components as long as it contains at least water, and may be in an aqueous solution or a micelle state in which the solute is dissolved in water as well as pure water. It may be a mixture with water or may contain a component that does not dissolve in water, such as oil. The liquid state may be any shape such as liquid columnar, granular, mist, or steam.
 図1では、ガラスフィルム11と支持ガラス12との界面13にノズル41から水を含有する液体4を噴霧することで、ガラスフィルム11と支持ガラス12との界面13に水を含有する液体4を付与し、ガラスフィルム11と支持ガラス12との剥離を行っている。これにより、加熱を伴う電子デバイス製造関連処理を行ったとしても、円滑にガラスフィルム11と支持ガラス12とを剥離することが可能となっている。ガラスフィルム11と支持ガラス12とが水を含有する液体4を付与することで良好に剥離できるのは、詳細には解明されていないが、以下の理由によると推察されている。 In FIG. 1, the liquid 4 containing water is sprayed on the interface 13 between the glass film 11 and the support glass 12 by spraying the liquid 4 containing water from the nozzle 41 onto the interface 13 between the glass film 11 and the support glass 12. The glass film 11 and the support glass 12 are peeled off. Thereby, even if the electronic device manufacturing related process with heating is performed, the glass film 11 and the support glass 12 can be smoothly peeled off. Although it has not been elucidated in detail that the glass film 11 and the support glass 12 can be favorably peeled by applying the liquid 4 containing water, it is speculated that the reason is as follows.
 ガラスフィルム11と支持ガラス12の両接触面11a,12aの表面粗さRaが2.0nm以下となるように平滑化すると、これらの2つのガラス基板の平滑な接触面11a,12a同士を密着させた場合にガラス基板同士が接着剤なしに固着してガラスフィルム積層体1となる。この現象は次のメカニズムによると推察される。図5に示すように、ガラスフィルム11の接触面11aと支持ガラス12の接触面12aに形成された水酸基同士の水素結合により引き付けあうと考えられる。あるいは、図6に示すようにガラスフィルム11と支持ガラス12の界面13に存在する水分子を介在して水素結合が形成されることよりガラスフィルム11と支持ガラス12とが互いに接着することもあると考えられている。 When smoothing is performed so that the surface roughness Ra of both the contact surfaces 11a and 12a of the glass film 11 and the support glass 12 is 2.0 nm or less, the smooth contact surfaces 11a and 12a of these two glass substrates are brought into close contact with each other. In this case, the glass substrates adhere to each other without an adhesive to form the glass film laminate 1. This phenomenon is presumed to be due to the following mechanism. As shown in FIG. 5, it is considered that they are attracted by hydrogen bonding between hydroxyl groups formed on the contact surface 11 a of the glass film 11 and the contact surface 12 a of the support glass 12. Alternatively, as shown in FIG. 6, the glass film 11 and the support glass 12 may adhere to each other due to the formation of hydrogen bonds through water molecules present at the interface 13 between the glass film 11 and the support glass 12. It is believed that.
 このような状態下で、ガラスフィルム積層体1が加熱されると、図7に示す通り、ガラスフィルム11と支持ガラス12の界面13において、
Si-OH + HO-Si → Si-O-Si + H2
の脱水反応が起こり、共有結合が増えることでガラスフィルム11と支持ガラス12の接着力が強くなると考えられる。上述の電子デバイスの作製工程では、成膜処理等の加熱を伴う製造関連処理工程を有するため、少なくとも100℃以上の加熱工程を伴って製造される。例えば、液晶ディスプレイや有機ELディスプレイのTFT作製工程では、アモルファスシリコンTFTの場合300℃以上に加熱され、低温ポリシリコンTFTの場合、少なくとも400℃以上に加熱される。インジウム・ガリウム・亜鉛・酸素から構成されるTFTの場合、少なくとも300℃以上に加熱される。タッチセンサー基板の製造プロセスでは少なくとも150℃以上に加熱される。ここで、発明者らが鋭意努力して研究を重ねた結果、加熱温度が高くなるに連れて、また加熱の保持時間が長くなるにつれて、ガラスフィルム11と支持ガラス12との接着力がより強固なものとなり、支持ガラス12からのガラスフィルム11の剥離工程でガラスフィルム11が破損してしまい、ガラスフィルム11の剥離の成功確率が低下することが判明した。
Under such a state, when the glass film laminate 1 is heated, as shown in FIG. 7, at the interface 13 between the glass film 11 and the supporting glass 12,
Si-OH + HO-Si → Si-O-Si + H 2 O
It is considered that the adhesive force between the glass film 11 and the support glass 12 becomes stronger due to the occurrence of the dehydration reaction and the increase in covalent bonds. Since the electronic device manufacturing process includes a manufacturing-related process including heating such as a film forming process, it is manufactured with a heating process of at least 100 ° C. or higher. For example, in a TFT manufacturing process of a liquid crystal display or an organic EL display, an amorphous silicon TFT is heated to 300 ° C. or higher, and a low temperature polysilicon TFT is heated to at least 400 ° C. or higher. In the case of a TFT composed of indium, gallium, zinc, and oxygen, it is heated to at least 300 ° C. or higher. In the manufacturing process of the touch sensor substrate, it is heated to at least 150 ° C. or higher. Here, as a result of the inventors diligently researching, the adhesive force between the glass film 11 and the support glass 12 becomes stronger as the heating temperature becomes higher and as the heating holding time becomes longer. It became clear that the glass film 11 was damaged in the peeling process of the glass film 11 from the support glass 12, and the success probability of peeling of the glass film 11 fell.
 本発明者らは、鋭意努力して研究を重ねた結果、加熱を伴った電子デバイス製造関連処理を経たガラスフィルム積層体1に、ガラスフィルム11と支持ガラス12との界面13に少なくとも水を含む液体を付与した状態で剥離を行うと、ガラスフィルム11と支持ガラス12とを容易に剥離することができることを見出して本発明に至った。ガラスフィルム11と支持ガラス12との界面13に水を含有する液体4を付与すると、
Si-O-Si + H2O → Si-OH + HO-Si
の加水分解反応を促進し、ガラスフィルム11と支持ガラス12とを剥離し易くすることができると考えられている。
As a result of diligent research, the inventors of the present invention include at least water at the interface 13 between the glass film 11 and the support glass 12 in the glass film laminate 1 that has undergone the electronic device manufacturing-related treatment with heating. When peeling was performed in a state where a liquid was applied, it was found that the glass film 11 and the supporting glass 12 could be easily peeled, and the present invention was achieved. When the liquid 4 containing water is applied to the interface 13 between the glass film 11 and the support glass 12,
Si-O-Si + H 2 O → Si-OH + HO-Si
It is considered that the glass film 11 and the supporting glass 12 can be easily peeled off by promoting the hydrolysis reaction.
 上述したガラスフィルム11と支持ガラス12との界面13におけるSi-OH基の脱水反応及び加水分解反応は、Siだけに限られず、Al、In、Sn、Zn、Ti、Zr、Ga等に存在するOH基でも同様に生じていると考えられる。従って、支持ガラス12上に、SiO、SiO2、Al23、MgO、Y23、La23、Pr611 、Sc23、WO3、HfO2、In23、ITO、ZrO2、Nd23、Ta25、CeO2、Nb25、TiO、TiO2、Ti35、NiO、ZnO等の無機薄膜を形成した場合であったとしても、同様の効果が期待できる。支持ガラス12上に無機薄膜を形成することで、加熱を伴う電子デバイス製造関連処理を行ったとしても、ガラスフィルム11と支持ガラス12とを容易に剥離し易くすることができる。特にガラスフィルム11のSiとは異なる原子を有する無機薄膜を支持ガラス12上に形成すると、より効率的にガラスフィルム11と支持ガラス12とを剥離し易くすることができる。 The dehydration reaction and hydrolysis reaction of the Si—OH group at the interface 13 between the glass film 11 and the support glass 12 described above are not limited to Si but exist in Al, In, Sn, Zn, Ti, Zr, Ga, and the like. The OH group is considered to be generated similarly. Therefore, on the support glass 12, SiO, SiO 2, Al 2 O 3, MgO, Y 2 O 3, La 2 O 3, Pr 6 O 11, Sc 2 O 3, WO 3, HfO 2, In 2 O 3 Even when an inorganic thin film such as ITO, ZrO 2 , Nd 2 O 3 , Ta 2 O 5 , CeO 2 , Nb 2 O 5 , TiO, TiO 2 , Ti 3 O 5 , NiO, or ZnO is formed. A similar effect can be expected. By forming an inorganic thin film on the support glass 12, even if the electronic device manufacturing related process accompanied by heating is performed, the glass film 11 and the support glass 12 can be easily peeled off. In particular, when an inorganic thin film having an atom different from Si of the glass film 11 is formed on the support glass 12, the glass film 11 and the support glass 12 can be more easily peeled off more efficiently.
 第3の工程は、図8に示す通り、支持ガラス付電子デバイス3を、水を含有する液体4中に浸漬することが好ましい。これにより、剥離の際に、支持ガラス12とガラスフィルム11との界面13に対して、より効率的に水を含有する液体4を付与することができる。具体的には、第3の工程において、水槽42内に水を含有する液体4を貯留し、水槽42内に支持ガラス付電子デバイス3を浸漬することで、支持ガラス12とガラスフィルム11の剥離を行う。 In the third step, as shown in FIG. 8, it is preferable to immerse the electronic device 3 with supporting glass in the liquid 4 containing water. Thereby, the liquid 4 containing water can be more efficiently provided to the interface 13 between the support glass 12 and the glass film 11 at the time of peeling. Specifically, in the third step, the liquid 4 containing water is stored in the water tank 42, and the support glass 12 and the glass film 11 are peeled off by immersing the electronic device 3 with support glass in the water tank 42. I do.
 水を含有する液体4は、アルカリ性であることが好ましい。これにより、上述の
Si-O-Si + H2O → Si-OH + HO-Si
の加水分解反応を促進させることができ、ガラスフィルム11と支持ガラス12との剥離が容易となる。水を含有する液体4をアルカリ性とするためには、1価の塩基、2価の塩基等を使用することができ、強アルカリ、弱アルカリ等の両方とも使用することができる。水等にKOHやNaOH、界面活性剤を添加することで、水を含有する液体4のpHを調整しても良い。水を含有する液体4のpHは、pH7超が好ましく、pH10以上がより好ましい。
The liquid 4 containing water is preferably alkaline. Thereby, the above-described Si—O—Si + H 2 O → Si—OH + HO—Si
The hydrolysis reaction of the glass film 11 and the supporting glass 12 can be easily peeled off. In order to make the liquid 4 containing water alkaline, a monovalent base, a divalent base or the like can be used, and both strong alkali and weak alkali can be used. The pH of the liquid 4 containing water may be adjusted by adding KOH, NaOH, or a surfactant to water or the like. The pH of the liquid 4 containing water is preferably more than pH 7, more preferably 10 or more.
 本発明に使用される界面活性剤は、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性イオン界面活性剤等を使用することができ、単独で使用してもよく、2種以上を混合してもよく、炭酸ナトリウムなどのアルカリ性を保つpH調整剤を混ぜたものを使用することができる。本発明に使用される水を含有する液体4中の界面活性剤の濃度については、0.001~2.0質量%の濃度のものを使用することが好ましい。アニオン系界面活性剤としてはカルボン酸塩、スルホン酸塩、硫酸エステル塩などを使用することができる。例えば、陰イオン系脂肪酸塩、アルファスルホ脂肪酸エステル塩、アルキルベンゼンスルホン酸塩、アルキル硫酸塩、アルキルエーテル硫酸エステル塩、アルキル硫酸トリエタノールアミン等が使用できる。カチオン系界面活性剤としては、アミン塩型と第4級アンモニウム塩型などを使用することができる。例えば、アルキルトリメチルアンモニウム塩やジアルキルジメチルアンモニウムクロリド、アルキルピリジニウムクロリド等を使用することができる。ノニオン系界面活性剤としては、多価アルコールと脂肪酸がエステル結合したエステル型、ポリオキシエチレンアルキルエーテルなどのエーテル型、分子中にエステル結合とエーテル結合の両方を有したエステル・エーテル型などを使用することができる。例えば、脂肪酸ジエタノールアミド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルなどを使用することができる。両性イオン界面活性剤としてはカルボン酸塩型やアミノ酸型、ベタイン型などを使用することができる。 As the surfactant used in the present invention, anionic surfactants, cationic surfactants, nonionic surfactants, zwitterionic surfactants and the like can be used. Two or more kinds may be mixed, and a mixture of a pH adjusting agent that maintains alkalinity such as sodium carbonate can be used. The concentration of the surfactant in the liquid 4 containing water used in the present invention is preferably 0.001 to 2.0% by mass. As the anionic surfactant, carboxylate, sulfonate, sulfate ester salt and the like can be used. For example, anionic fatty acid salts, alpha sulfo fatty acid ester salts, alkylbenzene sulfonates, alkyl sulfates, alkyl ether sulfate esters, alkyl sulfate triethanolamines and the like can be used. As the cationic surfactant, amine salt type and quaternary ammonium salt type can be used. For example, alkyltrimethylammonium salt, dialkyldimethylammonium chloride, alkylpyridinium chloride and the like can be used. Nonionic surfactants include ester types in which polyhydric alcohols and fatty acids are ester-bonded, ether types such as polyoxyethylene alkyl ether, and ester / ether types that have both ester bonds and ether bonds in the molecule. can do. For example, fatty acid diethanolamide, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether and the like can be used. As the zwitterionic surfactant, carboxylate type, amino acid type, betaine type and the like can be used.
 本発明に係る第3の工程は、水を含有する液体4中に支持ガラス付電子デバイス3を浸漬しつつ、支持ガラス付電子デバイス3に超音波を印加することが好ましい。これにより、ガラスフィルム11と支持ガラス12との界面13にさらに効率良く水を含む液体4を付与することができ、ガラスフィルム11と支持ガラス12との剥離を更に容易にすることができる。超音波の印加波長は、25kHz~950kHzであることが好ましく、振動エネルギーが大きい25kHz~170kHzであることが、より好ましい。水を含有する液体4中に浸漬された支持ガラス付電子デバイス3に超音波を印加する時間は、支持ガラス12から電子デバイス5が完全に剥離するまで行うことが好ましく、電子デバイス5の大きさや加熱を伴う製造関連処理の上昇温度、処理時間等にも依存するが、目安として10秒~1000秒であることが好ましい。また、超音波の印加を、電子デバイス5の剥離開始にのみ使用してもよく、この場合については、1~5秒間支持ガラス付電子デバイス3に超音波を印加すれば良い。また超音波は、支持ガラス付電子デバイス3に超音波発信子を直接接触させて印加してもよいし、水を含有する液体4を介して支持ガラス付電子デバイス3に超音波を印加してもよい。 In the third step according to the present invention, it is preferable to apply ultrasonic waves to the electronic device 3 with supporting glass while immersing the electronic device 3 with supporting glass in the liquid 4 containing water. Thereby, the liquid 4 containing water can be more efficiently applied to the interface 13 between the glass film 11 and the support glass 12, and the separation between the glass film 11 and the support glass 12 can be further facilitated. The applied wavelength of the ultrasonic wave is preferably 25 kHz to 950 kHz, and more preferably 25 kHz to 170 kHz where the vibration energy is large. The time for applying the ultrasonic wave to the electronic device 3 with supporting glass immersed in the liquid 4 containing water is preferably performed until the electronic device 5 is completely peeled from the supporting glass 12. Although it depends on the rising temperature of the manufacturing-related treatment with heating, the treatment time, etc., it is preferably 10 to 1000 seconds as a guide. Further, application of ultrasonic waves may be used only at the start of peeling of the electronic device 5, and in this case, ultrasonic waves may be applied to the electronic device 3 with supporting glass for 1 to 5 seconds. The ultrasonic wave may be applied by directly contacting the ultrasonic wave transmitter with the electronic device 3 with supporting glass or by applying ultrasonic wave to the electronic device 3 with supporting glass through the liquid 4 containing water. Also good.
 本発明に係る第3の工程は、ガラスフィルム11と支持ガラス12とを剥離させる際に、ガラスフィルム11と支持ガラス12との界面13に剥離部材6を挿入することが好ましい。これにより、ガラスフィルム11と支持ガラス12とを物理的に剥離させることができるため、ガラスフィルム11と支持ガラス12との界面13に、順次、水を含有する液体4を侵入させることができ、ガラスフィルム11と支持ガラス12との剥離を更に容易にすることができる。 In the third step according to the present invention, the peeling member 6 is preferably inserted into the interface 13 between the glass film 11 and the supporting glass 12 when the glass film 11 and the supporting glass 12 are peeled off. Thereby, since the glass film 11 and the support glass 12 can be physically peeled, the liquid 4 containing water can be made to invade sequentially into the interface 13 between the glass film 11 and the support glass 12, Peeling of the glass film 11 and the support glass 12 can be further facilitated.
 剥離部材6の形状は、シート状、帯状、板状、短冊状、楔状等、厚みが少なく剥離進行方向に支持ガラス付電子デバイス3よりも幅広な部材を使用することが好ましい。具体的には、剥離部材の厚みが0.01mm~1mmであることが好ましく、0.1mm~0.5mmであることがより好ましい。これにより、ガラスフィルム11と支持ガラス12との界面13に生じた僅かな隙間に剥離部材6を挿入することができる。剥離部材6の長さは、剥離の対象となる支持ガラス付電子デバイス3の面積にも依存するが、少なくとも支持ガラス付き電子デバイス3よりも剥離進行方向において長尺であることが好ましい。このようにすることで一度剥離したガラスフィルム11と支持ガラス12とが剥離部材6の通過後に再び接触し、部分的にもしくは全体的に支持ガラス付電子デバイス3になることを可及的に防ぐことができる。 The shape of the peeling member 6 is preferably a sheet-like, belt-like, plate-like, strip-like, wedge-like or the like that has a small thickness and is wider than the electronic device 3 with supporting glass in the peeling progress direction. Specifically, the thickness of the peeling member is preferably 0.01 mm to 1 mm, and more preferably 0.1 mm to 0.5 mm. Thereby, the peeling member 6 can be inserted into a slight gap generated at the interface 13 between the glass film 11 and the support glass 12. Although the length of the peeling member 6 is dependent also on the area of the electronic device 3 with support glass used as peeling object, it is preferable that it is long in the peeling progress direction at least rather than the electronic device 3 with support glass. In this way, the glass film 11 once peeled off and the supporting glass 12 come into contact again after passing through the peeling member 6 and are prevented as much as possible from partially or entirely becoming the electronic device 3 with supporting glass. be able to.
 剥離部材6の材質は、剛性を有するアルミニウム、ステンレス等の金属を使用することが可能であるが、可撓性を有するポリエチレンやアクリル等の樹脂フィルムを使用することが好ましく、フッ素フィルム等の疎水性の樹脂シートであることがより好ましい。剥離部材6として疎水性の樹脂シートを使用することで、ガラスフィルム11や支持ガラス13の端面を加傷するおそれが少なく、疎水性であるため水中に浸漬したとしても、水を含有する液体4内において、剥離部材6の取り扱いが容易となる。疎水性の樹脂シートは、樹脂シート自体が疎水性であることは勿論、種々のシート(樹脂シートや金属シート等)に疎水性の物質をコーティングすることも含む。一方、加熱を伴う電子デバイス製造関連処理の加熱温度、加熱時間によっては、支持ガラス12とガラスフィルム11とが強固に接着している場合については、剥離部材6の材質は、剛性を有する樹脂板を使用することが好ましく、ガラスフィルム11と支持ガラス12との界面13に円滑に剥離部材6を挿入することができると共に、ガラスフィルム11や支持ガラス12を加傷するおそれも少ない。 The material of the peeling member 6 can be a rigid metal such as aluminum or stainless steel, but it is preferable to use a flexible resin film such as polyethylene or acrylic, and a hydrophobic film such as a fluorine film. The resin sheet is more preferable. By using a hydrophobic resin sheet as the peeling member 6, there is little risk of damaging the end surfaces of the glass film 11 and the supporting glass 13, and the liquid 4 containing water even if immersed in water because it is hydrophobic. Inside, handling of the peeling member 6 becomes easy. The hydrophobic resin sheet includes not only that the resin sheet itself is hydrophobic, but also that various sheets (resin sheet, metal sheet, etc.) are coated with a hydrophobic substance. On the other hand, depending on the heating temperature and heating time of the electronic device manufacturing-related process involving heating, when the support glass 12 and the glass film 11 are firmly bonded, the material of the peeling member 6 is a rigid resin plate. Is preferably used, and the peeling member 6 can be smoothly inserted into the interface 13 between the glass film 11 and the support glass 12, and the glass film 11 and the support glass 12 are less likely to be damaged.
 第3の工程により、支持ガラス付電子デバイス3から支持ガラス12を剥離することで、最終的に所望の電子デバイス5を製造することができる。 The desired electronic device 5 can finally be manufactured by peeling the support glass 12 from the electronic device 3 with a support glass by a 3rd process.
 図9は、本発明に係る他の実施形態を示した図である。図9に示す実施形態が、上述の実施形態と異なる点は、カバーガラス2がキャリアガラス21上に積層されている点である。これにより、カバーガラス2上にも電子デバイス製造関連処理を行うことができる。具体的には、電子デバイス5として液晶パネルを製造する場合は、ガラスフィルム12側にTFT処理を行い、カバーガラス2側にカラーフィルターを形成した後に、スペーサ53aを介して、キャリアガラス21に積層されたカバーガラス2で液晶素子53を封止することができる。この場合、支持ガラス付電子デバイス3は、キャリアガラス21も備えていることとなる。 FIG. 9 is a diagram showing another embodiment according to the present invention. The embodiment shown in FIG. 9 is different from the above-described embodiment in that the cover glass 2 is laminated on the carrier glass 21. Thereby, an electronic device manufacture related process can be performed also on the cover glass 2. FIG. Specifically, in the case of manufacturing a liquid crystal panel as the electronic device 5, TFT processing is performed on the glass film 12 side, a color filter is formed on the cover glass 2 side, and then laminated on the carrier glass 21 via the spacer 53 a. The liquid crystal element 53 can be sealed with the cover glass 2 formed. In this case, the electronic device 3 with supporting glass also includes the carrier glass 21.
 キャリアガラス21は、前述したガラスフィルム11、カバーガラス2や支持ガラス12と同様の材質、支持ガラス12と同様の厚みのガラスを使用することが好ましい。キャリアガラス21とカバーガラス2とは、同一のガラス材質のものを使用することが、好ましい。 The carrier glass 21 is preferably made of the same material as the glass film 11, the cover glass 2 and the support glass 12 described above, and a glass having the same thickness as the support glass 12. The carrier glass 21 and the cover glass 2 are preferably made of the same glass material.
 第3の工程において、水を含有する液体4が貯留された水槽42内で、ガラスフィルム11と支持ガラス12とが剥離するのと同一の工程内で、カバーガラス2とキャリアガラス21も、剥離する。従って、キャリアガラス21の剥離のために、特別な工程を設ける必要がない。カバーガラス2とキャリアガラス21との剥離の際にも、上述の通り超音波を印加することが好ましく、上述の剥離部材6を使用することが好ましい。 In the third step, the cover glass 2 and the carrier glass 21 are also peeled in the same process as the glass film 11 and the support glass 12 are peeled in the water tank 42 in which the liquid 4 containing water is stored. To do. Therefore, it is not necessary to provide a special process for peeling the carrier glass 21. Also when peeling the cover glass 2 and the carrier glass 21, it is preferable to apply an ultrasonic wave as above-mentioned, and it is preferable to use the peeling member 6 mentioned above.
 本実施形態において、第3の工程により、支持ガラス付電子デバイス3から支持ガラス12とキャリアガラス21を剥離することで、最終的に所望の電子デバイス5を製造することができる。 In this embodiment, the desired electronic device 5 can be finally manufactured by peeling the supporting glass 12 and the carrier glass 21 from the supporting glass-equipped electronic device 3 in the third step.
 本発明に係る電子デバイスの製造方法は、図1に模式的に示すように、第1の工程、第2の工程、及び第3の工程を連続して行うことができる。また、第1の工程から第3の工程まで連続して行う構成には限定されず、例えば、第1の工程後に製造されたガラスフィルム積層体1を梱包、出荷し、別途電子デバイス製造関連処理施設において、第2の工程及び第3の工程を行う構成であっても良い。勿論、第2の工程後に製造された支持ガラス付電子デバイス3を梱包、出荷して、別途の施設で第3の工程を行うことにより、支持ガラス12やキャリアガラス21を剥離して、電子デバイス5を製造しても良い。 The method for manufacturing an electronic device according to the present invention can perform the first step, the second step, and the third step in succession, as schematically shown in FIG. Moreover, it is not limited to the structure performed continuously from a 1st process to a 3rd process, For example, the glass film laminated body 1 manufactured after the 1st process is packed and shipped, and an electronic device manufacturing related process is separately carried out. The facility may be configured to perform the second step and the third step. Of course, the support glass 12 and the carrier glass 21 are peeled off by packing and shipping the electronic device 3 with the support glass manufactured after the second step, and performing the third step in a separate facility. 5 may be manufactured.
 以下、本発明の電子デバイスの製造方法を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, although the manufacturing method of the electronic device of this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.
 (剥離表面エネルギーの測定試験)
 縦50mm、横50mm、厚み500μmの矩形状の透明なガラス板を支持ガラスとして使用した。支持ガラスの上に積層するガラスフィルムとして、縦50mm、横50mm、厚み100μmのガラスフィルムを使用した。支持ガラスとガラスフィルムは、日本電気硝子株式会社製の無アルカリガラス(製品名:OA-10G、30~380℃における熱膨張係数:38×10-7/℃、ヤング率73GPa)を使用した。表面粗さRaを、Veeco社製AFM(NanoScopella)を用い、スキャンサイズ10μm、スキャンレイト1Hz、サンプルライン512の条件で測定した。測定範囲10μm四方の測定値から算出したところ、表面粗さRaは0.25nmであった。このガラスフィルムと支持ガラスを25℃の温度で積層し、ガラスフィルム積層体を作製した。得られたガラスフィルム積層体を夫々100℃、150℃、200℃、300℃、350℃、400℃、450℃に加熱した電気炉に入れ30分間加熱した後、電気炉から取り出した未加熱のガラスフィルム積層体、及び、上述の温度で加熱後のガラスフィルム積層体を、クラックオープニング法により剥離表面エネルギーγ(J/m2)を算出することで、支持ガラスとガラスフィルムとの剥離性について、評価した。クラックオープニング法は、図10に示す通り、ガラスフィルム積層体1の界面に既知の厚みを有する剥離部材6を挿入し、ガラスフィルム11と支持ガラス12の間に生じた剥離の距離cから剥離表面エネルギーを算出する方法である。ここで、剥離表面エネルギーγは、次の式で算出される。
γ(J/m2)=(3h2EaTa3EbTb3)/[16c(EaTa3+EbTb3)]
ここで、hは剥離部材6の厚み(m)、Taはガラスフィルム11の厚み(m)Eaはガラスフィルム11のヤング率(Pa)、Tbは支持ガラス12の厚み(m)、Ebは支持ガラス12のヤング率(Pa)、cは剥離部材6の挿入によって剥離した距離(m)、である。実施例1としてガラスフィルム積層体を水中に浸漬した状態で、剥離表面エネルギーγを測定した。実施例2として、KOH濃度が0.01mol/kg(pH10)のアルカリ性水溶液中にガラスフィルム積層体を浸漬した状態で、剥離表面エネルギーγを測定した。実施例3として、ガラスフィルム積層体を水中に浸漬した状態で、40kHzの超音波を印加しつつ剥離表面エネルギーγを測定した。比較例1として、大気中で剥離表面エネルギーγを測定した。測定に使用した剥離部材として、厚み40μmのステンレス製カッター刃を使用した。結果を表1に示す。
(Peeling surface energy measurement test)
A rectangular transparent glass plate having a length of 50 mm, a width of 50 mm, and a thickness of 500 μm was used as the supporting glass. As the glass film laminated on the supporting glass, a glass film having a length of 50 mm, a width of 50 mm, and a thickness of 100 μm was used. As the supporting glass and the glass film, non-alkali glass (product name: OA-10G, thermal expansion coefficient at 30 to 380 ° C .: 38 × 10 −7 / ° C., Young's modulus 73 GPa) manufactured by Nippon Electric Glass Co., Ltd. was used. The surface roughness Ra was measured under the conditions of a scan size of 10 μm, a scan rate of 1 Hz, and a sample line 512 using AFM (NanoScope) manufactured by Veeco. The surface roughness Ra was 0.25 nm as calculated from the measured values in a 10 μm square measurement range. This glass film and supporting glass were laminated at a temperature of 25 ° C. to produce a glass film laminate. The obtained glass film laminate was placed in an electric furnace heated to 100 ° C., 150 ° C., 200 ° C., 300 ° C., 350 ° C., 400 ° C., and 450 ° C., heated for 30 minutes, and then unheated taken out of the electric furnace. About peelability of support glass and glass film by calculating peeling surface energy (gamma) (J / m < 2 >) by a glass opening method with a glass film laminated body and the glass film laminated body heated at the above-mentioned temperature. ,evaluated. As shown in FIG. 10, the crack opening method inserts a peeling member 6 having a known thickness at the interface of the glass film laminate 1, and peels the surface from the separation distance c generated between the glass film 11 and the support glass 12. This is a method for calculating energy. Here, the peeling surface energy γ is calculated by the following equation.
γ (J / m 2 ) = (3h 2 EaTa 3 EbTb 3 ) / [16c (EaTa 3 + EbTb 3 )]
Here, h is the thickness (m) of the peeling member 6, Ta is the thickness (m) of the glass film 11, Ea is the Young's modulus (Pa) of the glass film 11, Tb is the thickness (m) of the support glass 12, and Eb is the support. The Young's modulus (Pa) of the glass 12, c is the distance (m) peeled by inserting the peeling member 6. In Example 1, the peel surface energy γ was measured with the glass film laminate immersed in water. As Example 2, the peel surface energy γ was measured in a state where the glass film laminate was immersed in an alkaline aqueous solution having a KOH concentration of 0.01 mol / kg (pH 10). As Example 3, the peeling surface energy γ was measured while applying a 40 kHz ultrasonic wave in a state where the glass film laminate was immersed in water. As Comparative Example 1, peeling surface energy γ was measured in the atmosphere. As a peeling member used for the measurement, a stainless steel cutter blade having a thickness of 40 μm was used. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示される通り、実施例1では水を加えたことにより剥離の表面エネルギーが低下しており、より容易に剥離できることが明らかである。実施例2から、水をアルカリ性とすることでさらに剥離しやすくなることがわかる。また、水を付与した状態で超音波を印加することでも剥離の際の表面エネルギーを下げることができ、剥離性が向上する。 As shown in Table 1, in Example 1, the surface energy of peeling was lowered by adding water, and it is clear that peeling can be performed more easily. Example 2 shows that it becomes easier to peel by making water alkaline. Moreover, the surface energy at the time of peeling can also be lowered | hung by applying an ultrasonic wave in the state which provided water, and peelability improves.
 (加熱後剥離試験)
 縦370mm、横470mm、厚み500μmの矩形状の透明なガラス板を支持ガラスとして使用した。支持ガラス上に積層するガラスフィルムとして、縦370mm、横470mm、厚み100μmのガラスフィルムを使用した。支持ガラスとガラスフィルムは、日本電気硝子株式会社製の無アルカリガラス(製品名:OA-10G、30~380℃における熱膨張係数:38×10-7/℃、ヤング率73GPa)を使用した。表面粗さRaを、Veeco社製AFM(NanoScopella)を用い、スキャンサイズ10μm、スキャンレイト1Hz、サンプルライン512の条件で測定した。測定範囲10μm四方の測定値から算出したところ、表面粗さRaは0.25nmであった。このガラスフィルムと支持ガラスを20℃の温度で積層し、ガラスフィルム積層体を作製した。得られたガラスフィルム積層体を夫々100℃、150℃、200℃、300℃、350℃、400℃、450℃に加熱した電気炉に入れ、2時間加熱した後、電気炉から取り出した。夫々の加熱条件でのガラスフィルム積層体を夫々100枚作製し、ガラスフィルムと支持ガラスとの界面に厚み100μmのフッ素樹脂シート(淀川ヒューテック製、製品名ヨドフロン)を挿入することで、ガラスフィルムと支持ガラスとの剥離試験を行った。実施例4としてガラスフィルム積層体を水中に浸漬した状態で、剥離試験を行った。実施例5として、KOH濃度が0.01mol/kg(pH10)のアルカリ性水溶液中にガラスフィルム積層体を浸漬した状態で、剥離試験を行った。実施例6として、ガラスフィルム積層体を水中に浸漬した状態で、40kHzの超音波を印加しつつ剥離試験を行った。比較例2として、大気中で剥離試験を行った。剥離試験の結果、剥離成功確率が95%~100%を◎、80%~95%を〇、60%~80%を△、60%以下を×とした。結果を表2に示す。
(Peeling test after heating)
A rectangular transparent glass plate having a length of 370 mm, a width of 470 mm, and a thickness of 500 μm was used as the supporting glass. As the glass film laminated on the supporting glass, a glass film having a length of 370 mm, a width of 470 mm, and a thickness of 100 μm was used. As the supporting glass and the glass film, non-alkali glass (product name: OA-10G, thermal expansion coefficient at 30 to 380 ° C .: 38 × 10 −7 / ° C., Young's modulus 73 GPa) manufactured by Nippon Electric Glass Co., Ltd. was used. The surface roughness Ra was measured under the conditions of a scan size of 10 μm, a scan rate of 1 Hz, and a sample line 512 using AFM (NanoScope) manufactured by Veeco. The surface roughness Ra was 0.25 nm as calculated from the measured values in a 10 μm square measurement range. This glass film and supporting glass were laminated at a temperature of 20 ° C. to produce a glass film laminate. The obtained glass film laminate was placed in an electric furnace heated to 100 ° C., 150 ° C., 200 ° C., 300 ° C., 350 ° C., 400 ° C., and 450 ° C., heated for 2 hours, and then taken out from the electric furnace. By making 100 glass film laminates under each heating condition and inserting a 100 μm thick fluororesin sheet (product name Yodoflon, manufactured by Yodogawa Hutec) at the interface between the glass film and the supporting glass, A peel test with the supporting glass was performed. As Example 4, a peel test was performed in a state where the glass film laminate was immersed in water. As Example 5, a peel test was performed in a state where the glass film laminate was immersed in an alkaline aqueous solution having a KOH concentration of 0.01 mol / kg (pH 10). As Example 6, a peel test was performed while applying a 40 kHz ultrasonic wave in a state where the glass film laminate was immersed in water. As Comparative Example 2, a peel test was performed in the air. As a result of the peeling test, the probability of peeling success is 95% to 100%, 80 is 80% to 95%, △ is 60% to 80%, and x is 60% or less. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示される通り、100℃以下の加熱ではいずれの条件でも剥離は可能であったが、実施例4~6は、水の付与により熱処理温度が高温になったとしても、剥離が容易になることがわかる。アルカリ性水溶液とすることや超音波の印加により、高温の熱処理温度を有していたとしても、さらに剥離が容易になることが明らかになった。 As shown in Table 2, peeling was possible under any conditions with heating at 100 ° C. or lower, but in Examples 4 to 6, peeling was easy even when the heat treatment temperature became high due to the application of water. I understand that It has been clarified that the separation becomes even easier by using an alkaline aqueous solution or applying ultrasonic waves even if the heat treatment temperature is high.
 本発明は、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイや、有機EL照明、太陽電池、リチウムイオン電池、デジタルサイネージ、タッチパネル、電子ペーパー、携帯電話やスマートフォン等の電子デバイスを製造するに際して、好適に使用することができる。 The present invention is suitable for manufacturing electronic devices such as flat panel displays such as liquid crystal displays and organic EL displays, organic EL lighting, solar cells, lithium ion batteries, digital signage, touch panels, electronic paper, mobile phones and smartphones. Can be used for
1  ガラスフィルム積層体
11 ガラスフィルム
12 支持ガラス
13 界面
2  カバーガラス
21 キャリアガラス
3  支持ガラス付電子デバイス
4  水を含有する液体
5  電子デバイス
51 素子
6  剥離部材
DESCRIPTION OF SYMBOLS 1 Glass film laminated body 11 Glass film 12 Support glass 13 Interface 2 Cover glass 21 Carrier glass 3 Electronic device with support glass 4 Liquid 5 containing water 5 Electronic device 51 Element 6 Peeling member

Claims (9)

  1.  ガラスフィルムと支持ガラスとの相互に接触する側の面の表面粗さRaを夫々2.0nm以下にして、その両面を接触させて、前記ガラスフィルムと支持ガラスとを積層させたガラスフィルム積層体を作製する第1の工程と、加熱を伴う電子デバイス製造関連処理を行うことで前記ガラスフィルム積層体の前記ガラスフィルム上に素子を形成し、カバーガラスで前記素子を封止して支持ガラス付電子デバイスを作製する第2の工程と、前記支持ガラス付電子デバイスの前記ガラスフィルムと前記支持ガラスとの界面に水を含有する液体を付与して前記電子デバイスを前記支持ガラスから剥離する第3の工程とを有することを特徴とする電子デバイスの製造方法。 A glass film laminate in which the surface roughness Ra of the surfaces of the glass film and the supporting glass that are in contact with each other is 2.0 nm or less, and both the surfaces are brought into contact with each other to laminate the glass film and the supporting glass. A device is formed on the glass film of the glass film laminate by performing an electronic device manufacturing-related process involving heating, and the device is sealed with a cover glass to attach a supporting glass. A second step of producing an electronic device; and a third step of separating the electronic device from the supporting glass by applying a liquid containing water to the interface between the glass film and the supporting glass of the electronic device with supporting glass. And a method for manufacturing an electronic device.
  2.  前記第3の工程は、水を含有する液体中に前記支持ガラス付電子デバイスを浸漬することを特徴とする請求項1に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 1, wherein the third step includes immersing the electronic device with a supporting glass in a liquid containing water.
  3.  前記水を含有する液体は、アルカリ性であることを特徴とする請求項1又は2に記載の電子デバイスの製造方法。 3. The method of manufacturing an electronic device according to claim 1, wherein the liquid containing water is alkaline.
  4.  前記第3の工程は、前記支持ガラス付電子デバイスに超音波を印加することを特徴とする請求項2又は3に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 2 or 3, wherein in the third step, an ultrasonic wave is applied to the electronic device with supporting glass.
  5.  前記第3の工程は、前記ガラスフィルムと前記支持ガラスとの界面に剥離部材を挿入することを特徴とする請求項1~4のいずれかに記載の電子デバイスの製造方法。 5. The method of manufacturing an electronic device according to claim 1, wherein in the third step, a peeling member is inserted into an interface between the glass film and the supporting glass.
  6.  前記剥離部材は、疎水性の樹脂シートであることを特徴とする請求項5に記載の電子デバイスの製造方法。 6. The method of manufacturing an electronic device according to claim 5, wherein the peeling member is a hydrophobic resin sheet.
  7.  前記支持ガラスの前記ガラスフィルムと接触する側の表面上には、無機薄膜が形成されていることを特徴とする請求項1~6のいずれかに記載の電子デバイスの製造方法。 The method of manufacturing an electronic device according to any one of claims 1 to 6, wherein an inorganic thin film is formed on a surface of the supporting glass on a side in contact with the glass film.
  8.  前記カバーガラスはキャリアガラスに積層されており、前記第3の工程で前記カバーガラスと前記キャリアガラスとを剥離することを特徴とする請求項2~7のいずれかに記載の電子デバイスの製造方法。 8. The method of manufacturing an electronic device according to claim 2, wherein the cover glass is laminated on a carrier glass, and the cover glass and the carrier glass are peeled off in the third step. .
  9.  前記第3の工程は、前記カバーガラスと前記キャリアガラスとの界面に前記剥離部材を挿入することを特徴とする請求項8に記載の電子デバイスの製造方法。 The method of manufacturing an electronic device according to claim 8, wherein the third step inserts the peeling member at an interface between the cover glass and the carrier glass.
PCT/JP2014/054697 2013-02-26 2014-02-26 Method for manufacturing electronic device WO2014133007A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-035466 2013-02-26
JP2013035466 2013-02-26

Publications (1)

Publication Number Publication Date
WO2014133007A1 true WO2014133007A1 (en) 2014-09-04

Family

ID=51428269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054697 WO2014133007A1 (en) 2013-02-26 2014-02-26 Method for manufacturing electronic device

Country Status (3)

Country Link
JP (1) JP2014194541A (en)
TW (1) TW201446497A (en)
WO (1) WO2014133007A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289519B2 (en) 2017-01-30 2022-03-29 Sony Semiconductor Solutions Corporation Semiconductor device and electronic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107428120A (en) * 2015-01-22 2017-12-01 康宁股份有限公司 For the product that highly flexible substrate is bonded to the method for carrier and is consequently formed

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010129459A2 (en) * 2009-05-06 2010-11-11 Corning Incorporated Carrier for glass substrates
WO2011001946A1 (en) * 2009-07-03 2011-01-06 日本電気硝子株式会社 Glass film laminate
JP2011029169A (en) * 2009-07-03 2011-02-10 Nippon Electric Glass Co Ltd Element sealing body and method of manufacturing the same
WO2011034034A1 (en) * 2009-09-18 2011-03-24 日本電気硝子株式会社 Method for producing glass film, method for processing glass film, and glass film laminate
WO2011048979A1 (en) * 2009-10-20 2011-04-28 旭硝子株式会社 Glass laminate, glass laminate manufacturing method, display panel manufacturing method, and display panel obtained by means of display panel manufacturing method
WO2012014959A1 (en) * 2010-07-28 2012-02-02 日本電気硝子株式会社 Glass film laminate
WO2013005589A1 (en) * 2011-07-04 2013-01-10 旭硝子株式会社 Method for peeling glass substrate, and apparatus for peeling glass substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4402144B2 (en) * 2006-09-29 2010-01-20 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
WO2010090147A1 (en) * 2009-02-06 2010-08-12 旭硝子株式会社 Method for manufacturing electronic device and separation apparatus used therefor
JP2010215436A (en) * 2009-03-13 2010-09-30 Nippon Electric Glass Co Ltd Glass film laminate
JP5562597B2 (en) * 2009-08-28 2014-07-30 荒川化学工業株式会社 SUPPORT, GLASS SUBSTRATE LAMINATE, DISPLAY DEVICE PANEL WITH SUPPORT AND METHOD FOR PRODUCING DISPLAY DEVICE PANEL

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010129459A2 (en) * 2009-05-06 2010-11-11 Corning Incorporated Carrier for glass substrates
WO2011001946A1 (en) * 2009-07-03 2011-01-06 日本電気硝子株式会社 Glass film laminate
JP2011029169A (en) * 2009-07-03 2011-02-10 Nippon Electric Glass Co Ltd Element sealing body and method of manufacturing the same
WO2011034034A1 (en) * 2009-09-18 2011-03-24 日本電気硝子株式会社 Method for producing glass film, method for processing glass film, and glass film laminate
WO2011048979A1 (en) * 2009-10-20 2011-04-28 旭硝子株式会社 Glass laminate, glass laminate manufacturing method, display panel manufacturing method, and display panel obtained by means of display panel manufacturing method
WO2012014959A1 (en) * 2010-07-28 2012-02-02 日本電気硝子株式会社 Glass film laminate
WO2013005589A1 (en) * 2011-07-04 2013-01-10 旭硝子株式会社 Method for peeling glass substrate, and apparatus for peeling glass substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289519B2 (en) 2017-01-30 2022-03-29 Sony Semiconductor Solutions Corporation Semiconductor device and electronic apparatus

Also Published As

Publication number Publication date
JP2014194541A (en) 2014-10-09
TW201446497A (en) 2014-12-16

Similar Documents

Publication Publication Date Title
US9156230B2 (en) Glass film laminate without adhesive
JP5794325B2 (en) Manufacturing method of glass substrate for electronic device and manufacturing method of cover glass for electronic device
JP5874159B2 (en) GLASS-RESIN LAMINATE, GLASS ROLL WASTING THE SAME, AND GLASS ROLL MANUFACTURING METHOD
WO2012144499A1 (en) Laminate, method for producing same, and use of same
WO2015163134A1 (en) Glass laminate body, and method for manufacturing electronic device
JP2014019597A (en) Method for producing glass film, and glass film laminate
JP6287070B2 (en) Method for producing glass film laminate and method for producing electronic / electrical device
WO2015046490A1 (en) Method for producing film-like glass body, method for manufacturing electronic device, and method for producing glass film laminate
JP2010228166A (en) Glass film laminate, glass roll of the laminate, end face protection method of glass film, and method for manufacturing the glass roll
JP2011121320A (en) Glass film laminate, glass roll thereof, and method for manufacturing glass roll
WO2015012261A1 (en) Production method for glass film and peeling method for glass film
WO2015012268A1 (en) Glass film manufacturing method, and glass film peeling method
WO2014133007A1 (en) Method for manufacturing electronic device
JP6350277B2 (en) GLASS FILM MANUFACTURING METHOD AND ELECTRONIC DEVICE MANUFACTURING METHOD
JP2012030404A (en) Glass film laminate
JP2010215436A (en) Glass film laminate
JP6327580B2 (en) Glass film laminate and method for producing electronic device
JP6327437B2 (en) Manufacturing method of electronic device
WO2014178405A1 (en) Glass film laminate, and production method for electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757770

Country of ref document: EP

Kind code of ref document: A1