WO2010007993A1 - ポジ型感放射線性組成物及びレジストパターン形成方法 - Google Patents

ポジ型感放射線性組成物及びレジストパターン形成方法 Download PDF

Info

Publication number
WO2010007993A1
WO2010007993A1 PCT/JP2009/062750 JP2009062750W WO2010007993A1 WO 2010007993 A1 WO2010007993 A1 WO 2010007993A1 JP 2009062750 W JP2009062750 W JP 2009062750W WO 2010007993 A1 WO2010007993 A1 WO 2010007993A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resist pattern
carbon atoms
polymer
general formula
Prior art date
Application number
PCT/JP2009/062750
Other languages
English (en)
French (fr)
Inventor
祐亮 庵野
考一 藤原
誠 杉浦
剛史 若松
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN2009801276641A priority Critical patent/CN102099749A/zh
Priority to EP09797918A priority patent/EP2309332A4/en
Priority to JP2010520872A priority patent/JP5445454B2/ja
Publication of WO2010007993A1 publication Critical patent/WO2010007993A1/ja
Priority to US13/005,536 priority patent/US8501385B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/282Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0035Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • G03F7/405Treatment with inorganic or organometallic reagents after imagewise removal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1812C12-(meth)acrylate, e.g. lauryl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography

Definitions

  • the present invention relates to a positive-type radiation-sensitive composition and a resist pattern forming method, and more particularly, to a positive-type radiation-sensitive composition that is used for patterning by double exposure and is preferably used for an immersion exposure process such as water. And a resist pattern forming method using the same.
  • finer pattern formation for example, a fine resist pattern with a line width of about 45 nm
  • the wavelength of the light source of the exposure apparatus ArF excimer laser (wavelength: 193 nm)
  • NA numerical aperture
  • the increase in the numerical aperture (NA) of the lens has a problem that the depth of focus decreases even if the resolution is increased because the resolution and the depth of focus are in a trade-off relationship.
  • liquid immersion lithography liquid immersion lithography
  • a 32 nm line with a 1: 3 pitch is formed, a hard mask such as SiO 2 (hereinafter also referred to as “HM”) is processed by etching, and then a resist pattern of the first layer is formed.
  • HM hard mask
  • a 32 nm line with a pitch of 1: 3 is formed at a position shifted by a half cycle, and a HM is processed again by etching to finally form a 32 nm line with a pitch of 1: 1. ing.
  • An object of the present invention is to provide a positive-type radiation-sensitive composition that can be suitably used for forming a first resist layer.
  • the following positive radiation sensitive composition and resist pattern forming method are provided.
  • the first resist pattern was formed using the step (2) for insolubilizing the second positive-type radiation-sensitive composition by using the second positive-type radiation-sensitive composition.
  • a positive radiation sensitive composition comprising a radiation sensitive acid generator and (D) a solvent.
  • the polymer (A) and the polymer (B) each have a repeating unit having an acid labile group represented by the following general formula (1), and the following general formulas (2-1) to (2- 5) and a repeating unit having at least one lactone structure selected from the group consisting of the following formula (2-6) or a repeating unit represented by the following general formula (2-7)
  • the positive radiation sensitive composition as described in 1. above.
  • R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • R 2 independently of each other is a linear or branched alkyl group having 1 to 4 carbon atoms, Or a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or any two R 2 's bonded to each other and formed together with the carbon atoms to which they are bonded.
  • a cyclic hydrocarbon group or a derivative thereof is shown.
  • R 3 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and p represents an integer of 1 to 3.
  • R 4 represents a hydrogen atom or a methoxy group.
  • A represents a single bond or a methylene group, and m represents 0 or 1.
  • B represents an oxygen atom or a methylene group.
  • R 10 represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • R 11 independently of each other, represents a hydrogen atom or a chain hydrocarbon having 1 to 5 carbon atoms.
  • D represents a single bond, a divalent or trivalent chain hydrocarbon group having 1 to 30 carbon atoms, a divalent or trivalent alicyclic hydrocarbon group having 3 to 30 carbon atoms, or a carbon number 6 to 30 divalent or trivalent aromatic hydrocarbon groups.
  • D is trivalent, the carbon atom contained in D and the carbon atom which comprises cyclic carbonate are couple
  • n represents an integer of 2 to 4.
  • polymer (B) according to any one of the above [1] to [3], wherein the polymer (B) includes a repeating unit represented by at least one of the following general formulas (3-1) and (3-2): A positive-type radiation-sensitive composition.
  • R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • R 5 represents a methylene group, an ethylene group or a propylene group
  • R 6 is a group represented by the following general formula (4) or the following general formula (5). Represents a group.
  • R 7 represents a methylene group or an alkylene group having 2 to 6 carbon atoms
  • R 8 represents a hydrogen atom, a methyl group or an ethyl group.
  • n represents 0 or 1.
  • R 9 independently represents a hydrogen atom or 1 to 10 linear or branched alkyl groups.
  • the proportion of the repeating units represented by the general formula (3-1) or (3-2) contained in the polymer (B) is the sum of the repeating units contained in the polymer (B).
  • R 27 represents a hydrogen atom, a methyl group, or a trifluoromethyl group
  • R 28 is a single bond or a linear, branched or cyclic group having 1 to 20 carbon atoms
  • X represents a methylene group substituted with a fluorine atom, or a linear or branched fluoroalkylene group having 2 to 20 carbon atoms
  • R 29 is: A hydrogen atom or a monovalent organic group is shown.
  • R 30 represents a hydrogen atom, a methyl group, or a trifluoromethyl group
  • Y represents a linking group
  • R 31 has at least one fluorine atom. 1 to 6 linear or branched alkyl groups, monovalent alicyclic hydrocarbon groups having 4 to 20 carbon atoms, or derivatives thereof.
  • a step (1) of forming a first resist pattern on a substrate using the positive radiation-sensitive composition according to any one of [1] to [7], and the first resist A step (2) of inactivating the pattern with light or heat to insolubilize the second positive radiation sensitive composition, and using the second positive radiation sensitive composition. And (3) forming a second resist pattern on the substrate on which the first resist pattern is formed.
  • the first resist pattern has a line portion and a space portion
  • the second resist pattern has a line portion and a space portion
  • the positive-type radiation-sensitive composition of the present invention can be suitably used for an immersion exposure process, and has an effect that it is suitably used for forming a first resist layer in patterning by double exposure. It is what you play.
  • the first resist pattern is exposed to alkali and becomes soluble during exposure for forming the second resist pattern.
  • the second resist pattern can be formed while holding the first resist pattern, and further, the line width variation of the first resist pattern can be suppressed, which is suitable for the immersion exposure process. There is an effect that it can be adopted.
  • the resist pattern forming method of the present invention is a method including steps (1) to (3).
  • An embodiment of a resist pattern forming method of the present invention including steps (1) to (3) will be described with reference to the drawings.
  • “line pattern” refers to a line-and-space pattern in which the resist pattern has a line portion and a space portion (hereinafter also referred to as “LS”).
  • Step (1) 1A to 1C are schematic views showing an example of the step (1) in the resist pattern forming method according to the present invention.
  • step (1) first, as shown in FIG. 1A, a first resist layer 2 is formed on a substrate 1 using a first positive radiation-sensitive composition.
  • FIG. 1B exposure is performed by irradiation of radiation (arrow in the figure) through a mask 4 having a predetermined pattern in a desired area and optionally through an immersion exposure liquid 3 such as water.
  • the alkali developing part 5 is formed on the first resist layer 2.
  • a first resist pattern 12 having a line portion 14 and a space portion 13 space for three lines with respect to 1L3S: one line
  • the first resist layer 2 can be formed by applying a first positive radiation-sensitive composition on the substrate 1.
  • the coating method is not particularly limited, and can be performed by an appropriate coating means such as spin coating, cast coating, roll coating or the like.
  • the thickness of the first resist layer 2 to be formed is not particularly limited, but is usually 10 to 1000 nm, and preferably 10 to 500 nm.
  • the solvent in the coating film may be volatilized by pre-baking (hereinafter referred to as “PB”) as necessary.
  • PB pre-baking
  • the heating conditions for PB are appropriately selected depending on the composition of the first positive radiation-sensitive composition, but are usually about 30 to 200 ° C., preferably 50 to 150 ° C.
  • a protective film is provided on the first resist layer as disclosed in, for example, Japanese Patent Laid-Open No. 5-188598. You can also.
  • the immersion protection is provided on the first resist layer.
  • a film can also be provided.
  • the first positive radiation sensitive composition is the positive radiation sensitive composition of the present invention described later.
  • the substrate is not particularly limited, and for example, a conventionally known substrate such as a silicon wafer or a wafer coated with aluminum can be used.
  • a conventionally known substrate such as a silicon wafer or a wafer coated with aluminum can be used.
  • An organic or inorganic antireflection film may be formed on the substrate to be used.
  • the required area of the first resist layer 2 is exposed by radiation irradiation through a mask 4 having a predetermined pattern, and the alkali developing portion 5 is exposed to the first resist layer 2.
  • an immersion exposure liquid 3 such as water or a fluorine-based inert liquid may be optionally passed.
  • the radiation used for the exposure is visible light, ultraviolet light, far ultraviolet light, X-ray, charged depending on the type of the radiation sensitive acid generator (C) contained in the first positive radiation sensitive composition.
  • far ultraviolet rays represented by ArF excimer laser (wavelength 193 nm) and KrF excimer laser (wavelength 248 nm) are preferable, and far ultraviolet rays by ArF excimer laser (wavelength 193 nm) are particularly preferable.
  • the exposure conditions such as the exposure amount are appropriately selected according to the composition of the first positive radiation-sensitive composition, the type of additive, and the like.
  • PEB heat treatment
  • the heating conditions for PEB are appropriately selected depending on the composition of the first positive radiation-sensitive composition, but are usually 30 to 200 ° C., preferably 50 to 170 ° C.
  • the positive resist type having a line portion 14 and a space portion 13 as shown in FIG.
  • the first resist pattern 12 can be formed.
  • it is generally washed with water and dried.
  • Preferred examples of the developer include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine , Ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4.3. 0] -5-nonene and an alkaline aqueous solution in which at least one alkaline compound is dissolved.
  • the concentration of the alkaline aqueous solution is usually 10% by mass or less. If the concentration of the alkaline aqueous solution is more than 10% by mass, the unexposed area may be dissolved in the developer.
  • alkali-insoluble or hardly soluble in alkali means that 50% or more of the initial film thickness of a film formed only from a polymer remains after development under alkaline development conditions performed when a resist pattern is formed. Refers to nature.
  • An organic solvent can also be added to the alkaline aqueous solution.
  • the use ratio of the organic solvent is preferably 100% by volume or less with respect to the alkaline aqueous solution. If the usage ratio is more than 100% by volume, the developability may be reduced, and the remaining development in the exposed area may increase. Further, an appropriate amount of a surfactant or the like may be added to the alkaline aqueous solution.
  • FIG. 2 is a schematic diagram showing an example of the step (2) in the resist pattern forming method according to the present invention.
  • the first resist pattern formed in the step (1) is baked at a temperature of 120 ° C. or higher, preferably 140 ° C. or higher, and / or radiation irradiation, preferably 300 nm or less.
  • the first resist pattern is insolubilized with respect to the second positive-type radiation-sensitive composition by exposing the first resist pattern to light or heat by exposure to light having a wavelength of One resist pattern 22 is assumed.
  • More specific exposure conditions include a method of irradiating radiation with an exposure dose 2 to 20 times the optimum exposure dose for forming the first resist pattern.
  • a heating condition the method of heating on temperature conditions higher than PEB temperature at the time of forming a 1st resist pattern can be mentioned.
  • examples of the UV cure include a method using a lamp such as an Ar 2 lamp, a KrCl lamp, a Kr 2 lamp, a XeCl lamp, and an Xe 2 lamp (USHIO INC.). These inactivation methods may be performed alone or in combination of two or more.
  • the insolubilized resin composition may be coated.
  • an insolubilized resin composition for example, there is one containing a hydroxyl group-containing resin and an alcohol solvent and having a property of being insolubilized by baking. More specifically, a resin composed of a monomer having an amide bond in the molecule (having an amide group) and a monomer having a hydroxyl group, a monovalent alcohol having 1 to 8 carbon atoms, and if necessary And those containing a crosslinking component.
  • the insolubilized resin composition is applied, baked, and then developed to form a pattern insolubilized with respect to the second positive radiation sensitive composition.
  • inactive to light means that the radiation-sensitive resin composition is not exposed to light by exposure to radiation or the like. That is, the first resist pattern 22 does not become alkali-soluble even when exposed. Further, “inactive to heat” means that the pattern does not disappear by heating during the formation of the second resist pattern using the second positive radiation-sensitive composition.
  • Step (3) 3A to 3C are schematic views showing an example of the step (3) in the resist pattern forming method according to the present invention.
  • step (3) first, as shown in FIG. 3A, a second resist layer 32 is formed on the substrate 1 on which the first resist pattern 22 is formed using the second positive radiation-sensitive composition. Form.
  • radiation irradiation (in the drawing) is performed through a mask 34 having a predetermined pattern in a space portion of the first resist pattern 22 and, optionally, through an immersion exposure liquid 33 such as water. Exposure by the arrow) is performed to form an alkali developing portion 35 in the second resist layer 32.
  • FIG. 3A first, as shown in FIG. 3A, a second resist layer 32 is formed on the substrate 1 on which the first resist pattern 22 is formed using the second positive radiation-sensitive composition. Form.
  • FIG. 3B radiation irradiation (in the drawing) is performed through a mask 34 having a predetermined pattern in a space portion of the first resist pattern 22 and, optionally, through an immersion exposure liquid 33 such
  • a second resist pattern 42 can be formed in the space portion of the substrate 1 on which the first resist pattern 22 is formed.
  • the “space portion of the first resist pattern 22” refers to a portion where the first resist layer 2 has been peeled off due to dissolution of the alkali developing portion 5 during development in the step (1).
  • the second resist layer can be formed by applying the second positive radiation-sensitive composition onto the substrate on which the first resist pattern is formed.
  • the coating method is not particularly limited, and can be performed by an appropriate coating means such as spin coating, cast coating, roll coating or the like.
  • the thickness of the second resist layer is not particularly limited, but is usually 10 to 1000 nm, and preferably 10 to 500 nm.
  • the solvent in the coating film may be volatilized by PB if necessary.
  • the heating conditions for this PB are appropriately selected depending on the blending composition of the second positive radiation sensitive composition, but are usually about 30 to 200 ° C., preferably 50 to 150 ° C.
  • the second positive radiation sensitive composition is a second positive radiation sensitive composition described later.
  • the same solvent may be sufficient as the solvent contained in a 1st positive radiation sensitive composition and a 2nd positive radiation sensitive composition, and a different solvent may be sufficient as it. This is because the first resist pattern is inactivated with respect to heat or light by performing the step (2), so that it is insolubilized with respect to the second positive radiation sensitive composition. Therefore, the second resist layer can be formed without mixing with the first resist pattern.
  • a mask 34 having a predetermined pattern is formed in the space portion of the first resist pattern 22 on the substrate 1 on which the second resist layer 32 is formed. Then, exposure by radiation irradiation is performed to form the alkali developing portion 35 in the second resist layer 32.
  • an immersion exposure liquid 33 such as water or a fluorine-based inert liquid may be optionally passed. Further, the exposure conditions and the like can be said to be the same as the exposure conditions and the like described in the step (1).
  • the second line portion 42 a of the second resist pattern 42 formed in the step (3) is formed in a grid pattern in the first space portion 22 b of the first resist pattern 22.
  • a resist pattern (contact hole pattern 15) having a pattern defined by the first line portion 22a of the insolubilized first resist pattern 22 and the second line portion 42a of the second resist pattern 42 is formed.
  • the second line portion 42 a of the second resist pattern 42 formed in the step (3) is replaced with the first line of the insolubilized first resist pattern 22. It can also be formed on the first line portion 22a so as to intersect the line portion 22a.
  • the resist pattern forming method of the present invention is configured so that the line portion of the first resist pattern and the line portion of the second resist pattern intersect each other. It is preferable to form a pattern.
  • a positive radiation-sensitive composition is produced by the action of an acid generated from an acid generator by exposure to dissociate an acid-dissociable group present in the composition to form a carboxyl group.
  • the exposed portion becomes highly soluble in an alkali developer, and is dissolved and removed by the alkali developer, so that a positive resist pattern can be formed.
  • it is used when forming the first resist layer, and is used when forming the first positive radiation-sensitive composition that is the positive radiation-sensitive composition of the present invention and the second resist layer.
  • the second positive-type radiation-sensitive composition will be described separately.
  • the first positive radiation sensitive composition is a polymer (B) having an acid labile group and a crosslinking group (hereinafter referred to as “polymer (B)”). ), A radiation sensitive acid generator (C) (hereinafter referred to as “acid generator (C)”), and a solvent (D), having an acid labile group,
  • the polymer preferably contains a polymer (A) having no crosslinking group (hereinafter referred to as “polymer (A)”).
  • the first resist pattern is inactive to light or heat by exposure to light having a wavelength of 300 nm or less and / or by heating at a temperature of 140 ° C. or higher. By improving the resistance, the resistance of the first resist pattern to the second resist layer is improved, and it is preferable that the resist pattern remains without being damaged when the second resist pattern is formed.
  • the “acid labile group” referred to in this specification is sometimes called an “acid-dissociable group” and refers to a group that is dissociated by an acid.
  • a polymer insoluble or hardly soluble in an alkali having an acid labile group is dissociated into a carboxyl group by the action of an acid, and becomes a polymer soluble in an alkali.
  • the first positive radiation sensitive composition preferably contains the polymer (A).
  • the 1st resist layer which melt
  • the polymer (A) includes a repeating unit having an acid labile group represented by the general formula (1) (hereinafter referred to as “repeating unit (1)”), and the general formulas (2-1) to (2). -5) and a repeating unit having at least one lactone structure selected from the group consisting of formula (2-6) or a repeating unit represented by formula (2-7) (hereinafter referred to as “repeating unit (2)”) It is preferable to include.
  • R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • R 2 s independently of each other, a linear or branched alkyl group having 1 to 4 carbon atoms, or A monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or any two R 2 's bonded to each other and formed together with the carbon atoms to which they are bonded
  • 20 represents a divalent alicyclic hydrocarbon group of 20 or a derivative thereof
  • the remaining R 2 is a linear or branched alkyl group having 1 to 4 carbon atoms, or a monovalent alicyclic ring having 4 to 20 carbon atoms.
  • the formula hydrocarbon group or its derivative is shown.
  • R 3 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and p represents an integer of 1 to 3.
  • R 4 represents a hydrogen atom or a methoxy group.
  • A represents a single bond or a methylene group, and m represents 0 or 1.
  • B represents an oxygen atom or a methylene group.
  • R 10 represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • R 11 independently of each other, represents a hydrogen atom or a chain hydrocarbon group having 1 to 5 carbon atoms.
  • D represents a single bond, a divalent or trivalent chain hydrocarbon group having 1 to 30 carbon atoms, a divalent or trivalent alicyclic hydrocarbon group having 3 to 30 carbon atoms, or a carbon number of 6 Represents a divalent or trivalent aromatic hydrocarbon group of ⁇ 30.
  • D is trivalent, the carbon atom contained in D and the carbon atom which comprises cyclic carbonate are couple
  • n represents an integer of 2 to 4.
  • examples of the linear or branched alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, i- Examples include propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group and the like.
  • Examples of the monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms include norbornane, tricyclodecane, tetracyclododecane, adamantane, and cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like.
  • examples of the divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms formed by bonding any two R 2 to each other or derivatives thereof include, for example, norbornane, tricyclodecane, tetracyclododecane, A group consisting of an alicyclic ring derived from adamantane, cyclopentane, cyclohexane or the like; a group consisting of these alicyclic rings is, for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group as described above , A group substituted with a linear, branched or cyclic alkyl group having 1 to 4 carbon atoms such as an n-butyl group, a 2-methylpropyl group, a 1-methylpropyl group and a t-butyl group.
  • preferable examples of the group represented by —C (R 2 ) 3 include t-butyl group, 1-n- (1-ethyl-1-methyl) propyl group, 1-n- (1,1-dimethyl) propyl group, 1-n- (1,1-dimethyl) butyl group, 1-n- (1,1-dimethyl) pentyl group, 1- (1,1-diethyl) propyl group, Groups having no alicyclic ring such as 1-n- (1,1-diethyl) butyl group and 1-n- (1,1-diethyl) pentyl group; 1- (1-methyl) cyclopentyl group, 1 -(1-ethyl) cyclopentyl group, 1- (1-n-propyl) cyclopentyl group, 1- (1-i-propyl) cyclopentyl group, 1- (1-methyl) cyclohexyl group, 1- (1-ethyl) Cyclohexyl
  • examples of the substituted or unsubstituted alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, i- Examples include propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group and the like.
  • the chain hydrocarbon group refers to a hydrocarbon group composed of only a chain structure without a cyclic structure in the main chain.
  • an alicyclic hydrocarbon group means the hydrocarbon group which contains only the structure of an alicyclic hydrocarbon in a ring structure, and does not contain an aromatic ring structure.
  • the alicyclic hydrocarbon group does not need to be composed only of the structure of the alicyclic hydrocarbon, and a part thereof may include a chain structure.
  • the aromatic hydrocarbon group means a hydrocarbon group containing an aromatic ring structure in the ring structure.
  • this aromatic hydrocarbon group does not need to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic hydrocarbon structure.
  • specific examples of the structure when the group represented by D is a chain hydrocarbon group include an oxygen atom of (meth) acrylic acid constituting the polymer and a cyclic carbonate structure. Are bonded to each other via a linear alkyl group having 1 to 5 carbon atoms (specifically, general formulas (2-7-1) to (2-7-) to be described later) 6)). These chain hydrocarbon groups may have a substituent (specifically, a repeating unit represented by the general formula (2-7-16) described later).
  • the carbon atom contained in D and the carbon atom forming the cyclic carbonate structure may be bonded to form a ring structure.
  • the cyclic carbonate structure may constitute a part of a bridged ring, a condensed ring, or a spiro ring.
  • a bridged ring or a condensed ring is formed, and when only one carbon atom in the cyclic carbonate is included, a spiro ring Is formed.
  • the repeating unit represented by 17) to (2-7-22) has a condensed ring (5- to 6-membered ring) containing a carbon atom contained in D and two carbon atoms forming a cyclic carbonate structure. It is an example of being formed.
  • the repeating units represented by the general formulas (2-7-10) and (2-7-14) described later are composed of carbon atoms contained in D and one carbon atom forming a cyclic carbonate structure. This is an example in which a spiro ring is formed.
  • the ring structure is, for example, a heterocycle containing a heteroatom such as an oxygen atom (O) or a nitrogen atom (N) (specifically, general formulas (2-7-17) to (2-7-) described later) 22)).
  • the repeating units represented by the general formulas (2-7-8) and (2-7-13) described later include two carbon atoms contained in D and two carbon atoms forming a cyclic carbonate structure. This is an example in which a bridged ring including is formed.
  • Examples of the divalent alicyclic hydrocarbon group include carbon such as 1,3-cyclobutylene group, 1,3-cyclopentylene group, 1,4-cyclohexylene group, 1,5-cyclooctylene group, and the like.
  • Examples of the trivalent alicyclic hydrocarbon group include a group in which one hydrogen atom is eliminated from a monocyclic cycloalkylene group or a polycyclic cycloalkylene group.
  • the structure when the group represented by D is an alicyclic hydrocarbon group, the structure includes an oxygen atom of (meth) acrylic acid constituting the polymer and a cyclic carbonate.
  • a cyclopentylene group specifically, a repeating unit represented by the general formula (2-7-10) described later
  • a norbornylene group specifically, repeating units represented by the following general formulas (2-7-11) and (2-7-12)
  • a substituted tetradecahydrophenanthryl group Specifically, repeating units represented by the general formula (2-7-14) described later
  • the repeating units represented by the general formulas (2-7-11) and (2-7-12) described later include carbon atoms contained in D and two carbon atoms constituting the cyclic carbonate. This is an example in which a condensed ring (4- to 5-membered ring) is formed.
  • the repeating units represented by the general formulas (2-7-10) and (2-7-14) described later are composed of carbon atoms contained in D and one carbon atom constituting the cyclic carbonate. This is an example in which a spiro ring is formed.
  • Examples of the divalent aromatic hydrocarbon group include arylene groups such as a phenylene group, a tolylene group, a naphthylene group, a phenanthrylene group, and an anthrylene group.
  • Examples of the trivalent aromatic hydrocarbon group include a group in which one hydrogen atom is eliminated from an arylene group.
  • Examples of the group represented by D in the general formula (2-7) being an aromatic hydrocarbon group include an oxygen atom of (meth) acrylic acid constituting the polymer and a carbon atom constituting the cyclic carbonate. Are bonded via a benzylene group (specifically, a repeating unit represented by the general formula (2-7-15) described later).
  • the repeating unit represented by the general formula (2-7-15) has a condensed ring (6-membered ring) including a carbon atom contained in D and two carbon atoms forming a cyclic carbonate structure. This is an example.
  • the monomer giving the repeating unit (1) include (meth) acrylic acid 2-methyladamantyl-2-yl ester, (meth) acrylic acid 2-methyl-3-hydroxyadamantyl-2-yl ester, (Meth) acrylic acid 2-ethyladamantyl-2-yl ester, (meth) acrylic acid 2-ethyl-3-hydroxyadamantyl-2-yl ester, (meth) acrylic acid 2-n-propyladamantyl-2-yl ester (Meth) acrylic acid 2-isopropyladamantyl-2-yl ester, (meth) acrylic acid-2-methylbicyclo [2.2.1] hept-2-yl ester, (meth) acrylic acid-2-ethylbicyclo ester [2.2.1] Hept-2-yl ester, (meth) acrylic acid-8-methyltricyclo [5.2.1.0] 2,6 ] decan-8-yl ester, (meth) acrylic acid-8-ethy
  • (meth) acrylic acid refers to both acrylic acid and methacrylic acid.
  • the polymer (A) may contain only one type of repeating unit (1), or may contain two or more types.
  • repeating unit (2) Preferable examples of the monomer that gives the repeating unit (2) include (meth) acrylic acid-5-oxo-4-oxa-tricyclo [4.2.1.0 3,7 ] non-2-yl ester, (Meth) acrylic acid-9-methoxycarbonyl-5-oxo-4-oxa-tricyclo [4.2.1.0 3,7 ] non-2-yl ester, (meth) acrylic acid-5-oxo-4 -Oxa-tricyclo [5.2.1.0 3,8 ] dec-2-yl ester, (meth) acrylic acid-10-methoxycarbonyl-5-oxo-4-oxa-tricyclo [5.2.1.
  • Monomers that give a repeating unit represented by the general formula (2-7) include, for example, Tetrahedron Letters, Vol. 27, no. 32 p. 3741 (1986), Organic Letters, Vol. 4, no. 15 p. 2561 (2002), etc., and can be synthesized by a conventionally known method.
  • repeating unit represented by the general formula (2-7) include repeating units represented by the general formulas (2-7-1) to (2-7-22).
  • R 10 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • the polymer (A) is at least one selected from the group consisting of repeating units represented by the general formulas (2-7-1) to (2-7-6) as the repeating unit (2-7). It is preferable from the viewpoint of improving the solubility in a developer.
  • the polymer (A) may contain only one type of repeating unit (2) or may contain two or more types.
  • the preferable content ratio of each of the above-mentioned repeating units when the total of all the repeating units contained in the polymer (A) is 100 mol% is shown below.
  • the content of the repeating unit (1) is preferably 20 to 90 mol%, more preferably 20 to 80 mol%, still more preferably 20 to 70 mol%.
  • the content ratio of the repeating unit (1) is within this range, it is particularly effective from the viewpoint of both ensuring water repellency after coating and increasing the contact angle with respect to the developer after PEB.
  • the content ratio of the repeating unit (2) is usually 80 mol% or less, preferably 20 to 80 mol%, more preferably 30 to 70 mol%. When the content ratio of the repeating unit (2) is within this range, it is particularly effective from the viewpoint of reducing the difference between the advancing contact angle and the receding contact angle.
  • the polymer (A) may contain one or more repeating units other than the repeating unit (1) and the repeating unit (2) (hereinafter referred to as “other repeating units”).
  • repeating unit (6) examples include a repeating unit represented by the general formula (6) (hereinafter referred to as “repeating unit (6)”) and a repeating unit represented by the general formula (7) (hereinafter referred to as “repeating unit (6)”).
  • Repeat unit (7) examples include a repeating unit represented by the general formula (6) (hereinafter referred to as “repeating unit (6)”) and a repeating unit represented by the general formula (7) (hereinafter referred to as “repeating unit (6)”).
  • Repeat unit (7) examples include a repeating unit represented by the general formula (6) (hereinafter referred to as “repeating unit (6)”) and a repeating unit represented by the general formula (7) (hereinafter referred to as “repeating unit (6)”).
  • Repeat unit (7) examples include a repeating unit represented by the general formula (6) (hereinafter referred to as “repeating unit (6)”) and a repeating unit represented by the general formula (7) (hereinafter referred to as “repe
  • R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • Z represents a single bond or a divalent organic group having 1 to 3 carbon atoms
  • W represents a carbon number of 7 -20 substituted or unsubstituted polycyclic alicyclic hydrocarbon groups.
  • the substituent may be a linear or branched alkyl group having 1 to 10 carbon atoms, a cyclic alkyl group having 4 to 20 carbon atoms, hydroxyl group, A cyano group, a hydroxyalkyl group having 1 to 10 carbon atoms, a carboxyl group, or an oxo group.
  • R 12 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a trifluoromethyl group or a hydroxymethyl group
  • R 13 represents a divalent organic group.
  • Examples of the substituted or unsubstituted polycyclic alicyclic hydrocarbon group having 7 to 20 carbon atoms represented as W in the repeating unit (6) include, for example, bicyclo [2.2.1] represented by the following formula: Heptane (6a), bicyclo [2.2.2] octane (6b), tricyclo [5.2.1.0 2,6 ] decane (6c), tetracyclo [6.2.1.1 3,6 . Hydrocarbon groups derived from cycloalkanes such as 0 2,7 ] dodecane (6d) and tricyclo [3.3.1.1 3,7 ] decane (6e).
  • examples of the substituent include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and 2-methyl.
  • a linear or branched alkyl group having 1 to 10 carbon atoms such as a propyl group, 1-methylpropyl group, t-butyl group, etc., a cyclic group having 4 to 20 carbon atoms such as a cyclopentyl group, a cyclohexyl group or a cyclooctyl group.
  • the substituent is not limited to these alkyl groups, and may be a hydroxyl group, a cyano group, a hydroxyalkyl group having 1 to 10 carbon atoms, a carboxyl group, or an oxo group.
  • examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and an n-butyl group. , 2-methylpropyl group, 1-methylpropyl group, t-butyl group and the like.
  • the divalent organic group represented by R 13 preferably is a divalent hydrocarbon radical, a divalent hydrocarbon group having a chain or cyclic are more preferred. It may be an alkylene glycol group, an alkylene ester group, or the like.
  • divalent organic group examples include propylene groups such as methylene group, ethylene group, 1,3-propylene group, and 1,2-propylene group, tetramethylene group, pentamethylene group, hexamethylene group, and heptamethylene.
  • octamethylene group nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, tridecamethylene group, tetradecamethylene group, pentadecamethylene group, hexadecamethylene group, heptadecamethylene group, octadecamethylene group ,
  • Nonadecamethylene group icosalen group, 1-methyl-1,3-propylene group, 2-methyl-1,3-propylene group, 2-methyl-1,2-propylene group, 1-methyl-1,4- Saturation of butylene, 2-methyl-1,4-butylene, ethylidene, propylidene, 2-propylidene, etc. Jo hydrocarbon group;
  • Cyclobutylene groups such as 1,3-cyclobutylene groups, cyclopentylene groups such as 1,3-cyclopentylene groups, cyclohexylene groups such as 1,4-cyclohexylene groups, 1,5-cyclooctylene groups, etc.
  • a monocyclic hydrocarbon ring group such as a cycloalkylene group having 3 to 10 carbon atoms such as a cyclooctylene group, a norbornylene group such as a 1,4-norbornylene group and a 2,5-norbornylene group, and 1,5-adamantylene
  • a crosslinked cyclic hydrocarbon ring group such as a bicyclic to tetracyclic hydrocarbon ring group having 4 to 30 carbon atoms such as an adamantylene group such as a 2,6-adamantylene group.
  • a hydrocarbon group containing 2,5-norbornylene group, ethylene group, and propylene group are preferable.
  • R 13 contains a divalent aliphatic cyclic hydrocarbon group, a bistrifluoromethyl-hydroxy-methyl group (—C (CF 3 ) 2 OH) and a divalent aliphatic cyclic hydrocarbon group It is preferable to arrange an alkylene group having 1 to 4 carbon atoms as a spacer between these groups.
  • repeating units include, for example, carboxyl group-containing esters having a bridged hydrocarbon skeleton of unsaturated carboxylic acid; (meth) acrylic acid esters having no bridged hydrocarbon skeleton; unsaturated Carboxyl group-containing esters having no bridged hydrocarbon skeleton of carboxylic acid; polyfunctional monomer having a bridged hydrocarbon skeleton; polyfunctional monomer having no bridged hydrocarbon skeleton
  • a repeating unit in which a polymerizable unsaturated bond of (meth) acrylic acid ester having a bridged hydrocarbon skeleton is cleaved is preferable.
  • the polymer (A) may contain only one type of other repeating unit, or may contain two or more types.
  • the polymer (B) is a polymer having an acid labile group and a crosslinking group, and preferably contains a repeating unit described in the polymer (A), and is represented by the general formulas (3-1) and (3-2). It is more preferable that the resin further contains at least one repeating unit represented by (hereinafter referred to as “repeating unit (3)”).
  • the first positive radiation-sensitive composition contains the polymer (B), and in addition to being dissolved in an alkaline developer by the action of an acid, the first resist pattern is heated or exposed. By doing so, it can be insolubilized with respect to the second positive radiation sensitive composition.
  • R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • R 5 represents a methylene group, an ethylene group or a propylene group
  • R 6 represents a group represented by general formula (4) or a group represented by general formula (5).
  • R 7 represents a methylene group or an alkylene group having 2 to 6 carbon atoms
  • R 8 represents a hydrogen atom, a methyl group or an ethyl group.
  • n represents 0 or 1.
  • R 9 independently of one another represents a hydrogen atom or 1 to 10 linear or branched alkyl groups.
  • the content of the polymer (B) is usually 1 to 80 parts by mass, preferably 2 to 50 parts by mass with respect to 100 parts by mass of the polymer (A). If the content is less than 1 part by mass, the second resist layer may not have sufficient performance resistance. On the other hand, if it exceeds 80 parts by mass, resolution failure may occur when the first resist pattern is formed.
  • the positive radiation-sensitive composition of the present invention preferably further contains a polymer (F) containing at least one repeating unit represented by the general formula (10) and the general formula (11). . Since the polymer (F) has a fluorine site in its structure, when it is added as a component constituting the positive radiation sensitive composition, when the resist film is formed with the positive radiation sensitive composition, Due to the oil-repellent characteristics of the polymer (F) in the coating, the distribution tends to be higher on the resist coating surface. Therefore, at the time of immersion exposure, it is possible to suppress the acid generator, the acid diffusion control agent, and the like in the resist film from eluting into the immersion exposure liquid such as water.
  • the receding contact angle between the resist film and the immersion exposure liquid is increased due to the water-repellent characteristics of the polymer (F). Therefore, water droplets derived from the immersion exposure liquid are unlikely to remain on the resist film, and even when scanning exposure is performed at a high speed, the occurrence of defects such as watermarks due to the immersion exposure liquid can be suppressed.
  • R 27 represents a hydrogen atom, a methyl group, or a trifluoromethyl group
  • R 28 is a single bond or a linear, branched or cyclic saturated group having 1 to 20 carbon atoms.
  • X represents a methylene group substituted with a fluorine atom, or a linear or branched fluoroalkylene group having 2 to 20 carbon atoms
  • R 29 represents hydrogen An atom or a monovalent organic group is shown.
  • R 30 represents a hydrogen atom, a methyl group, or a trifluoromethyl group
  • Y represents a linking group
  • R 31 has at least one fluorine atom, and has 1 carbon atom.
  • examples of the linear or branched saturated or unsaturated divalent hydrocarbon group having 1 to 20 carbon atoms include, for example, methyl group, ethyl Group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, hexyl group, heptyl group, octyl group And a divalent hydrocarbon group derived from a linear or branched alkyl group having 1 to 20 carbon atoms such as a group, nonyl group, and decyl group.
  • examples of the cyclic saturated or unsaturated divalent hydrocarbon group include groups derived from alicyclic hydrocarbons and aromatic hydrocarbons having 3 to 20 carbon atoms.
  • Specific examples of the alicyclic hydrocarbon include cyclobutane, cyclopentane, cyclohexane, bicyclo [2.2.1] heptane, bicyclo [2.2.2] octane, and tricyclo [5.2.1.02,6. ] Decane, tricyclo [3.3.1.1 3,7 ] decane, tetracyclo [6.2.1.1 3,6 .
  • cycloalkanes such as 0 2,7 ] dodecane.
  • Specific examples of aromatic hydrocarbons include benzene and naphthalene.
  • the hydrocarbon group includes at least one hydrogen atom in the above-described unsubstituted hydrocarbon group, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group.
  • Straight chain, branched or cyclic alkyl group having 1 to 12 carbon atoms such as 1-methylpropyl group and t-butyl group, hydroxyl group, cyano group, hydroxyalkyl group having 1 to 10 carbon atoms, carboxyl group Or a group substituted by one or more of oxygen atoms or the like.
  • R 28 specific examples of the group represented by R 28 include groups represented by the following structures (a1) to (a27).
  • “*” represents a binding site.
  • the group represented by R 28 is a methylene group, an ethylene group, a 1-methylethylene group, a 2-methylethylene group, or a divalent alicyclic hydrocarbon having 4 to 20 carbon atoms.
  • a group or a group derived therefrom is preferred.
  • the monovalent organic group includes an acid dissociable group or a monovalent hydrocarbon group having 1 to 20 carbon atoms (provided that the acid dissociable group includes Except applicable).
  • An acid-dissociable group is a group that replaces a hydrogen atom of a carboxyl group and is a group that dissociates in the presence of an acid.
  • acid dissociable groups include a t-butoxycarbonyl group, a tetrahydropyranyl group, a tetrahydrofuranyl group, a (thiotetrahydropyranylsulfanyl) methyl group, a (thiotetrahydrofuranylsulfanyl) methyl group, and an alkoxy group.
  • examples thereof include a substituted methyl group and an alkylsulfanyl-substituted methyl group.
  • An example of the alkoxyl group (substituent) in the alkoxy-substituted methyl group is an alkoxyl group having 1 to 4 carbon atoms.
  • alkyl group (substituent) in the alkylsulfanyl-substituted methyl group include alkyl groups having 1 to 4 carbon atoms.
  • examples of the acid dissociable group include a group represented by the general formula (17): —C (R) 3 .
  • three R's are each independently a linear or branched alkyl group having 1 to 4 carbon atoms or a monovalent alicyclic hydrocarbon having 4 to 20 carbon atoms.
  • a divalent alicyclic hydrocarbon having 4 to 20 carbon atoms which is formed together with carbon atoms to which two R's are bonded to each other, each representing a group or a group derived therefrom A group or a group derived therefrom, and the remaining one R is a linear or branched alkyl group having 1 to 4 carbon atoms, or a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or A group derived therefrom is shown.
  • examples of the linear or branched alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an i-propyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms include norbornane, tricyclodecane, tetracyclododecane, adamantane, and cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like. Examples include groups consisting of alicyclic rings derived from alkanes. Further, examples of the group derived from an alicyclic hydrocarbon group include the above-described monovalent alicyclic hydrocarbon groups such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, and an n-butyl group.
  • a group substituted by one or more of linear, branched or cyclic alkyl groups having 1 to 4 carbon atoms such as 2-methylpropyl group, 1-methylpropyl group, t-butyl group, etc.
  • an alicyclic hydrocarbon group composed of an alicyclic ring derived from norbornane, tricyclodecane, tetracyclododecane, adamantane, cyclopentane, cyclohexane, or this alicyclic hydrocarbon group is substituted with the alkyl group. And the like.
  • any two Rs are bonded to each other, and each of them is formed with a carbon atom (carbon atom bonded to an oxygen atom) to which each R is bonded.
  • the hydrogen group include a monocyclic hydrocarbon group such as a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, and a cyclooctylene group, a norbornylene group, a tricyclodecanylene group, and a tetracyclodecanylene group.
  • Such polycyclic hydrocarbon groups and bridged polycyclic hydrocarbon groups such as adamantylene groups.
  • the above-mentioned divalent alicyclic hydrocarbon group is, for example, a methyl group, an ethyl group, Linear, branched or cyclic alkyl groups having 1 to 4 carbon atoms such as n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group and t-butyl group Or a group substituted with one or more of the above.
  • a monocyclic hydrocarbon group such as a cyclopentylene group or a cyclohexylene group, or a group obtained by substituting the divalent alicyclic hydrocarbon group (monocyclic hydrocarbon group) with the alkyl group. Etc. are preferred.
  • preferred examples of the acid dissociable group represented by the general formula (17) include t-butyl group, 1-n- (1-ethyl-1-methyl) propyl group, 1-n- (1, 1-dimethyl) propyl group, 1-n- (1,1-dimethyl) butyl group, 1-n- (1,1-dimethyl) pentyl group, 1- (1,1-diethyl) propyl group, 1-n -(1,1-diethyl) butyl group, 1-n- (1,1-diethyl) pentyl group, 1- (1-methyl) cyclopentyl group, 1- (1-ethyl) cyclopentyl group, 1- (1- n-propyl) cyclopentyl group, 1- (1-i-propyl) cyclopentyl group, 1- (1-methyl) cyclohexyl group, 1- (1-ethyl) cyclohexyl group, 1- (1-n-propyl) cyclohexyl group
  • a group represented by the general formula (17) a t-butoxycarbonyl group, an alkoxy-substituted methyl group, and the like are preferable.
  • An alkoxy-substituted methyl group and a group represented by the general formula (17) Is particularly preferred.
  • examples of the methylene group substituted with a fluorine atom or the linear or branched fluoroalkylene group having 2 to 20 carbon atoms include (X— 1) to (X-8).
  • the repeating unit (10) is preferably a repeating unit derived from the compounds represented by the formulas (10-1) to (10-6).
  • the polymer (F) may contain only one type of repeating unit (10), or may contain two or more types.
  • examples of the linking group represented by A include a single bond, an oxygen atom, a sulfur atom, a carbonyloxy group, an oxycarbonyl group, an amide group, a sulfonylamide group, and a urethane group.
  • examples of the linear or branched alkyl group having 1 to 6 carbon atoms and having at least one fluorine atom include a methyl group, Ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, 2- (2-methylpropyl) group, 1-pentyl group, 2-pentyl group, 3-pentyl group, 1- (2-methylbutyl) group, 1- (3-methylbutyl) group, 2- (2-methylbutyl) group, 2- (3-methylbutyl) group, neopentyl group, 1-hexyl group, 2-hexyl group, 3-hexyl Group, 1- (2-methylpentyl) group, 1- (3-methylpentyl) group, 1- (4-methylpentyl) group, 2- (2-methylpentyl) group, 2- (3-methylpentyl) group Group, 2- (4-methylpentyl) group, 3- Examples include
  • Examples of the monovalent alicyclic hydrocarbon group having at least one fluorine atom and having 4 to 20 carbon atoms or a derivative thereof include, for example, a cyclopentyl group, a cyclopentylmethyl group, and 1- (1-cyclopentylethyl).
  • Group 1- (2-cyclopentylethyl) group, cyclohexyl group, cyclohexylmethyl group, 1- (1-cyclohexylethyl) group, 1- (2-cyclohexylethyl group), cycloheptyl group, cycloheptylmethyl group, 1- Examples thereof include a partially fluorinated group or a perfluoroalkyl group of an alicyclic alkyl group such as a (1-cycloheptylethyl) group, a 1- (2-cycloheptylethyl) group, and a 2-norbornyl group.
  • Preferred monomers that give the repeating unit (11) include, for example, trifluoromethyl (meth) acrylic acid ester, 2,2,2-trifluoroethyl (meth) acrylic acid ester, perfluoroethyl (meth) acrylic acid.
  • the polymer (F) may contain only one type of repeating unit (11), or may contain two or more types.
  • the content of the repeating unit (11) is usually 5 mol% or more, preferably 10 mol% or more, more preferably 15 mol% or more, assuming that all repeating units in the polymer (F) are 100 mol%. . If the content of the repeating unit (11) is less than 5 mol%, a receding contact angle of 70 ° or more may not be achieved, and elution of an acid generator or the like from the resist film may not be suppressed.
  • the ratio of the repeating unit (1) contained in each polymer is preferably 10 to 90 mol%, more preferably 10 to 80 mol%, based on 100 mol% of the total repeating units contained in each polymer. 20 to 70 mol% is more preferable. If the ratio of the repeating unit (1) is less than 10 mol%, the resolution of the alkali developing portion may be deteriorated. On the other hand, if it exceeds 90 mol%, the developability of the alkali developing portion may be deteriorated.
  • the ratio of the repeating unit (2) contained in each polymer is preferably 5 to 70 mol%, more preferably 5 to 65 mol%, based on 100 mol% of the total repeating units contained in each polymer. More preferably, it is 10 to 60 mol%. If the ratio of the repeating unit (2) is 5 mol% or less, the developability as a resist and the process margin may be lowered.
  • the ratio of the repeating unit (3) contained in the polymer (B) is preferably 1 to 30 mol%, preferably 1 to 25 mol%, based on 100 mol% of the total repeating units contained in the polymer (B). It is more preferable. If the ratio of the repeating unit (3) is more than 30 mol%, the alkali developing part may be easily swollen by the alkali developer, or the solubility in the alkali developer may be reduced.
  • the ratio of the repeating unit (7) contained in each polymer is preferably 30 mol% or less and more preferably 25 mol% or less with respect to 100 mol% of the total repeating units contained in each polymer. If the ratio of the repeating unit (7) is more than 30 mol%, a top loss of the resist pattern occurs, and the pattern shape may be deteriorated.
  • the 1st positive radiation sensitive composition may contain 1 type of each polymer, and may contain 2 or more types.
  • Each polymer for example, using a polymerizable unsaturated monomer that gives each repeating unit described above, a radical polymerization initiator such as hydroperoxides, dialkyl peroxides, diacyl peroxides, azo compounds, If necessary, it can be prepared by polymerization in an appropriate solvent in the presence of a chain transfer agent.
  • a radical polymerization initiator such as hydroperoxides, dialkyl peroxides, diacyl peroxides, azo compounds, If necessary, it can be prepared by polymerization in an appropriate solvent in the presence of a chain transfer agent.
  • Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane; cyclohexane, cycloheptane, cyclooctane, decalin, norbornane.
  • Cycloalkanes such as benzene, toluene, xylene, ethylbenzene, cumene, etc .; aromatic hydrocarbons such as chlorobutane, bromohexane, dichloroethane, hexamethylene dibromide, chlorobenzene, etc .; ethyl acetate, acetic acid n- Saturated carboxylic acid esters such as butyl, i-butyl acetate and methyl propionate; ketones such as acetone, 2-butanone, 4-methyl-2-pentanone and 2-heptanone; tetrahydrofuran, dimethoxyethane, diethoxyethane and the like There are ethers. In addition, these solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the weight average molecular weight in terms of polystyrene (hereinafter referred to as “Mw”) by gel permeation chromatography (GPC) of each polymer is not particularly limited, but is preferably 1,000 to 100,000. More preferably, it is 1,000 to 30,000, and still more preferably 1,000 to 20,000. If the Mw is less than 1,000, the heat resistance of the first resist layer may be reduced. On the other hand, if it exceeds 100,000, the developability of the alkali developing portion may be lowered.
  • the ratio (Mw / Mn) of Mw of each polymer to the number average molecular weight (hereinafter referred to as “Mn”) in terms of polystyrene by gel permeation chromatography (GPC) of each polymer is usually 1 To 5, preferably 1 to 3.
  • each polymer may contain a low molecular weight component derived from a monomer used in preparation.
  • the content of this low molecular weight component is preferably 0.1% by mass or less, more preferably 0.07% by mass or less, and still more preferably 100% by mass (in terms of solid content) of each polymer. It is 0.05 mass% or less.
  • the content ratio of the low molecular weight component is 0.1% by mass or less, it is possible to reduce the amount of the eluate in the immersion exposure liquid such as water that has been in contact with the immersion exposure.
  • foreign matters are less likely to occur in the resist during resist storage, and coating unevenness is less likely to occur during resist application, so that the occurrence of defects during resist pattern formation can be sufficiently suppressed.
  • low molecular weight component means a component having an Mw of 500 or less, and specifically includes a monomer, a dimer, a trimer, and an oligomer.
  • the low molecular weight component can be removed by, for example, chemical purification methods such as washing with water and liquid-liquid extraction, or a combination of these chemical purification methods and physical purification methods such as ultrafiltration and centrifugation.
  • the analysis can be performed by high performance liquid chromatography (HPLC).
  • each polymer has few impurities such as halogen and metal. This is because the sensitivity, resolution, process stability, pattern shape and the like of the first resist layer to be formed can be further improved by reducing the impurities.
  • Examples of the purification method for each polymer include chemical purification methods such as washing with water and liquid-liquid extraction, and combinations of these chemical purification methods with physical purification methods such as ultrafiltration and centrifugation.
  • Acid generator (C) An acid generator (C) means what generate
  • an acid dissociable group present in the polymer, specifically a repeating unit ( 1) The acid dissociable group of 1) is dissociated (the protecting group is eliminated).
  • an acid generator (C) what contains the compound (henceforth "acid generator (1)") represented by General formula (9) is preferable.
  • an acid generator (C) may contain 1 type of acid generators (1) individually, and may contain 2 or more types.
  • the acid generator (1) is a compound represented by the general formula (9).
  • R 14 represents a hydrogen atom, a fluorine atom, a hydroxyl group, a linear or branched alkyl group having 1 to 10 carbon atoms, or a linear or branched alkoxyl group having 1 to 10 carbon atoms. Or a linear or branched alkoxycarbonyl group having 2 to 11 carbon atoms.
  • R 15 is a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkoxyl group having 1 to 10 carbon atoms, or a linear or branched group having 1 to 10 carbon atoms. Or a cyclic alkanesulfonyl group.
  • R 16 are independently of each other, linear or branched alkyl group having 1 to 10 carbon atoms, or a phenyl group, or naphthyl group, or two R 16 are formed are bonded to each other A divalent group having 2 to 10 carbon atoms containing a sulfur cation.
  • the phenyl group, the naphthyl group, and the divalent group having 2 to 10 carbon atoms may have a substituent.
  • k represents an integer of 0 to 2
  • r represents an integer of 0 to 10 (preferably an integer of 0 to 2).
  • X ⁇ represents an anion represented by the general formulas (12-1) to (12-4).
  • R 17 represents a fluorine atom or an optionally substituted hydrocarbon group having 1 to 12 carbon atoms.
  • q represents an integer of 1 to 10.
  • R 18 independently of each other represents a linear or branched alkyl group having 1 to 10 carbon atoms substituted with a fluorine atom, or A divalent organic group having 2 to 10 carbon atoms and substituted with a fluorine atom, which is formed by bonding two R 18 to each other.
  • the C 2-10 divalent organic group substituted with a fluorine atom may have a substituent other than a fluorine atom.
  • the acid generator (C) may contain a radiation sensitive acid generator other than the acid generator (1) (hereinafter referred to as “acid generator (2)”).
  • Acid generator (2) examples include onium salt compounds, halogen-containing compounds, diazoketone compounds, sulfone compounds, and sulfonic acid compounds.
  • an acid generator (C) may contain 1 type of acid generators (2) individually, and may contain 2 or more types.
  • the content of the acid generator (C) is usually 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer (A) from the viewpoint of ensuring the sensitivity and developability as a resist, preferably 0.5 to 10 parts by mass. If the content is less than 0.1 parts by mass, the sensitivity and developability tend to be lowered. On the other hand, if it exceeds 20 parts by mass, the transparency to radiation is lowered, and it tends to be difficult to obtain a rectangular resist pattern.
  • the usage-ratio is 80 mass% or less normally with respect to 100 mass% of acid generators (C), Preferably it is 60 mass% or less.
  • Solvent (D) examples include 2-butanone, 2-pentanone, 3-methyl-2-butanone, 2-hexanone, 4-methyl-2-pentanone, 3-methyl-2-pentanone, 3,3-dimethyl.
  • ketones such as 2-butanone, 2-heptanone, 2-octanone; cyclopentanone, 3-methylcyclopentanone, cyclohexanone, 2-methylcyclohexanone, 2,6-dimethylcyclohexanone, isophorone Cyclic ketones such as: propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol mono-n-propyl ether acetate, propylene glycol mono-i-propyl ether acetate, propylene glycol mono-n-butyl ether Propylene glycol monoalkyl ether acetates such as cetate, propylene glycol mono-i-butyl ether acetate, propylene glycol mono-sec-butyl ether acetate, propylene glycol mono-t-butyl ether acetate; methyl 2-hydroxypropionate, 2-hydroxypropionic acid E
  • n-propyl alcohol i-propyl alcohol, n-butyl alcohol, t-butyl alcohol, cyclohexanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether , Diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, propylene glycol monomethyl ether , Propylene glycol monoethyl Ether, propylene glycol mono-n-propyl ether, toluene, xylene, ethyl 2-hydroxy-2-methylpropionate, ethyl eth
  • linear or branched ketones, cyclic ketones, propylene glycol monoalkyl ether acetates, alkyl 2-hydroxypropionate, alkyl 3-alkoxypropionate, ⁇ -butyrolactone and the like are preferable.
  • the first positive radiation sensitive composition may contain one type of solvent (D) or two or more types.
  • the amount of the solvent (D) used is such that the total solid concentration of the first positive radiation-sensitive composition is usually 1 to 50% by mass, preferably 1 to 25% by mass. is there.
  • the first positive radiation-sensitive composition contains various additives such as an acid diffusion controller, an alicyclic additive, a surfactant, and a sensitizer as necessary. Also good.
  • the acid diffusion control agent controls the diffusion phenomenon in the first resist layer of the acid generated from the acid generator (C) by exposure, and suppresses an undesirable chemical reaction in a non-exposed region. It is a component having By containing such an acid diffusion controller, the storage stability of the first positive radiation-sensitive composition is improved. In addition, the resolution as a resist is further improved, and it is possible to suppress changes in the line width of the resist pattern due to fluctuations in the holding time (PED) from exposure to post-exposure heat treatment, and an extremely excellent process stability. Things are obtained.
  • Examples of the acid diffusion controller include amine compounds, amide group-containing compounds, urea compounds, and nitrogen-containing heterocyclic compounds.
  • amine compound Preferred examples of the amine compound include mono (cyclo) alkylamines such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, cyclohexylamine; di-n-butylamine, di- Di (cyclopentylamine) such as -n-pentylamine, di-n-hexylamine, di-n-heptylamine, di-n-octylamine, di-n-nonylamine, di-n-decylamine, cyclohexylmethylamine, dicyclohexylamine ) Alkylamines; triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, tri-n-octylamine
  • amide group-containing compound Preferable examples of the amide group-containing compound include Nt-butoxycarbonyldi-n-octylamine, Nt-butoxycarbonyldi-n-nonylamine, Nt-butoxycarbonyldi-n-decylamine, Nt -Butoxycarbonyldicyclohexylamine, Nt-butoxycarbonyl-1-adamantylamine, Nt-butoxycarbonyl-2-adamantylamine, Nt-butoxycarbonyl-N-methyl-1-adamantylamine, (S)- ( ⁇ )-1- (t-butoxycarbonyl) -2-pyrrolidinemethanol, (R)-(+)-1- (t-butoxycarbonyl) -2-pyrrolidinemethanol, Nt-butoxycarbonyl-4-hydroxy Piperidine, Nt-butoxycarbonylpyrrolidine, Nt-butoxycarbonyl Perazine, Nt-butoxycarbonylpiperidine
  • urea compounds include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tri-n-butyl. There is thiourea.
  • nitrogen-containing heterocyclic compounds Preferable examples of the nitrogen-containing heterocyclic compound include imidazole, 4-methylimidazole, 4-methyl-2-phenylimidazole, benzimidazole, 2-phenylbenzimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2.
  • -Imidazoles such as methyl-1H-imidazole; pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, 2-methyl-4-phenyl Pyridines such as pyridine, nicotine, nicotinic acid, nicotinamide, quinoline, 4-hydroxyquinoline, 8-oxyquinoline, acridine, 2,2 ′: 6 ′, 2 ′′ -terpyridine; piperazine, 1- (2- In addition to piperazines such as hydroxyethyl) piperazine, pyrazine , Pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, piperidine ethanol, 3-piperidino-1,2-propanediol, morpholine, 4-methylmorpholine, 1- (4-morpholinyl) ethanol, 4-acetylmorpholine, 3- (N
  • a photodegradable base that is exposed to light and generates a base can be used.
  • Photodegradable base As an example of the photodegradable base, there is an onium salt compound that is decomposed by exposure and loses acid diffusion controllability. Specific examples of such an onium salt compound include a sulfonium salt compound represented by the general formula (13) and an iodonium salt compound represented by the general formula (14).
  • R 19 to R 21 in the general formula (13) and R 22 to R 23 in the general formula (14) each independently represent a hydrogen atom, an alkyl group, an alkoxyl group, a hydroxyl group, or a halogen atom.
  • Z ⁇ represents OH ⁇ , R 24 —COO ⁇ , R 24 —SO 3 ⁇ (wherein R 24 represents an alkyl group, an aryl group, or an alkaryl group.
  • R 26 represents a linear or branched alkyl group having 1 to 12 carbon atoms, which is substituted or unsubstituted with a fluorine atom, or a linear or branched alkoxyl having 1 to 12 carbon atoms. Represents a group, and n represents 1 or 2.
  • these acid diffusion control agents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the content of the acid diffusion control agent is preferably 0.001 to 15 parts by mass, more preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymer (A). More preferably, it is from 05 to 5 parts by mass. If the content is more than 15 parts by mass, the sensitivity as a resist may decrease. On the other hand, if it is less than 0.001 part by mass, the pattern shape and dimensional fidelity as a resist may be lowered depending on the process conditions.
  • Alicyclic additive is a component that exhibits an action of further improving dry etching resistance, pattern shape, adhesion to a substrate, and the like.
  • alicyclic additives include 1-adamantanecarboxylic acid, 2-adamantanone, 1-adamantanecarboxylic acid t-butyl, 1-adamantanecarboxylic acid t-butoxycarbonylmethyl, 1-adamantanecarboxylic acid ⁇ -butyrolactone ester 1,3-adamantane dicarboxylate di-t-butyl, 1-adamantane acetate t-butyl, 1-adamantane acetate t-butoxycarbonylmethyl, 1,3-adamantane diacetate di-t-butyl, 2,5-dimethyl Adamantane derivatives such as -2,5-di (adamantylcarbonyloxy) hexane; t-butyl deoxycholate, t-butoxycarbonylmethyl deoxycholic acid, 2-ethoxyethyl deoxycholic acid, 2-cyclohexyloxyethyl deoxy
  • surfactant is a component that exhibits an effect of improving coatability, striation, developability, and the like.
  • surfactant examples include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol
  • nonionic surfactants such as distearate, KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • Sensitizer absorbs radiation energy and transmits the energy to the acid generator (C), thereby increasing the amount of acid produced. It has the effect of improving the apparent sensitivity of the positive radiation sensitive composition.
  • Sensitizers include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyl, eosin, rose bengal, pyrenes, anthracenes, phenothiazines, and the like. In addition, these sensitizers may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the first positive radiation sensitive composition may contain additives other than the additives described above (hereinafter referred to as “other additives”).
  • Other additives include alkali-soluble resins, low-molecular alkali-solubility control agents having acid-dissociable protecting groups, antihalation agents, storage stabilizers, antifoaming agents, and the like.
  • a dye or a pigment by including a dye or a pigment, the latent image of the exposed portion can be visualized, and the influence of halation during exposure can be reduced.
  • substrate can be improved by containing an adhesion assistant.
  • the first positive-type radiation-sensitive composition is prepared as a coating liquid by, for example, filtering through a filter having a pore size of about 0.2 ⁇ m after the respective constituent components are dissolved in the solvent (D), and applied onto the substrate. be able to.
  • the second positive-type radiation-sensitive composition used when forming the second resist layer is a polymer (a) (hereinafter referred to as alkali-soluble by the action of an acid). , Described as “polymer (a)”) and a solvent (b).
  • the polymer (a) is an alkali-insoluble or alkali-insoluble polymer that becomes alkali-soluble by the action of an acid.
  • the polymer (a) is not particularly limited as long as it becomes alkali-soluble by the action of an acid, but the repeating unit represented by the general formula (16) (hereinafter referred to as “repeating unit (16)”) and And those containing the repeating unit (1).
  • R 24 represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • R 25 represents a single bond, a methylene group, a linear or branched alkylene group having 2 to 6 carbon atoms, Or an alicyclic alkylene group having 4 to 12 carbon atoms.
  • the monomer giving the repeating unit (16) include (meth) acrylic acid (1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy-3-propyl) ester, (meth) Acrylic acid (1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy-4-butyl) ester, (meth) acrylic acid (1,1,1-trifluoro-2-trifluoromethyl-2 -Hydroxy-5-pentyl) ester, (meth) acrylic acid (1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy-4-pentyl) ester, (meth) acrylic acid 2-((5 -(1 ', 1', 1'-trifluoro-2'-trifluoromethyl-2'-hydroxy) propyl) bicyclo [2.2.1] heptyl) ester, (meth) acrylic acid 3- (8- (1 ', 1', 1'-trifluoro-2'-trifluoromethyl
  • the polymer (a) may contain only one type of repeating unit (16) or may contain two or more types.
  • repeating unit (1) is the same as the repeating unit (1) contained in the polymer (A) described in the first positive radiation-sensitive composition.
  • the resin (a) may contain other repeating units in addition to the repeating unit (16) and the repeating unit (1).
  • the ratio of the repeating unit (16) contained in the polymer (a) is preferably 30 to 90 mol%, preferably 30 to 80 mol% with respect to 100 mol% in total of the repeating units contained in the polymer (a). More preferred is 40 to 80 mol%. If the ratio of the repeating unit (16) is less than 30 mol%, the solubility of the polymer (a) in the solvent (b) may be lowered. On the other hand, if it exceeds 90 mol%, the resolution of the alkali developing part may be deteriorated.
  • the ratio of the repeating unit (1) contained in the polymer (a) is preferably 10 to 70 mol% with respect to 100 mol% in total of the repeating units contained in the polymer (a), and is preferably 10 to 60 mol%. More preferably, it is more preferably 20 to 60 mol%. If the ratio of the repeating unit (1) is less than 10 mol%, the resolution of the alkali developing portion may be deteriorated. On the other hand, if it exceeds 70 mol%, the developability of the alkali developing portion may be deteriorated.
  • the proportion of other repeating units contained in the polymer (a) is preferably 50 mol% or less, preferably 40 mol% or less, with respect to 100 mol% in total of the repeating units contained in the polymer (a). More preferred.
  • the second positive radiation sensitive composition may contain one kind of resin (a) or two or more kinds.
  • the polymer (a) can be prepared in the same manner as the polymer (A) or the polymer (B), for example, using a polymerizable unsaturated monomer that gives each repeating unit.
  • the Mw of the resin (a) is not particularly limited, but is preferably 1,000 to 100,000, more preferably 1,000 to 30,000, and 1,000 to 20,000. Further preferred. When the Mw of the polymer (a) is less than 1,000, when the second resist layer is formed, the heat resistance may be lowered. On the other hand, if it exceeds 100,000, the developability of the alkali developing portion may be lowered.
  • the ratio (Mw / Mn) between Mw and Mn of the polymer (a) is usually 1 to 5, preferably 1 to 3.
  • the polymer (a) may contain a low molecular weight component derived from a monomer used in preparation.
  • the content ratio of the low molecular weight component is preferably 0.1% by mass or less, more preferably 0.07% by mass or less, with respect to 100% by mass (in terms of solid content) of the polymer (a). More preferably, it is 0.05 mass% or less.
  • the content ratio of the low molecular weight component is 0.1% by mass or less, it is possible to reduce the amount of the eluate in the immersion exposure liquid such as water that is in contact with the immersion exposure. Furthermore, foreign matters are not generated in the resist during resist storage, and coating unevenness does not occur during resist application, and the occurrence of defects during resist pattern formation can be sufficiently suppressed.
  • the polymer (a) is preferably one having few impurities such as halogen and metal.
  • impurities such as halogen and metal.
  • Solvent (b) Although it does not restrict
  • the amount of the solvent (b) used is such that the total solid content of the second positive-type radiation-sensitive composition is usually 1 to 50% by mass, preferably 1 to 25% by mass. is there.
  • the second positive radiation sensitive composition usually contains a radiation sensitive acid generator.
  • the radiation-sensitive acid generator can be the same as the acid generator (C) in the first positive radiation-sensitive composition described above.
  • the acid generator (C) contained in the first positive radiation sensitive composition and the radiation sensitive acid generator contained in the second positive radiation sensitive composition are the same. May be good or different.
  • the content of the radiation sensitive acid generator is usually 0.1 to 20 parts by mass, preferably 100 to 20 parts by mass with respect to 100 parts by mass of the polymer (a), from the viewpoint of ensuring sensitivity and developability as a resist. 0.5 to 10 parts by mass. If the content is less than 0.1 parts by mass, the sensitivity and developability tend to be lowered. On the other hand, if it exceeds 20 parts by mass, the transparency to radiation is lowered, and it becomes difficult to obtain a rectangular second resist pattern.
  • a radiation sensitive acid generator contains an acid generator (1) and another acid generator
  • its use ratio is usually 80% by mass or less with respect to 100% by mass of the radiation sensitive acid generator. , Preferably it is 60 mass% or less.
  • the second positive radiation-sensitive composition may contain an additive.
  • this additive the same thing as various additives, such as the acid diffusion control agent mentioned above in the 1st positive radiation sensitive composition, can be said.
  • the content thereof is 0.001 to 15 parts by mass with respect to 100 parts by mass of the polymer (a). Is preferably 0.01 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass. When the content exceeds 15 parts by mass, the sensitivity as a resist may be lowered. On the other hand, if it is less than 0.001 part by mass, the pattern shape and dimensional fidelity as a resist may be lowered depending on the process conditions.
  • the second positive-type radiation-sensitive composition is prepared as a coating liquid by, for example, filtering with a filter having a pore size of about 0.2 ⁇ m after the respective components are dissolved in the solvent (b), and applied onto the substrate. be able to.
  • Retreat contact angle (°) A positive radiation sensitive composition was spin coated on a Si substrate by “CLEAN TRACK ACT8”, pre-baked (PB) at 100 ° C. for 60 seconds, and a film thickness of 100 nm A film was formed. Thereafter, using a “DSA-10” manufactured by KRUS, the receding contact angle was measured according to the following procedure in an environment of room temperature 23 ° C., humidity 45%, and normal pressure. First, the wafer stage position of the product name “DSA-10” (manufactured by KRUS) is adjusted, and the substrate is set on the adjusted stage. Next, water is injected into the needle, and the position of the needle is finely adjusted to an initial position where water droplets can be formed on the set substrate.
  • the contact angle was measured by the following procedure in an environment of room temperature 23 ° C., humidity 45%, and normal pressure. First, the wafer stage position of the product name “DSA-10” (manufactured by KRUS) is adjusted, and the substrate is set on the adjusted stage. Next, a developer is injected into the needle, and the position of the needle is finely adjusted to an initial position where droplets can be formed on the set substrate. Thereafter, the developer is discharged from the needle to form a 25 ⁇ L droplet on the substrate, and the contact angle between the liquid surface and the substrate is measured.
  • polymer (A-1) This polymer (A-1) has Mw of 10,000 and Mw / Mn of 1.5.
  • polymer (B-1) This polymer (B-1) has an Mw of 5000 and an Mw / Mn of 1.6.
  • ethyl methyl ketone 50 g was added to a 500 mL three-necked flask equipped with a thermometer and a dropping funnel, and purged with nitrogen for 30 minutes. Then, it heated so that it might become 80 degreeC, stirring the inside of a flask with a magnetic stirrer. Next, the monomer solution was dropped into the flask over 3 hours using a dropping funnel. After completion of dropping, the mixture was aged for 3 hours and then cooled to 30 ° C. or lower to obtain a polymer solution.
  • the polymer in this propylene glycol monomethyl ether acetate solution is referred to as polymer (F-1).
  • the polymer (F-1) has an Mw of 6500 and an Mw / Mn of 1.7.
  • Polymers (A-2) to (A-7) were prepared in the same manner as in Polymerization Example 1 except that the monomers were used in the formulation shown in Table 1.
  • Table 2 the composition ratio, weight average molecular weight (Mw) and dispersity (Mw / Mn) of the polymers (A-1) to (A-7) by 13 C-NMR are also shown.
  • Polymers (B-2) to (B-8) were prepared in the same manner as in Polymerization Example 8 except that the monomers were used in the formulation shown in Table 1.
  • Table 2 the composition ratio, weight average molecular weight (Mw) and dispersity (Mw / Mn) of the polymers (B-2) to (B-8) by 13 C-NMR are also shown.
  • Polymers (F-2) to (F-14) were prepared in the same manner as in Polymerization Example 16 except that the monomers were used in the formulation shown in Table 1.
  • Table 2 the composition ratio, weight average molecular weight (Mw) and dispersity (Mw / Mn) of the polymers (F-1) to (F-14) by 13 C-NMR are also shown.
  • Example 1 Preparation of first positive radiation-sensitive composition
  • the coating liquid (1) which consists of a 1st positive radiation sensitive composition was prepared by filtering using a membrane filter with a hole diameter of 200 nm.
  • Examples 2 to 18, Comparative Examples 1 to 5 Each coating solution was prepared in the same manner as in Example 1 except that the formulation described in Table 3 was used.
  • the usage-amount of each component is a value with respect to 100 parts of total amounts of a polymer (A) and a polymer (B).
  • Acid generator (C-1) Triphenylsulfonium nonafluoro-n-butanesulfonate
  • Second positive radiation sensitive composition 100 parts of polymer (B-9) represented by the following formula (B-9) as resin (a), 7.0 parts of triphenylsulfonium nonafluoro-n-butanesulfonate as a radiation sensitive acid generator, acid diffusion 2.64 parts of the compound (E-2) as an inhibitor (E) and 2014 parts of propylene glycol monomethyl ether acetate as a solvent (b) were added, and the respective components were mixed to obtain a homogeneous solution. Then, the coating liquid (24) which consists of a 2nd positive radiation sensitive composition was prepared by filtering using a membrane filter with a hole diameter of 200 nm. The polymer (B-9) was prepared in the same manner as in Polymerization Example 8 described above. This polymer (B-9) was a copolymer having Mw of 4800 and Mw / Mn of 1.5.
  • polymer (B-10) represented by the following formula (B-10) as resin (a)
  • 7.0 parts of triphenylsulfonium nonafluoro-n-butanesulfonate as a radiation sensitive acid generator acid diffusion 2.64 parts of the compound (E-2) as an inhibitor (E) and 2014 parts of propylene glycol monomethyl ether acetate as a solvent (b) were added, and the respective components were mixed to obtain a homogeneous solution.
  • the coating liquid (25) which consists of a 2nd positive radiation sensitive composition was prepared by filtering using a membrane filter with a hole diameter of 200 nm.
  • the polymer (B-10) was prepared in the same manner as in Polymerization Example 1 described above. This polymer (B-10) was a copolymer having Mw of 4800 and Mw / Mn of 1.5.
  • Example 19 Formation of Resist Pattern A 12-inch silicon wafer was spin-coated with a lower antireflection film (trade name “ARC29A”, manufactured by Brewer Science) using a trade name “Lithius Pro-i” (manufactured by Tokyo Electron), and then PB ( (205 ° C., 60 seconds) to form a 77 nm thick coating film. After spin-coating the coating liquid (1) (first positive radiation sensitive composition) prepared in Example 1 using the trade name “CLEAN TRACK ACT12” and PB (130 ° C., 60 seconds) The first resist layer having a film thickness of 90 nm was formed by cooling (23 ° C., 30 seconds).
  • the first resist pattern of the obtained evaluation substrate A was subjected to PDB (200 ° C., 60 seconds) on a hot plate with a trade name “CLEAN TRACK ACT12” to obtain an evaluation substrate B.
  • the coating liquid (24) (second positive radiation sensitive composition) on the evaluation substrate B using the trade name “CLEAN TRACK ACT12” and PB (100 ° C., 60 seconds) Then, it was cooled (23 ° C., 30 seconds) to form a second resist layer having a thickness of 90 nm.
  • an ArF immersion exposure apparatus (trade name “S610C”, manufactured by NIKON) under the optical conditions of NA: 1.30 and Dipole, the first resist is passed through a mask having a mask size of 45 nm line / 120 nm pitch. The space portion of the pattern was exposed.
  • Example 20 to 40 Except what was described in Table 4, it carried out similarly to Example 19, and obtained each board
  • the evaluation results of the obtained evaluation substrates C are also shown in Table 4.
  • the 48 nm line / 96 nm pitch is crossed with respect to the first resist pattern exposed through the mask having the mask size of 48 nm line / 96 nm pitch (48 nm 1 L / 1S). It exposed through the mask of the mask size (48nm1L / 1S).
  • the DP pattern is good and the wavelength limit is exceeded without performing large line width fluctuations.
  • a pattern can be formed.
  • a pattern exceeding the wavelength limit can be formed satisfactorily and economically. It can be used very suitably in the field of microfabrication represented by the manufacture of elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 所定の工程として二重露光を行うことを含むレジストパターン形成方法で用いられ、(B)酸不安定基及び架橋基を有する重合体と、(C)感放射線性酸発生剤と、(D)溶剤と、を含有するポジ型感放射線性組成物である。

Description

ポジ型感放射線性組成物及びレジストパターン形成方法
 本発明はポジ型感放射線性組成物及びレジストパターン形成方法に関し、更に詳しくは、二重露光によるパターンニングに用いられ、水等の液浸露光プロセスにも好適に用いられるポジ型感放射線性組成物及びそれを用いたレジストパターン形成方法に関する。
 集積回路素子の製造に代表される微細加工の分野においては、より高い集積度を得るために、最近では0.10μm以下のレベルでの微細加工が可能なリソグラフィ技術が必要とされている。
 今後は更に微細なパターン形成(例えば、線幅が45nm程度の微細なレジストパターン)が要求される。このような微細なパターン形成を達成させるための手段として、露光装置の光源波長の短波長化(ArFエキシマレーザー(波長193nm))や、レンズの開口数(NA)を増大させること等が考えられる。しかしながら、光源波長の短波長化には、新たに高額の露光装置が必要となる。また、レンズの開口数(NA)の増大には、解像度と焦点深度がトレードオフの関係にあるため、解像度を上げても焦点深度が低下するという問題がある。
 最近、このような問題を解決可能とするリソグラフィ技術として、液浸露光(リキッドイマージョンリソグラフィ)法という方法が報告されている。
 しかしながら、液浸露光法による露光技術の進歩も45nmhpまでが限界といわれており、更に微細な加工を必要とする32nmハーフピッチ(hp)世代へ向けた技術開発が行われている。近年、そのようなデバイスの複雑化、高密度化要求に伴い、ダブルパターンニング(DP)、或いは、ダブルエクスポージャー(DE)といった疎ラインパターン或いは孤立トレンチパターンの半周期ずらした重ね合わせによって32nmLSをパターンニングする技術が提案されている(例えば、非特許文献1参照)。
 32nmLSをパターンニングする技術の一例として、1:3のピッチの32nmラインを形成し、エッチングによりSiO等のハードマスク(以下、「HM」ともいう)を加工した後、更に一層目のレジストパターンと半周期ずらした位置で、同様に1:3のピッチの32nmラインを形成し、エッチングにより再度HMを加工することで、最終的に1:1のピッチの32nmラインを形成することが開示されている。
SPIE2006 61531K
 しかしながら、いくつかの提案されたプロセスはあるものの、このような液浸露光プロセスを用いた二重露光によるパターンニングに好適に用いられる具体的な材料の提案は、未だになされていないのが現状である。また、提案されたプロセスにおいて、一層目のレジストパターンを形成した後、二層目のレジストパターンを形成する際に、一層目のレジストパターンが変形する場合があり、ラインの精度に問題を生ずる場合があった。
 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、液浸露光プロセスにも好適に用いることができ、二重露光によるパターンニングにおいて、第一のレジスト層を形成するために好適に用いられるポジ型感放射線性組成物を提供することにある。
 本発明者らは上記課題を達成すべく鋭意検討した結果、所定の構成成分を含有させることによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。
 即ち、本発明によれば、以下に示すポジ型感放射線性組成物及びレジストパターン形成方法が提供される。
 [1]第一のポジ型感放射線性組成物を用いて、基板上に第一のレジストパターンを形成する工程(1)と、前記第一のレジストパターンを、光又は熱に対して不活性化させることにより第二のポジ型感放射線性組成物に対して不溶化させる工程(2)と、前記第二のポジ型感放射線性組成物を用いて、前記第一のレジストパターンが形成された基板上に第二のレジストパターンを形成する工程(3)と、を含むレジストパターン形成方法の前記工程(1)で用いられる、(B)酸不安定基及び架橋基を有する重合体と、(C)感放射線性酸発生剤と、(D)溶剤と、を含有するポジ型感放射線性組成物。
 [2](A)酸不安定基を有し、架橋基を有しない重合体を更に含有する前記[1]に記載のポジ型感放射線性組成物。
 [3]前記重合体(A)及び前記重合体(B)が、下記一般式(1)で表される酸不安定基を有する繰り返し単位と、下記一般式(2-1)~(2-5)及び下記式(2-6)からなる群より選択される少なくとも一つのラクトン構造を有する繰り返し単位、又は下記一般式(2-7)で表される繰り返し単位と、を含む前記[2]に記載のポジ型感放射線性組成物。
Figure JPOXMLDOC01-appb-C000007
 前記一般式(1)中、Rは、水素原子、メチル基又はトリフルオロメチル基を示し、Rは、相互に独立に、炭素数1~4の直鎖状若しくは分岐状のアルキル基、又は炭素数4~20の1価の脂環式炭化水素基を示すか、或いは、いずれか二つのRが相互に結合して、それぞれが結合している炭素原子と共に形成される炭素数4~20の2価の脂環式炭化水素基又はその誘導体を示し、残りのRが炭素数1~4の直鎖状若しくは分岐状のアルキル基、又は炭素数4~20の1価の脂環式炭化水素基若しくはその誘導体を示す。
Figure JPOXMLDOC01-appb-C000008
 前記一般式(2-1)中、Rは、水素原子又は炭素数1~4の置換若しくは非置換のアルキル基を示し、pは、1~3の整数を示す。前記一般式(2-4)及び(2-5)中、Rは、水素原子又はメトキシ基を示す。前記一般式(2-2)及び(2-3)中、Aは、単結合又はメチレン基を示し、mは、0又は1を示す。前記一般式(2-3)及び(2-5)中、Bは、酸素原子又はメチレン基を示す。
Figure JPOXMLDOC01-appb-C000009
 前記一般式(2-7)中、R10は、水素原子、メチル基又はトリフルオロメチル基を示し、R11は、相互に独立に、水素原子、又は炭素数1~5の鎖状炭化水素基を示し、Dは、単結合、炭素数1~30の2価若しくは3価の鎖状炭化水素基、炭素数3~30の2価若しくは3価の脂環式炭化水素基、又は炭素数6~30の2価若しくは3価の芳香族炭化水素基を示す。但し、Dが3価の場合、Dに含まれる炭素原子と環状炭酸エステルを構成する炭素原子とが結合されて、環構造が形成される。nは2~4の整数を示す。
 [4]前記重合体(B)が、下記一般式(3-1)及び(3-2)の少なくともいずれかで表される繰り返し単位を含む前記[1]~[3]のいずれかに記載のポジ型感放射線性組成物。
Figure JPOXMLDOC01-appb-C000010
 前記一般式(3-1)及び(3-2)中、Rは、水素原子、メチル基又はトリフルオロメチル基を示す。前記一般式(3-1)中、Rは、メチレン基、エチレン基又はプロピレン基を示し、Rは、下記一般式(4)で表される基又は下記一般式(5)で表される基を示す。前記一般式(3-2)中、Rは、メチレン基又は炭素数2~6のアルキレン基を示し、Rは、水素原子、メチル基又はエチル基を示す。nは、0又は1を示す。 
Figure JPOXMLDOC01-appb-C000011
 前記一般式(4)及び(5)中、Rは、相互に独立に、水素原子又は1~10の直鎖状若しくは分岐状のアルキル基を示す。
 [5]前記重合体(B)に含まれる、前記一般式(3-1)又は(3-2)で表される繰り返し単位の割合が、前記重合体(B)に含まれる繰り返し単位の合計100mol%に対して、1~30mol%である前記[4]に記載のポジ型感放射線性組成物。
 [6](F)下記一般式(10)及び下記一般式(11)で表される少なくともいずれかの繰り返し単位を含む重合体を更に含有する前記[1]~[5]のいずれかに記載のポジ型感放射線性組成物。
Figure JPOXMLDOC01-appb-C000012
 前記一般式(10)中、R27は、水素原子、メチル基、又はトリフルオロメチル基を示し、R28は、単結合、又は炭素数1~20の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の2価の炭化水素基を示し、Xは、フッ素原子で置換されたメチレン基、又は炭素数2~20の直鎖状若しくは分岐状のフルオロアルキレン基を示し、R29は、水素原子又は1価の有機基を示す。前記一般式(11)中、R30は、水素原子、メチル基、又はトリフルオロメチル基を示し、Yは、連結基を示し、R31は、少なくとも一つ以上のフッ素原子を有する、炭素数1~6の直鎖状若しくは分岐状のアルキル基又は炭素数4~20の1価の脂環式炭化水素基若しくはその誘導体を示す。
 [7]前記重合体(F)の含有量が、前記重合体(A)及び(B)の合計100質量部に対して、0.1~20質量部である前記[6]に記載のポジ型感放射線性組成物。
 [8]前記[1]~[7]のいずれかに記載のポジ型感放射線性組成物を用いて、基板上に第一のレジストパターンを形成する工程(1)と、前記第一のレジストパターンを、光又は熱に対して不活性化させることにより第二のポジ型感放射線性組成物に対して不溶化させる工程(2)と、前記第二のポジ型感放射線性組成物を用いて、前記第一のレジストパターンが形成された基板上に第二のレジストパターンを形成する工程(3)と、を含むレジストパターン形成方法。
 [9]前記第一のレジストパターンが、ライン部分及びスペース部分を有し、前記第二のレジストパターンが、ライン部分及びスペース部分を有し、前記第一のレジストパターンの前記ライン部分と、前記第二のレジストパターンの前記ライン部分とが相互に交差するように、前記第二のレジストパターンを形成する前記[8]に記載のレジストパターン形成方法。
 本発明のポジ型感放射線性組成物は、液浸露光プロセスにも好適に用いることができ、二重露光によるパターンニングにおいて、第一のレジスト層を形成するために好適に用いられるという効果を奏するものである。
 また、本発明のレジストパターン形成方法によれば、二重露光によるパターンニングにおいて、第二のレジストパターンを形成するための露光の際に、第一のレジストパターンが感光してアルカリ可溶性となることがなく、第一のレジストパターンを保持したまま第二のレジストパターンを形成することができ、更には第一のレジストパターンの線幅変動を抑制することができ、液浸露光プロセスにも好適に採用されうるという効果を奏する。
本発明に係るレジストパターン形成方法の工程(1)における、基板上に第一のレジスト層を形成した後の状態の一例を示す模式図である。 本発明に係るレジストパターン形成方法の工程(1)における、第一のレジスト層を露光する状態の一例を示す模式図である。 本発明に係るレジストパターン形成方法の工程(1)における、第一のレジストパターンを形成した後の状態の一例を示す模式図である。 本発明に係るレジストパターン形成方法における、工程(2)の一例を示す模式図である。 本発明に係るレジストパターン形成方法の工程(3)における、基板上に第二のレジスト層を形成した後の状態の一例を示す模式図である。 本発明に係るレジストパターン形成方法の工程(3)における、第二のレジスト層を露光する状態の一例を示す模式図である。 本発明に係るレジストパターン形成方法の工程(3)における、第二のレジストパターンを形成した後の状態の一例を示す模式図である。 本発明に係るレジストパターン形成方法における、第二のレジストパターンのライン部分を形成した後の状態の一例を模式的に示す上面図である。 本発明に係るレジストパターン形成方法における、第二のレジストパターンのライン部分を形成した後の状態の他の例を模式的に示す上面図である。 本発明に係るレジストパターン形成方法における、第二のレジストパターンのライン部分を形成した後の状態の他の例を模式的に示す側面図である。
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。
I レジストパターン形成方法
 本発明のレジストパターン形成方法は、工程(1)~(3)を含む方法である。工程(1)~(3)を含む本発明のレジストパターン形成方法の一実施形態について図面を用いて説明する。なお、本明細書中、「ラインパターン」とは、レジストパターンが、ライン部分とスペース部分とを有するライン・アンド・スペースパターンをいう(以下、「LS」ともいう)。
1 工程(1)
 図1A~Cは、本発明に係るレジストパターン形成方法における、工程(1)の一例を示す模式図である。工程(1)では、先ず、図1Aに示すように、第一のポジ型感放射線性組成物を用いて、基板1上に第一のレジスト層2を形成する。次に、図1Bに示すように、所用の領域に所定パターンのマスク4を介し、任意に、水等の液浸露光用液体3を介して、放射線の照射(図の矢印)による露光を行い、第一のレジスト層2にアルカリ現像部5を形成する。その後、現像することにより、図1Cに示すように、基板1上にライン部分14及びスペース部分13を有する第一のレジストパターン12(1L3S:1ラインに対して3ライン分のスペース)を形成することができる。
(1) 第一のレジスト層の形成
 第一のレジスト層2は、第一のポジ型感放射線性組成物を基板1上に塗布することで形成することができる。塗布する方法は、特に限定されるものではなく、回転塗布、流延塗布、ロール塗布等の適宜の塗布手段によって行うことができる。なお、形成される第一のレジスト層2の厚さは特に限定されるものではないが、通常、10~1000nmであり、10~500nmであることが好ましい。
 また、第一のポジ型感放射線性組成物を塗布した後、必要に応じて、プレベーク(以下、「PB」と記載する)することによって塗膜中の溶剤を揮発させても良い。PBの加熱条件は、第一のポジ型感放射線性組成物の配合組成によって適宜選択されるが、通常、30~200℃程度であり、50~150℃であることが好ましい。
 更に、環境雰囲気中に含まれる塩基性不純物等の影響を防止するために、例えば、特開平5-188598号公報等に開示されているように、第一のレジスト層上に保護膜を設けることもできる。また、第一のレジスト層からの酸発生剤等の流出を防止するために、例えば、特開2005-352384号公報等に開示されているように、第一のレジスト層上に液浸用保護膜を設けることもできる。なお、これらの技術は併用することができる。
(i) 第一のポジ型感放射線性組成物
 第一のポジ型感放射線性組成物は、後述する本発明のポジ型感放射線性組成物である。
(ii) 基板
 基板としては、特に限定されるものではなく、例えば、シリコンウェハ、アルミニウムで被覆されたウェハ等の従来公知の基板を使用することができる。また、第一のポジ型感放射線性組成物の潜在能力を最大限に引き出すために、例えば、特公平6-12452号公報や特開昭59-93448号公報等に開示されているように、使用される基板上に有機系或いは無機系の反射防止膜を形成しておくこともできる。
(2) 露光
 図1Bに示すように、第一のレジスト層2の所用領域に、所定パターンのマスク4を介して、放射線の照射による露光を行い、第一のレジスト層2にアルカリ現像部5を形成する。なお、露光の際に、任意に水やフッ素系不活性液体等の液浸露光用液体3を介しても良い。
 露光に使用される放射線としては、第一のポジ型感放射線性組成物に含有される感放射線性酸発生剤(C)の種類に応じて、可視光線、紫外線、遠紫外線、X線、荷電粒子線等から適宜選定される。これらの中でも、ArFエキシマレーザー(波長193nm)やKrFエキシマレーザー(波長248nm)で代表される遠紫外線が好ましく、ArFエキシマレーザー(波長193nm)による遠紫外線が特に好ましい。
 また、露光量等の露光条件は、第一のポジ型感放射線性組成物の配合組成や添加剤の種類等に応じて適宜選定される。
 更に、露光後に加熱処理(以下、「PEB」と記載する)を行うことが好ましい。PEBを行うことにより、第一のポジ型感放射線性組成物中の酸解離性基の解離反応を円滑に進行させることができる。PEBの加熱条件は、第一のポジ型感放射線性組成物の配合組成によって適宜選択されるが、通常、30~200℃であり、50~170℃であることが好ましい。
(3) 第一のレジストパターンの形成
 第一のレジスト層を現像液で現像することにより、アルカリ現像部が溶解して、図1Cに示すような、ライン部分14及びスペース部分13を有するポジ型の第一のレジストパターン12を形成することができる。なお、現像液で現像した後は、一般に、水で洗浄し、乾燥させる。
 現像液の好適例としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ性水溶液がある。
 アルカリ性水溶液の濃度は、通常、10質量%以下である。アルカリ性水溶液の濃度が10質量%超であると、非露光部も現像液に溶解するおそれがある。なお、本願における「アルカリ不溶性又はアルカリ難溶性」とは、レジストパターンを形成する際に行われるアルカリ現像条件下で、重合体のみから形成した被膜の初期膜厚の50%以上が現像後に残存する性質をいう。
 また、アルカリ性水溶液には、有機溶媒を添加することもできる。有機溶媒の使用割合は、アルカリ性水溶液に対して、100容量%以下であることが好ましい。使用割合が100容量%超であると、現像性が低下して、露光部の現像残りが多くなる場合がある。更に、アルカリ性水溶液には、界面活性剤等を適量添加しても良い。
2 工程(2)
 図2は、本発明に係るレジストパターン形成方法における、工程(2)の一例を示す模式図である。図2に示すように、工程(1)で形成した第一のレジストパターンに対して、120℃以上、好ましくは140℃以上の温度でのベーク、及び/又は、放射線の照射、好ましくは300nm以下の波長の光の暴露により(図の矢印)、第一のレジストパターンを、光又は熱に対して不活性化させることにより、第二のポジ型感放射線性組成物に対して不溶化された第一のレジストパターン22とする。
 より具体的な暴露条件として、第一のレジストパターンを形成するための最適露光量の2~20倍の露光量で放射線を照射する方法を挙げることができる。また、加熱条件としては、第一のレジストパターンを形成する際のPEB温度よりも高い温度条件下で加熱する方法を挙げることができる。更に、UVキュアとしては、Arランプ、KrClランプ、Krランプ、XeClランプ、Xeランプ(ウシオ電機社製)等のランプを使用する方法等を挙げることができる。なお、これらの不活性化方法は1種のみを行っても良く、2種以上行っても良い。
 また、第一のレジストパターンを不活性化させた後、不溶化樹脂組成物をコーティングしても良い。不溶化樹脂組成物としては、例えば、水酸基を有する樹脂とアルコール溶剤を含有し、ベークにより不溶化する性質を有するものがある。より具体的には、分子内にアミド結合を有する(アミド基を有する)単量体と水酸基を有する単量体から構成される樹脂、炭素数1~8の1価のアルコール、及び必要に応じて架橋成分を含有するものを挙げることができる。不溶化樹脂組成物を塗布し、ベークした後、現像することにより、第二のポジ型感放射線性組成物に対して不溶化されたパターンを形成することができる。
 なお、本明細書中、「光に対して不活性」とは、放射線等の照射による露光によって、感放射線性樹脂組成物が感光されないことをいう。即ち、第一のレジストパターン22は、露光されてもアルカリ可溶性にならないことをいう。また、「熱に対して不活性」とは、第二のポジ型感放射線性組成物を用いた第二のレジストパターンの形成時の加熱によりパターンが消失しないことをいう。
3 工程(3)
 図3A~図3Cは、本発明に係るレジストパターン形成方法における、工程(3)の一例を示す模式図である。工程(3)では、先ず、図3Aに示すように、第二のポジ型感放射線性組成物を用いて第一のレジストパターン22が形成された基板1上に、第二のレジスト層32を形成する。次に、図3Bに示すように、第一のレジストパターン22のスペース部分に所定パターンのマスク34を介し、任意に、水等の液浸露光用液体33を介して、放射線の照射(図の矢印)による露光を行い、第二のレジスト層32にアルカリ現像部35を形成する。最後に、図3Cに示すように、現像することにより、第一のレジストパターン22が形成された基板1のスペース部分に、第二のレジストパターン42を形成することができる。なお、「第一のレジストパターン22のスペース部分」とは、工程(1)の現像時にアルカリ現像部5が溶解することで、第一のレジスト層2が剥離された部分をいう。
(1) 第二のレジスト層の形成
 第二のレジスト層は、第二のポジ型感放射線性組成物を第一のレジストパターンが形成された基板上に塗布することで形成することができる。塗布する方法は、特に限定されるものではなく、回転塗布、流延塗布、ロール塗布等の適宜の塗布手段によって行うことができる。なお、第二のレジスト層の厚さは特に限定されないが、通常、10~1000nmであり、10~500nmであることが好ましい。
 また、第二のポジ型感放射線性組成物を塗布した後、必要に応じて、PBすることによって塗膜中の溶剤を揮発させても良い。このPBの加熱条件は、第二のポジ型感放射線性組成物の配合組成によって適宜選択されるが、通常、30~200℃程度であり、好ましくは50~150℃である。
 第二のポジ型感放射線性組成物は、後述する第二のポジ型感放射線性組成物である。なお、第一のポジ型感放射線性組成物と第二のポジ型感放射線性組成物とに含有される溶剤は、同じ溶剤であっても良く、異なる溶剤であっても良い。これは、工程(2)を行うことで、第一のレジストパターンが、熱又は光に対して不活性化されることで、第二のポジ型感放射線性組成物に対して不溶化されているために、第一のレジストパターンとミキシングすることなく第二のレジスト層を形成することができるからである。
(2) 露光
 次いで、この工程(3)では、図3Bに示すように、第二のレジスト層32が形成された基板1上の第一のレジストパターン22のスペース部分に、所定パターンのマスク34を介して、放射線の照射による露光を行い、第二のレジスト層32にアルカリ現像部35を形成する。なお、露光の際に、任意に水やフッ素系不活性液体等の液浸露光用液体33を介しても良い。また、露光条件等は、工程(1)で前述した露光条件等と同様のことがいえる。
(3) 第二のレジストパターンの形成
 第二のレジスト層を現像液で現像することにより、アルカリ現像部が溶解して、図3Cに示すような、第一のレジストパターン22と第二のレジストパターンが交互に並んだ1L1Sのレジストパターンを形成することができる。なお、現像液で現像した後は、一般に、水で洗浄し、乾燥させる。また、現像方法については、工程(1)で前述した現像方法と同様のことがいえる。
 また、例えば、図4に示すように、工程(3)で形成される第二のレジストパターン42の第二のライン部分42aを、第一のレジストパターン22の第一のスペース部分22bに碁盤状に形成すれば、不溶化された第一のレジストパターン22の第一のライン部分22aと、第二のレジストパターン42の第二のライン部分42aによって区画されたパターンを有するレジストパターン(コンタクトホールパターン15)を形成することもできる。
 更に、例えば、図5及び図6に示すように、工程(3)で形成される第二のレジストパターン42の第二のライン部分42aを、不溶化された第一のレジストパターン22の第一のライン部分22aと交差させるように第一のライン部分22a上に形成することもできる。
 本発明のレジストパターン形成方法は、図4~図6に示すように、第一のレジストパターンのライン部分と、第二のレジストパターンのライン部分とが相互に交差するように、第二のレジストパターンを形成することが好ましい。
II ポジ型感放射線性組成物
 ポジ型感放射線性組成物は、露光により酸発生剤から発生した酸の作用によって、組成物中に存する酸解離性基が解離してカルボキシル基を生じ、その結果、露光部がアルカリ現像液に対して溶解性が高くなり、アルカリ現像液によって溶解、除去され、ポジ型のレジストパターンを形成することができるものである。以下、第一のレジスト層を形成する際に使用され、本発明のポジ型感放射線性組成物である第一のポジ型感放射線性組成物と、第二のレジスト層を形成する際に使用される第二のポジ型感放射線性組成物について別途記載する。
1 第一のポジ型感放射線性組成物
 第一のポジ型感放射線性組成物は、酸不安定基及び架橋基を有する重合体(B)(以下、「重合体(B)」と記載する)と、感放射線性酸発生剤(C)(以下、「酸発生剤(C)」と記載する)と、溶剤(D)と、を含有するものであり、酸不安定基を有し、架橋基を有しない重合体(A)(以下、「重合体(A)」と記載する)を含有するものであることが好ましい。また、第一のレジストパターンを形成した後に、300nm以下の波長の光の暴露により、及び/又は、140℃以上の温度での加熱により、第一のレジストパターンを光又は熱に対して不活性化させることにより、第一のレジストパターンの第二のレジスト層に対する耐性を向上させて、第二のレジストパターン形成時にダメージを受けることなく残存するものであることが好ましい。
 なお、本明細書にいう「酸不安定基」とは、「酸解離性基」と呼ばれる場合もあり、酸によって解離する基をいう。酸不安定基を有するアルカリに不溶又は難溶の重合体が、酸の作用により、解離してカルボキシル基となり、アルカリに可溶の重合体となる。
(1) 重合体(A)
 第一のポジ型感放射線性組成物は、重合体(A)を含有することが好ましい。重合体(A)を含有することで、酸の作用によりアルカリ現像液に対して溶解する第一のレジスト層を形成することができる。
 重合体(A)は、一般式(1)で表される酸不安定基を有する繰り返し単位(以下、「繰り返し単位(1)」と記載する)と、一般式(2-1)~(2-5)及び式(2-6)からなる群より選択される少なくとも一つのラクトン構造を有する繰り返し単位、又は一般式(2-7)で表される繰り返し単位(以下、「繰り返し単位(2)」と記載する)と、を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000013
 一般式(1)中、Rは、水素原子、メチル基又はトリフルオロメチル基を示し、Rは、相互に独立に、炭素数1~4の直鎖状若しくは分岐状のアルキル基、又は炭素数4~20の1価の脂環式炭化水素基を示すか、或いは、いずれか二つのRが相互に結合して、それぞれが結合している炭素原子と共に形成される炭素数4~20の2価の脂環式炭化水素基又はその誘導体を示し、残りのRが炭素数1~4の直鎖状若しくは分岐状のアルキル基、又は炭素数4~20の1価の脂環式炭化水素基若しくはその誘導体を示す。
Figure JPOXMLDOC01-appb-C000014
 一般式(2-1)中、Rは、水素原子又は炭素数1~4の置換若しくは非置換のアルキル基を示し、pは、1~3の整数を示す。一般式(2-4)及び(2-5)中、Rは、水素原子又はメトキシ基を示す。一般式(2-2)及び(2-3)中、Aは、単結合又はメチレン基を示し、mは、0又は1を示す。一般式(2-3)及び(2-5)中、Bは、酸素原子又はメチレン基を示す。
Figure JPOXMLDOC01-appb-C000015
 一般式(2-7)中、R10は、水素原子、メチル基又はトリフルオロメチル基を示し、R11は、相互に独立に、水素原子、又は炭素数1~5の鎖状炭化水素基を示し、Dは、単結合、炭素数1~30の2価若しくは3価の鎖状炭化水素基、炭素数3~30の2価若しくは3価の脂環式炭化水素基、又は炭素数6~30の2価若しくは3価の芳香族炭化水素基を示す。但し、Dが3価の場合、Dに含まれる炭素原子と環状炭酸エステルを構成する炭素原子とが結合されて、環構造が形成される。nは2~4の整数を示す。
 一般式(1)中、Rとして表される基のうち、炭素数1~4の直鎖状又は分岐状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等がある。
 また、炭素数4~20の1価の脂環式炭化水素基としては、例えば、ノルボルナン、トリシクロデカン、テトラシクロドデカン、アダマンタンや、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等のシクロアルカン類等に由来する脂環族環からなる基;これらの脂環族環からなる基を、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の炭素数1~4の直鎖状、分岐状又は環状のアルキル基で置換した基等がある。
 更に、いずれか二つのRが相互に結合して形成される炭素数4~20の2価の脂環式炭化水素基又はその誘導体としては、例えば、ノルボルナン、トリシクロデカン、テトラシクロドデカン、アダマンタン、シクロペンタン、シクロヘキサン等に由来する脂環族環からなる基;これらの脂環族環からなる基を前記と同様に、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の炭素数1~4の直鎖状、分岐状又は環状のアルキル基で置換した基等がある。
 一般式(1)中、-C(Rとして表される基の好適例としては、t-ブチル基、1-n-(1-エチル-1-メチル)プロピル基、1-n-(1,1-ジメチル)プロピル基、1-n-(1,1-ジメチル)ブチル基、1-n-(1,1-ジメチル)ペンチル基、1-(1,1-ジエチル)プロピル基、1-n-(1,1-ジエチル)ブチル基、1-n-(1,1-ジエチル)ペンチル基等の脂環族環を有さない基;1-(1-メチル)シクロペンチル基、1-(1-エチル)シクロペンチル基、1-(1-n-プロピル)シクロペンチル基、1-(1-i-プロピル)シクロペンチル基、1-(1-メチル)シクロヘキシル基、1-(1-エチル)シクロヘキシル基、1-(1-n-プロピル)シクロヘキシル基、1-(1-i-プロピル)シクロヘキシル基、1-(1-メチル-1-(2-ノルボルニル))エチル基、1-(1-メチル-1-(2-テトラシクロデカニル))エチル基、1-(1-メチル-1-(1-アダマンチル))エチル基、2-(2-メチル)ノルボルニル基、2-(2-エチル)ノルボルニル基、2-(2-n-プロピル)ノルボルニル基、2-(2-i-プロピル)ノルボルニル基、2-(2-メチル)テトラシクロドデカニル基、2-(2-エチル)テトラシクロドデカニル基、2-(2-n-プロピル)テトラシクロドデカニル基、2-(2-i-プロピル)テトラシクロドデカニル基、1-(1-メチル)アダマンチル基、1-(1-エチル)アダマンチル基、1-(1-n-プロピル)アダマンチル基、1-(1-i-プロピル)アダマンチル基等の脂環族環を有する基;これらの脂環族環を有する基を、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の炭素数1~10の直鎖状又は分岐状のアルキル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の炭素数4~20の環状のアルキル基で置換した基等がある。
 一般式(2-1)中、Rとして表される基のうち、置換又は非置換の炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等がある。
 一般式(2-7)中、nは2~4の整数を示す。即ち、環状カーボネート構造は、n=2(エチレン基)の場合は5員環構造、n=3(プロピレン基)の場合は6員環構造、n=4(ブチレン基)の場合は7員環構造となる。
 一般式(2-7)中、Dとして表される基が単結合の場合、重合体を構成する(メタ)アクリル酸の酸素原子と、環状カーボネート構造を形成する炭素原子と、が直接結合されることになる。
 一般式(2-7)中、鎖状炭化水素基とは、主鎖に環状構造を含まず、鎖状構造のみで構成された炭化水素基をいう。また、脂環式炭化水素基とは、環構造中に、脂環式炭化水素の構造のみを含み、芳香環構造を含まない炭化水素基をいう。但し、この脂環式炭化水素基は脂環式炭化水素の構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。更に、芳香族炭化水素基とは、環構造中に芳香環構造を含む炭化水素基をいう。但し、この芳香族炭化水素基は芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環式炭化水素の構造を含んでいてもよい。
 一般式(2-7)中、Dとして表される基が鎖状炭化水素基である場合の構造の具体例としては、重合体を構成する(メタ)アクリル酸の酸素原子と、環状カーボネート構造を形成する炭素原子とが、炭素数1~5の直鎖状アルキル基を介して結合されている構造(具体的には、後述する一般式(2-7-1)~(2-7-6)で表される繰り返し単位)を挙げることができる。なお、これらの鎖状炭化水素基は、置換基を有するもの(具体的には、後述する一般式(2-7-16)で表される繰り返し単位)であってもよい。
 一般式(2-7)中、Dに含まれる炭素原子と、環状カーボネート構造を形成する炭素原子と、が結合して、環構造が形成されていてもよい。換言すれば、環状カーボネート構造が、有橋環、縮合環又はスピロ環の一部を構成していてもよい。例えば、環構造に環状カーボネート構造中の2つの炭素原子が含まれる場合には、有橋環又は縮合環が形成され、環状炭酸エステル中の1つの炭素原子のみが含まれる場合には、スピロ環が形成される。後述する一般式(2-7-7)、(2-7-9)、(2-7-11)、(2-7-12)、(2-7-15)、及び(2-7-17)~(2-7-22)で表される繰り返し単位は、Dに含まれる炭素原子と、環状カーボネート構造を形成する2つの炭素原子と、を含む縮合環(5~6員環)が形成されている例である。一方、後述する一般式(2-7-10)及び(2-7-14)で表される繰り返し単位は、Dに含まれる炭素原子と、環状カーボネート構造を形成する1つの炭素原子と、によってスピロ環が形成されている例である。なお、環構造は、例えば、酸素原子(O)や窒素原子(N)等のヘテロ原子を含むヘテロ環(具体的には、後述する一般式(2-7-17)~(2-7-22)で表される繰り返し単位)であってもよい。他方、後述する一般式(2-7-8)及び(2-7-13)で表される繰り返し単位は、Dに含まれる2つの炭素原子と、環状カーボネート構造を形成する2つの炭素原子と、を含む有橋環が形成されている例である。
 2価の脂環式炭化水素基としては、例えば、1,3-シクロブチレン基、1,3-シクロペンチレン基、1,4-シクロヘキシレン基、1,5-シクロオクチレン基等の炭素数3~10の単環型シクロアルキレン基;1,4-ノルボルニレン基、2,5-ノルボルニレン基、1,5-アダマンチレン基、2,6-アダマンチレン基等の多環型シクロアルキレン基等がある。また、3価の脂環式炭化水素基としては、単環型シクロアルキレン基や多環型シクロアルキレン基から水素原子を1個脱離した基等がある。
 一般式(2-7)中、Dとして表される基が脂環式炭化水素基である場合の構造としては、重合体を構成する(メタ)アクリル酸の酸素原子と、環状炭酸エステルを構成する炭素原子とが、シクロペンチレン基を介して結合されているもの(具体的には、後述する一般式(2-7-10)で表される繰り返し単位)、ノルボルニレン基を介して結合されているもの(具体的には、後述する一般式(2-7-11)及び(2-7-12)で表される繰り返し単位)、置換テトラデカヒドロフェナントリル基を介して結合されているもの(具体的には、後述する一般式(2-7-14)で表される繰り返し単位)等を挙げることができる。
 なお、後述する一般式(2-7-11)及び(2-7-12)で表される繰り返し単位は、Dに含まれる炭素原子と、環状炭酸エステルを構成する2つの炭素原子と、を含む縮合環(4~5員環)が形成されている例である。一方、後述する一般式(2-7-10)及び(2-7-14)で表される繰り返し単位は、Dに含まれる炭素原子と、環状炭酸エステルを構成する1つの炭素原子と、によってスピロ環が形成されている例である。
 2価の芳香族炭化水素基としては、例えば、フェニレン基、トリレン基、ナフチレン基、フェナントリレン基、アントリレン基等のアリーレン基等がある。また、3価の芳香族炭化水素基としては、アリーレン基から水素原子を1個脱離した基等がある。
 一般式(2-7)中、Dとして表される基が芳香族炭化水素基である例としては、重合体を構成する(メタ)アクリル酸の酸素原子と、環状炭酸エステルを構成する炭素原子とが、ベンジレン基を介して結合されているもの(具体的には、後述する一般式(2-7-15)で表される繰り返し単位)等を挙げることができる。一般式(2-7-15)で表される繰り返し単位は、Dに含まれる炭素原子と、環状カーボネート構造を形成する2つの炭素原子と、を含む縮合環(6員環)が形成されている例である。
(i) 繰り返し単位(1)
 繰り返し単位(1)を与える単量体の好適例としては、(メタ)アクリル酸2-メチルアダマンチル-2-イルエステル、(メタ)アクリル酸2-メチル-3-ヒドロキシアダマンチル-2-イルエステル、(メタ)アクリル酸2-エチルアダマンチル-2-イルエステル、(メタ)アクリル酸2-エチル-3-ヒドロキシアダマンチル-2-イルエステル、(メタ)アクリル酸2-n-プロピルアダマンチル-2-イルエステル、(メタ)アクリル酸2-イソプロピルアダマンチル-2-イルエステル、(メタ)アクリル酸-2-メチルビシクロ[2.2.1]ヘプト-2-イルエステル、(メタ)アクリル酸-2-エチルビシクロ[2.2.1]ヘプト-2-イルエステル、(メタ)アクリル酸-8-メチルトリシクロ[5.2.1.02,6]デカン-8-イルエステル、(メタ)アクリル酸-8-エチルトリシクロ[5.2.1.02,6]デカン-8-イルエステル、(メタ)アクリル酸-4-メチルテトラシクロ[6.2.1.13,6.02,7]ドデカン-4-イルエステル、(メタ)アクリル酸-4-エチルテトラシクロ[6.2.1.13,6.02,7]ドデカン-4-イルエステル、(メタ)アクリル酸1-(ビシクロ[2.2.1]ヘプト-2-イル)-1-メチルエチルエステル、(メタ)アクリル酸1-(トリシクロ[5.2.1.02,6]デカン-8-イル)-1-メチルエチルエステル、(メタ)アクリル酸1-(テトラシクロ[6.2.1.13,6.02,7]ドデカン-4-イル)-1-メチルエチルエステル、(メタ)アクリル酸1-(アダマンタン-1-イル)-1-メチルエチルエステル、(メタ)アクリル酸1-(3-ヒドロキシアダマンタン-1-イル)-1-メチルエチルエステル、(メタ)アクリル酸1,1-ジシクロヘキシルエチルエステル、(メタ)アクリル酸1,1-ジ(ビシクロ[2.2.1]ヘプト-2-イル)エチルエステル、(メタ)アクリル酸1,1-ジ(トリシクロ[5.2.1.02,6]デカン-8-イル)エチルエステル、(メタ)アクリル酸1,1-ジ(テトラシクロ[6.2.1.13,6.02,7]ドデカン-4-イル)エチルエステル、(メタ)アクリル酸1,1-ジ(アダマンタン-1-イル)エチルエステル、(メタ)アクリル酸1-メチル-1-シクロペンチルエステル、(メタ)アクリル酸1-エチル-1-シクロペンチルエステル、(メタ)アクリル酸1-メチル-1-シクロヘキシルエステル、(メタ)アクリル酸1-エチル-1-シクロヘキシルエステル等がある。なお、本明細書中、「(メタ)アクリル酸」とは、アクリル酸及びメタアクリル酸の両方をいう。
 これらの中でも、(メタ)アクリル酸2-メチルアダマンチル-2-イルエステル、(メタ)アクリル酸2-エチルアダマンチル-2-イルエステル、(メタ)アクリル酸-2-メチルビシクロ[2.2.1]ヘプト-2-イルエステル、(メタ)アクリル酸-2-エチルビシクロ[2.2.1]ヘプト-2-イルエステル、(メタ)アクリル酸1-(ビシクロ[2.2.1]ヘプト-2-イル)-1-メチルエチルエステル、(メタ)アクリル酸1-(アダマンタン-1-イル)-1-メチルエチルエステル、(メタ)アクリル酸1-メチル-1-シクロペンチルエステル、(メタ)アクリル酸1-エチル-1-シクロペンチルエステル、(メタ)アクリル酸1-メチル-1-シクロヘキシルエステル、(メタ)アクリル酸1-エチル-1-シクロヘキシルエステル等が特に好ましい。
 なお、重合体(A)は、繰り返し単位(1)を1種のみ含むものであっても良く、2種以上含むものであっても良い。
(ii) 繰り返し単位(2)
 繰り返し単位(2)を与える単量体の好適例としては、(メタ)アクリル酸-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナ-2-イルエステル、(メタ)アクリル酸-9-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナ-2-イルエステル、(メタ)アクリル酸-5-オキソ-4-オキサ-トリシクロ[5.2.1.03,8]デカ-2-イルエステル、(メタ)アクリル酸-10-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[5.2.1.03,8]デカ-2-イルエステル、(メタ)アクリル酸-6-オキソ-7-オキサ-ビシクロ[3.2.1]オクタ-2-イルエステル、(メタ)アクリル酸-4-メトキシカルボニル-6-オキソ-7-オキサ-ビシクロ[3.2.1]オクタ-2-イルエステル、(メタ)アクリル酸-7-オキソ-8-オキサ-ビシクロ[3.3.1]ノナ-2-イルエステル、(メタ)アクリル酸-4-メトキシカルボニル-7-オキソ-8-オキサ-ビシクロ[3.3.1]ノナ-2-イルエステル、(メタ)アクリル酸-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-4-メチル-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-4-エチル-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-4-プロピル-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-5-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-2,2-ジメチル-5-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-4,4-ジメチル-5-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-4,4-ジメチル-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-5,5-ジメチル-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-5-オキソテトラヒドロフラン-2-イルメチルエステル、(メタ)アクリル酸-3,3-ジメチル-5-オキソテトラヒドロフラン-2-イルメチルエステル、(メタ)アクリル酸-4,4-ジメチル-5-オキソテトラヒドロフラン-2-イルメチルエステル等がある。これらの中でも、(メタ)アクリル酸-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナ-2-イルエステルが好ましい。
 一般式(2-7)で表される繰り返し単位を与える単量体は、例えば、Tetrahedron Letters,Vol.27,No.32 p.3741(1986)、Organic Letters,Vol.4,No.15 p.2561(2002)等に記載された、従来公知の方法により合成することができる。
 一般式(2-7)で表される繰り返し単位の特に好ましい例としては、一般式(2-7-1)~(2-7-22)で表される繰り返し単位を挙げることができる。
Figure JPOXMLDOC01-appb-C000016
 一般式(2-7-1)~(2-7-22)中、R10は、水素原子、メチル基又はトリフルオロメチル基を示す。
 特に、重合体(A)は、繰り返し単位(2-7)として、一般式(2-7-1)~(2-7-6)で表される繰り返し単位からなる群より選択される少なくとも一種の繰り返し単位を含むことが、現像液に対する溶解性向上の観点から好ましい。
 なお、重合体(A)は、繰り返し単位(2)を1種のみ含むものであっても良く、2種以上含むものであっても良い。
 ここで、重合体(A)に含まれる全繰り返し単位の合計を100mol%とした場合の、上述の各繰り返し単位の好ましい含有割合を以下に示す。繰り返し単位(1)の含有割合は、20~90mol%であることが好ましく、20~80mol%であることがより好ましく、20~70mol%であることが更に好ましい。繰り返し単位(1)の含有割合がこの範囲内にある場合には、塗布後の撥水性確保と、PEB後の現像液に対する接触角の上昇との両立という観点から特に有効である。
 また、繰り返し単位(2)の含有割合は、通常80mol%以下であり、好ましくは20~80mol%であり、更に好ましくは30~70mol%である。繰り返し単位(2)の含有割合がこの範囲内にある場合には、前進接触角と後退接触角との差を小さくするという観点から特に有効である。
 また、重合体(A)は、繰り返し単位(1)及び繰り返し単位(2)以外の繰り返し単位(以下、「他の繰り返し単位」と記載する)を1種以上含むものであっても良い。
 他の繰り返し単位としては、例えば、一般式(6)で表される繰り返し単位(以下、「繰り返し単位(6)」と記載する)、一般式(7)で表される繰り返し単位(以下、「繰り返し単位(7)」と記載する)等がある。
Figure JPOXMLDOC01-appb-C000017
 一般式(6)中、Rは、水素原子、メチル基又はトリフルオロメチル基を示し、Zは、単結合又は炭素数1~3の2価の有機基を示し、Wは、炭素数7~20の置換又は非置換の多環型脂環式炭化水素基を示す。但し、多環型脂環式炭化水素基が置換基を有する場合、置換基としては炭素数1~10の直鎖状若しくは分岐状のアルキル基、炭素数4~20の環状のアルキル基、ヒドロキシル基、シアノ基、炭素数1~10のヒドロキシアルキル基、カルボキシル基、又はオキソ基である。
Figure JPOXMLDOC01-appb-C000018
 一般式(7)中、R12は、水素原子、炭素数1~4のアルキル基、トリフルオロメチル基又はヒドロキシメチル基を示し、R13は、2価の有機基を示す。
 繰り返し単位(6)中、Wとして表される炭素数7~20の置換又は非置換の多環型脂環式炭化水素基としては、例えば、下記式に示す、ビシクロ[2.2.1]ヘプタン(6a)、ビシクロ[2.2.2]オクタン(6b)、トリシクロ[5.2.1.02,6]デカン(6c)、テトラシクロ[6.2.1.13,6.02,7]ドデカン(6d)、トリシクロ[3.3.1.13,7]デカン(6e)等のシクロアルカン類に由来する炭化水素基等がある。
Figure JPOXMLDOC01-appb-C000019
 シクロアルカン類に由来する炭化水素基が置換基を有している場合、置換基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の炭素数1~10の直鎖状又は分岐状のアルキル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の炭素数4~20の環状のアルキル基等がある。なお、置換基はこれらのアルキル基に限定されるものではなく、ヒドロキシル基、シアノ基、炭素数1~10のヒドロキシアルキル基、カルボキシル基、オキソ基であっても良い。
 一般式(7)中、R12として表される基のうち、炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等がある。
 一般式(7)中、R13として表される2価の有機基としては、2価の炭化水素基が好ましく、鎖状又は環状の2価の炭化水素基が更に好ましい。なお、アルキレングリコール基、アルキレンエステル基等であっても良い。
 2価の有機基として、具体的には、メチレン基、エチレン基、1,3-プロピレン基又は1,2-プロピレン基等のプロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、トリデカメチレン基、テトラデカメチレン基、ペンタデカメチレン基、ヘキサデカメチレン基、ヘプタデカメチレン基、オクタデカメチレン基、ノナデカメチレン基、イコサレン基、1-メチル-1,3-プロピレン基、2-メチル-1,3-プロピレン基、2-メチル-1,2-プロピレン基、1-メチル-1,4-ブチレン基、2-メチル-1,4-ブチレン基、エチリデン基、プロピリデン基、2-プロピリデン基等の飽和鎖状炭化水素基;
 1,3-シクロブチレン基等のシクロブチレン基、1,3-シクロペンチレン基等のシクロペンチレン基、1,4-シクロヘキシレン基等のシクロヘキシレン基、1,5-シクロオクチレン基等のシクロオクチレン基等の炭素数3~10のシクロアルキレン基等の単環式炭化水素環基;1,4-ノルボルニレン基、2,5-ノルボルニレン基等のノルボルニレン基、1,5-アダマンチレン基、2,6-アダマンチレン基等のアダマンチレン基等の2~4環式の炭素数4~30の炭化水素環基等の架橋環式炭化水素環基等を挙げることができる。これらの中でも、2,5-ノルボルニレン基を含む炭化水素基、エチレン基、プロピレン基が好ましい。
 なお、R13が2価の脂肪族環式炭化水素基を含む場合には、ビストリフルオロメチル-ヒドロキシ-メチル基(-C(CFOH)と、2価の脂肪族環式炭化水素基との間にスペーサーとして炭素数1~4のアルキレン基を配置することが好ましい。
 また、他の繰り返し単位としては、例えば、不飽和カルボン酸の有橋式炭化水素骨格を有するカルボキシル基含有エステル類;有橋式炭化水素骨格をもたない(メタ)アクリル酸エステル類;不飽和カルボン酸の有橋式炭化水素骨格をもたないカルボキシル基含有エステル類;有橋式炭化水素骨格を有する多官能性単量体;有橋式炭化水素骨格をもたない多官能性単量体等の重合性不飽和結合が開裂した単位等もある。これらの中でも、有橋式炭化水素骨格を有する(メタ)アクリル酸エステル類の重合性不飽和結合が開裂した繰り返し単位等が好ましい。
 なお、重合体(A)は、他の繰り返し単位を1種のみ含むものであっても良く、2種以上含むものであっても良い。
(2) 重合体(B)
 重合体(B)は、酸不安定基及び架橋基を有する重合体であり、重合体(A)で記載した繰り返し単位を含むものであることが好ましく、一般式(3-1)及び(3-2)で表される少なくともいずれかの繰り返し単位(以下、「繰り返し単位(3)」と記載する)を更に含むものであることが更に好ましい。第一のポジ型感放射線性組成物は、重合体(B)を含有することで、酸の作用によりアルカリ現像液に対して溶解することに加えて、第一のレジストパターンを、加熱又は暴露することにより、第二のポジ型感放射線性組成物に対して不溶化させることができる。
Figure JPOXMLDOC01-appb-C000020
 一般式(3-1)及び(3-2)中、Rは、水素原子、メチル基又はトリフルオロメチル基を示す。一般式(3-1)中、Rは、メチレン基、エチレン基又はプロピレン基を示し、Rは、一般式(4)で表される基又は一般式(5)で表される基を示す。一般式(3-2)中、Rは、メチレン基又は炭素数2~6のアルキレン基を示し、Rは、水素原子、メチル基又はエチル基を示す。nは、0又は1を示す。
Figure JPOXMLDOC01-appb-C000021
 一般式(4)及び(5)中、Rは、相互に独立に、水素原子又は1~10の直鎖状若しくは分岐状のアルキル基を示す。
 重合体(B)の含有量は、重合体(A)100質量部に対して、通常、1~80質量部であり、好ましくは2~50質量部である。含有量が1質量部未満であると、第二のレジスト層に対して十分な耐性能を有することができない場合がある。一方、80質量部超であると、第一のレジストパターンを形成する時に解像不良を起こす場合がある。
(3) 重合体(F)
 本発明のポジ型感放射線性組成物は、一般式(10)及び一般式(11)で表される少なくともいずれかの繰り返し単位を含む重合体(F)を更に含有するものであることが好ましい。重合体(F)は、その構造中にフッ素部位を有するため、ポジ型感放射線性組成物を構成する成分として添加されると、ポジ型感放射線性組成物によってレジスト被膜を形成した際に、被膜中の重合体(F)の撥油性的特長により、その分布がレジスト被膜表面で高くなる傾向がある。そのため、液浸露光時において、レジスト被膜中の酸発生剤や酸拡散制御剤等が、水等の液浸露光液に溶出してしまうことを抑制することができる。更に、この重合体(F)の撥水性的特長により、レジスト被膜と液浸露光用液体との後退接触角が高くなる。そのため、液浸露光用液体に由来する水滴が、レジスト被膜上に残り難く、高速でスキャン露光を行ってもウォーターマーク等の、液浸露光液に起因する欠陥の発生を抑制することができる。
Figure JPOXMLDOC01-appb-C000022
 一般式(10)中、R27は、水素原子、メチル基、又はトリフルオロメチル基を示し、R28は、単結合、又は炭素数1~20の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の2価の炭化水素基を示し、Xは、フッ素原子で置換されたメチレン基、又は炭素数2~20の直鎖状若しくは分岐状のフルオロアルキレン基を示し、R29は、水素原子又は1価の有機基を示す。一般式(11)中、R30は、水素原子、メチル基、又はトリフルオロメチル基を示し、Yは、連結基を示し、R31は、少なくとも一つ以上のフッ素原子を有する、炭素数1~6の直鎖状若しくは分岐状のアルキル基又は炭素数4~20の1価の脂環式炭化水素基若しくはその誘導体を示す。
 一般式(10)中、R28として表される基のうち、炭素数1~20の直鎖状又は分岐状の飽和又は不飽和の2価の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素数1~20の直鎖状又は分岐状のアルキル基に由来する2価の炭化水素基等がある。
 また、環状の飽和又は不飽和の2価の炭化水素基としては、例えば、炭素数3~20の脂環式炭化水素及び芳香族炭化水素に由来する基がある。脂環式炭化水素として、具体的には、シクロブタン、シクロペンタン、シクロヘキサン、ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[3.3.1.13,7]デカン、テトラシクロ[6.2.1.13,6.02,7]ドデカン等のシクロアルカン類等を挙げることができる。また、芳香族炭化水素として、具体的には、ベンゼン、ナフタレン等を挙げることができる。
 なお、前記の炭化水素基は、上述の非置換の炭化水素基における少なくとも1つの水素原子を、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の炭素数1~12の直鎖状、分岐状又は環状のアルキル基、ヒドロキシル基、シアノ基、炭素数1~10のヒドロキシアルキル基、カルボキシル基、酸素原子等の1種又は2種以上により置換された基であってもよい。
 一般式(10)中、R28として表される基の具体例としては、下記の構造(a1)~(a27)で表される基等を挙げることができる。なお、構造(a1)~(a27)における「*」は結合部位を示す。
Figure JPOXMLDOC01-appb-C000023
 特に、一般式(10)中、R28として表される基は、メチレン基、エチレン基、1-メチルエチレン基、2-メチルエチレン基、炭素数4~20の2価の脂環式炭化水素基又はそれから誘導される基等が好ましい。
 一般式(10)中、R29として表される基のうち、1価の有機基としては、酸解離性基又は炭素数1~20の1価の炭化水素基(但し、酸解離性基に該当するものを除く)がある。酸解離性基とは、カルボキシル基の水素原子を置換する基であって、酸の存在下で解離する基をいう。このような酸解離性基として、具体的には、t-ブトキシカルボニル基、テトラヒドロピラニル基、テトラヒドロフラニル基、(チオテトラヒドロピラニルスルファニル)メチル基、(チオテトラヒドロフラニルスルファニル)メチル基や、アルコキシ置換メチル基、アルキルスルファニル置換メチル基等を挙げることができる。なお、アルコキシ置換メチル基におけるアルコキシル基(置換基)としては、炭素数1~4のアルコキシル基を挙げることができる。また、アルキルスルファニル置換メチル基におけるアルキル基(置換基)としては、炭素数1~4のアルキル基を挙げることができる。
 更に、酸解離性基としては、一般式(17):-C(R)で表される基を挙げることができる。なお、一般式(17)中、3つのRは、相互に独立に、炭素数1~4の直鎖状若しくは分岐状のアルキル基、又は炭素数4~20の1価の脂環式炭化水素基若しくはそれから誘導される基を示すか、或いはいずれか2つのRが相互に結合して、それぞれが結合している炭素原子とともに形成される炭素数4~20の2価の脂環式炭化水素基又はそれから誘導される基を示し、残りの1つのRが、炭素数1~4の直鎖状若しくは分岐状のアルキル基、又は炭素数4~20の1価の脂環式炭化水素基若しくはそれから誘導される基を示す。
 一般式(17)中、Rとして表される基のうち、炭素数1~4の直鎖状又は分岐状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等がある。また、炭素数4~20の1価の脂環式炭化水素基としては、例えば、ノルボルナン、トリシクロデカン、テトラシクロドデカン、アダマンタンや、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等のシクロアルカン類等に由来する脂環族環からなる基等がある。更に、脂環式炭化水素基から誘導される基としては、上述の1価の脂環式炭化水素基を、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の炭素数1~4の直鎖状、分岐状又は環状のアルキル基の1種以上或いは1個以上で置換した基等がある。これらの中でも、ノルボルナン、トリシクロデカン、テトラシクロドデカン、アダマンタン、シクロペンタン、シクロヘキサンに由来する脂環族環からなる脂環式炭化水素基や、この脂環式炭化水素基を前記アルキル基で置換した基等が好ましい。
 また、いずれか2つのRが相互に結合して、それぞれが結合している炭素原子(酸素原子に結合している炭素原子)とともに形成される炭素数4~20の2価の脂環式炭化水素基としては、例えば、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基等のような単環式炭化水素基、ノルボルニレン基、トリシクロデカニレン基、テトラシクロデカニレン基のような多環式炭化水素基、アダマンチレン基のような架橋多環式炭化水素基がある。更に、Rが相互に結合して形成された2価の脂環式炭化水素基から誘導される基としては、上述の2価の脂環式炭化水素基を、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の炭素数1~4の直鎖状、分岐状又は環状のアルキル基の1種以上或いは1個以上で置換した基等がある。これらの中でも、シクロペンチレン基、シクロヘキシレン基等のような単環式炭化水素基や、この2価の脂環式炭化水素基(単環式炭化水素基)を前記アルキル基で置換した基等が好ましい。
 ここで、一般式(17)で表される酸解離性基の好ましい例としては、t-ブチル基、1-n-(1-エチル-1-メチル)プロピル基、1-n-(1,1-ジメチル)プロピル基、1-n-(1,1-ジメチル)ブチル基、1-n-(1,1-ジメチル)ペンチル基、1-(1,1-ジエチル)プロピル基、1-n-(1,1-ジエチル)ブチル基、1-n-(1,1-ジエチル)ペンチル基、1-(1-メチル)シクロペンチル基、1-(1-エチル)シクロペンチル基、1-(1-n-プロピル)シクロペンチル基、1-(1-i-プロピル)シクロペンチル基、1-(1-メチル)シクロヘキシル基、1-(1-エチル)シクロヘキシル基、1-(1-n-プロピル)シクロヘキシル基、1-(1-i-プロピル)シクロヘキシル基、1-{1-メチル-1-(2-ノルボルニル)}エチル基、1-{1-メチル-1-(2-テトラシクロデカニル)}エチル基、1-{1-メチル-1-(1-アダマンチル)}エチル基、2-(2-メチル)ノルボルニル基、2-(2-エチル)ノルボルニル基、2-(2-n-プロピル)ノルボルニル基、2-(2-i-プロピル)ノルボルニル基、2-(2-メチル)テトラシクロデカニル基、2-(2-エチル)テトラシクロデカニル基、2-(2-n-プロピル)テトラシクロデカニル基、2-(2-i-プロピル)テトラシクロデカニル基、1-(1-メチル)アダマンチル基、1-(1-エチル)アダマンチル基、1-(1-n-プロピル)アダマンチル基、1-(1-i-プロピル)アダマンチル基や、これらの脂環族環からなる基を、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の炭素数1~4の直鎖状、分岐状又は環状のアルキル基の1種以上或いは1個以上で置換した基等を挙げることができる。
 これらの酸解離性基のなかでも、一般式(17)で表される基、t-ブトキシカルボニル基、アルコキシ置換メチル基等が好ましく、アルコキシ置換メチル基、一般式(17)で表される基が特に好ましい。
 一般式(10)中、Xとして表される基のうち、フッ素原子置換されたメチレン基、又は、炭素数2~20の直鎖状若しくは分岐状のフルオロアルキレン基としては、例えば、(X-1)~(X-8)等の構造がある。
Figure JPOXMLDOC01-appb-C000024
 特に、繰り返し単位(10)は、式(10-1)~(10-6)で表される化合物に由来する繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 重合体(F)は、繰り返し単位(10)を1種のみ含むものであってもよく、2種以上含むものであってもよい。
 一般式(11)中、Aとして表される連結基としては、例えば、単結合、酸素原子、硫黄原子、カルボニルオキシ基、オキシカルボニル基、アミド基、スルホニルアミド基、ウレタン基等がある。
 一般式(11)中、R31として表される基のうち、少なくとも一つ以上のフッ素原子を有する、炭素数1~6の直鎖状又は分岐状のアルキル基としては、例えば、メチル基、エチル基、1-プロピル基、2-プロピル基、1-ブチル基、2-ブチル基、2-(2-メチルプロピル)基、1-ペンチル基、2-ペンチル基、3-ペンチル基、1-(2-メチルブチル)基、1-(3-メチルブチル)基、2-(2-メチルブチル)基、2-(3-メチルブチル)基、ネオペンチル基、1-ヘキシル基、2-ヘキシル基、3-ヘキシル基、1-(2-メチルペンチル)基、1-(3-メチルペンチル)基、1-(4-メチルペンチル)基、2-(2-メチルペンチル)基、2-(3-メチルペンチル)基、2-(4-メチルペンチル)基、3-(2-メチルペンチル)基、3-(3-メチルペンチル)基等の直鎖状又は分岐状のアルキル基の部分フッ素化された基或いはパーフルオロアルキル基等がある。
 また、少なくとも一つ以上のフッ素原子を有する、炭素数4~20の1価の脂環式炭化水素基又はその誘導体としては、例えば、シクロペンチル基、シクロペンチルメチル基、1-(1-シクロペンチルエチル)基、1-(2-シクロペンチルエチル)基、シクロヘキシル基、シクロヘキシルメチル基、1-(1-シクロヘキシルエチル)基、1-(2-シクロヘキシルエチル基)、シクロヘプチル基、シクロヘプチルメチル基、1-(1-シクロヘプチルエチル)基、1-(2-シクロヘプチルエチル)基、2-ノルボルニル基等の脂環式アルキル基の部分フッ素化された基或いはパーフルオロアルキル基等がある。
 繰り返し単位(11)を与える好ましい単量体としては、例えば、トリフルオロメチル(メタ)アクリル酸エステル、2,2,2-トリフルオロエチル(メタ)アクリル酸エステル、パーフルオロエチル(メタ)アクリル酸エステル、パーフルオロn-プロピル(メタ)アクリル酸エステル、パーフルオロi-プロピル(メタ)アクリル酸エステル、パーフルオロn-ブチル(メタ)アクリル酸エステル、パーフルオロi-ブチル(メタ)アクリル酸エステル、パーフルオロt-ブチル(メタ)アクリル酸エステル、2-(1,1,1,3,3,3-ヘキサフルオロプロピル)(メタ)アクリル酸エステル、1-(2,2,3,3,4,4,5,5-オクタフルオロペンチル)(メタ)アクリル酸エステル、パーフルオロシクロヘキシルメチル(メタ)アクリル酸エステル、1-(2,2,3,3,3-ペンタフルオロプロピル)(メタ)アクリル酸エステル、1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシル)(メタ)アクリル酸エステル、1-(5-トリフルオロメチル-3,3,4,4,5,6,6,6-オクタフルオロヘキシル)(メタ)アクリル酸エステル等がある。
 重合体(F)は、繰り返し単位(11)を1種のみ含むものであってもよく、2種以上含むものであってもよい。繰り返し単位(11)の含有率は、重合体(F)における全繰り返し単位を100mol%とした場合に、通常5mol%以上であり、好ましくは10mol%以上であり、更に好ましくは15mol%以上である。繰り返し単位(11)の含有率が5mol%未満であると、70°以上の後退接触角を達成できなかったり、レジスト被膜からの酸発生剤等の溶出を抑制できなかったりする場合がある。
 (各重合体に含まれる各繰り返し単位の割合)
 各重合体に含まれる繰り返し単位(1)の割合は、各重合体に含まれる繰り返し単位の合計100mol%に対し、10~90mol%であることが好ましく、10~80mol%であることがより好ましく、20~70mol%であることが更に好ましい。繰り返し単位(1)の割合が10mol%未満であると、アルカリ現像部の解像性が劣化するおそれがある。一方、90mol%超であると、アルカリ現像部の現像性が劣化するおそれがある。
 各重合体に含まれる繰り返し単位(2)の割合は、各重合体に含まれる繰り返し単位の合計100mol%に対し、5~70mol%であることが好ましく、5~65mol%であることがより好ましく、10~60mol%であることが更に好ましい。繰り返し単位(2)の割合が5mol%以下であると、レジストとしての現像性及びプロセスマージンが低下するおそれがある。
 重合体(B)に含まれる繰り返し単位(3)の割合は、重合体(B)に含まれる繰り返し単位の合計100mol%に対し、1~30mol%であることが好ましく、1~25mol%であることがより好ましい。繰り返し単位(3)の割合が30mol%超であると、アルカリ現像部がアルカリ現像液により膨潤しやすくなったり、アルカリ現像液に対する溶解性が低下したりするおそれがある。
 各重合体に含まれる繰り返し単位(7)の割合は、各重合体に含まれる繰り返し単位の合計100mol%に対し、30mol%以下であることが好ましく、25mol%以下であることがより好ましい。繰り返し単位(7)の割合が30mol%超であると、レジストパターンのトップロスが生じ、パターン形状が悪化するおそれがある。
 なお、第一のポジ型感放射線性組成物は、各重合体を1種ずつ含有していても良く、2種以上含有していても良い。
 (各重合体の調製方法)
 各重合体は、例えば、前述した各繰り返し単位を与える重合性不飽和単量体を、ヒドロパーオキシド類、ジアルキルパーオキシド類、ジアシルパーオキシド類、アゾ化合物等のラジカル重合開始剤を使用し、必要に応じて連鎖移動剤の存在下、適当な溶媒中で重合することにより調製することができる。
 重合に使用される溶媒としては、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;クロロブタン、ブロモヘキサン、ジクロロエタン、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;アセトン、2-ブタノン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン等のエーテル類等がある。なお、これらの溶媒は1種単独で用いても良く、2種以上を混合して用いても良い。
 (各重合体の物性値)
 各重合体のゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算の重量平均分子量(以下、「Mw」と記載する)は特に限定されるものではないが、好ましくは1,000~100,000であり、より好ましくは1,000~30,000であり、更に好ましくは1,000~20,000である。Mwが1,000未満であると、第一のレジスト層の耐熱性が低下するおそれがある。一方、100,000超であると、アルカリ現像部の現像性が低下するおそれがある。
 また、各重合体のMwと、各重合体のゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算の数平均分子量(以下、「Mn」と記載する)との比(Mw/Mn)は、通常、1~5であり、好ましくは1~3である。
 また、各重合体には、調製する際に用いられる単量体に由来する低分子量成分が含まれる場合がある。この低分子量成分の含有割合は、各重合体100質量%(固形分換算)に対して、好ましくは0.1質量%以下であり、より好ましくは0.07質量%以下であり、更に好ましくは0.05質量%以下である。低分子量成分の含有割合が0.1質量%以下であると、液浸露光時に接触した水等の液浸露光用液体への溶出物の量を少なくすることができる。また、レジスト保管時にレジスト中に異物が発生することが少なく、レジスト塗布時においても塗布ムラが発生することが少なく、レジストパターン形成時における欠陥の発生を十分に抑制することができる。
 なお、本明細書中、「低分子量成分」とは、Mwが500以下の成分をいい、具体的には、モノマー、ダイマー、トリマー、オリゴマーを挙げることができる。低分子量成分は、例えば、水洗、液々抽出等の化学的精製法や、これらの化学的精製法と限外ろ過、遠心分離等の物理的精製法との組合せ等により除去することができる。また、分析は、高速液体クロマトグラフィー(HPLC)により行うことができる。
 更に、各重合体は、ハロゲン、金属等の不純物が少ないものであることが好ましい。不純物を少なくすることにより、形成する第一のレジスト層の感度、解像度、プロセス安定性、パターン形状等を更に改善することができるからである。
 各重合体の精製法としては、例えば、水洗、液々抽出等の化学的精製法や、これらの化学的精製法と限外ろ過、遠心分離等の物理的精製法との組合せ等がある。
(4) 酸発生剤(C)
 酸発生剤(C)とは、露光により酸を発生するものをいう。第一のポジ型感放射線性組成物が酸発生剤(C)を含有することで、露光により発生した酸の作用によって、重合体中に存在する酸解離性基、具体的には繰り返し単位(1)が有する酸解離性基を解離させ(保護基を脱離させ)、その結果、アルカリ現像部がアルカリ現像液に易溶性となり、ポジ型のレジストパターンを形成することができる。なお、酸発生剤(C)としては、一般式(9)で表される化合物(以下、「酸発生剤(1)」と記載する)を含むものが好ましい。なお、酸発生剤(C)は、酸発生剤(1)を1種単独で含んでも良く、2種以上を含んでも良い。
(i) 酸発生剤(1)
 酸発生剤(1)は、一般式(9)で表される化合物である。
Figure JPOXMLDOC01-appb-C000026
 一般式(9)中、R14は、水素原子、フッ素原子、水酸基、炭素数1~10の直鎖状若しくは分岐状のアルキル基、炭素数1~10の直鎖状若しくは分岐状のアルコキシル基、又は炭素数2~11の直鎖状若しくは分岐状のアルコキシカルボニル基を示す。また、R15は、炭素数1~10の直鎖状若しくは分岐状のアルキル基、炭素数1~10の直鎖状若しくは分岐状のアルコキシル基、又は炭素数1~10の直鎖状、分岐状若しくは環状のアルカンスルホニル基を示す。更に、R16は、相互に独立に、炭素数1~10の直鎖状若しくは分岐状のアルキル基、フェニル基、又はナフチル基を示すか、或いは二つのR16が相互に結合して形成されるイオウカチオンを含む炭素数2~10の2価の基を示す。但し、フェニル基、ナフチル基、及び炭素数2~10の2価の基は置換基を有しても良い。kは、0~2の整数を示し、rは、0~10の整数(好ましくは0~2の整数)を示す。Xは、一般式(12-1)~(12-4)で表されるアニオンを示す。
Figure JPOXMLDOC01-appb-C000027
 一般式(12-1)及び(12-2)中、R17は、フッ素原子又は置換されていても良い炭素数1~12の炭化水素基を示す。一般式(12-1)中、qは、1~10の整数を示す。一般式(12-3)及び(12-4)中、R18は、相互に独立に、フッ素原子で置換された炭素数1~10の直鎖状又は分岐状のアルキル基を示すか、或いは二つのR18が相互に結合して形成される、フッ素原子で置換された炭素数2~10の2価の有機基を示す。但し、フッ素原子で置換された炭素数2~10の2価の有機基はフッ素原子以外の置換基を有しても良い。
 また、酸発生剤(C)は、酸発生剤(1)以外の感放射線性酸発生剤(以下、「酸発生剤(2)」と記載する)を含むものであっても良い。
(ii) 酸発生剤(2)
 酸発生剤(2)としては、例えば、オニウム塩化合物、ハロゲン含有化合物、ジアゾケトン化合物、スルホン化合物、スルホン酸化合物等がある。なお、酸発生剤(C)は、酸発生剤(2)を1種単独で含んでも良く、2種以上を含んでも良い。
 酸発生剤(C)の含有量は、レジストとしての感度及び現像性を確保する観点から、重合体(A)100質量部に対して、通常、0.1~20質量部であり、好ましくは0.5~10質量部である。含有量が0.1質量部未満であると、感度及び現像性が低下する傾向がある。一方、20質量部超であると、放射線に対する透明性が低下して、矩形のレジストパターンが得られ難くなる傾向にある。
 また、酸発生剤(2)を使用する場合、その使用割合は、酸発生剤(C)100質量%に対して、通常、80質量%以下であり、好ましくは60質量%以下である。
(5) 溶剤(D)
 溶剤(D)としては、例えば、2-ブタノン、2-ペンタノン、3-メチル-2-ブタノン、2-ヘキサノン、4-メチル-2-ペンタノン、3-メチル-2-ペンタノン、3,3-ジメチル-2-ブタノン、2-ヘプタノン、2-オクタノン等の直鎖状又は分岐状のケトン類;シクロペンタノン、3-メチルシクロペンタノン、シクロヘキサノン、2-メチルシクロヘキサノン、2,6-ジメチルシクロヘキサノン、イソホロン等の環状のケトン類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-i-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノ-i-ブチルエーテルアセテート、プロピレングリコールモノ-sec-ブチルエーテルアセテート、プロピレングリコールモノ-t-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシプロピオン酸n-プロピル、2-ヒドロキシプロピオン酸i-プロピル、2-ヒドロキシプロピオン酸n-ブチル、2-ヒドロキシプロピオン酸i-ブチル、2-ヒドロキシプロピオン酸sec-ブチル、2-ヒドロキシプロピオン酸t-ブチル等の2-ヒドロキシプロピオン酸アルキル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等の3-アルコキシプロピオン酸アルキル類の他、
 n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、t-ブチルアルコール、シクロヘキサノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、トルエン、キシレン、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチル酪酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メトキシブチルブチレート、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸メチル、ピルビン酸エチル、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ベンジルエチルエーテル、ジ-n-ヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、カプロン酸、カプリル酸、1-オクタノール、1-ノナノール、ベンジルアルコール、酢酸ベンジル、安息香酸エチル、しゅう酸ジエチル、マレイン酸ジエチル、γ-ブチロラクトン、炭酸エチレン、炭酸プロピレン等がある。
 これらの中でも、直鎖状又は分岐状のケトン類、環状のケトン類、プロピレングリコールモノアルキルエーテルアセテート類、2-ヒドロキシプロピオン酸アルキル類、3-アルコキシプロピオン酸アルキル類、γ-ブチロラクトン等が好ましい。
 第一のポジ型感放射線性組成物は、溶剤(D)を1種単独で含有していても良く、2種以上含有していても良い。
 溶剤(D)の使用量は、第一のポジ型感放射線性組成物の全固形分濃度が、通常、1~50質量%となる量であり、好ましくは1~25質量%となる量である。
(6) 添加剤
 第一のポジ型感放射線性組成物は、必要に応じて、酸拡散制御剤、脂環族添加剤、界面活性剤、増感剤等の各種の添加剤を含有しても良い。
(i) 酸拡散制御剤
 酸拡散制御剤は、露光により酸発生剤(C)から生じる酸の第一のレジスト層中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する作用を有する成分である。このような酸拡散制御剤を含有することにより、第一のポジ型感放射線性組成物の貯蔵安定性が向上する。また、レジストとしての解像度が更に向上するとともに、露光から露光後の加熱処理までの引き置き時間(PED)の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れた組成物が得られる。
 酸拡散制御剤としては、例えば、アミン化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等がある。
 (アミン化合物)
 アミン化合物の好適例としては、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン、シクロヘキシルアミン等のモノ(シクロ)アルキルアミン類;ジ-n-ブチルアミン、ジ-n-ペンチルアミン、ジ-n-ヘキシルアミン、ジ-n-ヘプチルアミン、ジ-n-オクチルアミン、ジ-n-ノニルアミン、ジ-n-デシルアミン、シクロヘキシルメチルアミン、ジシクロヘキシルアミン等のジ(シクロ)アルキルアミン類;トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、トリ-n-ノニルアミン、トリ-n-デシルアミン、シクロヘキシルジメチルアミン、メチルジシクロヘキシルアミン、トリシクロヘキシルアミン等のトリ(シクロ)アルキルアミン類;2,2’,2’’-ニトロトリエタノール等の置換アルキルアミン;アニリン、N-メチルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、4-ニトロアニリン、ジフェニルアミン、トリフェニルアミン、ナフチルアミン、2,4,6-トリ-tert-ブチル-N-メチルアニリン、N-フェニルジエタノールアミン、2,6-ジイソプロピルアニリン等のアニリン又はその誘導体;
 エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルアミン、2,2-ビス(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2-(4-アミノフェニル)-2-(3-ヒドロキシフェニル)プロパン、2-(4-アミノフェニル)-2-(4-ヒドロキシフェニル)プロパン、1,4-ビス(1-(4-アミノフェニル)-1-メチルエチル)ベンゼン、1,3-ビス(1-(4-アミノフェニル)-1-メチルエチル)ベンゼン、ビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジエチルアミノエチル)エーテル、1-(2-ヒドロキシエチル)-2-イミダゾリジノン、2-キノキサリノール、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン等がある。
 (アミド基含有化合物)
 アミド基含有化合物の好適例としては、N-t-ブトキシカルボニルジ-n-オクチルアミン、N-t-ブトキシカルボニルジ-n-ノニルアミン、N-t-ブトキシカルボニルジ-n-デシルアミン、N-t-ブトキシカルボニルジシクロヘキシルアミン、N-t-ブトキシカルボニル-1-アダマンチルアミン、N-t-ブトキシカルボニル-2-アダマンチルアミン、N-t-ブトキシカルボニル-N-メチル-1-アダマンチルアミン、(S)-(-)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、(R)-(+)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-ブトキシカルボニルピロリジン、N-t-ブトキシカルボニルピペラジン、N-t-ブトキシカルボニルピペリジン、N,N-ジ-t-ブトキシカルボニル-1-アダマンチルアミン、N,N-ジ-t-ブトキシカルボニル-N-メチル-1-アダマンチルアミン、N-t-ブトキシカルボニル-4,4’-ジアミノジフェニルメタン、N,N’-ジ-t-ブトキシカルボニルヘキサメチレンジアミン、N,N,N’,N’-テトラ-t-ブトキシカルボニルヘキサメチレンジアミン、N,N’-ジ-t-ブトキシカルボニル-1,7-ジアミノヘプタン、N,N’-ジ-t-ブトキシカルボニル-1,8-ジアミノオクタン、N,N’-ジ-t-ブトキシカルボニル-1,9-ジアミノノナン、N,N’-ジ-t-ブトキシカルボニル-1,10-ジアミノデカン、N,N’-ジ-t-ブトキシカルボニル-1,12-ジアミノドデカン、N,N’-ジ-t-ブトキシカルボニル-4,4’-ジアミノジフェニルメタン、N-t-ブトキシカルボニルベンズイミダゾール、N-t-ブトキシカルボニル-2-メチルベンズイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール等のN-t-ブトキシカルボニル基含有アミノ化合物の他、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン、N-アセチル-1-アダマンチルアミン、イソシアヌル酸トリス(2-ヒドロキシエチル)等がある。
 (ウレア化合物)
 ウレア化合物の好適例としては、尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリ-n-ブチルチオウレア等がある。
 (含窒素複素環化合物)
 含窒素複素環化合物の好適例としては、イミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール、ベンズイミダゾール、2-フェニルベンズイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-メチル-1H-イミダゾール等のイミダゾール類;ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、2-メチル-4-フェニルピリジン、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、4-ヒドロキシキノリン、8-オキシキノリン、アクリジン、2,2’:6’,2’’-ターピリジン等のピリジン類;ピペラジン、1-(2-ヒドロキシエチル)ピペラジン等のピペラジン類の他、ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、ピペリジンエタノール、3-ピペリジノ-1,2-プロパンジオール、モルホリン、4-メチルモルホリン、1-(4-モルホリニル)エタノール、4-アセチルモルホリン、3-(N-モルホリノ)-1,2-プロパンジオール、1,4-ジメチルピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン等がある。
 また、酸拡散制御剤として、前述した酸拡散制御剤の他に、露光により感光し、塩基を発生する光崩壊性塩基を用いることもできる。
 (光崩壊性塩基)
 光崩壊性塩基の一例として、露光により分解して酸拡散制御性を失うオニウム塩化合物がある。このようなオニウム塩化合物の具体例としては、一般式(13)で表されるスルホニウム塩化合物や、一般式(14)で表されるヨードニウム塩化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000028
 一般式(13)中のR19~R21、及び一般式(14)中のR22~R23は、相互に独立に、水素原子、アルキル基、アルコキシル基、ヒドロキシル基、又はハロゲン原子を示す。また、一般式(13)及び(14)中、Zは、OH、R24-COO、R24-SO (但し、R24は、アルキル基、アリール基、又はアルカリール基を示す)、又は一般式(15)で表されるアニオンを示す。
Figure JPOXMLDOC01-appb-C000029
 一般式(15)中、R26は、フッ素原子で置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、又は炭素数1~12の直鎖状若しくは分岐状のアルコキシル基を示し、nは、1又は2を示す。
 なお、これらの酸拡散制御剤は、1種単独で用いても良く、2種以上を混合して用いても良い。
 酸拡散制御剤の含有量は、重合体(A)100質量部に対して、0.001~15質量部であることが好ましく、0.01~10質量部であることがより好ましく、0.05~5質量部であることが更に好ましい。含有量が15質量部超であると、レジストとしての感度が低下する場合がある。一方、0.001質量部未満であると、プロセス条件によっては、レジストとしてのパターン形状や寸法忠実度が低下する場合がある。
(ii) 脂環族添加剤
 脂環族添加剤は、ドライエッチング耐性、パターン形状、基板との接着性等を更に改善する作用を示す成分である。
 脂環族添加剤としては、例えば、1-アダマンタンカルボン酸、2-アダマンタノン、1-アダマンタンカルボン酸t-ブチル、1-アダマンタンカルボン酸t-ブトキシカルボニルメチル、1-アダマンタンカルボン酸α-ブチロラクトンエステル、1,3-アダマンタンジカルボン酸ジ-t-ブチル、1-アダマンタン酢酸t-ブチル、1-アダマンタン酢酸t-ブトキシカルボニルメチル、1,3-アダマンタンジ酢酸ジ-t-ブチル、2,5-ジメチル-2,5-ジ(アダマンチルカルボニルオキシ)ヘキサン等のアダマンタン誘導体類;デオキシコール酸t-ブチル、デオキシコール酸t-ブトキシカルボニルメチル、デオキシコール酸2-エトキシエチル、デオキシコール酸2-シクロヘキシルオキシエチル、デオキシコール酸3-オキソシクロヘキシル、デオキシコール酸テトラヒドロピラニル、デオキシコール酸メバロノラクトンエステル等のデオキシコール酸エステル類;リトコール酸t-ブチル、リトコール酸t-ブトキシカルボニルメチル、リトコール酸2-エトキシエチル、リトコール酸2-シクロヘキシルオキシエチル、リトコール酸3-オキソシクロヘキシル、リトコール酸テトラヒドロピラニル、リトコール酸メバロノラクトンエステル等のリトコール酸エステル類;アジピン酸ジメチル、アジピン酸ジエチル、アジピン酸ジプロピル、アジピン酸ジn-ブチル、アジピン酸ジt-ブチル等のアルキルカルボン酸エステル類や、3-(2-ヒドロキシ-2,2-ビス(トリフルオロメチル)エチル)テトラシクロ[6.2.1.13,6.02,7]ドデカン等がある。なお、これらの脂環族添加剤は、1種単独で用いても良く、2種以上を混合して用いても良い。
(iii) 界面活性剤
 界面活性剤は、塗布性、ストリエーション、現像性等を改良する作用を示す成分である。
 界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤の他、以下商品名で、KP341(信越化学工業社製)、ポリフローNo.75、同No.95(以上、共栄社化学社製)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ社製)、メガファックスF171、同F173(以上、大日本インキ化学工業社製)、フロラードFC430、同FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子社製)等がある。なお、これらの界面活性剤は、1種単独で用いても良く、2種以上を混合して用いても良い。
(iv) 増感剤
 増感剤は、放射線のエネルギーを吸収して、そのエネルギーを酸発生剤(C)に伝達し、それにより酸の生成量を増加させる作用を示すもので、第一のポジ型感放射線性組成物のみかけの感度を向上させる効果を有する。
 増感剤としては、カルバゾール類、アセトフェノン類、ベンゾフェノン類、ナフタレン類、フェノール類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等がある。なお、これらの増感剤は、1種単独で用いても良く、2種以上を混合して用いても良い。
(v) 他の添加剤
 第一のポジ型感放射線性組成物は、前述した添加剤以外の添加剤(以下、「他の添加剤」と記載する)を含有しても良い。他の添加剤としては、アルカリ可溶性樹脂、酸解離性の保護基を有する低分子のアルカリ溶解性制御剤、ハレーション防止剤、保存安定化剤、消泡剤等がある。また、染料或いは顔料を含有させることにより、露光部の潜像を可視化させて、露光時のハレーションの影響を緩和することができる。更に、接着助剤を含有させることにより、基板との接着性を改善することができる。
 第一のポジ型感放射線性組成物は、各構成成分を溶剤(D)に溶解した後、例えば孔径0.2μm程度のフィルターでろ過することによって塗工液として調製し、基板上に塗布することができる。
2 第二のポジ型感放射線性組成物
 第二のレジスト層を形成する際に用いられる第二のポジ型感放射線性組成物は、酸の作用によりアルカリ可溶性となる重合体(a)(以下、「重合体(a)」と記載する)と、溶剤(b)と、を含有する組成物である。
(1) 重合体(a)
 重合体(a)は、酸の作用によりアルカリ可溶性となるアルカリ不溶性又はアルカリ難溶性の重合体である。重合体(a)は、酸の作用によりアルカリ可溶性となるものであれば特に限定されないが、一般式(16)で表される繰り返し単位(以下、「繰り返し単位(16)」と記載する)と、繰り返し単位(1)と、を含むものが好ましい。
Figure JPOXMLDOC01-appb-C000030
 一般式(16)中、R24は、水素原子、メチル基又はトリフルオロメチル基を示し、R25は、単結合、メチレン基、炭素数2~6の直鎖状若しくは分岐状のアルキレン基、又は炭素数4~12の脂環式のアルキレン基を示す。
(i) 繰り返し単位(16)
 繰り返し単位(16)を与える単量体の好適例としては、(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-3-プロピル)エステル、(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-4-ブチル)エステル、(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-5-ペンチル)エステル、(メタ)アクリル酸(1,1,1-トリフルオロ-2-トリフルオロメチル-2-ヒドロキシ-4-ペンチル)エステル、(メタ)アクリル酸2-((5-(1’,1’,1’-トリフルオロ-2’-トリフルオロメチル-2’-ヒドロキシ)プロピル)ビシクロ[2.2.1]ヘプチル)エステル、(メタ)アクリル酸3-((8-(1’,1’,1’-トリフルオロ-2’-トリフルオロメチル-2’-ヒドロキシ)プロピル)テトラシクロ[6.2.1.13,6.02,7]ドデシル)エステル等がある。
 なお、重合体(a)は、繰り返し単位(16)を1種のみ含むものであっても良く、2種以上含むものであっても良い。
(ii) 繰り返し単位(1)
 繰り返し単位(1)は、第一のポジ型感放射線性組成物に記載した重合体(A)に含まれる繰り返し単位(1)と同様のことがいえる。
(iii) 他の繰り返し単位
 樹脂(a)は、繰り返し単位(16)及び繰り返し単位(1)以外にも、他の繰り返し単位を含むものであっても良い。
 (重合体(a)に含まれる各繰り返し単位の割合)
 重合体(a)に含まれる繰り返し単位(16)の割合は、重合体(a)に含まれる繰り返し単位の合計100mol%に対して、30~90mol%であることが好ましく、30~80mol%であることがより好ましく、40~80mol%であることが更に好ましい。繰り返し単位(16)の割合が30mol%未満であると、重合体(a)の溶剤(b)への溶解性が低下するおそれがある。一方、90mol%超であると、アルカリ現像部の解像性が劣化するおそれがある。
 重合体(a)に含まれる繰り返し単位(1)の割合は、重合体(a)に含まれる繰り返し単位の合計100mol%に対して、10~70mol%であることが好ましく、10~60mol%であることがより好ましく、20~60mol%であることが更に好ましい。繰り返し単位(1)の割合が10mol%未満であると、アルカリ現像部の解像性が劣化するおそれがある。一方、70mol%超であると、アルカリ現像部の現像性が劣化するおそれがある。
 重合体(a)に含まれる他の繰り返し単位の割合は、重合体(a)に含まれる繰り返し単位の合計100mol%に対して、50mol%以下であることが好ましく、40mol%以下であることがより好ましい。
 なお、第二のポジ型感放射線性組成物は、樹脂(a)を1種単独で含有しても良く、2種以上を含有しても良い。
 (重合体(a)の調製方法)
 重合体(a)は、例えば、各繰り返し単位を与える重合性不飽和単量体を用いて、前述の重合体(A)又は重合体(B)と同様にして調製することができる。
 (重合体(a)の物性値)
 樹脂(a)のMwは特に制限されないが、1,000~100,000であることが好ましく、1,000~30,000であることがより好ましく、1,000~20,000であることが更に好ましい。重合体(a)のMwが1,000未満であると、第二のレジスト層を形成した場合に、その耐熱性が低下するおそれがある。一方、100,000超であると、アルカリ現像部の現像性が低下するおそれがある。また、重合体(a)のMwとMnとの比(Mw/Mn)は、通常、1~5であり、好ましくは1~3である。
 また、重合体(a)においても、調製する際に用いられる単量体に由来する低分子量成分が含まれる場合がある。低分子量成分の含有割合は、重合体(a)100質量%(固形分換算)に対して、0.1質量%以下であることが好ましく、0.07質量%以下であることがより好ましく、0.05質量%以下であることが更に好ましい。低分子量成分の含有割合が0.1質量%以下である場合、液浸露光時に接触した水等の液浸露光用液体への溶出物の量を少なくすることができる。更に、レジスト保管時にレジスト中に異物が発生することがなく、レジスト塗布時においても塗布ムラが発生することなく、レジストパターン形成時における欠陥の発生を十分に抑制することができる。
 また、重合体(a)は、ハロゲン、金属等の不純物が少ないものであることが好ましい。このように不純物を少なくすることにより、第二のレジスト層の感度、解像度、プロセス安定性、パターン形状等を更に改善することができる。なお、重合体(a)の精製法としては、前述と同様の方法を挙げることができる。
(2) 溶剤(b)
 溶剤(b)としては、特に制限されないが、重合体(a)を溶解し、第一のレジストパターンを溶解しないものが好ましい。例えば、プロピレングリコールモノメチルエーテルアセテートやシクロヘキサノン等がある。
 溶剤(b)の使用量は、第二のポジ型感放射線性組成物の全固形分濃度が、通常、1~50質量%となる量であり、好ましくは1~25質量%となる量である。
(3) 感放射線性酸発生剤
 第二のポジ型感放射線性組成物は、通常、感放射線性酸発生剤を含有するものである。感放射線性酸発生剤としては、前述の第一のポジ型感放射線性組成物における酸発生剤(C)と同様のことがいえる。なお、第一のポジ型感放射線性組成物に含有される酸発生剤(C)と、第二のポジ型感放射線性組成物に含有される感放射線性酸発生剤は、同一であっても良く、異なっていても良い。
 感放射線性酸発生剤の含有量は、レジストとしての感度及び現像性を確保する観点から、重合体(a)100質量部に対して、通常、0.1~20質量部であり、好ましくは0.5~10質量部である。含有量が0.1質量部未満であると、感度及び現像性が低下する傾向がある。一方、20質量部超であると、放射線に対する透明性が低下して、矩形の第二のレジストパターンを得られ難くなる傾向がある。
 感放射線性酸発生剤が酸発生剤(1)とともに、他の酸発生剤を含む場合、その使用割合は、感放射線性酸発生剤100質量%に対して、通常、80質量%以下であり、好ましくは60質量%以下である。
(4) 添加剤
 第二のポジ型感放射線性組成物は、添加剤を含有しても良い。なお、この添加剤としては、第一のポジ型感放射線性組成物において前述した酸拡散制御剤等の各種の添加剤と同様のことがいえる。
 第二のポジ型感放射線性組成物が添加剤として酸拡散制御剤を含有する場合、その含有量は、重合体(a)100質量部に対して、0.001~15質量部であることが好ましく、0.01~10質量であることがより好ましく、0.05~5質量部であることが更に好ましい。含有量が15質量部超であると、レジストとしての感度が低下することがある。一方、0.001質量部未満であると、プロセス条件によっては、レジストとしてのパターン形状や寸法忠実度が低下するおそれがある。
 第二のポジ型感放射線性組成物は、各構成成分を溶剤(b)に溶解した後、例えば孔径0.2μm程度のフィルターでろ過することによって塗工液として調製し、基板上に塗布することができる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。また、各種物性値の測定方法、及び諸特性の評価方法を以下に示す。
 [重量平均分子量(Mw)及び数平均分子量(Mn)]:東ソー社製GPCカラム(G2000HXL2本、G3000HXL1本、G4000HXL1本)を用い、流量:1.0mL/min、溶出溶剤:テトラヒドロフラン、カラム温度:40℃の分析条件で、ゲルパーミエーションクロマトグラフィ(GPC)により、単分散ポリスチレンを標準として測定した。
 [13C-NMR分析]:各重合体の13C-NMR分析は、日本電子社製「JNM-EX270」を用いて測定した。
 [後退接触角(°)]:ポジ型感放射線性組成物をSi基板上に、「CLEAN TRACK ACT8」にて、スピンコートし、100℃で60秒間プレベーク(PB)を行い、膜厚100nmの被膜を形成した。その後、速やかに、KRUS社製「DSA-10」を用いて、室温23℃、湿度45%、常圧の環境下で、次の手順により後退接触角を測定した。先ず、商品名「DSA-10」(KRUS社製)のウェハステージ位置を調整し、この調整したステージ上に基板をセットする。次いで、針に水を注入し、セットした基板上に水滴を形成可能な初期位置に針の位置を微調整する。その後、この針から水を排出させて基板上に25μLの水滴を形成し、一旦、この水滴から針を引き抜き、再び初期位置に針を引き下げて水滴内に配置する。続いて、10μL/minの速度で90秒間、針によって水滴を吸引すると同時に、液面と基板との接触角を毎秒1回測定する(合計90回)。このうち、接触角の測定値が安定した時点から20秒間の接触角についての平均値を算出して後退接触角とした。
 [PEB前後の現像液に対する接触角変化]:前記後退接触角の測定と同様にポジ型感放射線性組成物を塗布した基板を作成し、後述の[現像液に対する接触角の測定方法]により現像液に対する接触角を測定した。また、後退接触角の測定と同様にポジ型感放射線性組成物を塗布した基板を作成した後、この被膜を、ArFエキシマレーザー液浸露光装置(「NSR S306C」、NIKON社製)を用い、NA=0.75、σ=0.85、1/2Annularの条件により、6%HTマスクを介して露光した。露光後、95℃で60秒間ポストベーク(PEB)を行った。その後、速やかに、後述の[現像液に対する接触角の測定方法]により現像液に対する接触角を測定した。得られた測定結果を用いてPEB前後の現像液に対する接触角の差[Δ〔(PEB前接触角)-(PEB後接触角〕]を求め、下記基準によって評価した。
 A:[Δ〔(PEB前接触角)-(PEB後接触角)]の値が10°以上
 B:[Δ〔(PEB前接触角)-(PEB後接触角)]の値が5°以上10°未満
 C:[Δ〔(PEB前接触角)-(PEB後接触角)]の値が5°未満
 [現像液に対する接触角の測定方法]:KRUS社製「DSA-10」を用いて、室温23℃、湿度45%、常圧の環境下で、次の手順により接触角を測定した。先ず、商品名「DSA-10」(KRUS社製)のウェハステージ位置を調整し、この調整したステージ上に基板をセットする。次いで、針に現像液を注入し、セットした基板上に液滴を形成可能な初期位置に針の位置を微調整する。その後、この針から現像液を排出させて基板上に25μLの液滴を形成し、液面と基板との接触角を測定する。
 [前進接触角と後退接触角との差[Δ〔(前進接触角)-(後退接触角)〕]]:[後退接触角の測定]及び後述する[前進接触角の測定]の結果を用いて、前進接触角と後退接触角との差[Δ〔(前進接触角)-(後退接触角〕]を求め、下記基準によって評価した。
 A:[Δ〔(前進接触角)-(後退接触角〕]の絶対値が20°未満
 B:[Δ〔(前進接触角)-(後退接触角〕]の絶対値が20°以上
 [前進接触角の測定]:前進接触角の測定は、KRUS社製「DSA-10」を用いて、各ポジ型感放射線性組成物による被膜を形成した基板(ウェハ)を作成した後、速やかに、室温:23℃、湿度:45%、常圧の環境下で、下記のように測定した。
 <1>ウェハステージ位置を調整する。
 <2>ウェハをステージにセットする。
 <3>針へ水を注入する。
 <4>針の位置を微調整する。
 <5>針から水を排出してウェハ上に25μLの水滴を形成する。
 <6>水滴から針を一旦引き抜く。
 <7>針を前記<4>で調整した位置へ再度引き下げる。
 <8>針から水滴を10μL/minの速度で90秒間注入する。同時に接触角を毎秒(計90回)測定する。
 <9>接触角が安定した時点から計20点の接触角について平均値を算出し前進接触角とする。
 [DPパターン評価]:評価用基板Cを走査型電子顕微鏡(日立計測器社製、S-9380)を用いて観察し、第一のレジストパターンが損失又は開口部底部に不溶物がある場合を「不良」と評価し、トップロス・スカムなく解像し、第一のレジストパターンと第二のレジストパターンの両方のパターンが形成されている場合を「良好」と評価した。なお、実施例23~25及び比較例9~11については、第一のレジストパターンに対して交差するように、48nmライン/96nmピッチ(48nm1L/1S)のライン・アンド・スペースパターンを形成し、コンタクトホールパターンが形成された場合を「良好」と評価した。
 [線幅変動]:評価用基板Bと評価用基板Cの第一のレジストパターンの線幅変動を走査型電子顕微鏡(日立計測器社製、S-9380)を用いて観察し、線幅変動が4nm未満のものを「◎(優)」と評価し、4~7nmのものを「○(良)」と評価し、8nm超のものを「×(不良)」と評価した。
 以下、各重合体(A)、重合体(B)、重合体(F)の調製方法について説明する。なお、重合体(A)、重合体(B)、重合体(F)の調製に用いた単量体(M-1)~(M-22)を以下に示す。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 (重合例1 重合体(A-1)の調製)
 先ず、単量体(M-14)15mol%、単量体(M-13)35mol%、単量体(M-8)50mol%、及び重合開始剤(ジメチル-2,2’-アゾビスイソブチレート(MAIB))を100gのメチルエチルケトンに溶解した単量体溶液を準備した。仕込み時の単量体の合計量は50gに調製した。なお、各単量体のmol%は単量体全量に対するmol%を表し、重合開始剤の使用割合は、単量体と重合開始剤の合計量に対して、2mol%とした。一方、温度計及び滴下漏斗を備えた500mLの三つ口フラスコにエチルメチルケトン50gを加え、30分間窒素パージを行った。その後、フラスコ内をマグネティックスターラーで攪拌しながら、80℃になるように加熱した。次いで、単量体溶液をフラスコ内に、滴下漏斗を用いて3時間かけて滴下した。滴下終了後、3時間熟成させた後、30℃以下になるまで冷却して重合体溶液を得た。得られた重合体溶液を1000gのメタノールに投入して混合した。次いで、吸引濾過を実施し、粉体を回収し、200gのメタノールに再度投入し、洗浄し、濾過した。洗浄を再度行い、回収した粉体を60℃にて減圧乾燥させた。得られた重合体を重合体(A-1)とする。この重合体(A-1)は、Mwが10000であり、Mw/Mnが1.5であり、13C-NMR分析の結果、各単量体に由来する各繰り返し単位の含有比率((M-14)/(M-13)/(M-8)=14.6/35.9/49.5(mol%))の共重合体であった。
 (重合例8 重合体(B-1)の調製)
 先ず、単量体(M-2)50mol%、単量体(M-19)5mol%、単量体(M-8)45mol%、及び重合開始剤(ジメチル-2,2’-アゾビスイソブチレート(MAIB))を100gのメチルエチルケトンに溶解した単量体溶液を準備した。仕込み時の単量体の合計量は50gに調製した。なお、各単量体のmol%は単量体全量に対するmol%を表し、重合開始剤の使用割合は、単量体と重合開始剤の合計量に対して、8mol%とした。一方、温度計及び滴下漏斗を備えた500mLの三つ口フラスコにエチルメチルケトン50gを加え、30分間窒素パージを行った。その後、フラスコ内をマグネティックスターラーで攪拌しながら、80℃になるように加熱した。次いで、単量体溶液をフラスコ内に、滴下漏斗を用いて3時間かけて滴下した。滴下終了後、3時間熟成させた後、30℃以下になるまで冷却して重合体溶液を得た。得られた重合体溶液を1000gのメタノールに投入して混合した。次いで、吸引濾過を実施し、粉体を回収し、200gのメタノールに再度投入し、洗浄し、濾過した。洗浄を再度行い、回収した粉体を60℃にて減圧乾燥させた。得られた重合体を重合体(B-1)とする。この重合体(B-1)は、Mwが5000であり、Mw/Mnが1.6であり、13C-NMR分析の結果、各単量体に由来する各繰り返し単位の含有比率[(M-2)/(M-19)/(M-8)=49.5/5.0/45.5(mol%)]の共重合体であった。
 (重合例16 重合体(F-1)の調製)
 先ず、単量体(M-3)25mol%、単量体(M-1)60mol%、単量体(M-4)15mol%、及び重合開始剤(ジメチル-2,2’-アゾビスイソブチレート(MAIB))を50gのメチルエチルケトンに溶解した単量体溶液を準備した。仕込み時の単量体の合計量は50gに調製した。なお、各単量体のmol%は単量体全量に対するmol%を表し、重合開始剤の使用割合は、単量体と重合開始剤の合計量に対して、8mol%とした。一方、温度計及び滴下漏斗を備えた500mLの三つ口フラスコにエチルメチルケトン50gを加え、30分間窒素パージを行った。その後、フラスコ内をマグネティックスターラーで攪拌しながら、80℃になるように加熱した。次いで、単量体溶液をフラスコ内に、滴下漏斗を用いて3時間かけて滴下した。滴下終了後、3時間熟成させた後、30℃以下になるまで冷却して重合体溶液を得た。その後、重合体溶液を2Lの分液漏斗に移液した後、150gのn-ヘキサンでその重合溶液を均一に希釈し、600gのメタノールを投入して混合した。次いで、30gの蒸留水を投入した後、攪拌して30分静置した。その後、下層を回収し、プロピレングリコールモノメチルエーテルアセテート溶液とした。このプロピレングリコールモノメチルエーテルアセテート溶液中の重合体を重合体(F-1)とする。重合体(F-1)は、Mwが6500であり、Mw/Mnが1.7であり、13C-NMR分析の結果、各単量体に由来する各繰り返し単位の含有比率[(M-3):(M-1):(M-4)]は、26.6:58.2:15.2(mol%)の共重合体であった。
 (重合例2~7 重合体(A-2)~(A-7)の調製)
 表1に示す配合処方で単量体を用いたこと以外は、重合例1と同様にして重合体(A-2)~(A-7)を調製した。なお、表2に、重合体(A-1)~(A-7)の13C-NMRによる組成比、重量平均分子量(Mw)及び分散度(Mw/Mn)を併記した。
 (重合例9~15 重合体(B-2)~(B-8)の調製)
 表1に示す配合処方で単量体を用いたこと以外は、重合例8と同様にして重合体(B-2)~(B-8)を調製した。なお、表2に、重合体(B-2)~(B-8)の13C-NMRによる組成比、重量平均分子量(Mw)及び分散度(Mw/Mn)を併記した。
 (重合例17~20及び参考例1~9 重合体(F-2)~(F-14)の調製)
 表1に示す配合処方で単量体を用いたこと以外は、重合例16と同様にして重合体(F-2)~(F-14)を調製した。なお、表2に、重合体(F-1)~(F-14)の13C-NMRによる組成比、重量平均分子量(Mw)及び分散度(Mw/Mn)を併記した。
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
 (実施例1 第一のポジ型感放射線性組成物の調製)
 重合体(A)として重合体(A-1)90部、重合体(B)として重合体(B-1)10部、酸発生剤(C)として酸発生剤(C-1)(トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート)7.5部、含窒素化合物(E)として酸拡散抑制剤(E-1)(N-t-ブトキシカルボニルピロリジン)0.94部、並びに溶剤(D)として溶剤(D-1)(プロピレングリコールモノメチルエーテルアセテート)1287部及び溶剤(D-2)(シクロヘキサノン)551部を添加し、各成分を混合して均一溶液とした。その後、孔径200nmのメンブランフィルターを用いてろ過することにより、第一のポジ型感放射線性組成物からなる塗工液(1)を調製した。
 (実施例2~18、比較例1~5)
 表3に記載した配合処方にしたこと以外は、実施例1と同様にして各塗工液を調製した。なお、各成分の使用量は、重合体(A)と重合体(B)の合計量100部に対する値である。
Figure JPOXMLDOC01-appb-T000035
 以下に表3に記載した各成分の種類を記す。
 酸発生剤(C-1):トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート
 溶剤(D-1):プロピレングリコールモノメチルエーテルアセテート
 溶剤(D-2):シクロヘキサノン
 含窒素化合物(E-1):N-t-ブトキシカルボニルピロリジン
 (第二のポジ型感放射線性組成物の調製)
 樹脂(a)として下記式(B-9)で表される重合体(B-9)100部、感放射線性酸発生剤としてトリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート7.0部、酸拡散抑制剤(E)として化合物(E-2)2.64部、及び溶剤(b)としてプロピレングリコールモノメチルエーテルアセテート2014部を添加し、各成分を混合して均一溶液とした。その後、孔径200nmのメンブランフィルターを用いてろ過することにより、第二のポジ型感放射線性組成物からなる塗工液(24)を調製した。なお、重合体(B-9)は前述した重合例8と同様にして調製した。この重合体(B-9)は、Mwが4800であり、Mw/Mnが1.5の共重合体であった。
Figure JPOXMLDOC01-appb-C000036
 樹脂(a)として下記式(B-10)で表される重合体(B-10)100部、感放射線性酸発生剤としてトリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート7.0部、酸拡散抑制剤(E)として化合物(E-2)2.64部、及び溶剤(b)としてプロピレングリコールモノメチルエーテルアセテート2014部を添加し、各成分を混合して均一溶液とした。その後、孔径200nmのメンブランフィルターを用いてろ過することにより、第二のポジ型感放射線性組成物からなる塗工液(25)を調製した。なお重合体(B-10)は前述した重合例1と同様にして調製した。この重合体(B-10)は、Mwが4800であり、Mw/Mnが1.5の共重合体であった。
Figure JPOXMLDOC01-appb-C000037
 同様に、樹脂(a)として下記式(B-11)で表される重合体(B-11)100部、感放射線性酸発生剤としてトリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート7.0部、酸拡散抑制剤(E)として化合物(E-2)2.64部、及び溶剤(b)としてプロピレングリコールモノメチルエーテルアセテート2014部を添加し、各成分を混合して均一溶液とした。その後、孔径200nmのメンブランフィルターを用いてろ過することにより、第二のポジ型感放射線性組成物からなる塗工液(26)を調製した。なお、重合体(B-11)は重合例1と同様にして調製した。この重合体(B-11)は、Mwが5500であり、Mw/Mnが1.6の共重合体であった。
Figure JPOXMLDOC01-appb-C000038
 (実施例19 レジストパターンの形成)
 12インチシリコンウェハ上に、下層反射防止膜(商品名「ARC29A」、ブルワーサイエンス社製)を、商品名「Lithius Pro-i」(東京エレクトロン社製)を使用してスピンコートした後、PB(205℃、60秒)を行うことにより膜厚77nmの塗膜を形成した。商品名「CLEAN TRACK ACT12」を使用して実施例1で調製した塗工液(1)(第一のポジ型感放射線性組成物)をスピンコートし、PB(130℃、60秒)した後、冷却(23℃、30秒)することにより膜厚90nmの第一のレジスト層を形成した。
 次いで、ArF液浸露光装置(商品名「S610C」、NIKON社製)を使用し、NA:1.30、Dipoleの光学条件にて、45nmライン/120nmピッチのマスクサイズのマスクを介して露光した。商品名「Lithius Pro-i」のホットプレート上でPEB(125℃、60秒)をし、冷却(23℃、30秒)した後、現像カップのGPノズルにて、2.38%テトラメチルアンモニウムヒドロキシド水溶液を現像液としてパドル現像(10秒間)し、超純水でリンスした。2000rpm、15秒間振り切りでスピンドライすることにより、第一のレジストパターンが形成された評価用基板Aを得た。
 得られた評価用基板Aの第一のレジストパターンに対して、商品名「CLEAN TRACK ACT12」のホットプレート上でPDB(200℃、60秒)を行い、評価用基板Bを得た。
 評価用基板Bに、塗工液(24)(第二のポジ型感放射線性組成物)を商品名「CLEAN TRACK ACT12」を使用してスピンコートし、PB(100℃、60秒)した後、冷却(23℃、30秒)して、膜厚90nmの第二のレジスト層を形成した。ArF液浸露光装置(商品名「S610C」、NIKON社製)を使用し、NA:1.30、Dipoleの光学条件にて、45nmライン/120nmピッチのマスクサイズのマスクを介して第一のレジストパターンのスペース部分を露光した。商品名「Lithius Pro-i」のホットプレート上でPEB(105℃、60秒)をし、冷却(23℃、30秒)した後、現像カップのGPノズルにて、2.38%テトラメチルアンモニウムヒドロキシド水溶液を現像液としてパドル現像(30秒間)し、超純水でリンスした。2000rpm、15秒間振り切りでスピンドライすることにより、第二のレジストパターンが形成された評価用基板Cを得た。評価用基板CのDPパターン評価は「良好」であり、線幅変動の評価は「◎(優)」であった。
 (実施例20~40)
 表4に記載したこと以外は実施例19と同様にして各評価用基板Cを得た。得られた各評価用基板Cの評価結果を併せて表4に記載する。なお、実施例30~32及び40については、48nmライン/96nmピッチ(48nm1L/1S)のマスクサイズのマスクを介して露光した第一のレジストパターンに対して交差するように、48nmライン/96nmピッチ(48nm1L/1S)のマスクサイズのマスクを介して露光した。
Figure JPOXMLDOC01-appb-T000039
 (比較例6~10)
 表5に記載したこと以外は実施例19と同様にして各評価用基板Cを得た。得られた各評価用基板Cの評価結果を併せて表5に記載する。
Figure JPOXMLDOC01-appb-T000040
 表4及び表5からわかるように、本発明のポジ型感放射線組成物を用いたレジストパターン形成方法によれば、DPパターンが良好であり、大きな線幅変動を行うことなく、波長限界を超えるパターンを形成することができる。
 本発明のポジ型感放射線組成物を用いたレジストパターン形成方法によれば、波長限界を超えるパターンを良好かつ経済的に形成することができるので、今後ますます微細化が進行するとみられる集積回路素子の製造に代表される微細加工の分野で極めて好適に使用することができる。
1:基板、2:第一のレジスト層、3,33:液浸露光用液体、4,34:マスク、5,35:アルカリ現像部、12,22:第一のレジストパターン、22a:第一のライン部分、22b:第一のスペース部分、13:スペース部分、14:ライン部分、15:コンタクトホールパターン、32:第二のレジスト層、42:第二のレジストパターン、42a:第二のライン部分、42b:第二のスペース部分。

Claims (9)

  1.  第一のポジ型感放射線性組成物を用いて、基板上に第一のレジストパターンを形成する工程(1)と、
     前記第一のレジストパターンを、光又は熱に対して不活性化させることにより第二のポジ型感放射線性組成物に対して不溶化させる工程(2)と、
     前記第二のポジ型感放射線性組成物を用いて、前記第一のレジストパターンが形成された基板上に第二のレジストパターンを形成する工程(3)と、を含むレジストパターン形成方法の前記工程(1)で用いられる、
     (B)酸不安定基及び架橋基を有する重合体と、(C)感放射線性酸発生剤と、(D)溶剤と、を含有するポジ型感放射線性組成物。
  2.  (A)酸不安定基を有し、架橋基を有しない重合体を更に含有する請求項1に記載のポジ型感放射線性組成物。
  3.  前記重合体(A)及び前記重合体(B)が、
     下記一般式(1)で表される酸不安定基を有する繰り返し単位と、
     下記一般式(2-1)~(2-5)及び下記式(2-6)からなる群より選択される少なくとも一つのラクトン構造を有する繰り返し単位、又は下記一般式(2-7)で表される繰り返し単位と、を含む請求項2に記載のポジ型感放射線性組成物。
    Figure JPOXMLDOC01-appb-C000001
     (前記一般式(1)中、Rは、水素原子、メチル基又はトリフルオロメチル基を示し、Rは、相互に独立に、炭素数1~4の直鎖状若しくは分岐状のアルキル基、又は炭素数4~20の1価の脂環式炭化水素基を示すか、或いは、いずれか二つのRが相互に結合して、それぞれが結合している炭素原子と共に形成される炭素数4~20の2価の脂環式炭化水素基又はその誘導体を示し、残りのRが炭素数1~4の直鎖状若しくは分岐状のアルキル基、又は炭素数4~20の1価の脂環式炭化水素基若しくはその誘導体を示す。)
    Figure JPOXMLDOC01-appb-C000002
     (前記一般式(2-1)中、Rは、水素原子又は炭素数1~4の置換若しくは非置換のアルキル基を示し、pは、1~3の整数を示す。前記一般式(2-4)及び(2-5)中、Rは、水素原子又はメトキシ基を示す。前記一般式(2-2)及び(2-3)中、Aは、単結合又はメチレン基を示し、mは、0又は1を示す。前記一般式(2-3)及び(2-5)中、Bは、酸素原子又はメチレン基を示す。)
    Figure JPOXMLDOC01-appb-C000003
     (前記一般式(2-7)中、R10は、水素原子、メチル基又はトリフルオロメチル基を示し、R11は、相互に独立に、水素原子、又は炭素数1~5の鎖状炭化水素基を示し、Dは、単結合、炭素数1~30の2価若しくは3価の鎖状炭化水素基、炭素数3~30の2価若しくは3価の脂環式炭化水素基、又は炭素数6~30の2価若しくは3価の芳香族炭化水素基を示す。但し、Dが3価の場合、Dに含まれる炭素原子と環状炭酸エステルを構成する炭素原子とが結合されて、環構造が形成される。nは2~4の整数を示す。)
  4.  前記重合体(B)が、
     下記一般式(3-1)及び(3-2)の少なくともいずれかで表される繰り返し単位を含む請求項1~3のいずれか一項に記載のポジ型感放射線性組成物。
    Figure JPOXMLDOC01-appb-C000004
     (前記一般式(3-1)及び(3-2)中、Rは、水素原子、メチル基又はトリフルオロメチル基を示す。前記一般式(3-1)中、Rは、メチレン基、エチレン基又はプロピレン基を示し、Rは、下記一般式(4)で表される基又は下記一般式(5)で表される基を示す。前記一般式(3-2)中、Rは、メチレン基又は炭素数2~6のアルキレン基を示し、Rは、水素原子、メチル基又はエチル基を示す。nは、0又は1を示す。)
    Figure JPOXMLDOC01-appb-C000005
     (前記一般式(4)及び(5)中、Rは、相互に独立に、水素原子又は1~10の直鎖状若しくは分岐状のアルキル基を示す。)
  5.  前記重合体(B)に含まれる、前記一般式(3-1)又は(3-2)で表される繰り返し単位の割合が、前記重合体(B)に含まれる繰り返し単位の合計100mol%に対して、1~30mol%である請求項4に記載のポジ型感放射線性組成物。
  6.  (F)下記一般式(10)及び下記一般式(11)で表される少なくともいずれかの繰り返し単位を含む重合体を更に含有する請求項1~5のいずれか一項に記載のポジ型感放射線性組成物。
    Figure JPOXMLDOC01-appb-C000006
     (前記一般式(10)中、R27は、水素原子、メチル基、又はトリフルオロメチル基を示し、R28は、単結合、又は炭素数1~20の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の2価の炭化水素基を示し、Xは、フッ素原子で置換されたメチレン基、又は炭素数2~20の直鎖状若しくは分岐状のフルオロアルキレン基を示し、R29は、水素原子又は1価の有機基を示す。前記一般式(11)中、R30は、水素原子、メチル基、又はトリフルオロメチル基を示し、Yは、連結基を示し、R31は、少なくとも一つ以上のフッ素原子を有する、炭素数1~6の直鎖状若しくは分岐状のアルキル基又は炭素数4~20の1価の脂環式炭化水素基若しくはその誘導体を示す。)
  7.  前記重合体(F)の含有量が、前記重合体(A)及び(B)の合計100質量部に対して、0.1~20質量部である請求項6に記載のポジ型感放射線性組成物。
  8.  請求項1~7のいずれか一項に記載のポジ型感放射線性組成物を用いて、基板上に第一のレジストパターンを形成する工程(1)と、
     前記第一のレジストパターンを、光又は熱に対して不活性化させることにより第二のポジ型感放射線性組成物に対して不溶化させる工程(2)と、
     前記第二のポジ型感放射線性組成物を用いて、前記第一のレジストパターンが形成された基板上に第二のレジストパターンを形成する工程(3)と、を含むレジストパターン形成方法。
  9.  前記第一のレジストパターンが、ライン部分及びスペース部分を有し、
     前記第二のレジストパターンが、ライン部分及びスペース部分を有し、
     前記第一のレジストパターンの前記ライン部分と、前記第二のレジストパターンの前記ライン部分とが相互に交差するように、前記第二のレジストパターンを形成する請求項8に記載のレジストパターン形成方法。
PCT/JP2009/062750 2008-07-15 2009-07-14 ポジ型感放射線性組成物及びレジストパターン形成方法 WO2010007993A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801276641A CN102099749A (zh) 2008-07-15 2009-07-14 正型放射线敏感性组合物和抗蚀图案形成方法
EP09797918A EP2309332A4 (en) 2008-07-15 2009-07-14 POSITIVE TYPE SENSITIVE SENSITIVE COMPOSITION, AND RESIST PATTERN FORMATION METHOD
JP2010520872A JP5445454B2 (ja) 2008-07-15 2009-07-14 ポジ型感放射線性組成物及びレジストパターン形成方法
US13/005,536 US8501385B2 (en) 2008-07-15 2011-01-13 Positive-type radiation-sensitive composition, and resist pattern formation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-184103 2008-07-15
JP2008184103 2008-07-15
JP2009-080196 2009-03-27
JP2009080196 2009-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/005,536 Continuation US8501385B2 (en) 2008-07-15 2011-01-13 Positive-type radiation-sensitive composition, and resist pattern formation method

Publications (1)

Publication Number Publication Date
WO2010007993A1 true WO2010007993A1 (ja) 2010-01-21

Family

ID=41550395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062750 WO2010007993A1 (ja) 2008-07-15 2009-07-14 ポジ型感放射線性組成物及びレジストパターン形成方法

Country Status (7)

Country Link
US (1) US8501385B2 (ja)
EP (1) EP2309332A4 (ja)
JP (1) JP5445454B2 (ja)
KR (1) KR20110022602A (ja)
CN (1) CN102099749A (ja)
TW (1) TW201005440A (ja)
WO (1) WO2010007993A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197689A (ja) * 2009-02-25 2010-09-09 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物及びレジストパターン形成方法
JP2010277043A (ja) * 2009-06-01 2010-12-09 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物及びレジストパターン形成方法
JP2011053248A (ja) * 2009-08-31 2011-03-17 Fujifilm Corp 感光性樹脂組成物、硬化膜、硬化膜の形成方法、有機el表示装置、及び、液晶表示装置
JP2011170284A (ja) * 2010-02-22 2011-09-01 Jsr Corp 感放射線性樹脂組成物及びレジストパターン形成方法
JP2011168691A (ja) * 2010-02-18 2011-09-01 Jsr Corp 重合体の製造方法
JP2011180385A (ja) * 2010-03-01 2011-09-15 Jsr Corp 感放射線性組成物及びレジストパターン形成方法
WO2011111641A1 (ja) * 2010-03-09 2011-09-15 Jsr株式会社 感放射線性樹脂組成物
WO2011122588A1 (ja) * 2010-03-31 2011-10-06 Jsr株式会社 感放射線性樹脂組成物及び重合体
JP2011227463A (ja) * 2010-03-30 2011-11-10 Jsr Corp 感放射線性樹脂組成物およびパターン形成方法
EP2439590A1 (en) * 2009-06-04 2012-04-11 JSR Corporation Radiation-sensitive resin composition, polymer and method for forming resist pattern
JP2012088449A (ja) * 2010-10-18 2012-05-10 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物、レジストパターン形成方法
JP2012141586A (ja) * 2010-12-15 2012-07-26 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2013513827A (ja) * 2009-12-11 2013-04-22 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 塩基反応性成分を含む組成物およびフォトリソグラフィのための方法
JP2013156563A (ja) * 2012-01-31 2013-08-15 Fujifilm Corp 感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置及び液晶表示装置
US20130216960A1 (en) * 2009-05-25 2013-08-22 Central Glass Company, Limited Water Repellent Additive for Immersion Resist
JP2013182077A (ja) * 2012-02-29 2013-09-12 Fujifilm Corp 感光性樹脂組成物、これを用いた硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
US8795954B2 (en) 2010-10-15 2014-08-05 Jsr Corporation Resist pattern-forming method, and radiation-sensitive resin composition
WO2014157171A1 (ja) * 2013-03-27 2014-10-02 富士フイルム株式会社 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置及び有機el表示装置
WO2015033880A1 (ja) * 2013-09-04 2015-03-12 富士フイルム株式会社 樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
JP2015079261A (ja) * 2014-11-26 2015-04-23 富士フイルム株式会社 パターン形成方法、感活性光線性又は感放射線性樹脂組成物及びレジスト膜
US9034559B2 (en) 2010-10-22 2015-05-19 Jsr Corporation Pattern-forming method, and radiation-sensitive composition
US9164387B2 (en) 2010-10-04 2015-10-20 Jsr Corporation Pattern-forming method, and radiation-sensitive resin composition
JP2021073505A (ja) * 2010-06-01 2021-05-13 インプリア・コーポレイションInpria Corporation パターン形成された無機層、放射線によるパターン形成組成物、およびそれに対応する方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI533082B (zh) * 2008-09-10 2016-05-11 Jsr股份有限公司 敏輻射性樹脂組成物
JP5520590B2 (ja) 2009-10-06 2014-06-11 富士フイルム株式会社 パターン形成方法、化学増幅型レジスト組成物及びレジスト膜
KR20130008576A (ko) * 2010-03-31 2013-01-22 제이에스알 가부시끼가이샤 감방사선성 수지 조성물
JP2013083935A (ja) * 2011-09-28 2013-05-09 Jsr Corp フォトレジスト組成物及びその製造方法、並びにレジストパターン形成方法
JP6404757B2 (ja) * 2015-03-27 2018-10-17 信越化学工業株式会社 レジスト下層膜材料用重合体、レジスト下層膜材料、及びパターン形成方法
JP2016206449A (ja) * 2015-04-23 2016-12-08 株式会社東芝 パターン形成方法
US11112698B2 (en) * 2016-11-29 2021-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Photoresist with gradient composition for improved uniformity
EP3626751B1 (en) * 2017-05-18 2023-05-17 Namics Corporation Resin composition
JP2021175791A (ja) 2020-04-28 2021-11-04 信越化学工業株式会社 フルオロカルボン酸含有モノマー、フルオロカルボン酸含有ポリマー、レジスト材料及びパターン形成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993448A (ja) 1982-09-30 1984-05-29 ブリューワー・サイエンス・インコーポレイテッド 反射防止コ−テイング
JPH05188598A (ja) 1991-06-28 1993-07-30 Internatl Business Mach Corp <Ibm> 表面反射防止コーティングフィルム
JP2005352384A (ja) 2004-06-14 2005-12-22 Fuji Photo Film Co Ltd 液浸露光用保護膜形成組成物及びそれを用いたパターン形成方法
JP2007065503A (ja) * 2005-09-01 2007-03-15 Osaka Prefecture Univ レジスト組成物
WO2008038526A1 (fr) * 2006-09-28 2008-04-03 Tokyo Ohka Kogyo Co., Ltd. Procédé de formation d'un motif, et matériau pour formation de film d'enrobage
WO2008117693A1 (ja) * 2007-03-28 2008-10-02 Jsr Corporation ポジ型感放射線性組成物およびそれを用いたレジストパターン形成方法
WO2008149947A1 (ja) * 2007-06-05 2008-12-11 Fujifilm Corporation ポジ型感光性樹脂組成物及びそれを用いた硬化膜形成方法
WO2009041619A1 (ja) * 2007-09-28 2009-04-02 Fujifilm Corporation ポジ型感光性樹脂組成物及びそれを用いた硬化膜形成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202603A (ja) * 2000-10-23 2002-07-19 Jsr Corp 感放射線性樹脂組成物
KR100893515B1 (ko) * 2004-11-15 2009-04-16 도오꾜오까고오교 가부시끼가이샤 레지스트 패턴의 형성 방법
JP5047502B2 (ja) * 2005-01-19 2012-10-10 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 樹脂混合物を含むフォトレジスト組成物
US8404427B2 (en) * 2005-12-28 2013-03-26 Fujifilm Corporation Photosensitive composition, and pattern-forming method and resist film using the photosensitive composition
US7749680B2 (en) * 2007-01-05 2010-07-06 Hynix Semiconductor Inc. Photoresist composition and method for forming pattern of a semiconductor device
JP5035562B2 (ja) * 2007-08-22 2012-09-26 信越化学工業株式会社 パターン形成方法
US7803521B2 (en) * 2007-11-19 2010-09-28 International Business Machines Corporation Photoresist compositions and process for multiple exposures with multiple layer photoresist systems
JP2009288343A (ja) * 2008-05-27 2009-12-10 Fujifilm Corp ポジ型レジスト組成物、及び該組成物を用いたパターン形成方法
JP4990844B2 (ja) * 2008-06-17 2012-08-01 信越化学工業株式会社 パターン形成方法並びにこれに用いるレジスト材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993448A (ja) 1982-09-30 1984-05-29 ブリューワー・サイエンス・インコーポレイテッド 反射防止コ−テイング
JPH0612452B2 (ja) 1982-09-30 1994-02-16 ブリュ−ワ−・サイエンス・インコ−ポレイテッド 集積回路素子の製造方法
JPH05188598A (ja) 1991-06-28 1993-07-30 Internatl Business Mach Corp <Ibm> 表面反射防止コーティングフィルム
JP2005352384A (ja) 2004-06-14 2005-12-22 Fuji Photo Film Co Ltd 液浸露光用保護膜形成組成物及びそれを用いたパターン形成方法
JP2007065503A (ja) * 2005-09-01 2007-03-15 Osaka Prefecture Univ レジスト組成物
WO2008038526A1 (fr) * 2006-09-28 2008-04-03 Tokyo Ohka Kogyo Co., Ltd. Procédé de formation d'un motif, et matériau pour formation de film d'enrobage
WO2008117693A1 (ja) * 2007-03-28 2008-10-02 Jsr Corporation ポジ型感放射線性組成物およびそれを用いたレジストパターン形成方法
WO2008149947A1 (ja) * 2007-06-05 2008-12-11 Fujifilm Corporation ポジ型感光性樹脂組成物及びそれを用いた硬化膜形成方法
WO2009041619A1 (ja) * 2007-09-28 2009-04-02 Fujifilm Corporation ポジ型感光性樹脂組成物及びそれを用いた硬化膜形成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ORGANIC LETTERS, vol. 4, no. 15, 2002, pages 2561
See also references of EP2309332A4 *
TETRAHEDRON LETTERS, vol. 27, no. 32, 1986, pages 3741

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197689A (ja) * 2009-02-25 2010-09-09 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物及びレジストパターン形成方法
US20130216960A1 (en) * 2009-05-25 2013-08-22 Central Glass Company, Limited Water Repellent Additive for Immersion Resist
JP2010277043A (ja) * 2009-06-01 2010-12-09 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物及びレジストパターン形成方法
US9244349B2 (en) 2009-06-01 2016-01-26 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
EP2439590A4 (en) * 2009-06-04 2012-10-17 Jsr Corp RADIATION-SENSITIVE RESIN COMPOSITION, POLYMER, AND RESIST PATTERN FORMATION METHOD
US8815490B2 (en) 2009-06-04 2014-08-26 Jsr Corporation Radiation-sensitive resin composition, polymer, and method for forming resist pattern
EP2439590A1 (en) * 2009-06-04 2012-04-11 JSR Corporation Radiation-sensitive resin composition, polymer and method for forming resist pattern
JP2011053248A (ja) * 2009-08-31 2011-03-17 Fujifilm Corp 感光性樹脂組成物、硬化膜、硬化膜の形成方法、有機el表示装置、及び、液晶表示装置
JP2013513827A (ja) * 2009-12-11 2013-04-22 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 塩基反応性成分を含む組成物およびフォトリソグラフィのための方法
JP2011168691A (ja) * 2010-02-18 2011-09-01 Jsr Corp 重合体の製造方法
KR101760141B1 (ko) * 2010-02-22 2017-07-20 제이에스알 가부시끼가이샤 감방사선성 수지 조성물 및 레지스트 패턴 형성 방법
JP2011170284A (ja) * 2010-02-22 2011-09-01 Jsr Corp 感放射線性樹脂組成物及びレジストパターン形成方法
JP2011180385A (ja) * 2010-03-01 2011-09-15 Jsr Corp 感放射線性組成物及びレジストパターン形成方法
JPWO2011111641A1 (ja) * 2010-03-09 2013-06-27 Jsr株式会社 感放射線性樹脂組成物
WO2011111641A1 (ja) * 2010-03-09 2011-09-15 Jsr株式会社 感放射線性樹脂組成物
JP2011227463A (ja) * 2010-03-30 2011-11-10 Jsr Corp 感放射線性樹脂組成物およびパターン形成方法
JPWO2011122588A1 (ja) * 2010-03-31 2013-07-08 Jsr株式会社 感放射線性樹脂組成物及び重合体
WO2011122588A1 (ja) * 2010-03-31 2011-10-06 Jsr株式会社 感放射線性樹脂組成物及び重合体
JP7124137B2 (ja) 2010-06-01 2022-08-23 インプリア・コーポレイション パターン形成された無機層、放射線によるパターン形成組成物、およびそれに対応する方法
JP2021073505A (ja) * 2010-06-01 2021-05-13 インプリア・コーポレイションInpria Corporation パターン形成された無機層、放射線によるパターン形成組成物、およびそれに対応する方法
US9164387B2 (en) 2010-10-04 2015-10-20 Jsr Corporation Pattern-forming method, and radiation-sensitive resin composition
US8795954B2 (en) 2010-10-15 2014-08-05 Jsr Corporation Resist pattern-forming method, and radiation-sensitive resin composition
US9170488B2 (en) 2010-10-15 2015-10-27 Jsr Corporation Resist pattern-forming method, and radiation-sensitive resin composition
JP2012088449A (ja) * 2010-10-18 2012-05-10 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物、レジストパターン形成方法
US9034559B2 (en) 2010-10-22 2015-05-19 Jsr Corporation Pattern-forming method, and radiation-sensitive composition
US9335630B2 (en) 2010-10-22 2016-05-10 Jsr Corporation Pattern-forming method, and radiation-sensitive composition
JP2012141586A (ja) * 2010-12-15 2012-07-26 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2013156563A (ja) * 2012-01-31 2013-08-15 Fujifilm Corp 感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置及び液晶表示装置
JP2013182077A (ja) * 2012-02-29 2013-09-12 Fujifilm Corp 感光性樹脂組成物、これを用いた硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
WO2014157171A1 (ja) * 2013-03-27 2014-10-02 富士フイルム株式会社 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置及び有機el表示装置
JPWO2014157171A1 (ja) * 2013-03-27 2017-02-16 富士フイルム株式会社 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置及び有機el表示装置
WO2015033880A1 (ja) * 2013-09-04 2015-03-12 富士フイルム株式会社 樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
JP2015079261A (ja) * 2014-11-26 2015-04-23 富士フイルム株式会社 パターン形成方法、感活性光線性又は感放射線性樹脂組成物及びレジスト膜

Also Published As

Publication number Publication date
EP2309332A1 (en) 2011-04-13
JP5445454B2 (ja) 2014-03-19
US20110104612A1 (en) 2011-05-05
CN102099749A (zh) 2011-06-15
TW201005440A (en) 2010-02-01
US8501385B2 (en) 2013-08-06
KR20110022602A (ko) 2011-03-07
EP2309332A4 (en) 2012-01-25
JPWO2010007993A1 (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5445454B2 (ja) ポジ型感放射線性組成物及びレジストパターン形成方法
JP5716774B2 (ja) フッ素含有重合体及び精製方法並びに感放射線性樹脂組成物
JP5146606B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、及び、重合体
JP5141459B2 (ja) 感放射線性樹脂組成物
JP5182372B2 (ja) レジストパターン不溶化樹脂組成物及びそれを用いるレジストパターン形成方法
WO2009142181A1 (ja) 液浸露光用感放射線性樹脂組成物、重合体及びレジストパターン形成方法
JP2009134088A (ja) 感放射線性樹脂組成物
JP2010282189A (ja) 感放射線性樹脂組成物
WO2011122336A1 (ja) 感放射線性樹脂組成物およびパターン形成方法
JP2011227463A (ja) 感放射線性樹脂組成物およびパターン形成方法
JP5621275B2 (ja) イオンプランテーション用フォトレジストパターン形成方法。
WO2011034007A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP5835319B2 (ja) レジストパターン形成方法、感放射線性樹脂組成物及びレジスト膜
JP5758301B2 (ja) 感放射線性樹脂組成物、重合体及びレジストパターン形成方法
JP4985944B2 (ja) ポジ型感放射線性樹脂組成物
WO2009142182A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及びフォトレジスト膜
JP5765340B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2011123143A (ja) フォトレジスト組成物、液浸露光用フォトレジスト組成物及び重合体ならびにレジストパターン形成方法
JP5343535B2 (ja) 感放射線性樹脂組成物、それを用いたレジスト成膜方法及びレジストパターン形成方法
JP5176910B2 (ja) 感放射線性樹脂組成物
JPWO2008087840A1 (ja) 液浸露光用感放射線性樹脂組成物及びフォトレジストパターン形成方法
JP2011180385A (ja) 感放射線性組成物及びレジストパターン形成方法
JP2011197150A (ja) 感放射線性組成物及びそれを用いたレジストパターン形成方法
JP5077353B2 (ja) 感放射線性組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127664.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010520872

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107028170

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009797918

Country of ref document: EP