TWI250531B - Integrated circuit memory devices and operating methods that are configured to output data bits at a lower rate in a test mode of operation - Google Patents

Integrated circuit memory devices and operating methods that are configured to output data bits at a lower rate in a test mode of operation Download PDF

Info

Publication number
TWI250531B
TWI250531B TW093116232A TW93116232A TWI250531B TW I250531 B TWI250531 B TW I250531B TW 093116232 A TW093116232 A TW 093116232A TW 93116232 A TW93116232 A TW 93116232A TW I250531 B TWI250531 B TW I250531B
Authority
TW
Taiwan
Prior art keywords
data
clock signal
mode
output
memory cell
Prior art date
Application number
TW093116232A
Other languages
Chinese (zh)
Other versions
TW200518108A (en
Inventor
Jae-Woong Lee
Chi-Wook Kim
Sang-Seok Kang
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020030035906A external-priority patent/KR20040105060A/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200518108A publication Critical patent/TW200518108A/en
Application granted granted Critical
Publication of TWI250531B publication Critical patent/TWI250531B/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C17/00Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith
    • E05C17/02Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means
    • E05C17/46Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith by mechanical means in which the wing or a member fixed thereon is engaged by a movable fastening member in a fixed position; in which a movable fastening member mounted on the wing engages a stationary member
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/12015Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details comprising clock generation or timing circuitry
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B65/00Locks or fastenings for special use
    • E05B65/08Locks or fastenings for special use for sliding wings
    • E05B65/0864Locks or fastenings for special use for sliding wings the bolts sliding perpendicular to the wings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C17/00Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith
    • E05C17/60Devices for holding wings open; Devices for limiting opening of wings or for holding wings open by a movable member extending between frame and wing; Braking devices, stops or buffers, combined therewith holding sliding wings open
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C3/00Fastening devices with bolts moving pivotally or rotatively
    • E05C3/02Fastening devices with bolts moving pivotally or rotatively without latching action
    • E05C3/04Fastening devices with bolts moving pivotally or rotatively without latching action with operating handle or equivalent member rigid with the bolt
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C5/00Fastening devices with bolts moving otherwise than only rectilinearly and only pivotally or rotatively
    • E05C5/02Fastening devices with bolts moving otherwise than only rectilinearly and only pivotally or rotatively both moving axially and turning about their axis to secure the wing
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05CBOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
    • E05C7/00Fastening devices specially adapted for two wings
    • E05C7/02Fastening devices specially adapted for two wings for wings which lie one behind the other when closed
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/14Implementation of control logic, e.g. test mode decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Dram (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

Integrated circuit memory devices include a memory cell array that is configured to output data bits in parallel at a first data rate. An output circuit is configured to serially output the data bits to an external terminal at the first data rate in a normal mode of operation, and to serially output the data bits to the external terminal at a second data rate that is lower than the first data rate in a test mode of operation. Accordingly, the memory cell array can operate at a first data rate while allowing the output circuit to output data to an external terminal at a second data rate that is lower than the first data rate, in a test mode of operation.

Description

1250531 九、發明說明: 【相關申請案】 本申請案主張於2003年6月4曰提出申請的韓國專利申請 案第2003-0035906號之權利,該申請案之全部内容皆如同 在本文中詳盡提及一般以引用方式倂入本文中。 【發明所屬之技術領域】 本發明係關於積體電路記憶體裝置及其操作方法,更具 體而言,係關於用於測試積體電路裝置之電路及方法。 【先前技術】 積體電路記憶體裝置廣泛應用於衆多商業及消費應用 中。一種廣爲使用之積體電路記憶體裝置係動態隨機存取 圮k體(DRAM)。目前,亦已設計出同步⑽鳩⑽尺趟)裝 置,該種裝置能夠與時鐘信號之上升緣或下降緣同步地讀 取及寫入資料。此外,亦已設計出雙倍資料速率 (DDR)SDRAM裝i,該種裝置可響應於時鐘信號之上升緣 及下降緣二者來讀取及/或寫入資料,從而以一高於習知 SDRAM(亦稱作單倍資料速率(sdr)sdram)之頻率運作。 熟習此項技術者應瞭解,本文所用術語「資料速率」意指 在一時鐘週期中由一記憶體裝置傳送至一外部輸入/輸出 終端或自一外部輸入/輸出終端傳送出的位元數量。 0 1係日守序圖’其比較習知SDR SDRAM與習知DDR SDRAM之運作。該兩種SDRAM皆包括一大小爲㈣叢發長 度(BL)及一大小爲2的行位址選通(CAS)延遲(cl)。因此, 如圖1所示,對於BL=4且CL二m々sdram而言,係因應一 93587.doc 1250531 讀取命令R來讀取4個位元的資料Q0、Q1、Q2及Q3,其中 每一位元的資料Q0-Q3皆響應於一時鐘CLK之上升緣而輸 出。同樣,其因應一寫入命令W並響應於時鐘CLK之上升 緣來依序輸入4個位元的資料。 相比之下,亦如圖1所示,對於一 DDR SDRAM而言,係 響應於一資料選通信號(DQS)之上升緣及下降緣二者自記 憶體裝置輸出所儲存資料Q0-Q3,該資料選通信號本身産生 於時鐘信號CLK。同樣,資料D0-D3因應一寫入命令並響應 於DQS之上升緣及下降緣二者而寫入記憶體裝置内,從而 與SDR SDRAM相比,獲得一雙倍資料速率。SDRAM裝置(包 括SDR SDRAM裝置及DDR SDRAM裝置)之設計及運作已 爲熟習此項技術者衆所習知,無需再在本文中予以贅述。 較高的資料速率使吾人可能難以測試諸如DDR SDRAM 等高頻記憶體裝置。亦可能尤其難以使用較低頻率的試驗 設備(例如設計用於測試SDR SDRAM之測試設備)來測試諸 如DDR SDRAM等高頻記憶體裝置。舉例而言,頒予Park 等人的美國專利5,933,379 —其受讓與本申請案之受讓者一 提供一種「用於測試以高頻運作之半導體記憶體裝置之方 法及電路(Method and Circuit for Testing a Semiconductor Memory Device Operating at High Frequency)」一Park等人 的發明名稱。如Park等人的發明摘要所述,該專利揭示一 種用於測試半導體記憶體裝置之電路,該電路包括:一延 遲控制器,其用於控制外部時鐘信號之延遲;一内部行位 址產生器,其用於在記憶體裝置中産生行位址信號;及一 93587.doc 1250531 核式暫存器,其用於一 _ ^ 王棋式仏號。该種用於測試半導 體5己憶體裝置之電路亦包括··一 _ 匕祜 仃位址解碼器,其用於將 以:行位址產生器之輸出位址信號解碼;一記憶胞,其 ,於:買取或寫入資料;一輸入/輸出控制單元,其用於根據 遲技制為之輸出信號來控制該記憶胞之資料輸入/輸 出’ -育料輸入緩衝器;及一資料輸出緩衝器。此外,亦 -頻率倍增器,用於産生一内部時鐘信號,該内部時 鐘信號之頻率料部時鐘信號之頻率的「η」倍。藉由提供 上述改良,即可使用習知測試設備來測試高頻記憶體裝置。 頒予Iwotomo等人的美國專利6,163,491閣述一種「使用低 速測試儀即可檢驗之同步半導體記憶體裝置(Synchr〇n〇us Semiconductor Memory Device Which Can Be Inspected Even With Low Speed Tester)」一Iwotomo等人的發明名稱。 如Iwotomo等人的發明摘要所述,該專利揭示一種同步半導 體記憶體裝置,該同步半導體記憶體裝置包括一預取選擇 裔’該預取選擇器用於接收分別自對應於偶數及奇數位址 的第一及第二記憶胞讀取的第一及第二資料,以供將其輪 出至一資料輸入/輸出終端。該預取選擇器在正常運作中在 一個時鐘週期内將第一及第二資料依序輸出至資料輸入/ 輸出終端,在測試模式中則確定該第一資料與第二資料是 否匹配,並在一個時鐘週期内將確定結果輸出至資料輸入/ 輸出終端。 最後,頒予Mader的美國專利6,212,113闡述一種「半導體 記憶體裝置輸入電路(Semiconductor Memory Device Input 93587.doc 1250531</ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> And generally referred to herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated circuit memory device and a method of operating the same, and more particularly to a circuit and method for testing an integrated circuit device. [Prior Art] Integrated circuit memory devices are widely used in many commercial and consumer applications. A widely used integrated circuit memory device is a dynamic random access memory (DRAM). At present, a synchronous (10) 10 (10) 趟 趟 device has been designed which is capable of reading and writing data in synchronization with the rising or falling edge of the clock signal. In addition, double data rate (DDR) SDRAM devices have been designed, which can read and/or write data in response to both rising and falling edges of the clock signal, thereby being higher than conventional The frequency of SDRAM (also known as single data rate (sdr) sdram) operates. Those skilled in the art will appreciate that the term "data rate" as used herein means the number of bits transmitted by a memory device to an external input/output terminal or transmitted from an external input/output terminal in one clock cycle. 0 1 is the same as the conventional SDR SDRAM and the conventional DDR SDRAM. Both SDRAMs include a row address strobe (BL) and a row address strobe (CAS) delay (cl) of size 2. Therefore, as shown in FIG. 1, for BL=4 and CL two m々sdram, the data Q0, Q1, Q2 and Q3 of 4 bits are read in response to a read command R of 93587.doc 1250531, wherein Each bit of data Q0-Q3 is output in response to the rising edge of a clock CLK. Similarly, in response to a write command W and in response to the rising edge of the clock CLK, the data of 4 bits is sequentially input. In contrast, as shown in FIG. 1, for a DDR SDRAM, the stored data Q0-Q3 are output from the memory device in response to both the rising edge and the falling edge of a data strobe signal (DQS). The data strobe signal itself is generated by the clock signal CLK. Similarly, data D0-D3 is written into the memory device in response to a write command and in response to both the rising and falling edges of DQS, thereby achieving a double data rate compared to SDR SDRAM. The design and operation of SDRAM devices, including SDR SDRAM devices and DDR SDRAM devices, are well known to those skilled in the art and need not be described in detail herein. Higher data rates make it difficult for us to test high frequency memory devices such as DDR SDRAM. It may also be particularly difficult to test lower frequency test equipment such as test equipment designed to test SDR SDRAM to high frequency memory devices such as DDR SDRAM. For example, U.S. Patent No. 5,933,379, to the assignee of the present application, to the assignee of the present application, provides a method and circuit for testing semiconductor memory devices operating at high frequencies (Method and Circuit for Testing a Semiconductor Memory Device Operating at High Frequency)" The name of a Park et al. As described in the invention summary of Park et al., the patent discloses a circuit for testing a semiconductor memory device, the circuit comprising: a delay controller for controlling the delay of an external clock signal; an internal row address generator , which is used to generate a row address signal in a memory device; and a 93587.doc 1250531 nuclear scratchpad for a _ ^ king chess nickname. The circuit for testing a semiconductor 5 memory device also includes a _ address decoder for decoding an output address signal of a row address generator; a memory cell Buying or writing data; an input/output control unit for controlling the data input/output of the memory cell according to the output signal of the late technology system - the feed input buffer; and a data output buffer Device. Further, a frequency multiplier is used to generate an internal clock signal which is "η" times the frequency of the frequency component clock signal of the internal clock signal. By providing the above improvements, the high frequency memory device can be tested using conventional test equipment. U.S. Patent No. 6,163,491 to Iwotomo et al., "Synchr〇n〇us Semiconductor Memory Device Which Can Be Inspected Even With Low Speed Tester" - Iwotomo The name of the invention. As described in the abstract of the invention by Iwotomo et al., the patent discloses a synchronous semiconductor memory device comprising a prefetching selector for receiving pre-fetch selectors respectively corresponding to even and odd addresses. The first and second memory cells read the first and second data for rotation to a data input/output terminal. The prefetch selector sequentially outputs the first data and the second data to the data input/output terminal in one clock cycle during normal operation, and determines whether the first data and the second data match in the test mode, and The determination result is output to the data input/output terminal in one clock cycle. Finally, U.S. Patent 6,212,113 to Mader describes a "semiconductor memory device input circuit (Semiconductor Memory Device Input 93587.doc 1250531).

Circuit)」一 Mader的發明名稱。如Mader的發明摘要所述, 該專利揭示一種雙倍資料速率(DDR)記憶體裝置,該種雙倍 資料速率(DDR)記憶體裝置可構造爲在普通記憶體測試儀 上加以測試。該DDR記憶體可包括:一 DDR輸入電路,一 單倍資料速率輸入電路,一字線控制電路,一位元線控制 電路,及一記憶胞陣列。選用DDR輸入電路可實施正常的 寫入作業。而選用SDR輸入電路即可實施測試寫入作業。 此一結構可使DDR記憶體裝置能夠在普通的SDR記憶體測 試儀上加以測試。 然而,仍可能難以測試諸如DDR SDRAM等高頻記憶體裝 置,此乃因高頻記憶體裝置可能會具有一可能係由裝置製 造線中的製程變異所致的較小的有效資料視窗容限。因 此,即使可使用DDR SDRAM用高頻測試設備來測試諸如 仍可能難以實際地平行測試多個 DDR SDRAM等高頻裝置,仍 DDR SDRAM。 【發明内容】 一種積體電路記憶體裝置,該Circuit)" The name of a Mader invention. As described in the abstract of Mader, the patent discloses a double data rate (DDR) memory device that can be constructed to be tested on a conventional memory tester. The DDR memory can include: a DDR input circuit, a single data rate input circuit, a word line control circuit, a bit line control circuit, and a memory cell array. A normal write operation can be implemented using a DDR input circuit. Test write operations can be performed using the SDR input circuit. This configuration allows the DDR memory device to be tested on a conventional SDR memory tester. However, it may still be difficult to test high frequency memory devices such as DDR SDRAM because the high frequency memory device may have a small effective data window tolerance that may be caused by process variations in the device fabrication line. Therefore, even if high-frequency test equipment such as DDR SDRAM can be used to test high-frequency devices such as multiple DDR SDRAMs that may be difficult to actually test in parallel, DDR SDRAM is still possible. SUMMARY OF THE INVENTION An integrated circuit memory device,

具有上升緣及下降緣之時鐘信號 本發明之某些實施例提供一 種積體電路記憶體裝置包括: 以一第一資料速率平杆鲶山,A clock signal having a rising edge and a falling edge. Some embodiments of the present invention provide an integrated circuit memory device comprising: flattening a mountain at a first data rate,

93587.doc l25〇53l ::該第-資料速率係根據該時鐘信號之上升緣及下降緣 而產生’而該第二資料速率則僅根 升緣或下降緣之—而產生。在其他實施例中,該 =造用於經由對應的複數條第一資料線以該第一資二 :平行輸出該等複數個資料位元,該輸出電路則構造用 ^在正常運作模式中經由對應的複數條第二資料線以該 貝科速率將該等複數個資料位元串列輸出至該外部終 而在測》式運作換式中則經由該對應的複數條第二資料 =該低於該第-資料速率之第二f料速率將該等複數個 貝料位7L串列輸出至該外部終端。 相應地,在測試運作模式中,本發明之某㈣施例可容 ㈣記憶胞陣列以-第_資料速率運作,㈣容許該輪出 電路以-低於該第一資料速率之第二資料速率將資料輸出 至-外部終端。如此-來,目資料視窗擴大而可使用SDR SDRAM測試設備來測試一(舉例而言)DDR sdram,及/或 可在SDR SDRAM測試設備上平行測試多個sdr sdram裝 在本發明之某些實施例中,該輸出電路構造用於:在測 試運作模式中,複製由該記憶胞陣列平行輸出的該等複數 個資料位元的一第一部分,以便以低於該第一資料速率之 該第二資料速率將該等複數個資料位元之第一部分串列輸 出至該外部終端,並複製由該記憶胞陣列平行輸出的該等 複數個賓料位元的弟_部分’以便以低於該第一資料速 率之該第二資料速率將該等複數個資料位元之第二部分串 93587.doc -10 - 1250531 列輪出至該外部終端。更具體而言,在某 己憶胞陣列構造用於經由對應的複數條第—資料:^ 第一貧料速率平行輸出該等複數個 B 〃以°亥 路包括:-多工器,其構造用於將該等 取資料多工複用至對應的複數條第二資料線上;^的讀 緩衝器,其構造用於將該等第二資料線 =出 至該外部終端。 貝科串列輪出 +在某些該等實施例中,該多工器構造用於:在 杈式中,將一相應的第一 胃計綠搞合至—相應的第二資料 線,而在測試運作模式之第-子模式中,將相應的偶數第 -貧料㈣合至相應的偶數第二資料線及相應的她鄰 數第二資料線,及在測試運作料之第二子模式中 應的奇數第一資料線輕合至相應的奇數第二資料線及相應 的毗鄰的偶數第二資料線。庫睁 應目緊解,本文所用術語「偶數」 及「奇數」用於表示交替的資料線,而與用於含示該資料 線的貪料線號碼表示無關。在某些實施例中,該多工器包 含:一第一開關,其構造用於在該第一子模式中將一相應 的偶數弟一貝枓線耦合至一相應的偶數第二資料線,一第 二開關’其構造用於在該第二子模式中將一相應的奇數第 -資料線辆合至一相應的奇數第二資料線;及一等化電 :,㈣造用於在該第—及第二子模式中將一相應的奇數 弟二貢枓線柄合至-相應的田比鄰的偶數第二資料線。亦可 提供-模式暫存器集,該模式暫存器集可因應複數個命令 信號,並構造用於產生第—及第二測試模式信號,以將該 93587.doc -11 - 1250531 多工器分別置於制試運作模式之第—及第:子模式中。 在其他實施例中,該多工器構造用於:在正常運作模式 中’將-相應的第-資料線耦合至一相應的第二資料線: 在測試運作模式之第—子模式中,將一相應的第一資料線 耦合至一相應的第二資料線;及在測試運作模式之第二子 模式中’將.相應的奇數及偶數第—資料線交又輕合至相應 的偶數及奇數第二資料線。在該等實施例中,該輸出緩衝 器可在正常運作模式中因應:_第—内部時鐘信號,該第 :内部時鐘信號係響應於時鐘信號之上升緣而産生;及一 第二内部時鐘信號,該第二内部時鐘信號係響應於時鐘信 號之下降緣而產生’並可在測試運作模式之第_及第二子 模式中僅因應該第-内部時鐘信號或該第二内部時鐘信號 之一。應瞭解’本文中所用「上升」及「下降」係用於表 示日守麵號中的不同邊緣,二者可互換。 此外,在該等實施例中,該多工器可包括:一第_開關, 其構造用於在正常模式及在該第—子模式中將_相應的第 一資料線耦合至一相應的第二資料線;及一第二開關,其 構造用於在該第二子模式中將相應的奇數及偶數第一資料 線交又耦合至相應的偶數及奇數第二資料線。同時,在某 些貫施例巾’該輸出緩衝器包括:對應的複數個暫存器, '、中相應的暫存為、構造用於儲存來自-相應的第一資料 線之靖取資料’及與相應的一對毗鄰暫存器相關聯的一鎖 存器,一相應的鎖存器構造用於因應該第一内部時鐘信號 來鎖存來自一第一毗鄰暫存器之資料並因應該第二内部時 93587.doc -12- 1250531 鐘信號來鎖存來自一第二毗鄰 器亦可包括—平行轉串列^之貧料。該輸出緩衝 ^ ^ 、益,忒平行轉串列轉換器在 吊運作㈣巾可因應該㈣— 5 虎内=該第一及第二運作子模式期間僅因應該第一及i 一内部時鐘信號之一。 在本發明之另一此眚始么丨&amp; 式 二彳中,該輸出電路在正常運作模 :上=:第一内部時鐘信號,其響應於該時鐘信號 …r;及一第二内部時鐘信號,其響應於該時 ==下降緣而產生,而在測試運作模式中,該輸出: 號。二體而:内部時鐘信號及該第二内部時鐘信 於經由對應的複數條第::二中’該記憶胞陣列構造用 *該等複數個資料位W電路包括—輪= 35在該苹#料賴^料部終端。 在某2貫施例中,該輪屮 σσ 應:—第—内部時鐘信rn二作模式中可因 =而;:第二内部時鐘信號,其響應一 下降、·彖而產生’而在測試運作模式的一第 因應該第一内部時鐘俨 '式中,僅 測試運作模式H子模式中,則❹㈣第—内= 鐘^虎或該第二内部時鐘信號令之另一者 中,該輸出緩衝器包括:對應的複數個暫存二= =暫存器構造用於健存來自一相應的第一資料線之讀取 及與相應的-對毗鄰暫存器相關聯的—鎖存器,一 93587.doc -13- 1250531 相應的鎖存器構造用於因應該第—内部時鐘信號來鎖存來 自-第1比鄰暫存器之資料並因應該第二内部時鐘信號來 鎖存來自一第二毗鄰暫存器之資 曰仔(貝枓。一平行轉串列轉換器 在正常運作模式中可因應該等鎖存器、該第—及第二時鐘 ^虎’而在該第-運作子模式期間僅因應該[及第二内 料,信號之-’在該第二運作子模式期間則僅因應該第 一及第一内部時鐘信號中之另一者。 :據本發明之又一些實施例’該輸出電路在正常運作模 i上=應Γ第一内部時鐘信號,其響應於該時鐘信號 =緣;及一第二内部時鐘信號,其響應於該時 虎之下降緣而產生’而在職運作模式中,該輸出電 -内部時鐘信號…經分頻之第父:其產生於該第 刀肩之弟—内部時鐘信號,其産 生於该弟二内部時鐘信號。更具體而言,在某些實施例中, 出緩衝器可在正常運作模式中因應:-第一内部時鐘 該第-内部時鐘信號係響應於時鐘信號之上升緣而 產生’及-第二内部時鐘信號,該第二内部時鐘作 虎之下降緣而產生’並可在测試運作模式V; 口應Ή頻n部時鐘信號及—經 時鐘信號。在某些實施例中, 弟… _ ^ 刀用 &lt; 弟一内部時倍/士 :=經分:員之第二内部時鐘信號之頻率爲該第—内部:: 、’里L唬及5亥第—内部時鐘信號的一半。 守 此外,亦可提供-第—分頻電路,其構造用於塑應 鐘信號之上升緣及測試模式選擇信號來産生經分^第二 93587.doc 1250531 内部時鐘信號。亦可提供一第二分頻電路,其構造用於響 應於時鐘信號之下降緣及測試模式選擇信號來產生第一二 部時鐘信號。在某些實施例中,該第—分頻電路包括一第 、刀頒π亥第分頻益可響應於時鐘信號之上升緣及測 試模式信號。該第二分頻電路包括:_第二分頻器,該第 :分頻器可響應於時鐘信號之下降緣及測試模式信號;及 —延遲元件,該延遲元件可響應於該第二分頻器。 本發明之其他實施例提供操作一具有一構造用於以一第 資料速率平行輸出複數個資料位元的記憶胞陣列之積體 電路記憶體裝置之方法。根據本發明之某些實施例,在正 常運作模式中’以該第—資料速率將該等複數個資料位元 自該記憶胞陣列串職出至—外料端。而在測試運作模 式中’以-低於該第一資料速率之第二資料速率將該等複 數個資料位元自該記憶胞陣列串列輸出至該外部終端。在 本發明各實施例之方法中,亦可提供與彼等上述實施例類 似之實施例。 【實施方式】 下文將參照展示本發明實施狀附圖t全面i也闡述本發 月」而,本發明可實施爲多種不同形 &lt;,而不應視爲僅 限於本文所述貫施例。相反,提供該等實施例僅旨在使本 揭不内容透徹、完整,i向熟習此項技術者全面傳達本發 月之|巳可。在附圖中’爲清晰起見,可能會放大元件尺寸 及相對尺寸。此外,本文所述及所示之每_實施例亦皆包 括其互補導電率類型實施例。通篇中,相同編號皆指代相 93587.doc 1250531 同元件。 圖2係一根據本發明各實施例之積體記憶體裝置及操作 方法之方塊圖。如圖2所示,一積體電路記憶體裝置2〇〇包 括一記憶胞陣列2H,該記憶胞陣列211構造用於以一第一 貝料速率DR1平行輸出複數個資料位元。記憶胞陣列2&quot;之 設計已爲熟習此項技術者衆所習知,無需再在本文中予以 贅述。 仍苓見圖2,一輸出電路213構造用於:在正常運作模式 乂第資料速率DR1將該等複數個資料位元串列輸出 外。卩、、冬鈿21 7 ’而在測試運作模式中,則以一低於該第 貝料速率之第二資料速率DR2將該等複數個資料位元串 歹J輸出至外部終端217。換言之,如圖2所示,dr2小於⑽卜 熟習此項技術者應瞭解,在本發明之某些實施例中,在單 個積體電路記憶體裝置中可設置有複數個記憶胞陣列 1複數個輸出電路2 i 3及/或複數個外部終端2丨7。此外, 可針對每一 s己憶胞陣列211及/或外部終端Μ?來複製輸出 包路213之功此度及電路,及/或輸出電路Μ]之功能度及電 路可至v σ卩分地爲複數個記憶胞陣列211及/或外部終端 217所共享。 仍^見圖2在本發明之某些實施例中,記憶胞陣列2 i】 構&amp;用於、、二由對應的複數個第一資料線2 12以第一資料速 率平行輸出複數個資料位元。因&amp;,對於自記憶胞陣 列平行輸出之每—位元,皆存在—第—資料線2 i 2。此外, 在某二κ施例中,輪出電路213構造用於··在正常運作模式 93587.doc 1250531 中使用輪出電路2 Π _對應的複數鉻笛一 ώ 一眘袓7禝數條弟二貧料線214以第 貝科速率將複數個資料位 在測試運作根ϋ日丨土 歹】輪出至外料端2”,而 資料線214 “ ,Μ用輸出電路中對應的複數條第二 貝枓線214以低於第一資料 ^ 藉赵彳ϋΐ次』丨 丰R1之弟二貧料速率DR2將 旻數個貝料位元串列輸出至 亡 1、、、、知217。因此,舉例而 :可使用四條第一資料線212及四條第二資料線214。 ^ ^ ^ ^ 扪之積體電路記憶體裝置及操 / 方塊圖。一般而言,灸男^ 、皮田狄· ,見圖3,一輸出電路31 3構93587.doc l25〇53l: The first data rate is generated according to the rising edge and the falling edge of the clock signal, and the second data rate is generated only by the rising edge or the falling edge. In other embodiments, the = is configured to output the plurality of data bits in parallel via the corresponding plurality of first data lines: the output circuit is configured to pass through the normal operation mode Corresponding plural second data lines output the plurality of data bit serials to the external end at the beacon rate, and in the measured operation mode, the corresponding plurality of second data = the low The plurality of billet bits 7L are serially output to the external terminal at the second material rate of the first data rate. Correspondingly, in the test mode of operation, a certain (4) embodiment of the present invention can accommodate (4) the memory cell array operating at a data rate, and (4) allowing the wheel circuit to have a second data rate lower than the first data rate. Output the data to the external terminal. As such, the data window can be expanded to test one (for example) DDR sdram using SDR SDRAM test equipment, and/or multiple sdr sdrams can be tested in parallel on SDR SDRAM test equipment. Some implementations of the present invention are installed. In an example, the output circuit is configured to: in the test mode of operation, copy a first portion of the plurality of data bits output in parallel by the memory cell array to be lower than the second data rate Data rate outputting the first portion of the plurality of data bits to the external terminal in tandem, and copying the _parts of the plurality of bin bits outputted in parallel by the memory cell array to be lower than the first The second data rate of a data rate rotates the second partial string 93587.doc -10 - 1250531 of the plurality of data bits to the external terminal. More specifically, a certain memory cell array is configured to output the plurality of B 平行 in parallel via a corresponding plurality of first data: a first lean rate, including: - a multiplexer, the structure thereof The read buffer for multiplexing the data to the corresponding plurality of second data lines; the read buffer is configured to output the second data lines to the external terminal. Bayco Serial Out + In some such embodiments, the multiplexer is configured to: in a squat, mate a corresponding first stomach green to a corresponding second data line, and In the first-sub mode of the test operation mode, the corresponding even-thin-thin material (four) is combined to the corresponding even second data line and the corresponding second data line of her neighbor, and in the second sub-mode of the test operation material The odd first data line should be lightly coupled to the corresponding odd second data line and the corresponding adjacent even second data line. The library is intended to be tightly understood. The terms "even" and "odd" are used herein to refer to alternate data lines, and are not related to the greedy line number representation used to indicate the data line. In some embodiments, the multiplexer includes: a first switch configured to couple a respective even-numbered first-beat line to a corresponding even-numbered second data line in the first sub-mode, a second switch 'constructed to combine a corresponding odd-numbered data line to a corresponding odd second data line in the second sub-mode; and first equalizing power: (4) for In the first and second sub-modes, a corresponding odd-numbered brother-two gongs are spliced to the corresponding second data line of the corresponding field. A mode register set may also be provided, the mode register set may be responsive to a plurality of command signals and configured to generate the first and second test mode signals to the 93587.doc -11 - 1250531 multiplexer They are placed in the first and third sub-modes of the test operation mode. In other embodiments, the multiplexer is configured to: 'couple the corresponding first-data line to a corresponding second data line in the normal mode of operation: in the first mode of the test mode of operation, a corresponding first data line is coupled to a corresponding second data line; and in the second sub-mode of the test mode of operation, 'corresponding odd and even number-data lines are tapped to the corresponding even and odd numbers Second data line. In these embodiments, the output buffer is responsive to a normal operating mode: a first internal clock signal, the first internal clock signal is generated in response to a rising edge of the clock signal; and a second internal clock signal The second internal clock signal is generated in response to a falling edge of the clock signal and may be only one of the first internal clock signal or the second internal clock signal in the first and second submodes of the test mode of operation . It should be understood that the terms "up" and "down" used in this article are used to indicate different edges in the day-to-day face number, which are interchangeable. Moreover, in the embodiments, the multiplexer can include: a _ switch configured to couple the _ corresponding first data line to a corresponding one in the normal mode and in the first sub mode And a second switch configured to couple and couple the corresponding odd and even first data lines to the corresponding even and odd second data lines in the second sub mode. At the same time, in some implementations, the output buffer includes: a corresponding plurality of registers, ', the corresponding temporary storage is configured to store the data from the corresponding first data line' And a latch associated with a respective pair of adjacent registers, a corresponding latch configured to latch data from a first adjacent register in response to the first internal clock signal and The second internal time 93587.doc -12- 1250531 clock signal to latch from a second adjacent device may also include - parallel to the poor column. The output buffer ^ ^ , 益 , 忒 parallel to serial converter in the hanging operation (four) towel can be (4) - 5 within the tiger = the first and second operating sub-mode only due to the first and i an internal clock signal one. In another such method of the present invention, the output circuit is in a normal operation mode: upper =: a first internal clock signal, responsive to the clock signal ... r; and a second internal clock The signal, which is generated in response to the == falling edge at that time, and in the test mode of operation, the output: number. Two-body: the internal clock signal and the second internal clock are passed through the corresponding plurality of strips:: two in the memory cell array configuration * the plurality of data bits W circuit includes - round = 35 in the apple It is expected to be the terminal of the material department. In a two-example embodiment, the rim σσ should be: - the first internal clock rn in the mode can be due to =; and the second internal clock signal, which responds to a falling, 彖 彖 and is in the test A mode of operation mode should be the first internal clock 俨', only test the operation mode H sub-mode, then ❹(4)--in=^^^^^^^^^^^^^^^^^^^^ The buffer includes: a corresponding plurality of temporary storages 2 = = a temporary register configured to store a read from a corresponding first data line and a latch associated with the corresponding - pair of adjacent registers, A 93587.doc -13- 1250531 corresponding latch is configured to latch the data from the -1st adjacent register in response to the first internal clock signal and to latch from the first internal clock signal The second adjacent register is the one that is in the middle of the register. In a normal mode of operation, the latch can be waited for the latch, the first and the second clock. During the mode only due to [and the second internal material, the signal - in the second operational submode The other is only due to the other of the first and first internal clock signals. According to still further embodiments of the present invention, the output circuit is on the normal operating mode i = the first internal clock signal, which is responsive to The clock signal = edge; and a second internal clock signal, which is generated in response to the falling edge of the tiger at that time, and in the in-service mode, the output electrical-internal clock signal is divided by the first parent: it is generated from The first knives - an internal clock signal, which is generated from the internal clock signal of the second ridge. More specifically, in some embodiments, the output buffer can be responsive in a normal mode of operation: - a first internal clock The first internal clock signal generates a 'and-second internal clock signal in response to the rising edge of the clock signal, and the second internal clock is generated as a falling edge of the tiger' and can be tested in the operating mode V; n part of the clock signal and the clock signal. In some embodiments, the younger brother... _ ^ knife with &lt; brother one internal time double / ±: = points: the second internal clock signal of the member of the frequency is the first - Internal::, 'Li L唬 and 5 Haidi - Internal Time Half of the clock signal. In addition, a --divide circuit can also be provided, which is configured to use the rising edge of the plastic clock signal and the test mode selection signal to generate the internal clock signal of the second 93587.doc 1250531. A second frequency dividing circuit can be provided for generating a first two-part clock signal in response to a falling edge of the clock signal and a test mode select signal. In some embodiments, the first frequency dividing circuit includes a first The first frequency dividing circuit includes: a second frequency divider, the first frequency divider can be responsive to the falling of the clock signal, and the frequency divider can be responsive to the rising edge of the clock signal and the test mode signal. And a test mode signal; and a delay element responsive to the second frequency divider. Other embodiments of the present invention provide an operation having a configuration for outputting a plurality of data bits in parallel at a data rate A method of integrating a memory device of a memory cell array. In accordance with some embodiments of the present invention, the plurality of data bits are serviced from the memory cell array to the foreign material terminal at the first data rate in the normal mode of operation. In the test mode of operation, the plurality of data bits are output from the memory cell array to the external terminal at a second data rate lower than the first data rate. In the methods of the various embodiments of the present invention, embodiments similar to those of the above embodiments may also be provided. [Embodiment] Hereinafter, the present invention will be described as a plurality of different shapes, and should not be construed as being limited to the embodiments described herein. Rather, these embodiments are provided solely to provide a thorough and complete disclosure of the present invention. In the drawings, the size and relative dimensions of the elements may be exaggerated for clarity. Moreover, each of the embodiments described and illustrated herein also includes embodiments of complementary conductivity types. Throughout the text, the same number refers to the same component 93587.doc 1250531. Figure 2 is a block diagram of an integrated memory device and method of operation in accordance with various embodiments of the present invention. As shown in Fig. 2, an integrated circuit memory device 2 includes a memory cell array 2H configured to output a plurality of data bits in parallel at a first feed rate DR1. The design of the memory cell array 2&quot; has been well known to those skilled in the art and need not be repeated here. Still referring to Fig. 2, an output circuit 213 is configured to: in the normal mode of operation, the data rate DR1 outputs the plurality of data bits in series. In the test mode of operation, the plurality of data bit strings 歹J are output to the external terminal 217 at a second data rate DR2 lower than the first material rate. In other words, as shown in FIG. 2, dr2 is less than (10). It should be understood by those skilled in the art that in some embodiments of the present invention, a plurality of memory cell arrays 1 may be provided in a single integrated circuit memory device. The output circuit 2 i 3 and/or a plurality of external terminals 2丨7. In addition, the function and circuit of the output packet 213 and the circuit and/or the output circuit can be copied for each s MSC array 211 and/or external terminal 211 and the circuit can be v σ 卩The ground is shared by a plurality of memory cell arrays 211 and/or external terminals 217. Still in Fig. 2, in some embodiments of the present invention, the memory cell array 2i is configured to, and, by the corresponding plurality of first data lines 2 12, output a plurality of data in parallel at a first data rate. Bit. Since &amp;, for each bit-bit of the parallel output from the memory cell array, there is a - data line 2 i 2 . In addition, in a certain κ embodiment, the wheel circuit 213 is configured to use the chrome flute corresponding to the wheel circuit 2 Π _ in the normal operation mode 93587.doc 1250531. The second lean line 214 has a plurality of data bits at the first Becco rate at the test operation, and the rounding to the outer end 2", and the data line 214", the corresponding plurality of strips in the output circuit The second shell line 214 outputs a number of shell elements in series below the first data ^ by Zhao Yuci, the second poor material rate DR2 of the Fengfeng R1, to the death 1, 1, and 217. Thus, for example, four first data lines 212 and four second data lines 214 can be used. ^ ^ ^ ^ The integrated circuit memory device and the operation/block diagram. In general, moxibustion male ^, Pi Tian Di ·, see Figure 3, an output circuit 31 3

Xe用於·在測試運作模式 出的㈣P 己憶胞陣列211平行輸 :數:貧:位元中的—第一部分,從而以低於第一資 ;、^之弟一資料速率將該等複數個資料位元之第一部分 ==外部終端217。輸出電路313亦構造用於:在測 &quot;H ’硬製由記憶胞陣列211平行輸出的複數 料位元中的一篦-邱A以^ 灵双貝 弟一。卩分,從而以低於第一資料速率之第二 資料速率將該等複數個資料位元之第二部分串列輸出 部終端。 更具體而舌’如圖3所示’記憶胞陣列211構造用於唾由 對應的複數條第一資料線212以第—資料速率平行輸出複 數個貧料位元。在圖3中,將第一資料線212標記爲 RDI〇_〇-RDIO」。然而’在其他實施例中,亦可使用更少 或更多數1之第一資料線212。此外,如圖3所示,輸出電 路313包含-多_^3131該多卫器31城造用於將第一資 料線212上的讀取資料多工複用至對應的複數條第二資料 線2 i 4(在圖3中標記爲D〇—〇_D〇—3)上。輸出電路3 i 3亦包含 93587.doc 1250531 -輸出缓衝H313b,該輸出緩衝器咖構造用於將第二次 料線do-g_do-3上的資_列輸出至外部終端217。同Γ, 在圖3中僅展示四條第二資料缓2 、 犀214。然而,亦可使用更少 或更多數量之第二資料線。 更進一步具體而言,如圖3所示,多工器313構造用於: 在正常運作棋式中,如多工器3Ua之上面三分之一所示, 將一相應的第一資料線212耦人$ . ^ 耦口至一相應的第二資料線 214,而在測試運作模式之第一 、 一 昂子杈式(亦稱作測試模式1, 其展示於多工器3 13a之中間二公夕 ^ Ί一刀之一處)中,將相應的偶數 弟一貧料線麵合至相應的偶數第二資料線及相應的田比鄰的 可數弟,貧料線’及在測試運作模式之第二子模式(亦稱作 測试模式2,其展示於多工5| 3〗 斋313a之下面三分之一處)中, 則將相應的奇數第一資料複姜入 千踝耦合至相應的奇數第二資料線 及相應的毗鄰的偶數第二資料 .^ ^ ^ 、枓線。亦應瞭解,亦可支持兩 種以上測試模式。 相應地’如圖3所示,在正當靈 ㊉運作模式中,第一資料線 RDIO耦合至對應的第二資 貝针線DO,從而以一第一資料速率 (例如DDR SDRAM資料速率、έ μ山〆 貝了卞逮早)自輸出緩衝器313提供輸出。 在第一測試模式或第一子模式 + ώ _ 果式期間,來自偶數第一資料線 RDIO—0及RDIO 2之資料回畔V也, - 、卄Π日可禝製於偶數及奇數第二資料 線DO—〇_D〇 3上,以使該資粗 — - 從邊貝科以複製形式提供至輸出緩衝 态3 1 3 b並由此以一低於第一 乐 貝科速率之第二資料速率(例 如SDR SDRAM資料速率)輪+ 午)輸出至外部終端2 1 7。最後,在第 二測試模式或第二子模式 、^間’將可數第一資料線RDIO 1 93587.doc -18- 1250531 及RDI〇_3上的資料同時複製於奇數及偶數第二資料線 DO—0-DO—3上,以由此以低於第一資料速率之第二 率將該資料提供至輸出緩衝器遍。藉&amp;,在測試模式中, 輸出緩衝器313b之輸出資料卿了之f料視窗相較自記憶 胞陣列211讀出之資料之資料視窗得以擴大,且在某些實施 例中加倍。因此,因資料視窗得以擴大,可使UDrsdram 測試設備及/或多個SDR隨趟測試設備纟測試臓 SDRAM。 仍參見圖3,-模式暫存器集(_)315可因應複數個命 令信號,並構造用於產生第一及第二測試模式信號湘、 ΤΜ2,以將多工器313a分別置於測試運作模式之第一及第 二子模式中。該等命令信號可包括一列位址控制信號 (RASB)、一行位址選通信號(CASB)、一允寫信號(web)、 及若干位址信號。由於在本發明某些實施例之積體電路記 憶體裝置300中設置有MRS 3 15,因而可在封裝之後實施測 試。 圖4係一根據本發明某些實施例可設置的一多工器 313(例如圖3所示之多工器313a)之示意圖。如圖4所示,多 工器313a包含:一第一開關42〇,其構造用於在第一子模式 (TM1)中將一相應的偶數第一資料線RI)I〇—〇、Rm〇一2耦合 至相應的偶數弟二資料線D〇_0、D0—2 ; —第二開關430, 其構造用於在第二子模式(TM2)中將一相應的奇數第一資 料線RDI0—1、RDI0一3耦合至一相應的奇數第二資料線 DO—1、DO一3 ;及一等化電路440,其構造用於在該第一及 93587.doc -19- 1250531 第二子模式中將一相應的奇數第二資料線d〇j、d〇」耦合 至一相應的毗鄰的偶數第二資料線D〇—〇、D〇—2。相應地, 如圖4所示,第—資料線212上由記憶胞陣列211產生之第— 讀取資料RDI〇_G、RDI0_2因應第—測試模式信號(tm i)而 分別轉換成第二資料線214上的第二讀取資料d〇_〇、 D〇—2°同時,等化電路44G啓動’以使每-對偶數/奇數第 二讀取資料(DO—0/1、DO_2/3)皆保持爲同一位準,而此時 用於接收-第二測試模式信號(TM2)之第二開關43〇則停 用。奇數讀取資料RDIQ_丨、RDIq—3亦可以相同方式得到處 理’從而可將輸出資料D0UT之有效資料視窗擴大至正常模 式的兩倍。在正常模式中,等化電路44〇停用。 、 圖5係-根據本發明某些實施例(例如上文結合圖3及圖* 所述之實施例),對應於自—記憶料置讀取資料的正常運 作模式及測試運作模式之時序圖。如圖5心,在正常模式 中,所讀取資料DO_D3響應於一時鐘信號(clk)之上升緣L 下降緣以-有效資料視窗W1傳送至外部終_〇υτ。此 外’亦如圖5所示,在測試模式巾,偶數及奇數資料 (D〇_0/2、DO—丨/3)響應於一外部時鐘信號之上升緣以二擴 大的資料視窗W2分別傳送至外部終端D〇UT。 ” 圖6係一更詳細的時序圖’其闈釋根據本發明之實施例 (例如結合圖3_5所述之實施例),可由輸出電路執行之作 業。如圖6所示,一第一内部時鐘作声 丁里1口就LDQ—F響應於時鐘信 號CLK之上升緣而産生。一筮^^ ° 弟一内部時鐘信號CDQ〜8則塑 應於時鐘仏號CLK之下降緣而産生。在 隹正吊杈式中,輪出 93587.doc -20· 1250531 資料DO-D3因應該等對應於時鐘信號咖之上升緣及下降 緣的CDQ—F及CDQ—S信號而傳送至外部終端D〇UT。在測試 模式1中,由於偶數及奇數資料保持爲同一位準,因而輸出 資料D0及D2以-擴大的資料視窗傳送至外部終端d晴。 在測試模式2中,亦爲輸出資⑽及的提供類似作業。 熟習此項技術者亦應瞭解,測試模式】令及測試模式枓 的DOUT輸出通常出現於相万值 見於相互偏置的時鐘週期中,而非如圖 5及圖6所示出現於相同的或交疊的時鐘週期中。於圖5及圖 6中展不交疊的時鐘週期係爲了可對正常模式與測試模式 進行對比且不致於進—步擴A時序圖之寬&amp;。 4 釋本發„他㈣例之龍電路記憶 :作方法。一般而言,在該等實施例中,記憶胞陣列可: 應-具有上升緣及下降緣之時鐘信號。在正常 中,輸出電路可因庫一筮 衩式 於&quot;η 應' 弟一内部時鐘信號及-第二内部時 n八中4第_内部時鐘信號係響應於時鐘 緣而産生,古歹笛-如&amp; + ° A Jl升 緣而产生Γ號則係響應於時鐘信號下降 、森而產生。然而,在測試運作模式中,該輸 應該第-内部時鐘信號或該第二内 、)僅口 此,在測試運作模式中,可以一低於第_資料^=因 資料速率來輸出資料位元。 ]逮率之弟二 更具體而言,炎目同7备 ,見圖7,在該等實施例中, 包括一多m該多工器73城造用於:^電^-模式中,如(舉例而言)多工器7—三分之運: 一相應的第—資料線相應的第二資料I:將 93587.doc 1250531 而在测試運作模式之第一 D中,如多m3a之⑼_=(在圖7中亦稱作測試模式 -資料線212•合至一相;…所示,將-相應的第 作模々 &gt; 楚_ μ 0弟一貝料線。最後,在測試運 工哭、(在圖7中亦稱作測試模式2)中,則如多 °° a之下部三分之-所示,將相應的奇數 資料線212交又耦人5_ 了数及偶數弟一 ㈣择 應的偶數及奇數第二資料線214。 仍繼績說明圖7,輸出電 ^甲亦叹置有一輸出緩衝器 。在正承運作模式中,輸出緩衝器7 一内部時鐘信號CDQ F,盆塑庫於昧妒^ * 應 弟 ,及-弟二内部時鐘信號CDq—s,其響應 下降緣而產生。而在洌試運士 才里L就之 運作模式之第一及Ϊ」;\ :具體而言,在測試 及第一子杈式中,輸出緩衝器733b僅因應 二内部時鐘信號或第:内部時鐘信號之—。在某些實施 如圖7所示,在測試運作模式中,輸出緩衝器僅因應 » 弟:指鐘信號CDQ_p,而在測試運作模式之第一及第 二子模式中停用第二内部時鐘信號cDq_s。 。相應地’圖7闌釋如何藉由在測試模式中停用第二時鐘信 號C^Q_S,將輸出緩衝器⑽之輸出資料d〇ut之有效資料 視窗相較由§己憶胞陣列211輸出之讀取資料 〇_〇 RDIO—3之有效貧料視窗擴大一預定值,例如加 倍。由此,使輸出緩衝器襲不受第二内部時鐘信號cdq s 操縱,以便可將讀取資料Dq_g_Dq—3以—擴大的有效資料 視窗輸出至外部終端217。 圖8係一根據本發明之該等實施例,一多工器之實施例 93587.doc -22- 1250531 (例如圖7所示多工器733a)之示意圖。如圖8所示,該多工器 第-圓20,其構造用於在i常模式及在第一子 、弋(TM1)中將一相應的第一資料線Rdi〇—3耦合 至一相應的第二資料線D〇_〇_d〇—3 ; 一第二開關83〇,其構 造用於在第二子模式(頂2)中將相應的奇數及偶數第一資 ㈣交又麵合至相應的偶數及奇數第二資料線。因此,第 —資料線212上由記憶胞陣列產生的第一讀取資料 (RDIO一〇_RDI〇_3)因應第一測試模式信號(頂^而相應地 傳送至第二資料線2 i 4(DOJ)_D〇_3)。同樣,第—資料線2】2 上由記憶胞2Π産生之每一第一讀取資料 (RDI〇_〇-RDI〇_3)亦因應第二測試模式信號(tm2)而相應 地傳送至毗鄰的第二資料線2l4(D〇 i/D〇 〇,D〇 3/ DO—2)。 一 圖9係-根據本發明之該等實施例之輸出緩衝器(例如圖 7所示輸出緩衝器733b)之示意圖。更具體而言,如圖9所 示,輸出緩衝器733b包括:對應的複數個暫存器 910a-910d’其中—相應的暫存器構造用於儲存來自一相應 的第-資料線212之讀取資料;與相應的一轉暫存哭 ㈣a/鳴、910c/910d相關聯的—鎖存器9心、纖,一相 應的鎖存器920a··構造用於因應第—内部時鐘信號γ 他2,叫來鎖存來自-第1比鄰暫存器之資料並 因應第二内部時鐘信號S CLK,2nd s clk)來鎖存來自 一第二她鄰暫存器之資料;-構成-多工器930之平行轉串 列轉換器’該平行轉串列轉換器在正常運作模式中可塑應 93587.doc -23- 1250531 於該㈣存器92〇a、920b、該第一及第二内部時鐘信號, 而在4第一及第二運作子模式期間,多工器僅因應該第 一及第二内部時鐘信號之一。 / 更詳言t,第二讀取資料線214上的第二讀取資料 DO_0-DO一3係因應内部時鐘信號行傳送至暫存 器91〇a-910d。在正常運作模式中,儲存於圖9中上部^固子 2存器91〇a、910b中的資料D〇—〇&amp;D〇—i因應第一上升緣及 弟:下降緣時鐘(1st F CLK^lSt s CLK)之出現而依序傳送 至第-鎖存If 92Ga,而儲存於底部兩個暫存器91(^、9⑽ 中的每一資料DO—2及00—3則因應第二上升緣及第二下降 緣時鐘W F CLK及W s CLK)之出現而依序傳送至第二鎖 存器920b。因此,在正常運作模式中,每一資料〇〇〇 3 皆因應依序啓動的第一及第二内部時鐘信號(cdq_f 一, CDQ 一 S)而輸出至外部終端217。然而,在測試運作模式中, 即使儲存於圖9中上部兩個暫存器91〇a、91卟中的資料 DO—0及DO一1因應第一上升緣及第一下降緣時鐘〇st f 及lstS CLK)之出現而依序傳送至第—鎖存器92Qa,亦僅有 資料DO—〇以低於第一資料速率之第二資料速率傳送至外 部終端217,此乃因此時僅第一内部時鐘cdq—f啓動。此 外,縱使儲存於底部兩個暫存器91〇c、91〇d中的每一資料 DO—2及DQ—3亦因應第:上升緣及第二下降緣時鐘(π CLK及2nd S CLK)之出現而依序傳送至第二鎖存器讓,亦 僅有貢料DO一2以低於正常模式中第一資料速率之第二資 料速率傳送至外部終端217。換言之,在輸入針對資料d〇—2 93587.doc -24- 1250531 的下一上升緣時鐘(CDQ—!^)之 且输出貧料DO—υ ^四 =’有效資料視窗得到擴大。在第:測試模式()中,每 -第-讀取資料刪」,3亦轉換成第二讀取資料 〇〇_〇’2。,然後’資料⑽—^以—擴大的資料視窗傳送至外 邛、’冬知21 7。因此,在該兩種測試模式(TM1,TM2)中,可 向外部輸出所有資料RDIO_〇_RDI〇—3。圖9亦展示一邏輯 電路940,其可用A卜一 時鐘CDQ_S。、測試模式期間停用下降緣 =係—時相,錢釋在正常運作_及在測試 =期間使用(例如)圖7-9所示實施例來產生輸出資料。如 可因應一響應於時鐘之^式期間’輪出電路733 時鐘信號CDQF及二:=上升緣而産生的第-内部 &amp;筮&amp; — θ應於%釦信號CLK之下降緣而産生 的弟二内部時鐘作卢 王 個資料位-ηη 便以第一資料速率將複數 間,如R a _D3串列輸出至一外部終端。而在測試模式期 曰,D θ 1〇之下部所示,輸出電路733則僅因岸嗲第 時鐘信號或該第二内部時鐘”之=以-内部 第-内部時鐘信號CDQf:=t:處展示爲僅因應 試模式丨期間,偶數~ / 下〇分所示’在測 於第-資料速车Γ /線D0-°及D〇-2上的資料以低 ::然而在測試模式2中亦可執行類 = 偶數測試線。因此,在 —貝枓傳迗至 式1中所示之作料⑺ 式期間的作業可與在測試模 乍業相同,只是在測試模式2中係輪出資料D1 93587.doc -25 - 1250531 及D3。 *和至圖13展示本發明又—些實施例之積體電路記憶體 裝置及操作方法。如下文所將闡述,在該等實施例中,輸 出電路在正常運作模式中可因應:—第一内部時鐘信號, 其響應於時鐘信號之上升緣而產生;及一第二内部時鐘信 號,其響應於該時鐘信號之下降緣而產生。而在測試運作 :吴式中,該輸出電路可交替因應該第—内部時鐘信號及該 部時鐘信號。更具體而言,參見圖11,記憶胞陣列 2 I 1構造用於經由對庫的 田奵k的稷數條弟一貧料線212以第一資料 輸出複數個資料位元。該輪出電路包括一輸出缓 =該輪出緩衝器1143構造用於將資料串列輸出至 更進一步具體而言 一且右冬圖,記憶胞陣列211可因應 正當、重於伊4 旁緣之號。該輸出緩衝器U43在 塑岸於“中可因應··一第一内部時鐘信號CDQ F,豆 曰應於该時鐘信號之上升緣而產生’·及士 號CDQ—S,豆燮廍 弟一内口鐘信 試模式的第;:心㈣信號之下降緣而產生。而在測 果式⑽1)中,輸出緩衝器&quot;43僅因岸嗲第 一内部時鐘信號或該第二内 ι亥弟 僅因應第-内部時鐘㈣cd〇f :之—,此處顯示爲 二子模式中(如mi/ Q—F。而在測試運作模式的第 说 中的測試模式2所示),輪出m η 僅因應該第-内部時鐘 )#出、…1143 -者,在圖u&quot;f… 部時鐘信號中之另 ^ 爲僅因應'第二内部時鐘neDQ s 因此,在圖丨丨中,在測試模式虎Q~S。 犋式中可错由交替停用每一 93587.doc -26- 1250531 = Q_F及CDQ:Sk號來擴大輪出緩衝器ιΐ43之輸出資料 I之有效貝料視窗。在某些實施例中,係在第二測試模 式中停用第一内部時鐘传驊Γ ^ ^ 1 口唬CDQ—F,而在第一测試模式中 停用第二内部時鐘信號CDQ S。出+ _ ^ ^ 由此,即可以一擴大之視 ®來輸出所讀取資料。 圖12係^一本發明草此管;丨 + 一 呆二只知例之輸出緩衝器(例如圖11所 示輸出緩衝器1143)之方持FI f门 鬼圖。如圖12所示,輸出緩衝器 1 M3包括··對應的複數個暫存器121〇心⑵⑽,其中一相應 的暫存器構造用於儲存來自一 i日旛从哲一,丨 … 响廿木目相應的第一資料線之讀取資 料’·及與相應的一對她鄰暫存器⑵〇a/121〇b、12顧21〇d 相關聯的一鎖存器122〇a、〗^ . 貝仔口口 1220b,其中一鎖存器122〇a構造 用丈於因應第-上升緣及第一下降緣時鐘信號(ist f clk&amp; 1 S CLK)來鎖存來自一第一田比鄰暫存器i2n m〇b之資 料,-鎖存器⑽亦構造用於因應第二上升緣及第二下降 緣時鐘信號(2nd F CLK及2nd S CLK)來鎖存來自一第二田比鄰 曰存器121〇c、i2l〇d之資料;一平行轉串列轉換器123〇, 其在正常運作模式中可因應鎖存器122〇a、i22〇b、及第一 和第二内部時鐘信號CDq—f、CDQ—S,而在第一測試運作 子杈式期間僅因應該第一及第二内部時鐘信號之一,例如 僅因應CDQ—F,在第二測試運作子模式期間則僅因應該第 及第一内部時鐘信號中的另一者,例如僅因應CDq—s。 圖12亦展示有邏輯電路124〇及125〇,其可構造用於分別在 第二測試模式中停用第一時鐘信號CDq—f,而在第一測試 柄式中停用第二時鐘信號CDQ_S。 93587.doc -27- 1250531 明一了由(例如)圖11及圖12所示輸出電路根據本發 ^亥寺貫施例執行的作業的時序圖。如圖13之上部三分 之-所示,在正常模式巾,該輸出電路可因應第—及第二 内部時鐘信號CDQ p、CD〇 S, - i笛^ -DQ-S -者。弟-内部時鐘信號 Q—(或CDQ—F')可響應於時鐘信號CLK之上升緣,而第 二内部日⑷言號CDQ—S(或⑶Q—s,)可響應於時鐘信號咖 之下,緣。在第一測試模式中,如圖13之中間三分之一所 不’第二内部時鐘信號CDQ—S,被停用,輸出電路僅因應第 一内部時鐘信號CDQ—而在第二測試模式中,如圖^之 底部三分之一所示,輪出電路僅因應第二内部時鐘信號 (DQ—S')。因此,如在圖12中所闡述,儲存於暫存器電路 1210a、12i〇c中的資料〇〇一〇及D〇一2係因應第一及第二上升 緣時鐘信號⑺F CLK,W F CLK)而傳送至鎖存器電路 1220a及1220b。此後,直到在第一内部時鐘信號(cdqj,) 下一次上升時輸出下一D〇一2之前,一直輸出資料〇〇一〇,從 而擴大有效資料視窗。而在測試模式2中,儲存於暫存器電 路1210b、1210d中的奇數資料係因應第一及第 二下降緣時鐘信號(1st S CLK,2nd S CLK)而傳送至鎖存哭 電路1220a及1220b。此後,直到在第二内部時鐘信號 (CDQ 一 S')下一次上升時輸出資料do一3之前,一直輸出資料 DO一1 ’從而亦擴大奇數資料之有效資料視窗。 圖14-16闡釋根據本發明再一些實施例之再一些積體電 路衣置及操作方法。一般而言’在該等貫施例中,輸出電 路可在正常運作模式中因應一第一内部時鐘信號及—第二 93587.doc -28- 1250531 内部時鐘信號,其中該第_内部時鐘 號上升緣而産生,哕第_ ’、θ %、於時鐘信 w弟一内部時鐘信號則 號下降緣而產生。而在 、胃應於時鐘信 而在測4運作模式中,該 應一根據該第一内# 輸出電路則因 ^^號産生的經分 鐘信號及一根據爷筮—向加士 貝的弟一内部時 ^弟一内邛日守鐘信號產生的經 内部時鐘信號。在某此竇 、、刀湧的苐二 信號及經分頻之繁-允士 、弟一内邛時鐘 刀狀弟—内部時鐘信號之頻士 k號及第二内部時鐘信號之頻率的一半。‘、、、 。蛉鐘 更具體而言,如圖14所示 可#用一床w , 〜示坚貫知例中, :使 '先進先出⑽〇)暫存器146〇來儲存來自 、、-2 12之貝料。在正常模式一 、” 铪 ” μ 勒』後衝态1463可因靡 弟一及弟二内部時鐘作 w ‘ 5虎。然而,在測試模式TM中,该輪 出緩衝器卻因應經分頻之望^ 甲w亥輸 t卜,+J之弟一及第二内部時鐘信號。由 此’在測试模式中可對日车 * ^釦進仃刀頻,例如將時鐘頻率分 平。 因此,在測試模式中,可藉由對每一cdqfacdqs信 就實施分頻來擴大輸出緩衝器1463之輸出資料d〇ut-之有 峨視窗。換言之,可因應測試模式信號™將每一内部 =鐘信號CDQWCDQ_S分頻爲一較低之頻率。測試模式 ^虎可由-接收複數個命令信號(RASB,CASB,腳)及 若干位址信號之模式暫存器集(刪)產生。因此,在測試模 式期間,能夠擴大輸出資料之資料視窗。 W圖以及15B係根據本發明之該等實施例,可㈣在測試 換式』間根據内部時鐘產生經分頻之内部時鐘的分頻器電 93587.doc -29- 1250531 路之方塊圖。具體而言,如圖15A所示,一第一分頻電路 、ρ冓這用於因應第一内部時鐘信號及一測試模 式選擇信號TM而産生經分頻之第一内一部時鐘信號 如圖15B所不,一第二分頻電路1500b構造用於因 μ第内°卩日寸知^唬CDQ一S及測試模式選擇信號ΤΜ而産 生經分頻之第二内部時鐘信號CDQ_S'。 帝,、體而σ如圖j 5 A所不,在某些實施例中,第一分頻 电路150〇a包括一第一分頻器l5i〇,該 應於時鐘信號之上升緣及測試模式信號。同^在某㈣ 施例中,第二分頻電路15_包括:—第二分頻器測,其 可響應於時鐘信號之下降緣及測試模式信號;及-延遲元 件1530,其可響應於第二分頻器⑽。在某些實施例中, y吏用延遲元件153G來增大第_與第二經分頻之時鐘之間 屮緣了間間P閉’以便能夠以擴大的有效資料視窗來輸 出外邛終端217處的輸出資料。 圖16係一根據圖14 圖。參見圖“、—及:= 次丄〇貝枓RDIO—0-RDIO 3首先 i::r〇暫存器1460中’然後因應内部時鐘信號而傳送 半部:所㈣器146V此後:在正常模式中,如圖16之上 CDQ S)向I -因應弟Γ及弟:内部時鐘信號(⑶^及 °輸出輸出㈣杰1463中的所有資料。而在測試 I L圖Μ半部分所示’輸出緩衝㈣3分別因 應經分頻之第-及第二㈣時鐘錢 輸出讀取資料D⑽,以便可擴大有效資料視窗。因1 = 93587.doc -30- 1250531 該等實施例t,輸出緩衝器可以減半的速度運作,而 胞陣列則如同在正常模式中一般全速運作。 〜 圖η係-㈣本發明之各實施例運作—㈣電路記 裝置可實施之作業流程圖,該積體電路記憶體裝置具有— 構造用於以第-資料速率平行輸出複數個資料位元的記慎 胞陣列。該等作举可伸用 〜 Η系Τ使用上文所相2_16所示各實施 =一實施例來執行。如圖17所示,當在塊171时選擇正Xe is used in the test mode of operation (4) P memory cell array 211 parallel input: number: poor: the first part of the bit, so that the number is lower than the first capital; The first part of the data bits == external terminal 217. The output circuit 313 is also configured to: in the measurement &quot;H&apos; hard one of the plurality of material bits output in parallel by the memory cell array 211 - Qiu A to ^ 灵双贝弟一. The second portion of the plurality of data bits is serialized to the output terminal at a second data rate lower than the first data rate. More specifically, the tongue &apos; is shown in Fig. 3. The memory cell array 211 is configured to output a plurality of lean bits in parallel at a first data rate by a corresponding plurality of first data lines 212. In Figure 3, the first data line 212 is labeled RDI〇_〇-RDIO. However, in other embodiments, fewer or more than one of the first data lines 212 may be used. In addition, as shown in FIG. 3, the output circuit 313 includes -multi_3131. The multi-guard 31 is configured to multiplex the read data on the first data line 212 to the corresponding plurality of second data lines. 2 i 4 (labeled D〇-〇_D〇-3 in Figure 3). The output circuit 3 i 3 also includes 93587.doc 1250531 - an output buffer H313b configured to output the resource_column on the second secondary line do-g_do-3 to the external terminal 217. At the same time, only four second data buffers 2 and 214 are shown in FIG. However, fewer or greater numbers of second data lines can be used. More specifically, as shown in FIG. 3, the multiplexer 313 is configured to: in a normally operating chess style, as shown by the upper third of the multiplexer 3Ua, a corresponding first data line 212 The coupling $. ^ is coupled to a corresponding second data line 214, and in the first mode of the test mode of operation, also known as test mode 1, which is shown in the middle of the multiplexer 3 13a In the evening of the Gongxi ^ Ί one knife), the corresponding even number of brothers and one poor material line are combined to the corresponding even second data line and the corresponding number of younger brothers in the field, the poor material line 'and in the test mode of operation The second sub-mode (also known as test mode 2, which is shown in the lower third of the multiplex 3|3 ** 313a), couples the corresponding odd first data to the Millennium into the corresponding The odd second data line and the corresponding adjacent even second data. ^ ^ ^, 枓 line. It should also be understood that more than two test modes can be supported. Correspondingly, as shown in FIG. 3, in the proper ten operation mode, the first data line RDIO is coupled to the corresponding second needle thread DO, thereby at a first data rate (eg, DDR SDRAM data rate, έ μ The mountain mussels are caught early and provide output from the output buffer 313. During the first test mode or the first sub-mode + ώ _ fruit, the data from the even first data lines RDIO-0 and RDIO 2 are back to V, and the next day can be controlled to even and odd second. The data line DO_〇_D〇3 is such that the resource is supplied from the side shell to the output buffer state 3 1 3 b in a replica form and thereby a second lower than the first Lebeco rate The data rate (eg SDR SDRAM data rate) round + noon) is output to the external terminal 2 1 7 . Finally, in the second test mode or the second sub-mode, the data on the first data lines RDIO 1 93587.doc -18-1250531 and RDI〇_3 are simultaneously copied to the odd and even second data lines. On DO-0-DO-3, the data is provided to the output buffer pass at a second rate lower than the first data rate. By &amp;, in the test mode, the output window of the output buffer 313b is enlarged compared to the data window of the data read from the memory array 211, and is doubled in some embodiments. As a result, the UDrsdram test equipment and/or multiple SDR test equipment can be tested for SDRAM due to the expansion of the data window. Still referring to FIG. 3, the -mode register set (_) 315 can be configured to generate the first and second test mode signals Xiang, ΤΜ2 in response to the plurality of command signals to place the multiplexer 313a in the test operation. In the first and second submodes of the mode. The command signals may include a column of address control signals (RASB), a row of address strobe signals (CASB), a write-once signal (web), and a number of address signals. Since the MRS 3 15 is provided in the integrated circuit memory device 300 of some embodiments of the present invention, the test can be performed after the package. 4 is a schematic illustration of a multiplexer 313 (e.g., multiplexer 313a shown in FIG. 3) that may be provided in accordance with some embodiments of the present invention. As shown in FIG. 4, the multiplexer 313a includes a first switch 42A configured to set a corresponding even first data line RI)I 〇 〇, Rm 在 in the first sub mode (TM1). One 2 is coupled to the corresponding even-numbered two data lines D〇_0, D0-2; a second switch 430 is configured to place a corresponding odd first data line RDI0 in the second sub-mode (TM2)— 1. RDI0-3 is coupled to a corresponding odd second data line DO-1, DO-3; and a equalization circuit 440 is constructed for use in the first and 93587.doc -19-1250531 second submode A corresponding odd second data line d〇j, d〇” is coupled to a corresponding adjacent even second data line D〇—〇, D〇—2. Correspondingly, as shown in FIG. 4, the first read data RDI〇_G and RDI0_2 generated by the memory cell array 211 on the first data line 212 are respectively converted into the second data according to the first test mode signal (tm i). The second read data on the line 214 is d〇_〇, D〇−2°, and the equalization circuit 44G is activated to enable each-to-even/odd second read data (DO-0/1, DO_2/3). Both remain at the same level, while the second switch 43A for receiving the second test mode signal (TM2) is deactivated. The odd-numbered read data RDIQ_丨 and RDIq-3 can also be processed in the same way, so that the effective data window of the output data DOUT can be expanded to twice the normal mode. In the normal mode, the equalization circuit 44 is deactivated. 5 is a timing diagram corresponding to a normal operation mode and a test operation mode of reading data from a self-memory material according to some embodiments of the present invention (such as the embodiment described above with reference to FIGS. 3 and 4). . As shown in Fig. 5, in the normal mode, the read data DO_D3 is transmitted to the external terminal _〇υτ in response to the rising edge L of the falling edge of a clock signal (clk). In addition, as shown in FIG. 5, in the test mode towel, the even and odd data (D〇_0/2, DO_丨/3) are respectively transmitted in the data window W2 which is expanded by two in response to the rising edge of an external clock signal. To the external terminal D〇UT. Figure 6 is a more detailed timing diagram illustrating the operation that can be performed by an output circuit in accordance with an embodiment of the present invention (e.g., the embodiment described in connection with Figures 3-5). As shown in Figure 6, a first internal clock The LDQ-F is generated in response to the rising edge of the clock signal CLK. One 筮^^ ° The internal clock signal CDQ~8 is generated by the falling edge of the clock CLK. In the positive hanging type, the round out 93587.doc -20· 1250531 The data DO-D3 should be transmitted to the external terminal D〇UT according to the CDQ-F and CDQ-S signals corresponding to the rising and falling edges of the clock signal. In test mode 1, since the even and odd data remain at the same level, the output data D0 and D2 are transmitted to the external terminal d in an expanded data window. In test mode 2, the output is also (10) and Similar work is provided. Those skilled in the art should also understand that the DOUT output of the test mode and the test mode 通常 usually occurs when the phase is found in mutually offset clock cycles, rather than as shown in Figure 5 and Figure 6. In the same or overlapping clock cycles. The clock cycles that are not overlapped in FIG. 5 and FIG. 6 are in order to compare the normal mode with the test mode and not to extend the width of the A timing chart. 4 Release the 龙(()) Memory: The method. In general, in such embodiments, the memory cell array can: - have a clock signal with rising and falling edges. In normal, the output circuit can be generated by the library in the form of an internal clock signal and the second internal time n8, the fourth internal clock signal is generated in response to the clock edge. - An apostrophe such as &amp; + ° A Jl rising edge is generated in response to a falling clock signal. However, in the test mode of operation, the input should be the first internal clock signal or the second internal, only the mouth, in the test mode of operation, the data bit can be output lower than the data rate. . The second rate of the arrest rate, more specifically, the same as the seven, see Figure 7, in these embodiments, including more than one m of the multiplexer 73 city: ^ ^ ^ ^ mode, such as (For example) multiplexer 7 - three-point operation: a corresponding first - data line corresponding second data I: will be 93587.doc 1250531 and in the first D of the test mode of operation, such as more m3a (9) _= (also referred to as test mode in Figure 7 - data line 212 • combined to one phase; ... shown, will be - corresponding first model 々 > Chu _ μ 0 brother a shell line. Finally, in the test The operator cries, (also referred to as test mode 2 in Figure 7), as shown in the lower part of the multi-°° a--, the corresponding odd data line 212 is coupled and coupled to 5_ and even One (four) selects the even and odd second data lines 214. Still shows the succession of Figure 7, the output circuit also sighs an output buffer. In the forward mode of operation, the output buffer 7 an internal clock signal CDQ F , potted plastic library in 昧妒 ^ * Yingdi, and - brother two internal clock signal CDq-s, which responded to the decline of the edge. In the test of the talents of the tester L in the first mode of operation and Ϊ"; \ Specifically, in the test and the first sub-mode, the output buffer 733b only responds to the two internal clock signals or the: internal clock signal. In some implementations, as shown in FIG. 7, in the test mode of operation, The output buffer disables the second internal clock signal cDq_s in the first and second submodes of the test mode of operation only in response to the » brother: the clock signal CDQ_p. Accordingly, Figure 7 illustrates how the mode is in test mode. The second clock signal C^Q_S is deactivated, and the effective data window of the output data d〇ut of the output buffer (10) is compared with the effective data window of the read data 〇_〇RDIO-3 outputted by the § memory cell array 211 The window is expanded by a predetermined value, for example, doubling. Thereby, the output buffer is not manipulated by the second internal clock signal cdqs, so that the read data Dq_g_Dq-3 can be output to the external terminal 217 with the expanded active data window. Figure 8 is a schematic illustration of a multiplexer embodiment 93587.doc -22-1250531 (e.g., multiplexer 733a of Figure 7) in accordance with the embodiments of the present invention. As shown in Figure 8, the multiplexer Unit - circle 20, which is constructed for use in i-normal mode Coupling a corresponding first data line Rdi〇-3 to a corresponding second data line D〇_〇_d〇-3 in the first sub-unit (TM1); a second switch 83〇, the structure thereof For combining the corresponding odd and even first resources (four) in the second sub-mode (top 2) to the corresponding even and odd second data lines. Therefore, the first data line 212 is generated by the memory cell array. The first read data (RDIO_〇_RDI〇_3) is correspondingly transmitted to the second data line 2 i 4 (DOJ)_D〇_3 in response to the first test mode signal. Similarly, each first read data (RDI〇_〇-RDI〇_3) generated by the memory cell 2Π on the first data line 2]2 is correspondingly transmitted to the adjacent side according to the second test mode signal (tm2). The second data line 2l4 (D〇i/D〇〇, D〇3/DO-2). Figure 9 is a schematic illustration of an output buffer (e.g., output buffer 733b shown in Figure 7) in accordance with the embodiments of the present invention. More specifically, as shown in FIG. 9, the output buffer 733b includes: a corresponding plurality of registers 910a-910d' wherein the corresponding register is configured to store a read from a corresponding first data line 212. Take the data; associated with the corresponding one-time temporary crying (four) a / ring, 910c / 910d - latch 9 heart, fiber, a corresponding latch 920a · · constructed to respond to the first - internal clock signal γ 2, called to latch the data from the - 1st adjacent register and in response to the second internal clock signal S CLK, 2nd s clk) to latch the data from a second her neighbor register; - constitute - multiplex The parallel-to-serial converter of the 930's parallel-serial converter can be plasticized in the normal operation mode. 93587.doc -23- 1250531 in the (four) registers 92〇a, 920b, the first and second internal clocks The signal, while during the 4th first and second operational submodes, the multiplexer only responds to one of the first and second internal clock signals. / More specifically t, the second read data on the second read data line 214, DO_0-DO-3, is transmitted to the scratchpad 91〇a-910d in response to the internal clock signal line. In the normal operation mode, the data D〇-〇&D〇-i stored in the upper part of the memory unit 91〇a, 910b in Fig. 9 corresponds to the first rising edge and the younger: the falling edge clock (1st F CLK^lSt s CLK) is sequentially transmitted to the first-latch If 92Ga, and each of the data stored in the bottom two registers 91 (^, 9(10), DO-2 and 00-3, is in response to the second The rising edge and the second falling edge clocks WF CLK and W s CLK) are sequentially transmitted to the second latch 920b. Therefore, in the normal operation mode, each data 输出 3 is output to the external terminal 217 in response to the first and second internal clock signals (cdq_f1, CDQ-S) sequentially activated. However, in the test mode of operation, even the data DO_0 and DO-1 stored in the upper two registers 91〇a, 91卟 in FIG. 9 correspond to the first rising edge and the first falling edge clock 〇st f And the occurrence of lstS CLK) is sequentially transmitted to the first latch 92Qa, and only the data DO_〇 is transmitted to the external terminal 217 at a second data rate lower than the first data rate, which is only the first The internal clock cdq-f starts. In addition, even if each of the data stored in the bottom two registers 91〇c, 91〇d DO-2 and DQ-3 also corresponds to: rising edge and second falling edge clock (π CLK and 2nd S CLK) The occurrence is sequentially transmitted to the second latch, and only the tribute DO-2 is transmitted to the external terminal 217 at a second data rate lower than the first data rate in the normal mode. In other words, the valid data window is expanded by inputting the next rising edge clock (CDQ-!^) for the data d〇—2 93587.doc -24-1250531 and outputting the lean material DO_υ ^4 ='. In the first: test mode (), per-to-read data deletion, 3 is also converted into the second read data 〇〇_〇'2. Then, the 'data (10)-^ is transmitted to the foreigner, 'Wuzhi 21 7'. Therefore, in the two test modes (TM1, TM2), all data RDIO_〇_RDI〇-3 can be output to the outside. Figure 9 also shows a logic circuit 940 which can be used as a clock CDQ_S. During the test mode, the falling edge = system-time phase, the money release is in normal operation _ and during the test = period (for example) the embodiment shown in Figures 7-9 is used to generate the output data. If the response may be in response to the clock period 'rounding circuit 733 clock signal CDQF and two: = rising edge, the first - internal &amp; amp &amp; - θ should be generated by the falling edge of the % buckle signal CLK The second internal clock is used as a data bit - ηη, and the complex data, such as R a _D3, is serially outputted to an external terminal at the first data rate. During the test mode period, D θ 1〇 is shown in the lower part, and the output circuit 733 is only due to the shore clock signal or the second internal clock “= internal internal-internal clock signal CDQf:=t: Demonstrated as due to the test mode only period, the even ~ / lower 〇 points are shown in the data on the first - data speed Γ / line D0- ° and D 〇 2 low:: However in test mode 2 It is also possible to execute the class = even test line. Therefore, the operation during the recipe (7) shown in the formula 1 can be the same as in the test simulation, except that the test pattern 2 is used to rotate the data D1. 93587.doc -25 - 1250531 and D3. * and to Figure 13 show an integrated circuit memory device and method of operation according to still further embodiments of the present invention. As will be explained below, in these embodiments, the output circuit is The normal operation mode may be responsive to: a first internal clock signal generated in response to a rising edge of the clock signal; and a second internal clock signal generated in response to a falling edge of the clock signal. Wu Shizhong, the output circuit can alternately respond to the first internal clock And the clock signal of the part. More specifically, referring to FIG. 11, the memory cell array 2 I 1 is configured to output a plurality of data by using the first data to the data line 212 of the field 奵 k of the library The round-out circuit includes an output buffer = the round-out buffer 1143 is configured to output the data string to a further specific one and the right winter map, and the memory cell array 211 can be properly and more heavily than the Yi 4 The edge of the edge buffer. The output buffer U43 is in the middle of the "internal clock signal CDQ F, the soybean meal should be generated on the rising edge of the clock signal." and the number CDQ-S, The bean 燮廍 一 一 内 内 内 内 内 内 内 ; ; : : : : : : : : : : : : : In the fruit-measurement (10)1), the output buffer &quot;43 is only because of the first internal clock signal of the shore or the second inner ohm only responds to the first-internal clock (four) cd〇f: In the mode (such as mi / Q - F. In the test mode of the test mode shown in the test mode 2), the round out m η only due to the first - internal clock) #出, ...1143 - in the figure u&quot ;f... The other part of the clock signal is only for the second internal clock neDQ s. Therefore, in the figure, the test mode is Tiger Q~S. In the 犋 formula, each 93587.doc -26- 1250531 = Q_F and CDQ: Sk number can be alternately deactivated to expand the output data of the output buffer I ΐ 43. In some embodiments, the first internal clock pass ^ ^ ^ 1 port Q CDQ_F is deactivated in the second test mode and the second internal clock signal CDQ S is deactivated in the first test mode. By + _ ^ ^ Thus, the expanded data can be outputted by an expanded view ® . Figure 12 is a schematic diagram of the present invention; 丨 + one of the two known output buffers (e.g., the output buffer 1143 shown in Figure 11) holds the FI f gate ghost map. As shown in FIG. 12, the output buffer 1 M3 includes a plurality of registers 121 corresponding to the center (2) (10), wherein a corresponding register is configured for storing from a Japanese calendar, from the first, the 丨... The reading data of the first data line corresponding to the wood object '· and a latch 122 〇 a, 〖 with a corresponding pair of her neighbor registers (2) 〇a/121〇b, 12 Gu 21〇d Bezier mouth 1220b, one of the latches 122〇a is configured to be latched from a first Tianbi neighbor with a response to the first-rising edge and the first falling edge clock signal (ist f clk &amp; 1 S CLK) The data of the register i2n m〇b, the latch (10) is also configured to latch from a second field adjacent to the second rising edge and the second falling edge clock signal (2nd F CLK and 2nd S CLK) The data of the devices 121〇c, i2l〇d; a parallel-to-serial converter 123〇, which can respond to the latches 122〇a, i22〇b, and the first and second internal clock signals CDq in the normal operation mode -f, CDQ-S, and only one of the first and second internal clock signals during the first test operation, for example, only in response to CDQ-F, During the second operating sub-mode only the test result and the other of the first internal clock signal should be, for example, only in response to CDq-s. Figure 12 also shows logic circuits 124A and 125A that can be configured to disable the first clock signal CDq-f in the second test mode, respectively, and disable the second clock signal CDQ_S in the first test shank. . 93587.doc -27- 1250531 A timing diagram of an operation performed by, for example, the output circuits shown in Figs. 11 and 12 in accordance with the present embodiment. As shown in the upper third of Figure 13, in the normal mode, the output circuit can respond to the first and second internal clock signals CDQ p, CD 〇 S, - i flute - DQ-S -. The internal clock signal Q_(or CDQ_F') may be responsive to the rising edge of the clock signal CLK, while the second internal day (4) number CDQ_S (or (3) Q_s,) may be responsive to the clock signal ,edge. In the first test mode, as shown in the middle third of FIG. 13, the second internal clock signal CDQ_S is disabled, and the output circuit is only in response to the first internal clock signal CDQ - in the second test mode. As shown in the bottom third of Figure ^, the turn-out circuit only responds to the second internal clock signal (DQ-S'). Therefore, as illustrated in FIG. 12, the data stored in the scratchpad circuits 1210a, 12i〇c are responsive to the first and second rising edge clock signals (7)F CLK, WF CLK). It is transferred to latch circuits 1220a and 1220b. Thereafter, until the next internal clock signal (cdqj,) is outputted next time, the next data output is outputted until the next D〇2 is outputted, thereby expanding the effective data window. In test mode 2, the odd data stored in the register circuits 1210b, 1210d are transmitted to the latching crying circuits 1220a and 1220b in response to the first and second falling edge clock signals (1st S CLK, 2nd S CLK). . Thereafter, until the data do-3 is outputted after the second internal clock signal (CDQ-S') is next rising, the data DO-1' is always outputted, thereby expanding the effective data window of the odd data. 14-16 illustrate further integrated circuit placement and operation methods in accordance with further embodiments of the present invention. In general, in these embodiments, the output circuit can respond to a first internal clock signal in a normal mode of operation and - a second 93587.doc -28-1250531 internal clock signal, wherein the first internal clock number rises The result is that the _ ', θ %, is generated by the internal clock signal of the clock signal. However, the stomach should be in the clock signal and in the test mode 4, the one should be based on the first internal # output circuit, the minute signal generated by the ^^ number and one according to the grandfather - the brother of Jiashibei Internally, the internal clock signal generated by the clock is generated by the clock. In a certain sinus, the sinusoidal signal of the sinus, and the frequency of the crossover - the half of the frequency of the internal clock signal and the frequency of the second internal clock signal. ‘,,,. More specifically, as shown in Figure 14, you can use a bed w, ~ to show the example, to make the 'first in first out (10) 〇) register 146 储存 to store from, -2 12 Shell material. In the normal mode one, "铪" μ 勒, after the 1463 can be made because of the internal clock of the younger brother and the second brother w ‘ 5 tiger. However, in the test mode TM, the turn-up buffer is in response to the crossover look-up, and the second internal clock signal. Therefore, in the test mode, the Japanese vehicle can be buckled into the cutting frequency, for example, the clock frequency is equalized. Therefore, in the test mode, the output data d〇ut- of the output buffer 1463 can be enlarged by performing a frequency division on each cdqfacdqs letter. In other words, each internal = clock signal CDQWCDQ_S can be divided into a lower frequency in response to the test mode signal TM. Test Mode ^ Tiger can be generated by receiving a plurality of command signals (RASB, CASB, pins) and a pattern register set (deletion) of a number of address signals. Therefore, during the test mode, the data window of the output data can be expanded. The W and 15B are block diagrams of the divider circuit 93587.doc -29-1250531 for generating a frequency-divided internal clock based on the internal clock in accordance with the embodiments of the present invention. Specifically, as shown in FIG. 15A, a first frequency dividing circuit, ρ 冓 is used to generate a first inner clock signal that is frequency-divided according to the first internal clock signal and a test mode selection signal TM. 15B does not, a second frequency dividing circuit 1500b is configured to generate a frequency-divided second internal clock signal CDQ_S' due to the 第 第 知 唬 及 CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD In the embodiment, the first frequency dividing circuit 150A includes a first frequency divider l5i, which should be in the rising edge of the clock signal and the test mode. signal. In a (four) embodiment, the second frequency dividing circuit 15_ includes: a second frequency divider measuring responsive to a falling edge of the clock signal and a test mode signal; and a delay element 1530 responsive to Second divider (10). In some embodiments, the delay element 153G is used to increase the interval between the first and second divided clocks to enable the output of the external terminal 217 in an expanded effective data window. The output of the office. Figure 16 is a diagram according to Figure 14. See the figure ", - and: = times 丄〇 枓 枓 RDIO - 0 - RDIO 3 first i:: r 〇 register 1460" and then transmit half of the internal clock signal: (4) 146V thereafter: in normal mode In, as shown in Figure 16, CDQ S) to I - in response to the younger brother: the internal clock signal ((3) ^ and ° output output (four) Jay 1463 all the information. And in the test IL diagram half of the 'output buffer (4) 3 The output data D(10) is output according to the first- and second (four) clocks of the frequency division, so that the valid data window can be expanded. Since 1 = 93587.doc -30- 1250531, the output buffer can be halved in the embodiment t. The speed operates, and the cell array operates at full speed as in the normal mode. ~ Figure η - (d) Operation of various embodiments of the present invention - (d) Operational flowchart of a circuit recording device, the integrated circuit memory device has - Constructing a cell array for outputting a plurality of data bits in parallel at a first data rate. These operations can be performed using the embodiments shown in the above 2_16. As shown in Figure 17, when at block 171, select positive

常模式時’隨後在塊1720中以第一資料速率將複數個資料 位元自記憶胞陣列串列輸出至一外部終端。在塊1730中, 當選擇-測試模式時,隨後在塊⑽中以—低於第_資料 速率之第二資料速率將複數個資料位元自記憶胞陣列輪出 至外部終端。該等作業可根據上文所述的任一本發明實施 例,使用圖2、3-6、7_1〇、U-13A/或14_16所示實施例來 執行。 一在附圖及说明書中,已揭示了本發明之若干實施例,儘 吕使用了具體術語,然該等術語僅具有—般性及描述性意 義,並非用於限定之目的,本發明之範疇闡述於下述申請 專利範圍中。 【圖式簡單說明】 圖1係一可由習知之雙倍資料速率及單倍資料速率記憶 體I置執行之作業之時序圖; 圖2係一根據本發明若干實施例之積體電路記憶體裂置 及刼作方法之方塊圖; 圖3係一根據本發明其他實施例之積體電路記憶體裝置 93587.doc 31 1250531 及操作方法之方塊圖; 圖4係根據本發明之其他實施例,可用於圖3所示實施 例中的多工器之示意圖; 、 圖5及圖6係根據本發明之各實施例,可在圖3及圖4所示 貫施例中執行之作業之時序圖; 圖7係一根據本發明其他實施例之積體電路記憶體裝置 及操作方法之方塊圖; 圖8係一根據本發明之其他實施例,可用於圖7所示實施 例中的多工器之示意圖; 圖9係一根據本發明之其他實施例,可用於圖7所示實施 例中的輸出緩衝器之示意圖; 圖1〇係一根據本發明之其他實施例,可由圖7_9所示實施 例執行之作業之時序圖; 圖11係一根據本發明之又一些實施例之積體電路記憶體 裴置及操作方法之方塊圖; 圖丨2係一根據本發明之其他實施例,可用於圖u所示實 她例中的輸出緩衝器之示意圖; 圖1 3係一根據本發明之其他實施例,可用於圖11及圖12 所示實施例中的時序圖; 圖1 4係根據本發明之再一些實施例之積體電路裝置及 操作方法之方塊圖; 圖15A及圖15B係根據本發明之其他實施例,可用於圖14 所示實施例中的分配器電路之方塊圖; 圖16係一根據本發明之又一些實施例,可由圖“、圖15八 93587.doc -32- 1250531 及圖1 5B所示實施例執行之作業之時序圖; 圖1 7係一可根據本發明之各實施例執行之作業之流程 【主要元件符號說明】 CLK 時鐘信號 R 讀取命令 W 寫入命令 DQS 資料選通信號 Q〇 資料 Q1 資料 Q2 資料 Q3 資料 D0 資料 D1 資料 D2 資料 D3 資料 200 積體電路記憶體裝置 211 記憶胞陣列 212 第一資料線 213 輸出電路 214 第二資料線 217 外部終端 DR1 第一資料速率 DR2 第二資料速率In the normal mode, then a plurality of data bits are serially output from the memory cell array to an external terminal at a first data rate in block 1720. In block 1730, when the -test mode is selected, a plurality of data bits are then rotated out of the memory array to the external terminal in block (10) at a second data rate lower than the first data rate. Such operations may be performed in accordance with any of the embodiments of the invention described above, using the embodiments illustrated in Figures 2, 3-6, 7_1, U-13A, or 14-16. In the drawings and the description, several embodiments of the present invention have been disclosed, and the specific terms are used, but the terms are only used in a generic and descriptive sense, and are not intended to be limiting. The scope is set forth in the scope of the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a timing diagram of an operation performed by a conventional double data rate and a single data rate memory I; FIG. 2 is an integrated circuit memory crack according to several embodiments of the present invention; FIG. 3 is a block diagram of an integrated circuit memory device 93587.doc 31 1250531 and an operation method according to other embodiments of the present invention; FIG. 4 is a view of another embodiment according to the present invention. The schematic diagram of the multiplexer in the embodiment shown in FIG. 3; FIG. 5 and FIG. 6 are timing diagrams of operations that can be performed in the embodiments shown in FIGS. 3 and 4 according to various embodiments of the present invention; FIG. 7 is a block diagram of an integrated circuit memory device and a method of operation according to other embodiments of the present invention; FIG. 8 is a multiplexer according to another embodiment of the present invention, which can be used in the multiplexer of the embodiment shown in FIG. FIG. 9 is a schematic diagram of an output buffer that can be used in the embodiment shown in FIG. 7 according to other embodiments of the present invention; FIG. 1 is a second embodiment of the present invention, and may be embodied by the embodiment shown in FIG. When the homework is performed Figure 11 is a block diagram of an integrated circuit memory device and method of operation in accordance with still further embodiments of the present invention; Figure 2 is a block diagram of another embodiment of the present invention. Schematic diagram of an output buffer in the example; FIG. 1 is a timing diagram in the embodiment shown in FIGS. 11 and 12 according to other embodiments of the present invention; FIG. 14 is a further embodiment according to the present invention. FIG. 15A and FIG. 15B are block diagrams of a distributor circuit in the embodiment shown in FIG. 14 according to other embodiments of the present invention; FIG. 16 is a diagram of a distributor circuit according to the present invention; Still further embodiments are illustrated by the timing diagrams of the operations performed by the embodiments illustrated in Figures 15 and 93587.doc - 32-1250531 and FIG. 15B; FIG. 1 is a flowchart that can be performed in accordance with various embodiments of the present invention. Operation flow [Main component symbol description] CLK clock signal R Read command W Write command DQS Data strobe signal Q〇 Data Q1 Data Q2 Data Q3 Data D0 Data D1 Data D2 Data D3 Data 200 Integrated circuit memory Device 211 Memory Cell Array 212 First Data Line 213 Output Circuit 214 Second Data Line 217 External Terminal DR1 First Data Rate DR2 Second Data Rate

93587.doc -33 - 1250531 300 積體電路記憶體裝置 313 輸出電路 313a 多工器 313b 輸出緩衝器 315 模式暫存器集 RDI〇_0 第一資料線 RDI〇_1 第一資料線 RDIO_2 第一資料線 RDIO_3 第一資料線 DO_0 第二資料線 DO_l 第二資料線 DO_2 第二資料線 DO__3 第二資料線 RASB 列位址控制信號 CASB 行位址選通信號 WEB 允寫信號 CDQ_F 第一内部時鐘信號 CDQ_S 第二内部時鐘信號 TM1 第一測試模式信號 TM2 第二測試模式信號 420 第一開關 430 第二開關 440 等化電路 W1 有效貢料視窗93587.doc -33 - 1250531 300 Integrated circuit memory device 313 Output circuit 313a Multiplexer 313b Output buffer 315 Mode register set RDI〇_0 First data line RDI〇_1 First data line RDIO_2 First Data line RDIO_3 First data line DO_0 Second data line DO_l Second data line DO_2 Second data line DO__3 Second data line RASB column Address control signal CASB Line address strobe signal WEB Write signal CDQ_F First internal clock Signal CDQ_S Second internal clock signal TM1 First test mode signal TM2 Second test mode signal 420 First switch 430 Second switch 440 Equalization circuit W1 Effective tribute window

93587.doc -34- 1250531 W2 擴大的資料視窗 DOUT 外部終端 733 輸出電路 733a 多工器 733b 輸出緩衝器 820 第一開關 830 第二開關 910a 暫存器 910b 暫存器 910c 暫存器 910d 暫存器 920a 鎖存器 920b 鎖存器 930 多工器 940 邏輯電路 CDQ—S, 第二内部時鐘信號 1st F CLK 第一上升緣時鐘 1st S CLK 第一下降緣時鐘 2nd F CLK 第二上升緣時鐘 2nd S CLK 第二下降緣時鐘 1143 輸出緩衝器 CDQ—F 第一内部時鐘信號 1210a 暫存器 1210b 暫存器 93587.doc -35- 1250531 1210c 暫存器 1210d 暫存器 1220a 鎖存器 1220b 鎖存器 1230 平行轉串列轉換器 1240 邏輯電路 1250 邏輯電路 TM 測試模式 1460 先進先出暫存器 1463 輸出緩衝器 1500a 第一分頻電路 1510 第一分頻器 1500b 第二分頻電路 1520 第二分頻器 1530 延遲元件 93587.doc 36-93587.doc -34- 1250531 W2 expanded data window DOUT external terminal 733 output circuit 733a multiplexer 733b output buffer 820 first switch 830 second switch 910a register 910b register 910c register 910d register 920a latch 920b latch 930 multiplexer 940 logic circuit CDQ_S, second internal clock signal 1st F CLK first rising edge clock 1st S CLK first falling edge clock 2nd F CLK second rising edge clock 2nd S CLK second falling edge clock 1143 output buffer CDQ_F first internal clock signal 1210a register 1210b register 93587.doc -35- 1250531 1210c register 1210d register 1220a latch 1220b latch 1230 Parallel to serial converter 1240 logic circuit 1250 logic circuit TM test mode 1460 first in first out register 1463 output buffer 1500a first frequency dividing circuit 1510 first frequency divider 1500b second frequency dividing circuit 1520 second frequency divider 1530 delay element 93587.doc 36-

Claims (1)

1250531 十、申請專利範圍: 1. 2. 一種積體電路裝置,其包括·· 一記憶胞陣列,甘g 4 m 出複數個以一第一資料速率平行輸 出複數個貝料位元;及 *輸出電路’其構造用於在-正常運作模式中以該第 貝料速率將該等複數個資料位元串列輸出至一外部炊 在:測試運作模式中以-低於該第-資料速率: 第貝料速率將該等複數個資料位元串列輸出至該外部 終端。 1 如請求項1之積體電路裝置,其中該記憶胞陣列可因應— 升緣及下降緣之時鐘信號,其中該第-資料速率 係根據該時鐘信號之上升緣及下降緣二者産生,且其中 該第二資料速率僅根據該時鐘信號之上升緣或下降緣之 一而産生。 ―月长員1之積體電路裝置,其中該記憶胞陣列構造用於 經由對應的複數條第—資料線㈣第-資料速率平行輸 X等複數個貝料位兀,且其中該輸出電路構造用於: 在:正常運作模式中使用對應的複數條第二資料線以該 第-資料速率將該等複數個資料位元串列輸出至該外部 終而在該測試運作模式中則使用該對應的複數條第 」料線以低於該第—資料速率之該第二資料速率將該 等複數個貧料位元串列輸出至該外部終端。 (如請求項!之積體電路裝置,其中該輸出電路構造用於: 在X叫4運作換式中’複製由該記憶胞陣列平行輸出的 93587.doc 1250531 專複數個資料位元的一第_ 資 、, ,丨▼ 口「刀,Μ Ί文Μ 於該第一 f速率之該n料速率將該等複數個資料位元之第 、^刀串列輸出至該外部終端,並複製由該記憶胞陣列 千仃輸出的該等複數個資料位元的一第二部分,以便以 5. 6. :於該Ί料速率之該第二資料速率將該等複數個資 位几之第二部分串列輸出至該外部終端。 2求項1之積體電路裝置’其中該記憶胞陣列可因應一 A有上升緣及下降緣之時鐘信 豆 式中,該輸出電路可因库·二…、〃书運作模 了因應·一弟一内部時鐘信號,其響 應於该時鐘信號之 沪,農鄕* 、産生,及一第二内部時鐘信 作掇彳+ &quot; 条緣而產生,而在該測試運 乍核式中’該輸出電 第二内部時鐘信號之—部時鐘信號或該 : = :1之積體電路裝置,其中該記憶胞陣列可因岸-具有上升緣及下降緣之時 口應 式中,該钤屮Φ °〜八中在该正常運作模 庠於卞/ ’可因應:H部時鐘信號,a塑 應於邊時鐘信號之上升緣而産 …、曰 號,其響應於料鐘信號下降緣而产内叫鐘信 作模式中,兮於屮雷々降緣產生,而在該測試運 該第二内部時鐘信號。 一-信號及 如睛求項1之積體電 甘士冲 具有上升緣及下降緣二 憶胞陣列可因應- 式中,該輪出電路可因:“°J’二中在該正常運作模 應於該時鐘信號之上升二::::=,其響 叹弟一内部時鐘信 93587.doc 1250531 乃)u 其響應於該時鐘传妹πτ政k _ 作模式中,評出= ’而在該測試運 號產生的. 則因應一根據該第-内部時鐘信 , ',、工刀頻之弟一内部時鐘信號及一根據該第一内 8. L唬產生的經分頻之第二内部時鐘信號。 如知求項1之積體電路裝置: 料:::,憶胞陣列構造用於經由對應的複數條第-資 科=该弟-資料速率平行輸出該等複數 ^ 其中該輸出電路包括·一,口口 兀,及 第一資料t ^ _ 夕工态,其構造用於將該等 的續取資料多工複用 眘祖妗L /锻用至對應的歿數條第二 9. 乜V、,及一輸出緩衝器’其構造用於將該等第-資 料線上的資料串列輸出至該外部終端。 專弟-貝 如凊求項8之積體電路裝置: 其中,多二器構造用於:在該正常運作模式中’將一 相應的弟一資料人 線耦5至一相應的第二資料線,而在該 測試運作模式的一第—早捃斗士 ^ ^ 子杈式中,將相應的偶數第一 料線耗合至相應的偶數第二資料線,及在該測試運作模 式的一f二:模式中,將相應的奇數第-資料線搞合至 相應的可數第二資料線。 10· —種積體電路裝置,其包含·· ,-記憶㈣列’其構造用於經由對應的複數個第一資 料線以-第一貢料速率平行輸出複數個資料位元. 一輸出電路,其構造用於在-正常運作模式中以該第 一貧枓速率將該等複數個資料位元串列輸出至—外料 端,並在—測試運作模式中以一低於該第-資料速率之 93587.doc 1250531 第二資料速率將該等複數個資料位元串列輸出至該外部 :端:該輸出電路包含:一多工器,其構造用於將該等 第-資料線上的讀取資料多工複用至對應的複數條第二 育料線上;及一輸出緩衝器,其構造用於將該等第二資 料線上的資料串列輸出至該外部終端; 一杈式暫存器集,其可因應複數個命令信號,並構造 用於產生第一及第二測試模式信號,以將該多工器分別 置於該測試運作模式之第一及第二子模式中; 其中該多工器構造用於:在該正常運作模式中,將一 相應的第一貧料線耦合至一相應的第二資料線;在該測 。式運作模式之第一子模式中,將相應的偶數第一資料線 耦合至相應的偶數第二資料線;及在該測試運作模式之 第二子模式中,將相應的奇數第一資料線耦合至相應的 奇數第二資料線,並包括: 一第一開關,其構造用於在該第一子模式中將一相 心勺偶數苐一資料線輕合至一相應的偶數第二資料線; 弟一開關’其構造用於在該第二子模式中將一相 應的奇數第一資料線耦合至一相應的奇數第二資料線;及 一等化電路,其構造用於在該第一及第二子模式中 將相應的奇數第二資料線耦合至一相應的毗鄰的偶數 弟一資料線。 11·如請求項9之積體電路裝置,其進一步包括: 一模式暫存器集,該模式暫存器集可因應複數個命令 信號’並構造用於產生第一及第二測試模式信號,以將 93587.doc 1250531 子模式 =工&amp;分別置爲該測試運作模式之第一及第 i2· —種積體電路裝置,其包含·· 一記憶胞陣列,其構 #.宜 於!由對應的複數個第一資 科線以一弟一資料速率 ^貝 手十仃輸出歿數個資料位元; 一輸出%路,其構造用於在一正 一資料速率㈣等複數個資料位元該第 端,並在-測試運作模式中:=輸出至-外部終 篦-次祖、n 低於该弟一貧料速率之 ❸山#山 灵數個貝科位兀串列輸出至該外部 終、,该輸出電路包含··一 筐一:欠抓紿 夕工态,其構造用於將該等 μ . 、蚪夕工後用至對應的複數條第二 負料線上,及—輪屮结施:j. 、、、11裔,其構造用於將該等第二資 料線上的資料串列輸出至該外部終端; 、 一模式暫存器集,i可田處〜〜y人 - 口應稷數個命令信號,並構造 用於產生弟一及第二測試模式信號’以將該多工器分別 置於該測試運作模式之第—及第二子模式中; 其中該多工器構造用於:在該正常運作模式中,將一 相應的第一資料線輕合至—相應的第二資料線;在該測 試運作模式之第-子模式中,將—相應的第_資料㈣ 合至一相應的第二資料線;及在該測試運作模式之第二 子模式中,將相應的奇數及偶數第一資料線交又耦合至 相應的偶數及奇數第二資料線。 13·如請求項12之積體電路裝置,其中該記憶胞陣列可因應 -具有上升緣及下降緣之時鐘信號,其中在該正常運作 93587.doc 1250531 模式中,該輸出緩衝器可因應:—第—内部時鐘信號, 其響應於該時鐘信號之上升緣而産生;及一第二内部時 鐘信號,其響應於該時鐘信號之下降緣而産生,而在該 測試運作模式之第—及第二子模式中,該輸出電路僅因 應該第一内部時鐘信號及該第二内部時鐘信號之一。 14.如請求項12之積體電路裝置,其中該多工器包°括: J第一開關,其構造用於在該第一子模式中將一相應 的第一貢料線耦合至一相應的第二資料線;及 * 一第二開關,其構造用於在該第二子模式中將相應的 奇數及偶數第一資料線交又柄合至相應的偶婁文及奇數第 二資料線。 15·如請求項π之積體電路裝置,其中該輸出緩衝器包括·· 對應的複數個暫存器,其中一相應的暫存器構造用於 儲存來自一相應的第一資料線之讀取資料; 一與相應的一對毗鄰暫存器相關聯的鎖存器,其中一 相應的鎖存器構造用於因應一第一時鐘信號來鎖存來自 第毗郇暫存器之資料並因應一第二時鐘信號來鎖存 來自第二社鄰暫存器之資料;及 一平行轉串列轉換器,其在該正常運作模式中可因應 该等鎖存器、該第一及第二内部時鐘信號,而在該第一 及第二運作子模式期間僅因應該第一及第二内部時鐘信 號之一。 1 6 ·如明求項1之積體電路裝置: 其中該記憶胞陣列構造用於經由對應的複數條第一資 93587.doc 1250531 料線以該第一資料速率平行輸出該等複數個資料位元;及 其中該輸出電路包含一輸出緩衝器,該輸出緩衝器構 造用於輸出資料至該外部終端串列。 17. 如請求項16之積體電路裝置,其中該記憶胞陣列可因應 一具有上升緣及下降緣之時鐘信號,其中在該正常運作 模式中,該輸出緩衝器可因應:一第一内部時鐘信號, 其響應於該時鐘信號之上升緣而産生;及一第二内部時 鐘信號,其響應於該時鐘信號之下降緣而産生,而在該 測試運作模式的一第一子模式中,該輸出電路僅因應該 第一内部時鐘信號及該第二内部時鐘信號之一,在該測 試運作模式的一第二子模式中,該輸出電路僅因應該第 一内部時鐘信號及該第二内部時鐘信號中的另一者。 18. 如請求項17之積體電路裝置,其中該輸出缓衝器包括: 對應的複數個暫存器,其中一相應的暫存器構造用於 儲存來自一相應的第一資料線之讀取資料; 一與相應的一對毗鄰暫存器相關聯的鎖存器,其中一 相應的鎖存器構造用於因應一第一時鐘信號來鎖存來自 一第一毗鄰暫存器之資料並因應一第二時鐘信號來鎖存 來自一第二毗鄰暫存器之資料;及 一平行轉串列轉換器,其在該正常運作模式中可因應 該等鎖存器、該第一及第二内部時鐘信號,而在該第一 運作子模式期間,該平行轉串列轉換器僅因應該第一内 部時鐘信號及該第二内部時鐘信號之一,在該第二運作 子模式期間,則僅因應該第一内部時鐘信號及該第二内 93587.doc 1250531 部時鐘信號中的另一者。 19·如請求項17之積體電路裝置,其進一步包括: -模式暫存器集,該模式暫存器集可因應複數個命令 =號,並構造詩產生第_及第二測試模式信號,以將 μ輸出緩衝器分別置於該測試運作模式 模式中。 于 20. =請求項16之積體電路裝置,其中該記憶胞陣列可因應 :具有上升緣及下降緣之時鐘信號,其中在該正常運^ 萬式中’該輸出緩衝器可囡虛· 茨何扣j因應·一第一内部時鐘信號, 響應於該時鐘信號之卜乳矣 ^ 1口就之上升緣而產生;及一第二内部時 4里信號’其響應於該時鐘 1d就之下降緣而產生,而在該 測試運作模式中,該輸出緩衝器因應_經分頻H 部時鐘信f纽-經分頻之第:㈣時鐘信號。 21. :請求項20之積體電路裝置,其中該經分頻之第一内部 :“童信號及該經分頻之第二内部時鐘信號之頻率分別爲 该第一内部時鐘信號及兮笛— … , Μ第一内部時鐘信號之頻率的一 半。 22. 如請求項20之積體電路褒置,其進一步包括: 一模式暫存器集,該掇+封+ ^ 权式暫存器集可因應複數個命令 4吕號’並構造用於產生一 ,則武模式信號,以將該輸出緩 衝器置於該測試運作模式中。 23·如請求項2〇之積體電路裝 ^ 衣置,其進一步包括: 第刀頻電路,其構造用於響應於該時鐘信號之上 升緣及一測試模式選擇作 伴就而産生該經分頻之第一内部 93587.doc 1250531 時鐘信號;及 一第二分頻電路,其構造用於響應於該時鐘信號之 降緣及該測試模式選擇信號而産生該經分 @ &lt;弟一内部 曰可鐘信號。 24·如請求項23之積體電路裝置: 抑其中該第-分頻電路包括一第一分頻器,該第 為可響應於該時鐘信號之上升緣及該測試模式信號;及、 其中該第二分頻電路包括:一第二分頻器,該第二八 頻裔可響應於該時鐘信號之下降緣及該測試模式信號; 及一延遲70件,該延遲元件可響應於該第二分頻哭。 A 一種操作一具有-構造用於以-第-資料速率平:輸出 複數個資料位元的記憶胞陣列之積體電路裝置之方法, 該方法包括: 〜^運作板式中’以該第-資料速率將該等複數 固貧料位元自該記憶胞陣列串列輸出至 ί一測試運作模式中,低於該第-資料速率之第 一貝料速率將該等複數個 灵数個貝枓位凡自該記憶胞陣列串列 輸出至該外部終端 26·如請求項25之方法·· 童“、:在丨吊運作模式中以該第-資料速率將該等複 r編元自該記憶胞陣列串列輸出至一外部終端: 常運作模式中,響應於-時鐘信號之上升緣 ^己㈣/該第—f料速率將該等複數個資料位元自 口襄。己丨思胞陣列串歹丨於 輪出至-外部終端,·及 93587.doc 1250531 其中在-測試運作模式中以一低於該第_資料速率之 弟二資料速率將該等複數個資料位元自該㈣㈣㈣ 列輸出至該外部終端包括:在-測試運作模式中,僅塑 應於該時鐘信號之上升緣或下降緣之—,以—低於Μ =料速率之第二資料速率將該等複數個資料位元自該 3己憶胞陣列串列輸出至該外部終端。 27.如請求項25之方法,其中在—測試運作模式中以-低於 該第-賴速率之第:資料料將㈣複數個資料位元 自該記憶胞陣列串列輸出至該外部終端包括: 該等複數個資料位元 資料速率之該第二資 一部分串列輸出至該 複製由該記憶胞陣列平行輪出的 的一第一部分,以便以低於該第一 料速率將該等複數個資料位元之第 外部終端;及 複製由該記憶胞陣列平4千私山a 平W十仃輸出的該等複數個資料位元 的一第二部分,以便以低於 ^ . %巧弟一貧料速率之該第二資 料速率將該等複數個資料位元 、 貝it仅7L之第一部分串列輸出至該 外部終端。 28·如請求項25之方法: 其中該記憶胞陣列因應—具有上升緣及下降緣之時鐘 信號; 其中在-正常運作模式中以該第一資料速率將該等複 數個資料位元自該記憶料列串列輸出至—外部终端包 括:因應一響應於該時鐘信號之上升緣而產±的第一内 部時鐘信號及-響應於該時鐘信號之下降緣而產生的第 93587.doc -10- l25〇53l 二内部時鐘㈣,以該第_資料速轉料複數個資料 仇元自該記憶胞陣列串列輸出至一外部終端;及 从其中在-測試運作模式中以—低於㈣—資料速率之 第二資料速率將該等複數個資料位元自該記憶胞陣列串 列輸出至該外部終端包括:僅因應該第—内部時鐘传號 及=第二内部時鐘信號之_,以—低於該第_資料^ 之第二資料速率將該等複數個資料位元自該記憶胞陣列 串列輸出至該外部終端。 29·如請求項25之方法·· 其中該記憶胞陣列因應一具有上升緣及下降緣之時鐘 4吕號; 其中在-正书運作模式中以該第一資料速率將該等複 數個資料位元自該記憶胞陣列串列輸$至—外部終端包 括·因應一響應於該時鐘信號之上升緣而産生的第一内 部時鐘信號及-響應於該時鐘信號之下降緣而産生的第 二内部時鐘信號,以該第一資料速率將該等複數個資料 位元自該記憶胞陣列串列輸出至一外部終端;及 —其中在一測試運作模式中以一低於該第一資料速率之 弟二資料速率將該等複數個資料位元自該記憶胞陣列串 列輸出至該外部終端包括:交替地因應㈣—内部時鐘 信號及該第二内部時鐘信號,以一低於該第一資料速率 之第二資料速率將該等複數個資料位^自該記憶胞陣列 串列輪出至該外部終端。 3 0·如請求項25之方法·· 93587.doc 1250531 其中該記憶胞陣列因應一 信號; 具有上升緣及下降緣之時鐘 丹中在一正常運作 叙加“ 以不月竹迩平將該等複 數個育料位元自該記憶胞陣列串列輸出至—外部線端包 括:因應-響應於該時鐘信號之上升緣而產生的第一: 部時鐘信號及-響應於科鐘信號之下降緣而産生 -内部時鐘信號,以該第—資料速率將該等複數個資料 位凡自該記憶胞陣列串列輸出至一外部終端;及 —其中在一測試運作模式中以一低於該第-資料速率之 第二資料速率將該等複數個資料位元自該記憶胞陣列串 ^輸出至該外部終端包括:因應—根據該第—内部時鐘 L唬産生的經分頻之第_内冑時鐘信號及_根據㈣二 内部時鐘信號産生的經分頻之第二内部時鐘信號,以一 低於該第-資料速率之第二資料速率將該等複數個資料 位元自該記憶胞陣列串列輪出至該外部終端。 31·如請求項25之方法: 其中該記憶胞陣列構造用於經由對應的複數條第一資 料線以該第一資料速率平行輸出該等複數個資料位元, 且該記憶體裝置構造用於經由對應的複數條第二資料線 將該等複數個位元輸出至一輸出終端; 其中在一正常運作模式中以該第一資料速率將該等複 數個資料位元自該記憶胞陣列串列輸出至一外部終端包 括:在該正常運作模式中,將一相應的第一資料線耦合 至一相應的第二資料線;及 93587.doc 1250531 其中在一測試運作模式中以一 一 # 一 ^ ^ -…亥弟一育料速率之 弟二資料速率將該等複數個資料位 自4 C憶胞陣列串 列輸出至該外部終端包括:在該 牡邊州武運作模式的一第一 :模式中,將相應的偶數第一資料線輕合至相應的偶數 第二貢料線,而在該測試運作模式的—第二子= 將相應的奇數第一資料線耦合 , 相應的可數第二資料 線。 、 32. 如請求項25之方法: 其中該記憶胞陣列構造用於奴 於、、、工由對應的複數條第一資 料線以該第-資料速率平行輸出該等複數個資料位元,、 且該記憶體裝置構造用於經由對應的複數條第二資料線 將該等複數個位元輸出至一輸出終端,· 其中在一正常運作模式中 ^ 如, 乂 5亥弟一資料速率將該等複 數個貧料位7L自該記憶胞陣 干〜申列輸出至一外部終端包 括:在該正常運作模式中 一 、相應的第一資料線麵合 至一相應的第二資料線;及 其中在一測試運作模式φ 宜 ㈠ ^ Λ中以一低於該第一資料速率之 弟二賢料速率將該等複數個眘M y ^ 貝枓位兀自該記憶胞陣列串 列輸出至該外部終端㊁括·户# 、而匕括.在该測試運作模式的一第一 子杈式中,將—相應的第一 ^ 貝料線麵合至一相應的第二 貝料線,而在該測試運作槿 ΛΑ A I式的一弟二子模式中,將相 應的可數及偶數第一眘上 批― 、^、、在父又耦合至相應的偶數及奇 數弟二資料線。 93587.doc1250531 X. Patent application scope: 1. 2. An integrated circuit device, comprising: a memory cell array, a plurality of g 4 m outputs a plurality of shell elements in parallel at a first data rate; and * The output circuit 'is configured to output the plurality of data bits in an external mode at the first rate in the normal mode of operation to: an external mode: in the test mode of operation - below the first data rate: The first billet rate outputs the plurality of data bit strings to the external terminal. 1 The integrated circuit device of claim 1, wherein the memory cell array is responsive to a clock signal of a rising edge and a falling edge, wherein the first data rate is generated according to both a rising edge and a falling edge of the clock signal, and Wherein the second data rate is generated only by one of a rising edge or a falling edge of the clock signal. The integrated circuit device of the monthly squad 1 , wherein the memory cell array is configured to perform a plurality of shell 兀 via a corresponding plurality of first data lines (four) first-data rate parallel input X, and wherein the output circuit structure For: in the normal operation mode, using the corresponding plurality of second data lines to serially output the plurality of data bits to the external end at the first data rate, and using the corresponding in the test operation mode The plurality of feed lines are serially output to the external terminal at the second data rate lower than the first data rate. (The request circuit! The integrated circuit device, wherein the output circuit is configured to: in the X call 4 operation type, copy the 93587.doc 1250531 parallel output of the memory cell array by a plurality of data bits _ 资 , , , 丨 口 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于a second portion of the plurality of data bits output by the memory cell array to obtain a second portion of the plurality of data bits at the second data rate of the data rate Partial serial output to the external terminal. 2 Integral 1 integrated circuit device 'where the memory cell array can respond to a clock with a rising edge and a falling edge of the clock, the output circuit can be due to the library ... The script operation mode responds to the internal clock signal of a younger brother, which responds to the clock signal of Shanghai, the farmer*, the generation, and a second internal clock letter 掇彳+ &quot; In the test operation, the second internal time of the output is a signal-to-section clock signal or an integrated circuit device of the:::1, wherein the memory cell array can be in the same manner as the rising edge and the falling edge of the memory cell, the 钤屮Φ °~8 in the The normal operation mode is 卞 / ' can be responded to: H part of the clock signal, a plastic should be produced on the rising edge of the side clock signal ..., nickname, which responds to the falling edge of the bell signal and is called in the clock mode兮 屮 屮 屮 々 々 , , , , , , , , , , , , 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二In the middle, the round-out circuit can be: "°J' 2 in the normal operation mode should be the rise of the clock signal two::::=, which sighs an internal clock letter 93587.doc 1250531 is) its In response to the clock transmission πτ政 k _ mode, the evaluation = ' and generated in the test number. Then according to the first internal clock, ',, the knife frequency of an internal clock signal And a frequency-divided second internal clock signal generated according to the first inner 8. L唬For example, the integrated circuit device of the first item: material:::, the memory cell array is configured to output the complex numbers in parallel via the corresponding plurality of packets - the data - the data rate - wherein the output circuit includes , mouth 兀, and the first data t ^ _ 夕工, its structure is used to multiplex the data of the continuation of the data, the ancestors of the ancestors L / forging to the corresponding number of bars second 9. 乜V And an output buffer 'which is configured to output the data string on the first-data line to the external terminal. The special brother-Bei Ruyi seeks the integrated circuit device of item 8: wherein the multi-two device is configured to: in the normal operation mode, 'couple a corresponding data line to 5 to a corresponding second data line And in the first mode of the test operation mode, the early first battle line ^ ^ sub-style, the corresponding even first line is consumed to the corresponding even second data line, and a f two in the test mode of operation : In the mode, the corresponding odd-number data line is merged to the corresponding second data line. 10 - an integrated circuit device comprising: ·, - memory (four) column 'is configured to output a plurality of data bits in parallel via a corresponding plurality of first data lines at a first tributary rate. And configured to output the plurality of data bits in series to the external material at the first barren rate in the normal operation mode, and to lower the first data in the test operation mode Rate 93587.doc 1250531 The second data rate serially outputs the plurality of data bits to the external: end: the output circuit includes: a multiplexer configured to read the first-data line Data multiplexing and multiplexing to a corresponding plurality of second breeding lines; and an output buffer configured to output the data series on the second data line to the external terminal; a set, which is responsive to a plurality of command signals and configured to generate the first and second test mode signals to place the multiplexer in the first and second sub-modes of the test mode of operation; The tool is constructed for: in the normal In the operational mode, a corresponding first lean line is coupled to a corresponding second data line; in the measurement. In the first submode of the mode of operation, the corresponding even first data line is coupled to the corresponding even second data line; and in the second submode of the test mode of operation, the corresponding odd first data line is coupled Up to the corresponding odd second data line, and comprising: a first switch configured to lightly couple an even number of data lines to a corresponding even second data line in the first sub mode; a switch that is configured to couple a corresponding odd first data line to a corresponding odd second data line in the second sub-mode; and an equalization circuit configured to be used in the first In the second sub-mode, the corresponding odd second data lines are coupled to a corresponding adjacent even-numbered data line. 11. The integrated circuit device of claim 9, further comprising: a set of mode registers, wherein the set of mode registers can be configured to generate the first and second test mode signals in response to the plurality of command signals The 93587.doc 1250531 submode=work &amp; is respectively set as the first and the i2th integrated circuit device of the test operation mode, which comprises a memory cell array, which is suitable for! A plurality of data bits are outputted by the corresponding plurality of first credit lines at a data rate of one brother and one data volume; an output % road is constructed for a plurality of data bits at a data rate (four) The first end of the element, and in the -test mode of operation: = output to - external terminal - secondary ancestor, n is lower than the younger one of the poor material rate of the mountain #山灵数贝科位兀 serial output to the Externally, the output circuit comprises: a basket one: the under-harvesting state, the structure is used to apply the μ. , the 蚪 工 after the work to the corresponding plurality of second negative material lines, and the wheel屮结施: j., ,, 11 idioms, whose structure is used to serially output the data on the second data line to the external terminal; , a mode register set, i can be at the place ~ y person - The port should be configured with a plurality of command signals and configured to generate the first and second test mode signals 'to place the multiplexer in the first test mode and the second sub mode respectively; wherein the multiplexer Constructed for: in the normal operation mode, a corresponding first data line is lighted to - corresponding a second data line; in the first-sub mode of the test mode of operation, combining the corresponding first data (4) to a corresponding second data line; and in the second sub-mode of the test mode of operation, corresponding The odd and even first data lines are coupled to the corresponding even and odd second data lines. 13. The integrated circuit device of claim 12, wherein the memory cell array is responsive to a clock signal having a rising edge and a falling edge, wherein in the normal operation 93587.doc 1250531 mode, the output buffer is responsive to: - a first internal clock signal responsive to a rising edge of the clock signal; and a second internal clock signal responsive to a falling edge of the clock signal, in the first and second of the test mode of operation In the sub mode, the output circuit only responds to one of the first internal clock signal and the second internal clock signal. 14. The integrated circuit device of claim 12, wherein the multiplexer includes: a first switch configured to couple a corresponding first tributary line to a corresponding one in the first sub-mode a second data line; and a second switch configured to align the corresponding odd and even first data lines to the corresponding even and odd second data lines in the second sub-mode . 15. The integrated circuit device of claim π, wherein the output buffer comprises a plurality of corresponding registers, wherein a corresponding register is configured to store a read from a corresponding first data line. Data; a latch associated with a corresponding pair of adjacent registers, wherein a corresponding latch is configured to latch data from the contiguous register in response to a first clock signal and to respond to a second clock signal to latch data from the second neighbor register; and a parallel-to-serial converter that can wait for the latch, the first and second internal clocks in the normal operation mode The signal is only due to one of the first and second internal clock signals during the first and second operational sub-modes. The integrated circuit device of claim 1, wherein the memory cell array is configured to output the plurality of data bits in parallel at the first data rate via a corresponding plurality of first resources 93587.doc 1250531 feed lines And the output circuit includes an output buffer configured to output data to the external terminal string. 17. The integrated circuit device of claim 16, wherein the memory cell array is responsive to a clock signal having a rising edge and a falling edge, wherein in the normal operating mode, the output buffer is responsive to: a first internal clock a signal responsive to a rising edge of the clock signal; and a second internal clock signal responsive to a falling edge of the clock signal, the output being in a first sub-mode of the test mode of operation The circuit only depends on one of the first internal clock signal and the second internal clock signal. In a second sub-mode of the test mode of operation, the output circuit only depends on the first internal clock signal and the second internal clock signal The other one. 18. The integrated circuit device of claim 17, wherein the output buffer comprises: a corresponding plurality of registers, wherein a corresponding register is configured to store a read from a corresponding first data line Data; a latch associated with a corresponding pair of adjacent registers, wherein a corresponding latch is configured to latch data from a first adjacent register in response to a first clock signal and to react a second clock signal to latch data from a second adjacent register; and a parallel-to-serial converter that can wait for the latch, the first and second internals in the normal mode of operation a clock signal, and during the first operational sub-mode, the parallel-to-serial converter only responds to one of the first internal clock signal and the second internal clock signal during the second operational sub-mode, The other of the first internal clock signal and the second internal 93587.doc 1250531 clock signal should be used. 19. The integrated circuit device of claim 17, further comprising: - a mode register set, wherein the mode register set can generate a plurality of commands = number, and construct a poem to generate the first and second test mode signals, The μ output buffers are placed in the test mode mode, respectively. 20. The integrated circuit device of claim 16. wherein the memory cell array is responsive to: a clock signal having a rising edge and a falling edge, wherein in the normal operation, the output buffer is configurable. In response to a first internal clock signal, the first internal clock signal is generated in response to the rising edge of the clock signal of the clock signal; and a second internal time 4 signal is decreased in response to the clock 1d. The edge is generated, and in the test mode of operation, the output buffer is _divided by the H-part clock letter f-divided by: (iv) the clock signal. 21. The integrated circuit device of claim 20, wherein the frequency-divided first internal: "the child signal and the frequency-divided second internal clock signal are respectively the first internal clock signal and the flute" ..., 一半 half of the frequency of the first internal clock signal. 22. The integrated circuit of claim 20, further comprising: a mode register set, the 掇+封+^ 权 register set In response to a plurality of commands 4 ’ and configured to generate a modal mode signal, the output buffer is placed in the test mode of operation. 23·If the integrated circuit of claim 2 is installed, The method further includes: a first slot frequency circuit configured to generate the frequency-divided first internal 93587.doc 1250531 clock signal in response to a rising edge of the clock signal and a test mode selection partner; and a second score The frequency circuit is configured to generate the sub-@ lt lt; an internal chirp clock signal in response to the falling edge of the clock signal and the test mode selection signal. 24. The integrated circuit device of claim 23: Which of the first - The frequency circuit includes a first frequency divider, the first responsive to the rising edge of the clock signal and the test mode signal; and wherein the second frequency dividing circuit comprises: a second frequency divider, the second eight The frequency element may be responsive to the falling edge of the clock signal and the test mode signal; and a delay of 70 pieces, the delay element may be crying in response to the second frequency division. A operation-having-construction for the -first data Rate flat: A method of outputting an integrated circuit device of a memory cell array of a plurality of data bits, the method comprising: ???operating a plate type of the plurality of solid-depleted material bits from the memory cell at the first data rate The array serial output is output to the first test mode, and the first data rate lower than the first data rate is outputted from the memory cell array to the external terminal 26 · In the method of claim 25, the child is: in the sling operation mode, the multiplexed r-codes are output from the memory cell array to an external terminal at the first data rate: in the normal operation mode, Responding to the -clock signal (Iv) have edges ^ / -f the feed rate of the second plurality of data bits from the other port Xiang. The array of cells has been circumvented to the external terminal, and 93587.doc 1250531, wherein in the test operation mode, the plurality of data bits are lower than the data rate lower than the first data rate. The output from the (4) (4) (4) column to the external terminal includes: in the -test mode of operation, only the rising edge or the falling edge of the clock signal - the second data rate lower than the 料 = material rate And a plurality of data bits are outputted from the three-cell memory array to the external terminal. 27. The method of claim 25, wherein in the -test mode of operation - below the first-rate rate: data material (4) a plurality of data bits are serially output from the memory cell array to the external terminal : the second portion of the plurality of data bit data rates is serially outputted to the first portion of the copy that is rotated in parallel by the memory cell array to be a plurality of lower than the first material rate a second terminal of the data bit; and a second portion of the plurality of data bits outputted by the memory cell array to be lower than ^. The second data rate of the lean material rate outputs the plurality of data bits, the first portion of the beta bit only 7L, to the external terminal. 28. The method of claim 25, wherein the memory cell array responds to a clock signal having a rising edge and a falling edge; wherein in the normal operating mode, the plurality of data bits are from the memory at the first data rate The serial output to the external terminal includes: a first internal clock signal that produces ± in response to a rising edge of the clock signal and a 93587.doc -10- generated in response to a falling edge of the clock signal L25〇53l two internal clocks (4), with the first data transfer material, a plurality of data from the memory cell array serial output to an external terminal; and from the - test operation mode - below (four) - data And outputting, by the second data rate, the plurality of data bits from the memory cell array to the external terminal, including: only the first internal clock signal and the second internal clock signal, And outputting the plurality of data bits from the memory cell array to the external terminal at the second data rate of the first data. 29. The method of claim 25, wherein the memory cell array corresponds to a clock having a rising edge and a falling edge; wherein the plurality of data bits are at the first data rate in the -book operating mode Transmitting from the memory cell array to the external terminal includes: a first internal clock signal generated in response to a rising edge of the clock signal and a second internal portion generated in response to a falling edge of the clock signal a clock signal outputting the plurality of data bits from the memory cell array to an external terminal at the first data rate; and - wherein a test operation mode is lower than the first data rate And outputting, by the data rate, the plurality of data bits from the memory cell array to the external terminal: alternately responding to (4) the internal clock signal and the second internal clock signal to be lower than the first data rate The second data rate rotates the plurality of data bits from the memory cell array to the external terminal. 3 0. The method of claim 25 · 93587.doc 1250531 wherein the memory cell array responds to a signal; the clock with rising edge and falling edge is in a normal operation. The plurality of feed cells are output from the memory cell array to the external line end including: a first response to the rising edge of the clock signal: a partial clock signal and a response edge of the clock signal Generating an internal clock signal to output the plurality of data bits from the memory cell array to an external terminal at the first data rate; and - wherein a test operation mode is lower than the first And outputting, by the second data rate of the data rate, the plurality of data bits from the memory cell array to the external terminal, comprising: responding to the frequency-divided _inner clock generated according to the first internal clock L唬And the signal-divided second internal clock signal generated by the (IV) two internal clock signal, the plurality of data bits being from the memory cell array at a second data rate lower than the first data rate The method of claim 25, wherein the memory cell array is configured to output the plurality of data bits in parallel at the first data rate via the corresponding plurality of first data lines, and The memory device is configured to output the plurality of bits to an output terminal via a corresponding plurality of second data lines; wherein the plurality of data bits are at the first data rate in a normal operation mode Serializing the output from the memory cell array to an external terminal includes: coupling a corresponding first data line to a corresponding second data line in the normal operation mode; and 93587.doc 1250531 wherein a test operation mode In the middle of the one by one #一^^-...Haidi, the rate of the second rate of the feed rate, the data rate of the plurality of data bits from the 4 C memory array is serially outputted to the external terminal including: operating in the state of the oyster The first mode of the mode: in the mode, the corresponding even first data line is lightly coupled to the corresponding even second tributary line, and in the test mode of operation - the second sub = will correspond to the odd number The data line is coupled, and the corresponding second data line is. 32. The method of claim 25: wherein the memory cell array is configured to be used for slaves, and work by a plurality of first data lines corresponding to the first The data rate outputs the plurality of data bits in parallel, and the memory device is configured to output the plurality of bits to an output terminal via the corresponding plurality of second data lines, wherein in a normal operation mode In the normal operation mode, the corresponding first data line is included in the normal operating mode, wherein the data rate of the plurality of poor materials 7L is output from the memory cell array to the external terminal. Face to a corresponding second data line; and in a test mode of operation φ 宜(一) ^ Λ in a lower than the first data rate of the second sage rate, the plurality of carefully M y ^ 枓The bit is outputted from the memory cell array to the external terminal, and is included in the first sub-style of the test mode of operation, and the corresponding first ^ bead line is bonded to a corresponding second The feed line, and in the test operation 槿ΛΑ AI-style one brother two sub-mode, the corresponding countable and even number first carefully approved --, ^,, and the father is coupled to the corresponding even and odd brother two data line. 93587.doc
TW093116232A 2003-06-04 2004-06-04 Integrated circuit memory devices and operating methods that are configured to output data bits at a lower rate in a test mode of operation TWI250531B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020030035906A KR20040105060A (en) 2003-06-04 2003-06-04 Synchronous memory device including output circuit capable of enlarging valid output data window and method for enlarging valid output data window
US10/773,024 US6898139B2 (en) 2003-06-04 2004-02-05 Integrated circuit memory devices and operating methods that are configured to output data bits at a lower rate in a test mode of operation

Publications (2)

Publication Number Publication Date
TW200518108A TW200518108A (en) 2005-06-01
TWI250531B true TWI250531B (en) 2006-03-01

Family

ID=34067467

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093116232A TWI250531B (en) 2003-06-04 2004-06-04 Integrated circuit memory devices and operating methods that are configured to output data bits at a lower rate in a test mode of operation

Country Status (5)

Country Link
JP (1) JP2004362762A (en)
KR (1) KR100618828B1 (en)
CN (1) CN100474434C (en)
DE (1) DE102004027883A1 (en)
TW (1) TWI250531B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006277867A (en) * 2005-03-30 2006-10-12 Toshiba Corp Semiconductor memory device
KR100663362B1 (en) * 2005-05-24 2007-01-02 삼성전자주식회사 Semiconductor memory device and data write and read method thereof
KR100914329B1 (en) 2007-02-22 2009-08-28 삼성전자주식회사 Semiconductor memory device and test method thereof
US7742349B2 (en) 2007-06-29 2010-06-22 Hynix Semiconductor, Inc. Semiconductor memory device
KR100942947B1 (en) * 2007-06-29 2010-02-22 주식회사 하이닉스반도체 Semiconductor memory device
KR100911186B1 (en) * 2008-02-14 2009-08-06 주식회사 하이닉스반도체 Semiconductor device and data output method thereof
JP2009265024A (en) 2008-04-28 2009-11-12 Nec Electronics Corp Semiconductor device
JP2009301612A (en) * 2008-06-10 2009-12-24 Elpida Memory Inc Semiconductor memory device
CN103295646B (en) * 2012-02-27 2015-10-14 晨星软件研发(深圳)有限公司 Apply to speedy carding process enter end on built-in self-test circuit
US11283436B2 (en) 2019-04-25 2022-03-22 Teradyne, Inc. Parallel path delay line
US10942220B2 (en) 2019-04-25 2021-03-09 Teradyne, Inc. Voltage driver with supply current stabilization
US11119155B2 (en) 2019-04-25 2021-09-14 Teradyne, Inc. Voltage driver circuit
CN114564421B (en) * 2022-01-20 2023-09-05 珠海亿智电子科技有限公司 Method and system for training high-speed memory
CN117198374A (en) * 2022-05-30 2023-12-08 长鑫存储技术有限公司 Test method, test equipment and computer storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2900451B2 (en) * 1989-11-30 1999-06-02 ソニー株式会社 Memory device
JPH04206864A (en) * 1990-11-30 1992-07-28 Matsushita Electron Corp Semiconductor inspecting device
JP3788867B2 (en) * 1997-10-28 2006-06-21 株式会社東芝 Semiconductor memory device
JP3948141B2 (en) * 1998-09-24 2007-07-25 富士通株式会社 Semiconductor memory device and control method thereof
JP4975203B2 (en) * 2000-01-20 2012-07-11 富士通セミコンダクター株式会社 Semiconductor device
KR100499626B1 (en) * 2000-12-18 2005-07-07 주식회사 하이닉스반도체 Semiconductor memory device
JP4115676B2 (en) * 2001-03-16 2008-07-09 株式会社東芝 Semiconductor memory device
JP2003059300A (en) * 2001-08-16 2003-02-28 Nec Corp Test method for semiconductor memory, microcomputer, and electronic equipment

Also Published As

Publication number Publication date
CN1606091A (en) 2005-04-13
CN100474434C (en) 2009-04-01
TW200518108A (en) 2005-06-01
KR100618828B1 (en) 2006-08-31
DE102004027883A1 (en) 2005-02-10
KR20040104903A (en) 2004-12-13
JP2004362762A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
TWI250531B (en) Integrated circuit memory devices and operating methods that are configured to output data bits at a lower rate in a test mode of operation
JP4951041B2 (en) Semiconductor memory device
US7463548B2 (en) Method for performing a burn-in test
US7701800B2 (en) Multi-port memory device with serial input/output interface
US6898139B2 (en) Integrated circuit memory devices and operating methods that are configured to output data bits at a lower rate in a test mode of operation
JP5474315B2 (en) Latency counter, semiconductor memory device including the same, and data processing system
US7636272B2 (en) Multi-port memory device
US7911861B2 (en) Semiconductor memory device and method of testing semiconductor memory device
JP5456275B2 (en) Counter circuit, latency counter, semiconductor memory device including the same, and data processing system
US7872940B2 (en) Semiconductor memory device and method for testing the same
JP2002025255A (en) Semiconductor storage device
JP2004524641A (en) System latency levelization for read data
JP2007004967A (en) Parallel data path architecture
US20070101225A1 (en) Circuit and method of testing semiconductor memory devices
JP2006277872A (en) Semiconductor memory device and its test method
JP2011060353A (en) Latency counter, semiconductor memory device including the same, and data processing system
US20010007539A1 (en) Semiconductor device
JP2010277620A (en) Semiconductor storage device, and information processing system provided with the same, and controller
JP2006114192A (en) Data output compression circuit for testing cell in bank and its method
CN1527322B (en) Clock synchronizing semiconductor memory equipment
US20110058444A1 (en) Latency counter, semiconductor memory device including the same, and data processing system
JP2011060354A (en) Latency counter, semiconductor memory device including the same, and data processing system
JP2003187574A (en) Synchronous semiconductor memory device
KR20010077097A (en) Semiconductor memory device capable of test time reduction within pipeline
US7843761B2 (en) Semiconductor memory device