TWI771003B - 混合磁鐵結構 - Google Patents

混合磁鐵結構 Download PDF

Info

Publication number
TWI771003B
TWI771003B TW110117376A TW110117376A TWI771003B TW I771003 B TWI771003 B TW I771003B TW 110117376 A TW110117376 A TW 110117376A TW 110117376 A TW110117376 A TW 110117376A TW I771003 B TWI771003 B TW I771003B
Authority
TW
Taiwan
Prior art keywords
section
extension section
pole
permanent magnet
axis direction
Prior art date
Application number
TW110117376A
Other languages
English (en)
Other versions
TW202201469A (zh
Inventor
黃清鄉
詹智全
陳輝煌
朱耘諒
Original Assignee
漢辰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 漢辰科技股份有限公司 filed Critical 漢辰科技股份有限公司
Priority to KR1020210078744A priority Critical patent/KR20210156784A/ko
Priority to US17/350,484 priority patent/US11430589B2/en
Publication of TW202201469A publication Critical patent/TW202201469A/zh
Application granted granted Critical
Publication of TWI771003B publication Critical patent/TWI771003B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • H01F7/0278Magnetic circuits with PM for magnetic field generation for generating uniform fields, focusing, deflecting electrically charged particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation

Abstract

本發明提出一種混合磁鐵結構,其包含相對配置的兩個二極磁鐵組件,每個二極磁鐵組件包含一永久磁鐵、二鐵芯以及一可活動磁場分流元件。此混合磁鐵結構可透過在帶電粒子束的水平或垂直方向上施加一可調變的梯度磁場大小來對不同位置的帶電粒子束進行聚焦。本發明透過讓帶電粒子束通過兩個二極磁鐵組件之間所建立的梯度磁場來達到聚焦帶電粒子束的目的。此外,透過調整可活動磁場分流元件與永久磁鐵之間的間隙可以改變梯度磁場大小,進而控制不同能量或質量的帶電粒子束在某一軸向上的粒子束尺寸。

Description

混合磁鐵結構
本發明是關於一種混合磁鐵結構,特別是一種適用於離子佈值技術領域之混合磁鐵結構。
目前在離子佈值技術領域上,都是採用線圈繞在鐵蕊上的方式來製造二極磁鐵(Dipole magnet)與四極磁鐵(由兩個二極磁鐵所構成),並藉此在兩個二級磁鐵之間形成一個梯度磁場,再透過此梯度磁場在特定的軸向上收斂(聚焦)帶電粒子束(例如離子束),如TW I679669號專利以及TW I640999號專利所述。
此梯度磁場的特性是場中央處的磁場為零,且磁場大小在某一軸向上(例如Y軸方向)會隨著遠離場中央處而漸增。在進行操作時,係令帶電粒子束的中心通過此梯度磁場的場中央,如此一來,位於帶電粒子束中心的帶電粒子所經受的磁場將會是零,因而可維持原路徑前進。而在Y軸方向上偏離帶電粒子束中心的帶電粒子所經受的磁場不為零,且其所經受之磁場對其所施加的磁力會促使其往帶電粒子束中央(場中央)靠近,藉此達到收斂(聚焦)帶電粒子束的目的。
傳統四極磁鐵的作法是透過改變線圈的電流來改變梯度磁場的大小,藉此對通過磁場的帶電粒子束進行聚焦。此種透過線圈電流大小來控制梯度磁場包含以下問題:(1)耗費額外的電力,提高所加工產 品之碳足跡,也提高加工成本;(2)漏磁場較大,容易影響鄰近磁鐵的磁場強度;(3)線圈的絕緣材料在過熱時會釋出氣體,影響或污染真空腔體;及(4)磁場的改變程度有限。
本發明提出一種混合磁鐵結構,用以聚焦沿Z軸方向運動之一帶電粒子束,該混合磁鐵結構包含共平面配置之第一二極磁鐵組件與第二二極磁鐵組件。
第一二極磁鐵組件包含第一永久磁鐵、第一鐵芯、第二鐵芯與第一導磁元件。第一永久磁鐵具有第一N極端、第一S極端、第一內側面與相對於第一內側面之第一外側面。第一N極端與第一S極端配置於平行X軸之一直線方向上。第一內側面與第一外側面位於第一N極端與第一S極端之間,且第一內側面配置以朝向帶電粒子束的運動路徑。第一鐵芯包含彼此相連之第一覆蓋區段與第一延伸區段,第一覆蓋區段覆蓋第一N極端,第一延伸區段自第一覆蓋區段延伸而凸出第一內側面。第二鐵芯包含彼此相連之第二覆蓋區段與第二延伸區段,第二覆蓋區段覆蓋第一S極端,第二延伸區段自第二覆蓋區段延伸而凸出第一內側面。第一導磁元件可活動地設置於第一永久磁鐵之第一外側面。
第二二極磁鐵組件包含第二永久磁鐵、第三鐵芯、第四鐵芯與第二導磁元件。第二永久磁鐵具有第二N極端、第二S極端、第二內側面與相對於第二內側面之第二外側面。第二N極端與第二S極端配置於平行X軸之另一直線方向上。第二內側面與第二外側面位於第二N極端與第二S極端之間,且第二內側面配置以朝向帶電粒子束的運動路徑且朝向第 一永久磁鐵之第一內側面。第三鐵芯包含彼此相連之第三覆蓋區段與第三延伸區段,第三覆蓋區段覆蓋第二S極端,第三延伸區段自第三覆蓋區段延伸而凸出第二內側面,且第三延伸區段與第一延伸區段配置於平行Y軸之一直線方向上。第四鐵芯包含彼此相連之第四覆蓋區段與第四延伸區段,第四覆蓋區段覆蓋第二N極端,第四延伸區段自第四覆蓋區段延伸而凸出第二內側面,且第四延伸區段與第二延伸區段配置於平行於Y軸之另一直線方向上。第二導磁元件可活動地設置於第二永久磁鐵之第二外側面。
本發明之混合磁鐵結構會在第一二極磁鐵組件與第二二極磁鐵組件之間建立一個梯度磁場,可活動的第一導磁元件與第二導磁元件則作為磁場分流元件,透過控制第一導磁元件與第一永久磁鐵之間的間距以及第二導磁元件與第二永久磁鐵之間的間距,即可驗證無需使用高耗能線圈的情況下實現梯度磁場大小的調整。
1,2:混合磁鐵結構
11,21:第一二極磁鐵組件
111,211:第一永久磁鐵
111A,211A:第一內側面
111B,211B:第一外側面
111N,211N:第一N極端
111S,211S:第一S極端
112,212:第一鐵芯
1121,2121:第一覆蓋區段
1122,2122:第一延伸區段
113,213:第二鐵芯
1131,2131:第二覆蓋區段
1132,2132:第二延伸區段
114,214:第一導磁元件
114G,214G:間距
13,23:第二二極磁鐵組件
131,231:第二永久磁鐵
131A,231A:第二內側面
131B,231B:第二外側面
131N,231N:第二N極端
131S,231S:第二S極端
132,232:第三鐵芯
1321,2321:第三覆蓋區段
1322,2322:第三延伸區段
133,233:第四鐵芯
1331,2331:第四覆蓋區段
1332,2332:第四延伸區段
134,234:第二導磁元件
134G,234G:間距
90,92:帶電粒子束
DX1,DX2:間距
DY1,DY2:間距
ML:磁力線
WX:寬度
[圖1]為本發明之混合磁鐵結構之第一實施例的示意圖。
[圖2A]為第一實施例之第一導磁元件靠近第一永久磁鐵時之磁力線分布示意圖。
[圖2B]為第一實施例之第一導磁元件遠離第一永久磁鐵時之磁力線分布示意圖。
[圖3A]為第一實施例之第二導磁元件靠近第二永久磁鐵時之磁力線分布示意圖。
[圖3B]為第一實施例之第二導磁元件遠離第二永久磁鐵時之磁力線分布示意圖。
[圖4A]為第一實施例之混合磁鐵結構所形成的梯度磁場的模擬示意圖,其中梯度磁場之場中央的座標為(0,0),曲線代表X=0時磁場Bx隨Y軸變化的趨勢。
[圖4B]為第一實施例之混合磁鐵結構所形成的梯度磁場的模擬示意圖,其中梯度磁場之場中央的座標為(0,0),曲線代表Y=0時磁場By隨X軸變化的趨勢。
[圖5]為本發明之混合磁鐵結構之第二實施例的示意圖。
[圖6]為第二實施例之第一導磁元件靠近第一永久磁鐵以及第二導磁元件靠近第二永久磁鐵時之磁力線分布示意圖。
[圖7]為第二實施例之第一導磁元件遠離第一永久磁鐵以及第二導磁元件遠離第二永久磁鐵時之磁力線分布示意圖。
[圖8A]為第二實施例之混合磁鐵結構所形成的梯度磁場的模擬示意圖,其中梯度磁場之場中央的座標為(0,0),曲線代表X=0時,磁場Bx隨Y軸變化的趨勢,P1~P3分別代表不同DX2值所得到的曲線。
[圖8B]為第二實施例之混合磁鐵結構所形成的梯度磁場的模擬示意圖,其中梯度磁場之場中央的座標為(0,0),曲線代表Y=0時磁場By隨X軸變化的趨勢,P1~P3分別代表不同DX2值所得到的曲線。
以下各實施例中,「上」、「下」、「前」或「後」僅僅是用來說明其在圖式中所呈現的方位,或者方便描述元件彼此之間的相對關 係,並非限制其實際位向。
為方便說明,本說明書之各實施例的元件關係與物理量的描述係使用直角坐標系統,其中帶電粒子束的運動方向係定義於Z軸方向上,相對配置之二個二極磁鐵係共平面且其N極端與S極端均位在XY平面。
若無特別定義,以下實施例所稱之「間距」係指兩個元件之間或兩個元件之特定部位之間的最短距離。在此需特別說明,圖5所示之間距DX2是指第一延伸區段2122與第二延伸區段2132之間的最長距離。
永久磁鐵係指透過磁性材料所製成而具有持久存在的磁場的元件,且該磁場無法如電磁鐵之磁場般可以透過控制電流來改變磁場大小。永久磁鐵的種類包含有陶瓷型、肥粒鐵型或稀土型永久磁鐵(例如SmCo)。
帶電粒子的產生一般係將粒子源氣體通入電漿反應室中使其電漿化,然後再將電漿化之粒子源氣體通過呈狹縫狀的萃取電極萃取出所要的帶電粒子(離子)。因此帶電粒子束的截面形狀一般會呈扁平狀,亦即在某個軸向上會比較長(下稱長軸方向),在另一個相互正交的軸向上則比較扁(下稱短軸方向)。為方便說明,本說明書中的帶電粒子束的長軸方向係定義為Y軸方向(或稱垂直方向),帶電粒子束的短軸方向係定義為X軸方向(或稱水平方向)。
請參照圖1,為本發明之混合磁鐵結構之第一實施例的示意圖,其繪示出一混合磁鐵結構1。混合磁鐵結構1屬於四極磁鐵,其主要包含以共平面方式配置於XY平面的兩個二級磁鐵,分別為第一二極磁鐵組 件11與第二二極磁鐵組件13。混合磁鐵結構1用以聚焦沿Z軸方向運動之帶電粒子束90,帶電粒子束90之截面概如圖1所示呈扁平狀,其中長軸方向係為Y軸方向(垂直方向),短軸方向係為X軸方向(水平方向)。以圖1方式配置之混合磁鐵結構1係用以對帶電粒子束90之長軸方向進行聚焦,也就是帶電粒子束90在通過混合磁鐵結構1之後,其截面沿Y軸方向的長度會變短,沿X軸方向的長度則會略微變長。利用四極磁鐵聚焦帶電粒子束的原理已見於諸多先前技術文件中,於此不再重複贅述。本發明之重點著重在提出一種全新設計的混合磁鐵結構,用以取代傳統使用線圈來控制磁極磁場的四極磁鐵。
如圖1所示,第一二極磁鐵組件11包含第一永久磁鐵111,第一永久磁鐵111具有第一N極端111N與第一S極端111S、第一內側面111A與相對於第一內側面111A之第一外側面111B。第一N極端111N與第一S極端111S配置於平行X軸之一直線方向上。第一內側面111A與第一外側面111B位於第一N極端111N與第一S極端111S之間,第一內側面111A配置以朝向帶電粒子束90的運動路徑。
第一二極磁鐵組件11還包含第一鐵芯112,第一鐵芯112包含彼此相連之第一覆蓋區段1121與第一延伸區段1122,其中第一覆蓋區段1121覆蓋第一N極端111N之端面以儘可能將從第一N極端111N發射之磁力線ML導引至第一延伸區段1122。第一延伸區段1122連接於第一覆蓋區段1121的一端並自第一覆蓋區段1121延伸而且凸出第一內側面111A。第一永久磁鐵111之磁力線ML主要從第一延伸區段1122射出,因此第一延伸區段1122係作為第一二極磁鐵組件11之其中一個磁極。
第一二極磁鐵組件11還包含第二鐵芯113,第二鐵芯113包含彼此相連之第二覆蓋區段1131與第二延伸區段1132,其中第二覆蓋區段1131覆蓋第一S極端111S之端面以盡可能將從第一延伸區段1122發射之磁力線ML導引至第一S極端111S。第二延伸區段1132連接於第二覆蓋區段1131的一端並自第二覆蓋區段1131延伸而凸出第一內側面111A。第一永久磁鐵111之磁力線ML從第一延伸區段1122射出後,大部分是通過第二延伸區段1132回到第一永久磁鐵111,因此第二延伸區段1132係作為第一二極磁鐵組件11之另一個磁極。
參照圖1與圖2A、圖2B,第一二極磁鐵組件11還包含第一導磁元件114,其可活動地設置於第一永久磁鐵111之第一外側面111B。在部分實施例中,第一導磁元件114的材質係為鐵芯材料,因此第一永久磁鐵111之磁力線ML會有一部分分流至第一導磁元件114。如圖2A所示,當第一導磁元件114較靠近第一外側面111B,亦即第一導磁元件114與第一外側面111B之間的間距114G較小時,分流至第一導磁元件114的磁力線ML會較多,連帶也使得從第一延伸區段1122射出並通過第二延伸區段1132回到第一永久磁鐵111的磁通量較小。如圖2B所示,當第一導磁元件114較遠離第一外側面111B,亦即第一導磁元件114與第一外側面111B之間的間距114G較大時,則分流至第一導磁元件114的磁力線ML會較少,進而使得從第一延伸區段1122射出並通過第二延伸區段1132回到第一永久磁鐵111的磁通量變大。如此一來,工程人員便可透過調整第一導磁元件114與第一永久磁鐵111之第一外側面111B之間的間距114G來控制第一二極磁鐵組件11作用於帶電粒子束00之磁場的大小。
參照圖1,第二二極磁鐵組件13包含第二永久磁鐵131,第二永久磁鐵131具有第二N極端131N與第二S極端131S、第二內側面131A與相對於第二內側面131A之第二外側面131B。第二N極端131N與第二S極端131S配置於平行X軸之另一直線方向上,且與第一N極端111N與第一S極端111S的配置方式相差180度。第二內側面131A與第二外側面131B位於第二N極端131N與第二S極端131S之間,第二內側面131A配置以朝向帶電粒子束90的運動路徑且朝向第一永久磁鐵111之第一內側面111A。
第二二極磁鐵組件13還包含第三鐵芯132,第三鐵芯132包含彼此相連之第三覆蓋區段1321與第三延伸區段1322,其中第三覆蓋區段1321覆蓋第二S極端131S之端面以儘可能將從第四延伸區段1332發射之磁力線ML導引至第二S極端131S。第三延伸區段1322自第三覆蓋區段1321延伸而凸出第二內側面131A,且第三延伸區段1322與第一延伸區段1122配置於平行Y軸之一直線方向上,且彼此相隔一間距DY1。
第二二極磁鐵組件13還包含第四鐵芯133,第四鐵芯133包含彼此相連之第四覆蓋區段1331與第四延伸區段1332,其中第四覆蓋區段1331覆蓋第二N極端131N之端面以盡可能將從第二N極端131N發射之磁力線ML導引至第四延伸區段1332。第四延伸區段1332連接於第四覆蓋區段1331的一端且自第四覆蓋區段1331延伸而凸出第二內側面131A。第四延伸區段1332與第二延伸區段1132配置於平行於Y軸之另一直線方向上,且彼此相隔一間距DY1。第二永久磁鐵131之磁力線ML主要從第四延伸區段1332射出,並經由第三延伸區段1322與第三覆蓋區段1321而回到第二永久磁鐵131中,因此第三延伸區段1322與第四延伸區段1332係作為 第二二極磁鐵組件13之兩個磁極。
參照圖1與圖3A、圖3B,第二二極磁鐵組件13還包含第二導磁元件134,其可活動地設置於第二永久磁鐵131之第二外側面131B。第二導磁元件134的功用與第一導磁元件114類似。在部分實施例中,第二導磁元件134的材質係為鐵芯材料,因此第二永久磁鐵131之磁力線ML會有一部分分流至第二導磁元件134。如圖3A所示,當第二導磁元件134較靠近第二外側面131B,亦即第二導磁元件134與第二外側面131B之間的間距134G較小時,分流至第二導磁元件134的磁力線ML會較多,連帶也使得從第四延伸區段1332射出並通過第三延伸區段1322回到第二永久磁鐵131的磁通量較小。如圖3B所示,當第二導磁元件134較遠離第二外側面131B,亦即第二導磁元件134與第二外側面131B之間的間距134G較大時,則分流至第二導磁元件134的磁力線ML會較少,進而使得從第四延伸區段1332射出並通過第三延伸區段1322回到第二永久磁鐵131的磁通量變大。如此一來,工程人員便可透過調整第二導磁元件134與第二永久磁鐵131之第二外側面131B之間的間距134G來控制第二二極磁鐵組件13作用於帶電粒子束90之磁場的大小。
在真實情況下,部分自第一延伸區段1122射出的磁力線亦可能會進入第三延伸區段1322中,部分自第四延伸區段1332射出之磁力線同樣也可能會進入第二延伸區段1132中,惟因帶電粒子束90之長軸方向的長度往往遠大於短軸方向的長度,因此實際操作上DY1也將遠大於DX1,因此自第一延伸區段1122射出的磁力線進入第三延伸區段1322的比例或者是自第四延伸區段1332射出之磁力線進入第二延伸區段1132的比例十 分有限。
參照圖4A與圖4B,為混合磁鐵結構1所形成的梯度磁場的模擬示意圖,其中梯度磁場位於XY平面上,梯度磁場之場中央的座標為(0,0),圖4A為X=0時磁場Bx隨Y軸變化的曲線圖,圖4B為Y=0時磁場By隨X軸變化的曲線圖。由圖4A與圖4B可知梯度磁場之場中央的磁場為0,且隨著遠離梯度磁場的場中央,磁場將逐漸變大。
可預見的,如果圖1中之帶電粒子束90的截面旋轉90度,亦即長軸方向為X軸方向(水平方向),短軸方向係為Y軸方向(垂直方向),則只要將圖1之混合磁鐵結構1也旋轉90度,同樣也可用來在X軸方向上對其聚焦。
如圖1所示,在部分實施例中,第一鐵芯112之第一延伸區段1122與第三鐵芯132之第三延伸區段1322沿Y軸方向之間距等於第二鐵芯113之第二延伸區段1132與第四鐵芯133之第四延伸區段1332沿Y軸方向之間距,且均為DY1。此外,第一鐵芯112之第一延伸區段1122與第二鐵芯113之第二延伸區段1132沿X軸方向之間距等於第三鐵芯132之第三延伸區段1322與第四鐵芯133之第四延伸區段1332沿X軸方向之間距,且均為DX1。此外,第一永久磁鐵111沿X軸方向之寬度等於第二永久磁鐵131沿X軸方向之寬度,且均為WX。在本實施例中,混合磁鐵結構1係用以收斂(聚焦)長軸方向為Y軸之帶電粒子束90,因此DY1會大於DX1。此外,DX1會小於WX,亦即第一延伸區段1122與第二延伸區段1132係朝內延伸,第三延伸區段1322與第四延伸區段1332亦朝內延伸。
前述提到當帶電粒子束的長軸方向是在X軸方向(水平方 向)上時,只要將第一實施例之混合磁鐵結構1旋轉90度便可用來在X軸方向上對帶電粒子束聚焦。然而在部分情況下,受限於設備所在的空間或者是既有設計的元件配置以及走線,可能只有在單一個軸向(例如垂直方向)始允許設置四極磁體,因此本發明進一步提出第二實施例,其可以在保持如同第一實施例所示之兩個二級磁鐵組件的相對空間配置關係下,實現在X軸方向上對帶電粒子束聚焦。
參照圖5,為本發明之混合磁鐵結構之第二實施例的示意圖,其繪示出一混合磁鐵結構2。混合磁鐵結構2主要包含以共平面方式配置於XY平面的兩個二級磁鐵,分別為第一二極磁鐵組件21與第二二極磁鐵組件23。混合磁鐵結構2用以聚焦沿Z軸方向運動之帶電粒子束92,帶電粒子束92之截面概如圖5所示呈扁平狀,其中長軸方向係為X軸方向(水平方向),短軸方向係為Y軸方向(垂直方向)。以圖5方式配置之混合磁鐵結構2係用以對帶電粒子束92之水平軸方向進行聚焦,也就是帶電粒子束92在通過混合磁鐵結構2之後,其截面沿X軸方向的長度會變短,沿Y軸方向的長度則會略微變長,茲詳細說明其結構如下。
如圖5所示,第一二極磁鐵組件21包含第一永久磁鐵211,第一永久磁鐵211具有第一N極端211N與第一S極端211S、第一內側面211A與相對於第一內側面211A之第一外側面211B。第一N極端211N與第一S極端211S配置於平行X軸之一直線方向上。第一內側面211A與第一外側面211B位於第一N極端211N與第一S極端211S之間,第一內側面211A配置以朝向帶電粒子束92的運動路徑。
續參照圖5,第二二極磁鐵組件23包含第二永久磁鐵231, 第二永久磁鐵231具有第二N極端231N與第二S極端231S、第二內側面231A與相對於第二內側面231A之第二外側面231B。第二N極端231N與第二S極端231S配置於平行X軸之另一直線方向上,且與第一N極端211N與第一S極端211S的配置方式相差180度。第二內側面231A與第二外側面231B位於第二N極端231N與第二S極端231S之間,第二內側面231A配置以朝向帶電粒子束92的運動路徑且朝向第一永久磁鐵211之第一內側面211A。
第一二極磁鐵組件21還包含第一鐵芯212,第一鐵芯212包含彼此相連之第一覆蓋區段2121與第一延伸區段2122,其中第一覆蓋區段2121覆蓋第一N極端211N之端面以儘可能將從第一N極端211N發射之磁力線ML導引至第一延伸區段2122。第一延伸區段2122連接於第一覆蓋區段2121的一端並自第一覆蓋區段2121延伸而且凸出第一內側面211A。第一永久磁鐵211之磁力線ML主要從第一延伸區段2122射出,因此第一延伸區段2122係作為第一二極磁鐵組件21之其中一個磁極。有別於第一實施例之第一延伸區段1122於凸出第一內側面111A之後是朝向內部延伸,本實施例之第一延伸區段2122於凸出第一內側面211A之後是朝向外部延伸。
第二二極磁鐵組件23還包含第三鐵芯232,第三鐵芯232包含彼此相連之第三覆蓋區段2321與第三延伸區段2322,其中第三覆蓋區段2321覆蓋第二S極端231S之端面以儘可能將從第一延伸區段2122發射之磁力線ML導引至第三延伸區段2322。第三延伸區段2322自第三覆蓋區段2321延伸而凸出第二內側面231A,且第三延伸區段2322與第一延伸區 段2122的配置是相對於XZ平面對稱,且彼此相隔一間距DY2。有別於第一實施例之第三延伸區段1322是朝向內部延伸,本實施例之第三延伸區段2322於凸出第二內側面231A之後是朝向外部延伸。
再參照圖5,並結合圖6、7,第一二極磁鐵組件21還包含第二鐵芯213,第二鐵芯213包含彼此相連之第二覆蓋區段2131與第二延伸區段2132,其中第二覆蓋區段2131覆蓋第一S極端211S之端面以盡可能將從第二二極磁鐵組件23的第二永久磁鐵231所發射之磁力線ML導引至第二延伸區段2132。第二延伸區段2132連接於第二覆蓋區段2131的一端並自第二覆蓋區段2131延伸而凸出第一內側面211A。有別於第一實施例之第二延伸區段1132於凸出第一內側面111A之後是朝向內部延伸,本實施例之第二延伸區段2132於凸出第一內側面211A之後是朝向外部延伸。此外,在本實施例中,第一永久磁鐵211沿X軸方向具有寬度WX,第一延伸區段2122與第二延伸區段2132沿X軸方向具有間距DX2,且DX2大於WX與DY2。
第二二極磁鐵組件23還包含第四鐵芯233,第四鐵芯233包含彼此相連之第四覆蓋區段2331與第四延伸區段2332,其中第四覆蓋區段2331覆蓋第二N極端231N之端面以盡可能將從第二N極端231N發射之磁力線ML導引至第四延伸區段2332。第四延伸區段2332連接於第四覆蓋區段2331的一端且自第四覆蓋區段2331延伸而凸出第二內側面231A。第四延伸區段2332與第二延伸區段2132配置是相對於XZ平面對稱,且彼此相隔一間距DY2。第二永久磁鐵231之磁力線ML主要從第四延伸區段2332射出,並進入第二延伸區段2132與第二覆蓋區段2131。有別於第一 實施例之第四延伸區段1332是朝向內部延伸,本實施例之第四延伸區段2332是朝向外部延伸。此外,在本實施例中,第二永久磁鐵231沿X軸方向具有寬度WX,第三延伸區段2322與第四延伸區段2332沿X軸方向具有間距DX2,且DX2大於WX與DY2。
復參照圖5至圖7,第一二極磁鐵組件21包含第一導磁元件214,其可活動地設置於第一永久磁鐵211之第一外側面211B。在部分實施例中,第一導磁元件214的材質係為鐵芯材料,因此第一永久磁鐵211之磁力線ML會有一部分分流至第一導磁元件214。如圖6所示,當第一導磁元件214較靠近第一外側面211B,亦即第一導磁元件214與第一外側面211B之間的間距214G較小時,分流至第一導磁元件214的磁力線ML會較多,連帶也使得從第一延伸區段2122射出並通過第三延伸區段2322的磁通量較小。如圖7所示,當第一導磁元件214較遠離第一外側面211B,亦即第一導磁元件214與第一外側面211B之間的間距214G較大時,則分流至第一導磁元件214的磁力線ML會較少,進而使得從第一延伸區段2122射出並通過第三延伸區段2322的磁通量變大。如此一來,工程人員便可透過調整第一導磁元件214與第一永久磁鐵211之第一外側面211B之間的間距214G來控制第一二極磁鐵組件21作用於帶電粒子束92之磁場的大小。
復參照圖5至圖7,第二二極磁鐵組件23還包含第二導磁元件234,其可活動地設置於第二永久磁鐵231之第二外側面231B。第二導磁元件234的功用與第一導磁元件214類似。在部分實施例中,第二導磁元件234的材質係為鐵芯材料,因此第二永久磁鐵231之磁力線ML會有一部分分流至第二導磁元件234。如圖6所示,當第二導磁元件234較靠近第 二外側面231B,亦即第二導磁元件234與第二外側面231B之間的間距234G較小時,分流至第二導磁元件234的磁力線ML會較多,連帶也使得從第四延伸區段2332射出並通過第二延伸區段2132的磁通量較小。如圖7所示,當第二導磁元件234較遠離第二外側面231B,亦即第二導磁元件234與第二外側面231B之間的間距234G較大時,則分流至第二導磁元件234的磁力線ML會較少,進而使得從第四延伸區段2332射出並通過第二延伸區段2132的磁通量變大。如此一來,工程人員便可透過調整第二導磁元件234與第二永久磁鐵231之第二外側面231B之間的間距234G來控制第二二極磁鐵組件13作用於帶電粒子束92之磁場的大小。
如圖6與圖7所示,在真實情況下,部分自第一延伸區段2122射出的磁力線亦可能會進入第二延伸區段2132中,部分自第四延伸區段2332射出之磁力線同樣也可能會進入第三延伸區段2322中,惟因帶電粒子束92之長軸(X軸)方向的長度往往遠大於短軸(Y軸)方向的長度,因此實際操作上DX2也將遠大於DY2,因此自第一延伸區段2122射出的磁力線進入第二延伸區段2132的比例或者是自第四延伸區段2332射出之磁力線進入第三延伸區段2322的比例十分有限。
參照圖8A與圖8B,為混合磁鐵結構2所形成的梯度磁場的模擬示意圖,其中梯度磁場位於XY平面上,梯度磁場之場中央的座標為(0,0),且DY2=DY1。其中圖8A為X=0時,X方向的磁場Bx隨Y軸變化的曲線圖,圖8B為Y=0時Y方向的磁場By隨X軸變化的曲線圖。由圖8A與圖8B可知梯度磁場之場中央的磁場為0,且隨著遠離梯度磁場的場中央,磁場將逐漸變大。
圖8A與圖8B包含了三條曲線,分別為曲線P1、曲線P2、曲線P3,其分別代表在固定間距DY2的情況下,改變間距DX2值所得到的磁場模擬結果。其中曲線P3之間距DX2大於曲線P2之間距DX2,曲線P2之間距DX2大於曲線P1之間距DX2。從模擬結果可知,當相鄰二個二極磁鐵組件之間的距離固定時(即DY2固定不變),若是增加二磁極沿X軸方向之間距DX2,則Y方向的磁場By的大小沒有顯著改變,但X方向的磁場Bx則會隨著DX2的變大而減少。
如圖5所示,在部分實施例中,第一鐵芯212之第一延伸區段2122與第三鐵芯232之第三延伸區段2322沿Y軸方向之間距等於第二鐵芯213之第二延伸區段2132與第四鐵芯233之第四延伸區段2332沿Y軸方向之間距,且均為DY2。此外,第一鐵芯212之第一延伸區段2122與第二鐵芯213之第二延伸區段2132沿X軸方向之間距等於第三鐵芯232之第三延伸區段2322與第四鐵芯233之第四延伸區段2332沿X軸方向之間距,且均為DX2。此外,第一永久磁鐵211沿X軸方向之寬度等於第二永久磁鐵231沿X軸方向之寬度,且均為WX。本實施例之混合磁鐵結構2係用以收斂(聚焦)長軸方向為X軸之帶電粒子束92,因此DX2會大於DY2,且DX2也會大於WX。
在部分實施例中,上述第一永久磁鐵與第二永久磁鐵之外表面可包覆厚度約5mm之石墨層,藉此避免第一永久磁鐵與第二永久磁鐵被輻射直接照射而受損,進而延長第一永久磁鐵與第二永久磁鐵的使用壽命。此外,也可以在第一永久磁鐵與第二永久磁鐵之表面鍍一層厚度約5μm之氮化鈦層,藉此防止第一永久磁鐵與第二永久磁鐵在工作時,因高 溫而釋出氣體破壞真空腔室之真空度或污染真空腔室。
在部分實施例中,上述第一導磁元件與第二導磁元件可以設置於真空腔室外,因此有助於離子佈植機系統的小型化。
承上,本發明之混合磁鐵結構透過二個導磁元件的分流來控制磁極的磁場大小,相較於傳統使用高耗能的線圈的方式,至少具有以下所述優點的其中之一:(1)磁場控制不需消耗大量電力,具有節能減碳的功能,(2)漏磁場(magnetic flux leakage)較小比較不影響鄰近的磁鐵磁場強度,(3)適用於不同能量範圍的粒子束,(4)適用於真空環境尤其是超高真空,(4)提供緊湊小型化離子佈植機系統。
雖然本發明已以實施例揭露如上然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之專利申請範圍所界定者為準。
1:混合磁鐵結構
11:第一二極磁鐵組件
111:第一永久磁鐵
111A:第一內側面
111B:第一外側面
111N:第一N極端
111S:第一S極端
112:第一鐵芯
1121:第一覆蓋區段
1122:第一延伸區段
113:第二鐵芯
1131:第二覆蓋區段
1132:第二延伸區段
114:第一導磁元件
114G:間距
13:第二二極磁鐵組件
131:第二永久磁鐵
131A:第二內側面
131B:第二外側面
131N:第二N極端
131S:第二S極端
132:第三鐵芯
1321:第三覆蓋區段
1322:第三延伸區段
133:第四鐵芯
1331:第四覆蓋區段
1332:第四延伸區段
134:第二導磁元件
134G:間距
90:帶電粒子束
DX1:間距
DY1:間距
WX:寬度

Claims (9)

  1. 一種混合磁鐵結構,用以聚焦沿Z軸方向運動之一帶電粒子束,該混合磁鐵結構包含: 一第一二極磁鐵組件,設置於XY平面上,包含: 一第一永久磁鐵,具有一第一N極端、一第一S極端、一第一內側面與相對於該第一內側面之一第一外側面,該第一N極端與該第一S極端配置於平行X軸之一直線方向上,該第一內側面與該第一外側面位於該第一N極端與該第一S極端之間,該第一內側面配置以朝向該帶電粒子束的運動路徑; 一第一鐵芯,包含彼此相連之一第一覆蓋區段與一第一延伸區段,該第一覆蓋區段覆蓋該第一N極端,該第一延伸區段自該第一覆蓋區段延伸而凸出該第一內側面; 一第二鐵芯,包含彼此相連之一第二覆蓋區段與一第二延伸區段,該第二覆蓋區段覆蓋該第一S極端,該第二延伸區段自該第二覆蓋區段延伸而凸出該第一內側面;及 一第一導磁元件,可活動地設置於該第一永久磁鐵之第一外側面;及 一第二二極磁鐵組件,與該第一二極磁鐵組件共平面,包含: 一第二永久磁鐵,具有一第二N極端、一第二S極端、一第二內側面與相對於該第二內側面之一第二外側面,該第二N極端與該第二S極端配置於平行X軸之另一直線方向上,該第二內側面與該第二外側面位於該第二N極端與該第二S極端之間,該第二內側面配置以朝向該帶電粒子束的運動路徑且朝向該第一永久磁鐵之第一內側面; 一第三鐵芯,包含彼此相連之一第三覆蓋區段與一第三延伸區段,該第三覆蓋區段覆蓋該第二S極端,該第三延伸區段自該第三覆蓋區段延伸而凸出該第二內側面,且該第三延伸區段與該第一延伸區段配置於平行Y軸之一直線方向上; 一第四鐵芯,包含彼此相連之一第四覆蓋區段與一第四延伸區段,該第四覆蓋區段覆蓋該第二N極端,該第四延伸區段自該第四覆蓋區段延伸而凸出該第二內側面,且該第四延伸區段與該第二延伸區段配置於平行於Y軸之另一直線方向上;及 一第二導磁元件,可活動地設置於該第二永久磁鐵之第二外側面。
  2. 如請求項1所述之混合磁鐵結構,其中該第一延伸區段與該第三延伸區段沿Y軸方向之間距等於該第二延伸區段與該第四延伸區段沿Y軸方向之間距。
  3. 如請求項2所述之混合磁鐵結構,其中該第一延伸區段與該第二延伸區段沿X軸方向之間距等於該第三延伸區段與該第四延伸區段沿X軸方向之間距。
  4. 如請求項3所述之混合磁鐵結構,其中該第一延伸區段與該第三延伸區段沿Y軸方向具有間距DY1,該第二延伸區段與該第四延伸區段沿Y軸方向亦具有間距DY1,該第一延伸區段與該第二延伸區段沿X軸方向具有間距DX1,該第三延伸區段與該第四延伸區段沿X軸方向亦具有間距DX1,且DY1大於DX1。
  5. 如請求項4所述之混合磁鐵結構,其中該第一永久磁鐵沿X軸方向具有寬度WX,該第二永久磁鐵沿X軸方向具有寬度WX,且DX1小於WX。
  6. 如請求項1所述之混合磁鐵結構,其中該第一延伸區段與該第三延伸區段沿Y軸方向具有間距DY2,該第二延伸區段與該第四延伸區段沿Y軸方向具有間距DY2,該第一延伸區段與該第二延伸區段沿X軸方向具有間距DX2,該第三延伸區段與該第四延伸區段沿X軸方向具有間距DX2,且DY2小於DX2。
  7. 如請求項6所述之混合磁鐵結構,其中該第一永久磁鐵沿X軸方向具有寬度WX,該第二永久磁鐵沿X軸方向具有寬度WX,且DX2大於WX。
  8. 如請求項1至7任一項所述之混合磁鐵結構,其中該第一永久磁鐵與該第二永久磁鐵之外表面鍍覆一石墨層。
  9. 如請求項1至7任一項所述之混合磁鐵結構,其中該第一永久磁鐵與該第二永久磁鐵之外表面鍍覆一氮化鈦層。
TW110117376A 2020-06-17 2021-05-13 混合磁鐵結構 TWI771003B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210078744A KR20210156784A (ko) 2020-06-17 2021-06-17 하이브리드 자석 구조
US17/350,484 US11430589B2 (en) 2020-06-17 2021-06-17 Hybrid magnet structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109120484 2020-06-17
TW109120484 2020-06-17

Publications (2)

Publication Number Publication Date
TW202201469A TW202201469A (zh) 2022-01-01
TWI771003B true TWI771003B (zh) 2022-07-11

Family

ID=78892995

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110117376A TWI771003B (zh) 2020-06-17 2021-05-13 混合磁鐵結構

Country Status (2)

Country Link
CN (1) CN113808803A (zh)
TW (1) TWI771003B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021669A (en) * 1989-05-23 1991-06-04 Balzers Aktiengesellschaft Process and system for the control of the focusing of a beam of monopolar charged particles
EP0456224B1 (en) * 1990-05-10 1996-03-27 Kabushiki Kaisha Toshiba Color cathode ray tube apparatus
US20010009267A1 (en) * 1997-05-09 2001-07-26 Hitachi, Ltd. Electromagnet and magnetic field generating apparatus
TW200610036A (en) * 2004-07-22 2006-03-16 Axcelis Tech Inc Improved magnet for scanning ion beams
US20080185516A1 (en) * 2004-02-17 2008-08-07 Hitachi High-Technologies Corporation Mass spectrometer
US7888652B2 (en) * 2006-11-27 2011-02-15 Nissin Ion Equipment Co., Ltd. Ion implantation apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021669A (en) * 1989-05-23 1991-06-04 Balzers Aktiengesellschaft Process and system for the control of the focusing of a beam of monopolar charged particles
EP0456224B1 (en) * 1990-05-10 1996-03-27 Kabushiki Kaisha Toshiba Color cathode ray tube apparatus
US20010009267A1 (en) * 1997-05-09 2001-07-26 Hitachi, Ltd. Electromagnet and magnetic field generating apparatus
US20080185516A1 (en) * 2004-02-17 2008-08-07 Hitachi High-Technologies Corporation Mass spectrometer
TW200610036A (en) * 2004-07-22 2006-03-16 Axcelis Tech Inc Improved magnet for scanning ion beams
US7888652B2 (en) * 2006-11-27 2011-02-15 Nissin Ion Equipment Co., Ltd. Ion implantation apparatus

Also Published As

Publication number Publication date
CN113808803A (zh) 2021-12-17
TW202201469A (zh) 2022-01-01

Similar Documents

Publication Publication Date Title
US9595359B2 (en) Magnetic lens for focusing a beam of charged particles
US8829462B2 (en) Multipole magnet
TW201209877A (en) Charged particle apparatus
KR20080056767A (ko) 시트 플라즈마 성막장치
JP2019149387A (ja) 小型偏向磁石
JP2006278006A (ja) イオン源引き出し領域におけるプラズマ境界面制御方法及びそのイオン源
US8742342B2 (en) Electron microscope
TWI771003B (zh) 混合磁鐵結構
CN117316745A (zh) 一种改善电子束聚焦的方法
US11430589B2 (en) Hybrid magnet structure
JP4601923B2 (ja) 電子銃とそれを用いた電子ビーム照射装置
JPH0313702B2 (zh)
JP7366997B2 (ja) 効率を向上させた走査磁石設計
CN206674289U (zh) 一种用于束流均匀化的新型磁铁
CN206907735U (zh) 一种带电粒子圆磁透镜
CN111986974A (zh) 电子束等离子体源辅助等离子体源的磁约束系统及方法
US6323493B1 (en) Increased ion beam throughput with reduced beam divergence in a dipole magnet
JPH09102291A (ja) 対物レンズ及び荷電粒子ビーム装置
Witte et al. Halbach magnets for CBETA and eRHIC
US11837428B2 (en) Systems and methods for electron beam focusing in electron beam additive manufacturing
CN207474413U (zh) 一种纳米材料制作设备的离子源及纳米材料制作设备
CN113066708B (zh) 周期永磁聚焦系统和磁场调节方法
JP5590550B2 (ja) 磁場分布可変型電磁石システム
Artikova et al. Studies on muon induction acceleration and an objective lens design for transmission muon microscope
Stovall et al. RF breakdown in drift tube linacs