NO328254B1 - Universal power supply system - Google Patents

Universal power supply system Download PDF

Info

Publication number
NO328254B1
NO328254B1 NO20041129A NO20041129A NO328254B1 NO 328254 B1 NO328254 B1 NO 328254B1 NO 20041129 A NO20041129 A NO 20041129A NO 20041129 A NO20041129 A NO 20041129A NO 328254 B1 NO328254 B1 NO 328254B1
Authority
NO
Norway
Prior art keywords
converter
power supply
voltage
components
electrical consumer
Prior art date
Application number
NO20041129A
Other languages
Norwegian (no)
Other versions
NO20041129L (en
Inventor
Klaus Biester
Peter Kunow
Original Assignee
Cooper Cameron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cooper Cameron Corp filed Critical Cooper Cameron Corp
Publication of NO20041129L publication Critical patent/NO20041129L/en
Publication of NO328254B1 publication Critical patent/NO328254B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Ac-Ac Conversion (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Catching Or Destruction (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Earth Drilling (AREA)

Description

Foreliggende oppfinnelse vedrører et universelt kraftforsyningssystem for minst én elektrisk forbruker. Kraftforsyningssystemet omfatter minst én vekselspenningskilde og en kabelforbindelse som forbinder vekselspenningskilden med den elektriske forbruker. Vekselspenningskilden er tilknyttet en vekselspennings/ likespennings-omformer for å omforme vekselspenningen til en likespenning. Likespenningen som genereres på denne måten, er innrettet for å blii overført til den elektriske forbruker via kabelforbindelsen. The present invention relates to a universal power supply system for at least one electrical consumer. The power supply system comprises at least one alternating voltage source and a cable connection connecting the alternating voltage source to the electrical consumer. The AC voltage source is connected to an AC/DC converter to transform the AC voltage into a DC voltage. The direct voltage generated in this way is arranged to be transferred to the electrical consumer via the cable connection.

I tilfelle med elektriske forbrukere som behøver en høy spenning og høy effekt, viste det seg at bruken av et slikt universelt kraftforsyningssystem medfører vanskeligheter med hensyn til genereringen og stabiliseringen av spenningen. Hvis vekselspennings/likespennings-omformeren i tillegg svikter, er en forsyning til den elektriske forbruker ikke lenger mulig siden en redundans med hensyn til omformeren vanligvis blir sløyfet av kostnadshensyn. In the case of electrical consumers requiring a high voltage and high power, it was found that the use of such a universal power supply system entails difficulties with regard to the generation and stabilization of the voltage. If the AC/DC converter also fails, a supply to the electrical consumer is no longer possible since a redundancy with regard to the converter is usually omitted for cost reasons.

Når vekselspenningen videre blir omformet til likespenning ved hjelp av en slik vekselspennings/likespennings-omformer, vil generering av en betydelig var-memengde innenfor forholdsvis trange grenser måtte tas hensyn til når det gjelder tap i omformeren. Denne varmen må spres for å hindre at det forårsakes skader på omformeren eller andre komponenter i kraftforsyningssystemet som befinner seg i nærheten av omformeren. Varmen kan f.eks. spres ved hjelp av aktive kjøle-systemer, men dette vil medføre ytterligere konstruksjonskomponenter og kost-nader. When the alternating voltage is further transformed into direct voltage by means of such an alternating voltage/direct voltage converter, the generation of a significant amount of heat within relatively narrow limits will have to be taken into account when it comes to losses in the converter. This heat must be dissipated to prevent damage to the inverter or other components of the power supply system located near the inverter. The heat can e.g. is spread using active cooling systems, but this will entail additional construction components and costs.

Fra WO A1 97/38479 er det kjent et energiforsyningssystem omfattende minst en forbruke, omfattende minst en vekselspenningskilde, en vekselspenning/likespenningsomformer koplet mellom vekselspenningskilden og den minst ene forbruker, der vekselspennings/likespenningsomformeren er innrettet for å omforme vekselspenning til likespenning og der likespenningen så blir levert den elektriske forbruker. Vekselspennings/likespenningsomformeren om fatter flere vekselspennings/likespenningsomformerenheter som er koplet i parallell på primærsiden og serielt til den elektriske forbruker på sekundærsiden. From WO A1 97/38479 it is known an energy supply system comprising at least one consumer, comprising at least one AC voltage source, an AC/DC voltage converter connected between the AC voltage source and the at least one consumer, where the AC/DC voltage converter is arranged to convert AC voltage into DC voltage and where the DC voltage then is delivered to the electrical consumer. The AC/DC converter comprises several AC/DC converter units which are connected in parallel on the primary side and in series to the electrical consumer on the secondary side.

Fra patentskriftet US 4,788,488 er det kjent et system for effektoverføring av likestrøm ved induktive koplinger og fra US 5,105,351 er det kjent en effektfor-syningskilde for røntgenrør med flere frekvensomformere. From patent document US 4,788,488 a system for power transmission of direct current by inductive couplings is known and from US 5,105,351 a power supply source for X-ray tubes with several frequency converters is known.

Det er derfor formålet med foreliggende oppfinnelse å forbedre et universelt kraftforsyningssystem av den ovennevnte type på en slik måte at det blir mulig å fremskaffe en høy og stabil spenning selv ved høye effektkrav, på en pålitelig måte og til en rimelig pris uten at det er nødvendig med ytterligere komponenter til f.eks. varmespredning. It is therefore the purpose of the present invention to improve a universal power supply system of the above-mentioned type in such a way that it becomes possible to provide a high and stable voltage even with high power requirements, in a reliable manner and at a reasonable price without it being necessary with additional components for e.g. heat dissipation.

I forbindelse med trekkene i innledningen til krav 1, blir dette formålet oppnådd ved at vekselspennings/likespennings-omformeren omfatter et antall vekselspennings/likespennings-omformerkomponenter som på sin inngangsside er koplet i parallell med vekselspenningskilden og som på sin utgangsside er seriekoplet med den elektriske forbruker. In connection with the features in the introduction to claim 1, this purpose is achieved by the AC/DC converter comprising a number of AC/DC converter components which on their input side are connected in parallel with the AC voltage source and which on their output side are connected in series with the electrical consumer .

På grunn av denne tilkoplingsmåten av vekselspennings/likespennings-omformerkomponentene tjener hver av disse komponentene til å generere en viss andel av spenningen på forbruker- eller utgangs-siden av vekselspennings/likespennings-omformeren. Hvis likespenningen som skal produseres på utgangs-siden beløper seg til f.eks. 6000 volt, kan likespenningen produseres ved hjelp av f.eks. 20 omformerkomponenter som hver har en utgangsspenning på 300 volt. Det er også mulig å tilveiebringe 30, 40 eller 50 omformerkomponenter der hver av disse da leverer en respektiv andel av den likespenning som er nødvendig på utgangssiden. Because of this connection method of the AC/DC converter components, each of these components serves to generate a certain proportion of the voltage on the consumer or output side of the AC/DC converter. If the direct voltage to be produced on the output side amounts to e.g. 6000 volts, the direct voltage can be produced using e.g. 20 converter components each with an output voltage of 300 volts. It is also possible to provide 30, 40 or 50 converter components where each of these then supplies a respective proportion of the DC voltage required on the output side.

I det enkleste tilfelle har omformerkomponentene alle samme konstruksjon slik at i tilfelle med n omformerkomponenter, frembringer hver komponent n-delen av den nødvendige utgangsspenning fra den vekselspenning som tilføres inngangssiden. In the simplest case, the converter components all have the same construction so that in the case of n converter components, each component produces the n part of the required output voltage from the alternating voltage supplied to the input side.

I motsetning til en vekselspennings/likespennings-omformer for f.eks. å produsere 6000 volt, er slike omformerkomponenter enkle å håndtere og enkle å vedlikeholde. Spredningsvarmen pr. omformerkomponent er her vanligvis så lav at separate kjøleanordninger kan sløyfes hvis omformerkomponentene er anordnet forholdsvis nær hverandre, kan enkle kjøleanordninger som fører f.eks. kjøleluft over omformerkomponentene være tilstrekkelig selv i tilfelle med høy effekt. Sammenlignet med kjente omformere er omkostningene ved å kjøle denne vekselspennings/likespennings-omformeren imidlertid betydelig lavere. In contrast to an AC/DC converter for e.g. to produce 6000 volts, such converter components are easy to handle and easy to maintain. The diffusion heat per converter component is usually so low here that separate cooling devices can be bypassed if the converter components are arranged relatively close to each other, simple cooling devices that lead e.g. cooling air over the inverter components be sufficient even in the case of high power. Compared to known converters, however, the costs of cooling this AC/DC converter are considerably lower.

Hvis én av omformerkomponentene svikter, vil utgangsspenningen bare bli redusert med den nevnte n-del slik at også de gjenværende n-1 omformerkomponentene fremdeles vil produsere en tilstrekkelig høy spenning for den elektriske forbruker. Bare hvis et antall omformerkomponenter svikter, kan det vise seg å være nødvendig å erstatte omformerkomponentene, i det minste delvis. I alle fall vil hvis én av et antall omformerkomponenter svikter, det fremdeles være garantert at den spenning som leveres til den elektriske forbruker fremdeles er tilstrekkelig høy til å muliggjøre drift av denne (redundans). If one of the converter components fails, the output voltage will only be reduced by the mentioned n-part so that also the remaining n-1 converter components will still produce a sufficiently high voltage for the electrical consumer. Only if a number of converter components fail, it may prove necessary to replace the converter components, at least in part. In any case, if one of a number of converter components fails, it will still be guaranteed that the voltage supplied to the electrical consumer is still sufficiently high to enable its operation (redundancy).

En enkel og pålitelig vekselspenningskilde kan ses i et miljø hvor vekselspenningskilden er en 380 volts, trefaset kraftkilde. A simple and reliable AC voltage source can be seen in an environment where the AC voltage source is a 380 volt, three-phase power source.

En omformerkomponent av den ovennevnte type kan f.eks. utgjøres av en lineært regulert omformerkomponent. Slik omformerkomponenter har imidlertid forholdsvis lav effektivitet som i de fleste tilfeller er så lav som fra 25 til 50%. Det følger at i tilfelle med høye effektverdier i kilowatt-området, vil spredningseffekten normalt minst svare til den leverte effekt. Dette resulterer ikke bare i høye energi-tap, men også i et kjøleproblem selv om et antall omformerkomponenter er anordnet. A converter component of the above type can e.g. consists of a linearly regulated converter component. However, such converter components have relatively low efficiency, which in most cases is as low as from 25 to 50%. It follows that in the case of high power values in the kilowatt range, the dissipation power will normally at least correspond to the delivered power. This results not only in high energy losses, but also in a cooling problem even if a number of converter components are arranged.

Spredningseffekten til omformerkomponentene kan lett reduseres ved å im-plementere omformerkomponentene som koplede eller svitsjede (hoved) kraftforsyninger. En slik svitsjet kraftforsyning er forsynt med en bryter som forårsaker at omformerkomponenten blir tilkoplet og frakoplet nettet, f.eks. i samsvar med nett-spenningen ved 50 hertz. The dispersion effect of the converter components can be easily reduced by implementing the converter components as switched or switched (main) power supplies. Such a switched power supply is provided with a switch which causes the converter component to be connected and disconnected from the grid, e.g. in accordance with the mains voltage at 50 hertz.

Tapene kan reduseres ytterligere når den svitsjede kraftforsyning blir taktstyrt uavhengig av nettfrekvensen på f.eks. 50 Hz. Taktpulsstyring ved høyere fre-kvenser blir foretrukket i denne forbindelse. Losses can be further reduced when the switched power supply is clocked independently of the mains frequency of e.g. 50 Hz. Clock pulse control at higher frequencies is preferred in this connection.

Forskjellige realiseringer av en slik taktstyrt, svitsjet kraftforsyning er kjente. Den første inndelingen som kan utføres, er en inndeling i svitsjede nettkraftforsyninger taktstyrt på sekundærsiden, og de som taktstyres på primærsiden. I begge disse grunnleggende versjonene er det mulig at en strøm flyter konstant inn i en lagringskondensator i den svitsjede nettkraftforsyning, eller at en strøm bare blir avgitt ved en viss tid slik at vedkommende omformer kan kalles en forovermatings-omformer eller en tilbakeløpsomformer. Denne tilbakeløpsomformeren kan for-trinnsvis taktstyres på primærsiden for å fremskaffe en galvanisk atskillelse mellom inngangs- og utgangs-sidene, og den kan være en enfaset eller en mottakts-omformer. Enfasede omformere blir i denne forbindelse foretrukket ettersom de normalt krever bare én effektbryter som en taktomkoplingsanordning. Denne effektbryteren kan f.eks. være implementert om en effekt-MOSFET eller en - BIMOSFETT. I tilegg kan også tyristorer benyttes som taktstyrte bryteranordning-er, spesielt når høye effektverdier i kilowatt-området er involvert. Various realizations of such a clock-controlled, switched power supply are known. The first division that can be carried out is a division into switched mains power supplies pulsed on the secondary side, and those that are pulsed on the primary side. In both of these basic versions, it is possible for a current to flow constantly into a storage capacitor in the switched-mode power supply, or for a current to be discharged only at a certain time so that the converter in question can be called a feed-forward converter or a flyback converter. This flyback converter can preferably be pulse-controlled on the primary side to provide a galvanic separation between the input and output sides, and it can be a single-phase or counter-pulse converter. Single-phase converters are preferred in this regard, as they normally require only one circuit breaker as a timing switching device. This circuit breaker can e.g. be implemented whether a power MOSFET or a - BIMOSFETT. In addition, thyristors can also be used as clock-controlled switching devices, especially when high power values in the kilowatt range are involved.

De ovennevnte svitsjede nettkraftforsyningene har, spesielt i tilfelle med høye effektverdier, et antall fordeler, slik som lav spredningseffekt, lavere vekt, mindre volum, ingen støygenerering, mindre glattingsutgifter og større inngangs-spenningsområde. Svitsjede nettkraftforsyninger og spesielt også tilbakeløps-omformere, blir brukt på et stort område med anvendelser, slik som mikrobølge-ovner, datamaskiner, elektronisk tilpasningsutstyr for lysrør, industri- og under-holdnings-elektronikk, skjermer, hjertedefibrillatorer og lignende. Tilbakeløpsom-formere er også meget godt egnet for bruk på områder hvor høy effekt er nødven-dig på utgangssiden. The above-mentioned switched-mode mains power supplies, especially in the case of high power values, have a number of advantages, such as low dissipation power, lower weight, smaller volume, no noise generation, less smoothing expenses and larger input voltage range. Switched mains power supplies, and especially also flyback converters, are used in a wide range of applications, such as microwave ovens, computers, electronic adaptation equipment for fluorescent tubes, industrial and entertainment electronics, monitors, heart defibrillators and the like. Flyback converters are also very well suited for use in areas where high power is required on the output side.

En pulsbreddemodulasjonsanordning, spesielt en pulsbreddemodulasjonsanordning som er innrettet for å bli styrt eller regulert, kan være tilveiebrakt for å aktivere koplingsanordningen eller svitsjeanordningen for tilbakeløpsomformeren eller den svitsjede nettkraftforsyningen på egnet måte. Denne pulsbreddemodulasjonsanordningen er i stand til å produsere en pulsrekke som er innrettet for å bli variert med hensyn til sin bredde og/eller høyde og/eller frekvens. En hyppig brukt pulsmodulasjonsanordning er en pulsbreddemodulasjonsanordning. Denne pulsbreddemodulasjonsanordningen frembringer et pulsbreddemodulert signal hvis taktsyklusforhold kan styres i samsvar med en målt aktuell verdi av utgangsspenningen. Den målte aktuelle verdi av utgangsspenningen kan f.eks. subtrahe-res fra den ønskede spenning, og denne differansen kan leveres via en styringsforsterker til pulsbreddemodulasjonsanordningen. Her kan utgangsspenningen fra styringsforsterkeren sammenlignes med en sagtannsspenning hvis frekvens be-stemmer koplingsfrekvensen eller taktstyringen av den svitsjede nettkraftforsyning. Avhengig av resultatet av denne sammenligningen, blir koplingstransistorene så slått på eller av, hvorved en ønsket utgangsspenning kan reguleres. A pulse width modulation device, in particular a pulse width modulation device which is adapted to be controlled or regulated, may be provided to actuate the switching device or the switching device of the flyback converter or the switched mains power supply in a suitable manner. This pulse width modulation device is capable of producing a train of pulses which are arranged to be varied with respect to their width and/or height and/or frequency. A frequently used pulse modulation device is a pulse width modulation device. This pulse width modulation device produces a pulse width modulated signal whose duty cycle ratio can be controlled in accordance with a measured current value of the output voltage. The measured actual value of the output voltage can e.g. is subtracted from the desired voltage, and this difference can be delivered via a control amplifier to the pulse width modulation device. Here, the output voltage from the control amplifier can be compared to a sawtooth voltage whose frequency determines the switching frequency or the clock control of the switched mains power supply. Depending on the result of this comparison, the switching transistors are then turned on or off, whereby a desired output voltage can be regulated.

I samsvar med en fordelaktig utførelsesform blir den maksimale utgangsspenning fra den svitsjede nettkraftforsyning valgt slik at den ikke overskrider en grenseverdi under gjennomslagsspenningen for en respektiv komponent i den svitsjede nettkraftforsyning, spesielt i koplingsanordningen eller svitsjeanordningen, slik at en sikker avstand fra gjennombruddsspenningen blir opprettholdt. In accordance with an advantageous embodiment, the maximum output voltage from the switched-mode power supply is selected so that it does not exceed a limit value below the breakdown voltage of a respective component of the switched-mode power supply, in particular in the switching device or the switching device, so that a safe distance from the breakdown voltage is maintained.

Som allerede nevnt foran, tilhører tilbakeløpsomformeren de omformere som blir taktstyrt på primærsiden, dvs. at det er en galvanisk atskillelse mellom inngangen og utgangen. As already mentioned above, the flyback converter belongs to the converters that are clock-controlled on the primary side, i.e. that there is a galvanic separation between the input and the output.

I denne forbindelse kan det være fordelaktig at tilbakeløpsomformeren omfatter et antall galvanisk atskilte, styrte utgangsspenningen In this connection, it can be advantageous for the flyback converter to include a number of galvanically separated, controlled output voltage

Taktfrekvensen til svitsjeanordningen kan være i kilohertz-området, og spesielt i hundre-kilohertz-området for å tillate en tilstrekkelig rask taktstyring av svitsjeanordningen, og i denne forbindelse en forholdsvis lav spredningseffekt for til-bakeløpsomformeren. Tilbakeløpsomformeren er f.eks. kjent som taktstyrt i området fra 20 kilohertz til 200 kilohertz. Lavere og høyere taktfrekvenser er imidlertid også mulige. The clock frequency of the switching device can be in the kilohertz range, and especially in the hundred kilohertz range to allow a sufficiently fast clock control of the switching device, and in this connection a relatively low dispersion effect for the flyback converter. The reflux converter is e.g. known as clock-controlled in the range from 20 kilohertz to 200 kilohertz. However, lower and higher clock frequencies are also possible.

For å unngå nødvendigheten av å tilveiebringe separate kjølemidler for omformerkomponentene, spesielt i tilfelle med høye effektverdier, kan omformerkomponenten være anordnet i avstand fra hverandre. Den rommessige avstanden er imidlertid vanligvis så liten at den bare svarer til dimensjonene av én omformerkomponent. In order to avoid the necessity of providing separate cooling means for the converter components, especially in the case of high power values, the converter components can be arranged at a distance from each other. However, the spatial distance is usually so small that it only corresponds to the dimensions of one converter component.

En filteranordning kan være anordnet mellom vekselspennings/likespennings-omformeren og den elektriske forbrukeren slik at likespenningen som genereres av vekselspennings/likespennings-omformeren om nødvendig kan glattes ytterligere. A filter device can be arranged between the AC/DC converter and the electrical consumer so that the DC voltage generated by the AC/DC converter can be further smoothed if necessary.

I tilfelle av visse elektriske forbrukere kan det vise seg å være fordelaktig når også en signalforbindelse blir tilveiebrakt i tillegg til en spenningsforsyning. For å unngå nødvendigheten av å tilveiebringe en ytterligere kabelforbindelse til den elektriske forbruker for dette formålet, kan en anordning for innkopling/avkopling av datasignaler være forbundet med kabelforbindelsen, idet anordningen for inn-kopling/avkopling av datasignaler spesielt er plassert mellom filteranordningen og den elektriske forbruker. Denne anordningen for tilkopling/avkopling av datasignaler kan på den ene side brukes til å kople respektive datasignaler til dataforbin-delsen for f.eks. styring av den elektriske forbruker eller for å levere informasjon til denne. I den motsatte retningen kan data som mottas fra den elektriske forbruker koples ut fra kabelforbindelsen og brukes til f.eks. å overvåke den elektriske forbruker ved hjelp av egnede enheter, slik som datamaskiner og lignende. In the case of certain electrical consumers, it may prove advantageous when also a signal connection is provided in addition to a voltage supply. In order to avoid the necessity of providing an additional cable connection to the electrical consumer for this purpose, a device for connecting/disconnecting data signals can be connected to the cable connection, the device for connecting/disconnecting data signals in particular being placed between the filter device and the electrical consumer. This device for connecting/disconnecting data signals can, on the one hand, be used to connect respective data signals to the data connection for e.g. control of the electrical consumer or to deliver information to this. In the opposite direction, data received from the electrical consumer can be disconnected from the cable connection and used for e.g. to monitor the electrical consumer using suitable devices, such as computers and the like.

I denne forbindelse må det tas i betraktning at dataoverføring på grunnlag av likespenningen på utgangssiden kan bevirkes med mindre interferens og med høyere hastighet enn i tilfeller hvor den elektriske forbruker blir forsynt med en vekselspenning. In this connection, it must be taken into account that data transmission on the basis of the direct voltage on the output side can be effected with less interference and at a higher speed than in cases where the electrical consumer is supplied with an alternating voltage.

I det minste vekselspenningskilden og/eller vekselspennings/likespennings-omformeren og/eller anordningen for tilkopling/avkopling av datasignaler kan være tilknyttet en styringsenhet slik at de forskjellige enheter i kraftforsyningssystemet i henhold til foreliggende oppfinnelse kan overvåkes, styres eller om nødvendig, reguleres mer effektivt. Denne styringsenheten kan f.eks. også detektere om én av omformerkomponentene som er implementert som en tilbakeløpsomformer, har sviktet. Hvis en slik svikt blir detektert, kan de andre tilbakeløpsomformerne aktive-res slik at de kompenserer for svikten til den ene tilbakeløpsomformer ved at en noe høyere utgangsspenning f.eks. blir levert av hver av de andre tilbakeløps-omformerne. At least the AC voltage source and/or the AC/DC converter and/or the device for connecting/disconnecting data signals can be connected to a control unit so that the various units in the power supply system according to the present invention can be monitored, controlled or, if necessary, regulated more effectively . This control unit can e.g. also detect if one of the converter components implemented as a flyback converter has failed. If such a failure is detected, the other flyback converters can be activated so that they compensate for the failure of one flyback converter by a somewhat higher output voltage, e.g. is supplied by each of the other flow-back converters.

Styringsenheten kan også styre pulsbreddemodulasjonsanordningen i for-bindelsen. The control unit can also control the pulse width modulation device in the connection.

Styringsenheten kan ikke bare brukes til overvåkningsformål alene, men det er også mulig å bruke den til å opprette en kommunikasjonsforbindelse mellom de respektive enheter i kraftforsyningssystemet. Dette vil spesielt være fordelaktig i tilfeller hvor de forskjellige enheter er anordnet med forholdsvis store avstander fra hverandre og/eller på utilgjengelige steder. Ved hjelp av denne kommunikasjonsforbindelsen kan fysisk undersøkelse eller vedlikehold begrenses til sjeldne tilfeller eller til tilfeller hvor vedkommende enhet må repareres. The control unit can not only be used for monitoring purposes alone, but it is also possible to use it to establish a communication link between the respective units in the power supply system. This will be particularly advantageous in cases where the various units are arranged at relatively large distances from each other and/or in inaccessible places. Using this communication link, physical examination or maintenance can be limited to rare cases or to cases where the device in question needs to be repaired.

Kabelforbindelsen kan omfatte minst én koaksialkabel slik at selv om høy effekt skal overføres og hvis spenning og data blir overført samtidig, kan kabelforbindelsen opprettes slik at den har et lite tverrsnitt, hvorved kostnadene vil bli mindre, spesielt i tilfelle med lange avstander. Siden den spenning som overføres gjennom koaksialkabelen er en likespenning, vil det bare opptre linjetap, mens ytterligere dempningstap som forårsakes ved overføring av vekselspenninger, blir unngått. The cable connection can include at least one coaxial cable so that even if high power is to be transmitted and if voltage and data are transmitted simultaneously, the cable connection can be created so that it has a small cross-section, whereby costs will be reduced, especially in the case of long distances. Since the voltage transmitted through the coaxial cable is a direct voltage, only line losses will occur, while additional attenuation losses caused by the transmission of alternating voltages are avoided.

I forbindelse med omformerkomponentene og spesielt tilbakeløpsomfor-merne som brukes som slike komponenter, må det også vies oppmerksomhet til det faktum at hver av omformerkomponentene bør være innrettet for å bli styrt eller regulert separat med hensyn til utgangsspenningen. Inngangene til omformerkomponentene er anordnet i parallell i hver omformerkomponent slik at spennings-forsyningen og følgelig strømmen og effekten er fullstendig atskilt. Det følger at uavhengig av utgangsspenningen kan også den totale effekten til systemet tilpas-ses i henhold til behovene. Et fullstendig fritt valg av effekten og utgangsspenningen er derfor mulig. På grunn av bruken av et antall omformerkomponenter kan det oppnås en uhyre nøyaktig og presis styring av utgangsspenningen så vel som effekten, siden hver omformerkomponent styres uavhengig av de andre komponentene. In connection with the converter components and especially the flyback converters used as such components, attention must also be paid to the fact that each of the converter components should be arranged to be controlled or regulated separately with respect to the output voltage. The inputs to the converter components are arranged in parallel in each converter component so that the voltage supply and consequently the current and power are completely separated. It follows that regardless of the output voltage, the total power of the system can also be adapted according to needs. A completely free choice of the power and the output voltage is therefore possible. Due to the use of a number of converter components, extremely accurate and precise control of the output voltage as well as the power can be achieved, since each converter component is controlled independently of the other components.

Hvis én av omformerkomponentene svikter, er kraftforsyningen likevel garantert (redundans) siden de andre omformerkomponentene blir aktivert på pas-sende måte slik at effektfeilen til den omformer som har sviktet, vil bli kompensert på utgangssiden. Det respektive område innenfor hvilken hver av de fremdeles operative omformerkomponenter må justeres, er uhyre lite siden en forholdsvis lav økning i spenningen på utgangssiden av antallet omformerkomponenter allerede vil føre til en betydelig høyere økning i den totale utgangsspenning. If one of the converter components fails, the power supply is nevertheless guaranteed (redundancy) since the other converter components are activated in an appropriate way so that the power error of the converter that has failed will be compensated on the output side. The respective range within which each of the still operational converter components must be adjusted is extremely small since a relatively low increase in voltage on the output side of the number of converter components will already lead to a significantly higher increase in the total output voltage.

I forbindelse med hver omformerkomponent, og spesielt i forbindelse med tilbakeløpsomformeren, er det mulig å sløyfe ytterligere komponenter, dvs. å imp-lementere omformerkomponentene f.eks. som integrerte kretser som i tillegg til den aktuelle tilbakeløpsomformer, omfatter andre elementer, slik som en nyttefaktor-reguleringsanordning, en underspenningsdeteksjonsanordning, en overspenningsovervåkningsanordning, en såkalt "mykstart-anordning", og lignende. In connection with each converter component, and especially in connection with the return converter, it is possible to loop additional components, i.e. to implement the converter components e.g. as integrated circuits which, in addition to the relevant flyback converter, comprise other elements, such as a utility factor regulation device, an undervoltage detection device, an overvoltage monitoring device, a so-called "soft start device", and the like.

Det skal også bemerkes at på grunn av likespenningen som overføres på utgangssiden til den elektriske forbruker, er små tverrsnitt mulig spesielt når en koaksialkabel blir benyttet som kabelforbindelse, idet denne ledningen med lite tverrsnitt tillater en betydelig reduksjon i kabelforbindelsesomkostningene. Spesielt når avstandene til den elektriske forbruker er i kilometerområdet og når avstanden blir 50 km eller mer, vil en betydelig kostnadsbesparelse oppnås, selv om koaksialkabelen samtidig kan brukes også til overføring av data. It should also be noted that due to the direct voltage that is transmitted on the output side to the electrical consumer, small cross-sections are possible, especially when a coaxial cable is used as a cable connection, as this wire with a small cross-section allows a significant reduction in cable connection costs. Especially when the distances to the electrical consumer are in the kilometer range and when the distance becomes 50 km or more, a significant cost saving will be achieved, even though the coaxial cable can also be used for data transmission at the same time.

Kostbare kondensatorer, slik som elektrolytiske filterkondensatorer, er ikke lenger nødvendig for å glatte likespenningen på utgangssiden. I tillegg kan nytte-faktorkorreksjon finne sted direkte i tilbakeløpsomformeren; et egnet middel for å utføre korreksjonen kan være innbefattet i tilbakeløpsomformeren eller i dennes integrerte krets. Den høye klokkefrekvensen til tilbakeløpsomformeren garanterer samtidig at vekselspenningen på inngangssiden blir samplet i full bredde, slik at høy effektivitet blir oppnådd. Expensive capacitors, such as electrolytic filter capacitors, are no longer needed to smooth the DC voltage on the output side. In addition, utility factor correction can take place directly in the flyback converter; a suitable means for carrying out the correction may be included in the flyback converter or in its integrated circuit. The high clock frequency of the flyback converter also guarantees that the AC voltage on the input side is sampled in full width, so that high efficiency is achieved.

Øvrige trekk og fordeler framkommer av de etterfølgende patentkravene. Other features and benefits emerge from the subsequent patent claims.

I det følgende vil en fordelaktig utførelsesform av foreliggende oppfinnelse bli forklart under henvisning til de vedføyde figurer, hvor: fig. 1 viser en skjematisk representasjon av en utførelsesform av det universelle kraftforsyningssystem, og In the following, an advantageous embodiment of the present invention will be explained with reference to the attached figures, where: fig. 1 shows a schematic representation of an embodiment of the universal power supply system, and

fig. 2 viser et kretsskjema over en utførelsesform av en tilbakeløpsomformer som klokkes eller taktstyres på primærsiden og brukes som omformerkomponent. fig. 2 shows a circuit diagram of an embodiment of a flyback converter that is clocked or clocked on the primary side and used as a converter component.

Fig. 1 viser et skjematisk kretsskjema over en utførelsesform av det universelle kraftforsyningssystem 1 i henhold til foreliggende oppfinnelse. Det universelle kraftforsyningssystem omfatter en trefaset vekselspenningskilde 3 på 380 volt. Vekselspenningen er innrettet for å bli overført til en vekselspennings/likespennings-omformer 5 via en ledning 24. Vekselspennings/likespennigs-omformeren 5 er sammen satt av et antall vekselspennings/likespennings-omformerkomponenter 6 som er koplet i parallell til ledningen 24 via respektive inngangs-klemmer 23. Fig. 1 shows a schematic circuit diagram of an embodiment of the universal power supply system 1 according to the present invention. The universal power supply system comprises a three-phase AC voltage source 3 of 380 volts. The AC voltage is arranged to be transferred to an AC/DC converter 5 via a line 24. The AC/DC converter 5 is composed of a number of AC/DC converter components 6 which are connected in parallel to the line 24 via respective input hugs 23.

Vekselspennings/likespennings-omformerkomponentene 6 utgjøres av en svitsjet kraftforsyning 7 og spesielt av en tilbakeløpsomformer 8 som taktstyres på primærsiden virker som en svitsjet kraftforsyning 7. The AC/DC converter components 6 are made up of a switched-mode power supply 7 and in particular of a flyback converter 8 which is clock-controlled on the primary side and acts as a switched-mode power supply 7.

På utgangssiden er de forskjellige omformerkomponentene 6 seriekoplet med hverandre via respektive utgangsklemmer 22, og de er koplet til en koaksialkabel 15 som virker som en kabelforbindelse 4. Via kabelforbindelsen 4 får en elektrisk forbruker 2 levert elektrisk kraft. Mellom vekselspennings/likespennings-omformeren 5 og den elektriske forbruker 2 er en anordning for kopling av datasignaler 13 inn og ut i tillegg koplet til kabelforbindelsen 4. Anordningen 13 for til-kopling/avkopling av datasignaler blir brukt til å mate inn respektive datasignaler eller for å kople ut datasignaler som er blitt mottatt fra den elektriske forbruker 2 eller fra dens tilknyttede enheter. Overføringen av datasignalene blir også bevirket via kabelforbindelsen 4 implementert som en koaksialkabel 15. On the output side, the various converter components 6 are connected in series with each other via respective output terminals 22, and they are connected to a coaxial cable 15 which acts as a cable connection 4. Via the cable connection 4, an electrical consumer 2 is supplied with electrical power. Between the AC/DC converter 5 and the electrical consumer 2, a device for connecting data signals 13 in and out is also connected to the cable connection 4. The device 13 for connecting/disconnecting data signals is used to feed in respective data signals or for to disconnect data signals that have been received from the electrical consumer 2 or from its associated units. The transmission of the data signals is also effected via the cable connection 4 implemented as a coaxial cable 15.

På fig. 1 er det vist bare én elektrisk forbruker 2. Vanligvis blir et antall elektriske forbrukere forsynt med elektrisk kraft og også data via kabelforbindelsen 4 fra det universelle kraftforsyningssystem 1 i henhold til foreliggende oppfinnelse. Slike elektriske forbrukere er f.eks. drivanordninger anordnet på steder som er langt bort og/eller ikke lett tilgjengelig. Drivanordningene styrer f.eks. enheter i flu-idledninger, slik som ventiler, avstengningsanordninger, begrensningsanordninger, pumper og lignende slik at strømningen av fluid inn i og langs fluidledningen blir styrt og slått av i nødstilfeller, slik som ved lekkasje, ledningsbrudd eller lignende, og slik at også parametere for fluidet, fluidstrømningen eller de respektive enheter blir overvåket og styrt. Fluidet blir normal matet inn i ledningene under høyt trykk fra en respektiv fluidkilde og ført langs ledningene, f.eks. fra bunnen av havover-flaten. Siden et slikt fluid vanligvis inneholder aggressive eller miljømessig giftige komponenter, vil en kraftforsyning og fjernstyring som kan bevirkes ved hjelp av det universelle kraftforsyningssystem 1 i henhold til oppfinnelsen, være meget fordelaktig. In fig. 1, only one electrical consumer 2 is shown. Usually, a number of electrical consumers are supplied with electrical power and also data via the cable connection 4 from the universal power supply system 1 according to the present invention. Such electrical consumers are e.g. drive devices arranged in places that are far away and/or not easily accessible. The drive devices control e.g. units in fluid lines, such as valves, shut-off devices, limiting devices, pumps and the like so that the flow of fluid into and along the fluid line is controlled and switched off in emergency situations, such as in the event of a leak, line break or the like, and so that also parameters for the fluid, the fluid flow or the respective units are monitored and controlled. The fluid is normally fed into the lines under high pressure from a respective fluid source and led along the lines, e.g. from the bottom of the sea surface. Since such a fluid usually contains aggressive or environmentally toxic components, a power supply and remote control that can be effected by means of the universal power supply system 1 according to the invention will be very advantageous.

Fjernstyringen av de respektive drivanordninger kan i denne forbindelse ut-føres via kommunikasjonsforbindelsen som er opprettet ved hjelp av anordningene 13 for tilkopling/avkopling av datasignaler. The remote control of the respective drive devices can in this connection be carried out via the communication connection which is created with the help of the devices 13 for connecting/disconnecting data signals.

Alle enhetene i det universelle kraftforsyningssystem 1, om nødvendig inn-befattende den elektriske forbruker 2, er innrettet for å bli styrt og/eller regulert av en styringsenhet 14.1 tillegg kan en relevant overvåkning av parameterne til de forskjellige enheter utføres. På fig. 1 er styringsenheten 14 koplet til de forskjellige enheter via forbindelser som er representert med brutte linjer, for å styre, regulere og/eller overvåke enhetene. All the units in the universal power supply system 1, if necessary including the electrical consumer 2, are designed to be controlled and/or regulated by a control unit 14.1 in addition, a relevant monitoring of the parameters of the various units can be carried out. In fig. 1, the control unit 14 is connected to the various units via connections which are represented by broken lines, in order to control, regulate and/or monitor the units.

De svitsjede kraftforsyninger 7 og tilbakeløpsomformerne 8 kan henholdsvis være implementert som integrerte kretser. Disse integrerte kretsene omfatter direkte respektive ytterligere enheter, slik som nyttefaktor-styringsanordninger 16, underspenningsdeteksjonsanordninger 17 eller overspenningsovervåkningsanord-ninger 18. For å forenkle det hele er disse ytterligere enheter bare vist på fig. 1 i tilfelle med én tilbakeløpsomformer 8, vanligvis er de imidlertid komponentdeler i alle tilbakeløpsomformere. The switched power supplies 7 and the flyback converters 8 can respectively be implemented as integrated circuits. These integrated circuits directly comprise respective further units, such as utility factor control devices 16, undervoltage detection devices 17 or overvoltage monitoring devices 18. To simplify the whole, these further units are only shown in fig. 1 in the case of one reflux converter 8, but usually they are component parts in all reflux converters.

Fig 2 viser en forenklet utførelsesform av en tilbakeløpsomformer 8 som virker som en svitsjet kraftforsyning 7. Tilbakeløpsomformeren 8 omfatter en sen-der 19 som består av en primærvikling koplet til inngangsklemmen 23, og en se-kundærvikling koplet til utgangsklemmen 22. En effektiv magnetisk kopling finnes mellom disse to viklingene. Transformatoren virker som et magnetisk energilager. Når en koplingsanordning 9 i form av en krafttransistor 10 blir lukket, vil strømmen øke i primærviklingen og energi vil bli lagret i senderen. Når koplingsanordningen 9 åpnes, vil den lagrede energi på sekundærviklingssiden bli levert til en glatte-kondensator 21 via en diode 20. Den lagrede energi blir matet i form av en vekselspenning via utgangsklemmen 22. De respektive tilbakeløpsomformere har sine utgangsklemmer 22 seriekoplet til kabelforbindelsen 4, jevnfør fig. 1. Fig 2 shows a simplified embodiment of a flyback converter 8 which acts as a switched power supply 7. The flyback converter 8 comprises a transmitter 19 which consists of a primary winding connected to the input terminal 23, and a secondary winding connected to the output terminal 22. An efficient magnetic coupling is found between these two windings. The transformer acts as a magnetic energy store. When a switching device 9 in the form of a power transistor 10 is closed, the current will increase in the primary winding and energy will be stored in the transmitter. When the switching device 9 is opened, the stored energy on the secondary winding side will be delivered to a smooth capacitor 21 via a diode 20. The stored energy is fed in the form of an alternating voltage via the output terminal 22. The respective flyback converters have their output terminals 22 connected in series to the cable connection 4, compare fig. 1.

For å aktivere eller taktstyre koplingsanordningen 9, dvs. krafttransistoren 10, er en pulsbreddemodulasjonsanordning 11 anordnet i tilbakeløpsomformeren 8. Pulsbreddemodulasjonsanordningen 11 frembringer et pulsbredde-modulert signal hvis klokkesyklusforhold blir styrt i overensstemmelse med den målte aktuelle verdi av utgangsspenningen. For dette formål blir den aktuelle verdi målt ved utgangen fra tilbakeløpsomformeren subtrahert fra den respektive ønskede verdi, og denne differansen blir levert, via en styringsforsterker for tilbakeløpsomforme-ren, til pulsbreddemodulasjonsanordningen 11. Her blir utgangsspenningen til styringsforsterkeren sammenlignet med en sagtannspenning hvis frekvens bestem-mer klokkefrekvensen til tilbakeløpsomformeren. Avhengig av resultatet av denne sammenligningen, blir koplingsanordningen 9 slått på eller av og den ønskede utgangsspenning blir justert på denne måten. In order to activate or clock the switching device 9, i.e. the power transistor 10, a pulse width modulation device 11 is arranged in the flyback converter 8. The pulse width modulation device 11 produces a pulse width modulated signal whose clock cycle ratio is controlled in accordance with the measured current value of the output voltage. For this purpose, the current value measured at the output of the flyback converter is subtracted from the respective desired value, and this difference is delivered, via a control amplifier for the flyback converter, to the pulse width modulation device 11. Here, the output voltage of the control amplifier is compared with a sawtooth voltage whose frequency determines more the clock frequency of the flyback converter. Depending on the result of this comparison, the switching device 9 is switched on or off and the desired output voltage is adjusted in this way.

For å styre tilbakeløpsomformeren finnes det integrerte kretser som kan være tilknyttet eller innbefattet i hver av tilbakeløpsomformerne 8 i henhold til fig. 1. Disse integrerte kretsene omfatter også beskyttelseskretsene, f.eks. underspenningsdeteksjonsanordninger, overstrømsovervåkningsanordninger, mykstart-anordninger og lignende, som blir regulert for drift av tilbakeløpsomformeren. In order to control the reverse flow converter, there are integrated circuits which can be connected to or included in each of the reverse flow converters 8 according to fig. 1. These integrated circuits also include the protection circuits, e.g. undervoltage detection devices, overcurrent monitoring devices, soft start devices and the like, which are regulated for operation of the flyback converter.

Claims (19)

1. Universelt kraftforsyningssystem (1) for minst en elektrisk forbruker (2), omfattende: minst én vekselspenningskilde (3) og en kabelforbindelse (4) som forbinder vekselspenningskilden (3) med den elektriske forbruker (2), idet vekselspenningskilden (3) er tilknyttet en vekselspennings/likespennings-omformer (5) for omforming av vekselspenning til likespenning, hvor likespenningen er innrettet for å bli overført til den elektriske forbruker (2) via kabelforbindelsen (4), der det universelle kraftforsyningssystemet (1) er karakterisert ved atvekselspennings/likespennings-omformeren (5)omfatter et antall vekselspennings/likespennings-omformerkomponenter (6) som på inngangssiden er koplet i parallell med vekselspenningskilden (3) og som på utgangssiden er koplet i serie til den elektriske forbruker (2), spenningsutgangene for nevnte antall av vekselspennings/likespennings-omformerkomponenter (6) er styrt uavhengig av hverandre.1. Universal power supply system (1) for at least one electrical consumer (2), comprising: at least one alternating voltage source (3) and a cable connection (4) connecting the alternating voltage source (3) to the electrical consumer (2), the alternating voltage source (3) being associated with an alternating current/direct current converter (5) for converting alternating current into direct current, where the direct current is arranged to be transferred to the electrical consumer (2) via the cable connection (4), where the universal power supply system (1) is characterized by the AC/DC converter (5) comprises a number of AC/DC converter components (6) which on the input side are connected in parallel with the AC voltage source (3) and which on the output side are connected in series to the electrical consumer (2), the voltage outputs for said number of AC/DC converter components (6) are controlled independently of each other. 2. System ifølge krav 1, karakterisert ved at vekselspenningskilden (3) er en trefaset kraftkilde på 380 volt.2. System according to claim 1, characterized in that the alternating voltage source (3) is a three-phase power source of 380 volts. 3. System ifølge krav 1 eller 2, karakterisert ved atvekselspennings/likespennings-omformerkomponenten (6) er implementert som en svitsjet kraftforsyning (7).3. System according to claim 1 or 2, characterized by the AC/DC converter component (6) is implemented as a switched power supply (7). 4. System ifølge et av de foregående krav, karakterisert ved at den svitsjede kraftforsyning (7) blir taktstyrt på inngangssiden til den svitsjede kraftforsyning.4. System according to one of the preceding claims, characterized in that the switched power supply (7) is clocked on the input side of the switched power supply. 5. System ifølge et av de foregående krav, karakterisert ved at den svitsjede kraftforsyning (7) er implementert som en tilbakeløpsomformer (8).5. System according to one of the preceding claims, characterized in that the switched power supply (7) is implemented as a flyback converter (8). 6. System ifølge et av de foregående krav, karakterisert ved at tilbakeløpsomformeren (8) som er implementert som en taktstyrt koplingsanordning (9), omfatter minst én transistor, spesielt en kraft-MOSFET eller en kraft-BIMOSFET.6. System according to one of the preceding claims, characterized in that the flyback converter (8) which is implemented as a clock-controlled switching device (9), comprises at least one transistor, in particular a power MOSFET or a power BIMOSFET. 7. System ifølge et av de foregående krav, karakterisert ved at koplingsanordningen (9) blir aktivert av en pulsmodulasjonsanordning (11), spesielt en pulsbreddemodulasjonsanordning, som er innrettet for å bli styrt eller regulert.7. System according to one of the preceding claims, characterized in that the coupling device (9) is activated by a pulse modulation device (11), in particular a pulse width modulation device, which is designed to be controlled or regulated. 8. System ifølge et av de foregående krav, karakterisert ved at utgangsspenningen fra den svitsjede kraftforsyning (7) kan justeres til en hvilken som helst verdi opp til en grenseverdi under gjennomslagsspenningen til en komponent i den svitsjede kraftforsyning (7), spesielt for koplingsanordningen (9).8. System according to one of the preceding claims, characterized in that the output voltage from the switched power supply (7) can be adjusted to any value up to a limit value below the breakdown voltage of a component in the switched power supply (7), especially for the switching device (9). 9. System ifølge et av de foregående krav, karakterisert ved at tilbakeløpsomformeren (8) er innrettet for å levere et antall galvanisk atskilte, styrte utgangsspenninger.9. System according to one of the preceding claims, characterized in that the flyback converter (8) is designed to deliver a number of galvanically separated, controlled output voltages. 10. System ifølge et av de foregående krav, karakterisert ved at klokkefrekvensen til koplingsanordningen (9) er i kilohertzområdet, og spesielt i hundre-kilohertz-området.10. System according to one of the preceding claims, characterized in that the clock frequency of the switching device (9) is in the kilohertz range, and in particular in the hundred kilohertz range. 11. System ifølge et av de foregående krav, karakterisert ved atvekselspennings/likespennings-omformerkomponentene (6) er anordnet i avstand fra hverandre slik at vekselspennings/likespennings-omformeren ikke behøver kjølekomponenter.11. System according to one of the preceding claims, characterized in that the AC/DC converter components (6) are arranged at a distance from each other so that the AC/DC converter does not need cooling components. 12. System ifølge et av de foregående krav, karakterisert ved at en filteranordning (12) er anordnet mellom vekselspennings/likespennings-omformeren (5) og den elektriske forbruker (2).12. System according to one of the preceding claims, characterized in that a filter device (12) is arranged between the AC/DC converter (5) and the electrical consumer (2). 13. System ifølge et av de foregående krav, karakterisert ved en anordning (13) for kopling av datasignaler til/fra kabelforbindelsen (4), hvor anordningen for kopling av datasignaler til/fra er lokali-sert mellom filteranordningen (12) og den elektriske forbruker (2).13. System according to one of the preceding claims, characterized by a device (13) for connecting data signals to/from the cable connection (4), where the device for connecting data signals to/from is located between the filter device (12) and the electrical consumer (2). 14. System ifølge et av de foregående krav, karakterisert ved en styringsenhet (14) tilknyttet minst én av en gruppe kraftforsyningssystem-komponenter, bestående av vekselspenningskilden (3), vekselspennings/likespennings-omformeren (5), og anordningen (13) for å kople datasignaler til/fra.14. System according to one of the preceding claims, characterized by a control unit (14) associated with at least one of a group of power supply system components, consisting of the alternating voltage source (3), the AC/DC converter (5), and the device (13) for switching data signals on/off. 15. System ifølge et av de foregående krav, karakterisert ved at kommunikasjon mellom de respektive enheter (3, 5, 6, 7, 8, 9, 10,11,12,13, 2) i kraftforsyningssystemet (1) kan opprettes ved hjelp av styringsenheten.15. System according to one of the preceding claims, characterized in that communication between the respective units (3, 5, 6, 7, 8, 9, 10,11,12,13, 2) in the power supply system (1) can be established using the control unit. 16. System ifølge et av de foregående krav, karakterisert ved at kabelforbindelsen (4) omfatter minst én koaksialkabel (15).16. System according to one of the preceding claims, characterized in that the cable connection (4) comprises at least one coaxial cable (15). 17. System ifølge et av de foregående krav, karakterisert ved at hver enkelt vekselspennings/likespennings-omformerkomponent (6) er innrettet for å bli styrt eller regulert separat med hensyn til sin utgangsspenning.17. System according to one of the preceding claims, characterized in that each individual AC/DC converter component (6) is arranged to be controlled or regulated separately with regard to its output voltage. 18. System ifølge et av de foregående krav, karakterisert ved atvekselspennings/likespennings-omformerkomponenten (6) omfatter en nyttefaktor-styringsanordning (16).18. System according to one of the preceding claims, characterized by the alternating voltage/direct voltage converter component (6) comprises a utility factor control device (16). 19. System ifølge et av de foregående krav, karakterisert ved atvekselspennings/likespennings-omformerkomponenten (6) omfatter en underspenningsdeteksjonsanordning og/eller en overspenningsovervåkningsanordning.19. System according to one of the preceding claims, characterized by the alternating voltage/direct voltage converter component (6) comprises an undervoltage detection device and/or an overvoltage monitoring device.
NO20041129A 2001-09-19 2004-03-18 Universal power supply system NO328254B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE20115471U DE20115471U1 (en) 2001-09-19 2001-09-19 Universal energy supply system
PCT/EP2002/010471 WO2003026112A2 (en) 2001-09-19 2002-09-18 Universal power supply system

Publications (2)

Publication Number Publication Date
NO20041129L NO20041129L (en) 2004-05-18
NO328254B1 true NO328254B1 (en) 2010-01-18

Family

ID=7961907

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20041129A NO328254B1 (en) 2001-09-19 2004-03-18 Universal power supply system

Country Status (7)

Country Link
US (2) US8106536B2 (en)
AU (1) AU2002350450A1 (en)
BR (1) BRPI0212663B1 (en)
DE (1) DE20115471U1 (en)
GB (3) GB2420233B (en)
NO (1) NO328254B1 (en)
WO (1) WO2003026112A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20115471U1 (en) 2001-09-19 2003-02-20 Biester Klaus Universal energy supply system
US7615893B2 (en) * 2000-05-11 2009-11-10 Cameron International Corporation Electric control and supply system
DE20115473U1 (en) * 2001-09-19 2003-02-20 Biester Klaus Universal energy supply system
DE20018560U1 (en) * 2000-10-30 2002-03-21 Cameron Gmbh Control and supply system
DE20115474U1 (en) * 2001-09-19 2003-02-20 Biester Klaus DC converter device
DE20115475U1 (en) * 2001-09-19 2003-02-20 Biester Klaus DC converter device
US7020271B2 (en) * 2003-06-12 2006-03-28 Barbara Isabel Hummel Ring control device
NO332768B1 (en) * 2009-12-16 2013-01-14 Smartmotor As System for operation of elongated electric machines
US8373307B2 (en) 2011-05-26 2013-02-12 General Electric Company Methods and systems for direct current power transmission
FR2982092B1 (en) * 2011-11-02 2015-01-02 Valeo Systemes De Controle Moteur POWER MODULE AND ELECTRIC DEVICE FOR POWER SUPPLY AND CHARGING COMBINED WITH ACCUMULATOR AND MOTOR
US9143029B2 (en) 2011-12-15 2015-09-22 General Electric Company System and method for power distribution
TWI581668B (en) * 2011-12-20 2017-05-01 Panasonic Corp Microwave heating device
CN105006472B (en) * 2015-07-28 2018-01-23 许继电气股份有限公司 Compression joint type power model valve section
WO2018003152A1 (en) * 2016-06-27 2018-01-04 シャープ株式会社 High-frequency heating device
GB2599448A (en) * 2020-10-05 2022-04-06 Illinois Tool Works Material testing system

Family Cites Families (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE492021C (en) 1926-04-13 1930-02-15 Amalgamated Carburetters Ltd Actuating device for Bowden cables
US1658807A (en) 1926-05-27 1928-02-14 Titanium Alloy Mfg Co Process of making zirconium compounds
US1979425A (en) * 1931-08-12 1934-11-06 Gen Ind Co Tandem motor mechanism
US2119534A (en) 1936-09-11 1938-06-07 Gerber Lee Valve
US2387800A (en) * 1944-07-19 1945-10-30 Gen Motors Corp Actuator
GB625580A (en) 1945-10-25 1949-06-30 Charles Somville Automatic regulation device for transmission mechanisms, specially for brake control
US2645450A (en) 1948-11-26 1953-07-14 C B Hunt & Son Inc Fluid valve means
US2953344A (en) 1956-11-02 1960-09-20 John R Yancey Valve actuating mechanism
US3089509A (en) 1959-03-04 1963-05-14 Int Basic Economy Corp Three-way valve and sleeve seat
GB1001629A (en) 1963-03-18 1965-08-18 Rotork Eng Co Ltd Improvements in or relating to actuating mechanisms, more particularly for fluid flow control valves
FR1390757A (en) 1963-04-30 1965-02-26 Sulzer Ag Electric servo-motor valve
DE1199088B (en) 1963-05-10 1965-08-19 Doering G M B H Actuator for the spindle of gate valves, flap valves or the like.
US3353594A (en) * 1963-10-14 1967-11-21 Hydril Co Underwater control system
USB327573I5 (en) * 1964-04-15
AT253887B (en) 1965-05-07 1967-04-25 Hoerbiger Ventilwerke Ag Control slide for pneumatic and hydraulic systems
US3324741A (en) * 1965-06-15 1967-06-13 Acf Ind Inc Valve operator
DE1525323A1 (en) 1966-03-08 1969-09-18 Leipziger Buchbindereimaschine Release device for handwheels
US3452776A (en) 1967-07-14 1969-07-01 Baker Oil Tools Inc Pressure control valve
US3865142A (en) 1970-05-19 1975-02-11 Fmc Corp Electric remote control system for underwater wells
US3738183A (en) 1971-02-01 1973-06-12 Philadelphia Gear Corp Combination drive for valve operator
US3782653A (en) 1971-03-20 1974-01-01 Masson Scott Thrissell Eng Ltd Web tension control apparatus
US3771918A (en) 1972-07-24 1973-11-13 A Winter Linear positive displacement pump with rotary to reciprocating drive
US3818307A (en) 1972-07-31 1974-06-18 Bell Telephone Labor Inc Serially-connected converters having multiple regulation modes for use in supplying serially-connected loads on long lines
US3887898A (en) * 1973-08-20 1975-06-03 Texaco Inc Well logging system using 3 phase AC power supply
FR2309748A1 (en) 1974-08-14 1976-11-26 Coureau Jean Claude Electrically:operated sliding mechanism - has heater causing expansion of fluid in variable:volume chamber
US3980808A (en) * 1974-09-19 1976-09-14 The Furukawa Electric Co., Ltd. Electric cable
CH592979A5 (en) 1976-06-04 1977-11-15 Bbc Brown Boveri & Cie
US4124884A (en) * 1977-03-07 1978-11-07 Bell Telephone Laboratories, Incorporated DC to DC converter with regulated input impedance
US4062057A (en) * 1977-04-15 1977-12-06 The United States Of America As Represented By The Secretary Of The Navy Regulated power supply having a series arrangement of inverters
US4179944A (en) 1977-06-27 1979-12-25 United Technologies Corporation Fail safe redundant actuator
CH624742A5 (en) 1977-07-15 1981-08-14 Sulzer Ag
DE2754624A1 (en) 1977-12-08 1979-06-13 Maschf Augsburg Nuernberg Ag DEVICE FOR THE CONTROLLABLE DRIVE OF VALVES
US4290101A (en) * 1977-12-29 1981-09-15 Burroughs Corporation N Phase digital inverter
DD145982B1 (en) 1979-10-01 1982-09-29 Lothar Friedrich CIRCUIT ARRANGEMENT FOR POWER SUPPLY OF THE CONTROL ELECTRONICS OF FORCED COMBUSED CIRCUIT BREAKERS
US4378848A (en) 1979-10-02 1983-04-05 Fmc Corporation Method and apparatus for controlling subsea well template production systems
DE2943979C2 (en) 1979-10-31 1986-02-27 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Arrangement for the transmission of measured values from several measuring points connected in series along an elongated underwater structure to a central station
US4309734A (en) 1979-11-05 1982-01-05 Trw Inc. Methods and apparatus for limiting electrical current to a subsea petroleum installation
CA1139366A (en) * 1980-05-30 1983-01-11 Jay E. Beattie Direct current power supply
FR2484162A1 (en) * 1980-06-05 1981-12-11 Cables De Lyon Geoffroy Delore DEVICE FOR SEALING A COAXIAL SUBMARINE CABLE TO A REPEATER, METHOD FOR MANUFACTURING THE SAME, AND MOLD FOR USE THEREIN
US4346728A (en) 1980-07-28 1982-08-31 Anchor/Darling Industries, Inc. Automated dual mode valve actuator
DE3034865A1 (en) * 1980-09-16 1982-04-29 Robert Bosch Gmbh, 7000 Stuttgart PRESSURE CONTROL VALVE
EP0050466A1 (en) 1980-10-22 1982-04-28 The Duriron Company, Inc. Rotary valve actuator
US4565213A (en) 1980-10-28 1986-01-21 Bernhardt & Frederick Co., Inc. Ball valve device with hold-open tube
US4350322A (en) 1981-08-31 1982-09-21 Grove Truseal Valve Company High torque plug valve actuator
DD200941A1 (en) 1981-09-08 1983-06-22 Erwin Asche LOCKING DEVICE FOR CAMERA CARRIER
JPS5883584A (en) * 1981-11-11 1983-05-19 Matsushita Electric Works Ltd Power source device
US4436280A (en) 1982-09-30 1984-03-13 Daniel Industries, Inc. Valve actuator mechanism for lift-turn type valves
DE3303248A1 (en) 1983-02-01 1984-08-16 Robert Bosch Gmbh, 7000 Stuttgart Semiconductor circuit corresponding to a higher-power Z diode
US4500832A (en) * 1983-02-28 1985-02-19 Codman & Shurtleff, Inc. Electrical transformer
DE3307554C2 (en) * 1983-03-03 1985-09-26 Mannesmann Rexroth GmbH, 8770 Lohr Electrically adjustable pressure reducing valve
DE3316258A1 (en) 1983-05-04 1984-11-08 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Electrochemical pressure transducer
DE3321936A1 (en) * 1983-06-16 1984-12-20 Etablissements De Backer, N.V.-S.A.,, Zaventem COAXIAL CABLE PLUG
DE3417455C2 (en) 1984-05-11 1986-07-03 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Device for inductive energy and data transmission
DE3424041A1 (en) 1984-06-29 1986-01-02 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement for current limiting in a DC/DC converter
US5230033A (en) * 1984-11-01 1993-07-20 Optelecom, Inc. Subminiature fiber optic submarine cable and method of making
US4788448A (en) * 1984-12-06 1988-11-29 Ferranti Subsea Systems, Ltd. Power transfer of direct current with inductive couplings
US4639714A (en) * 1984-12-21 1987-01-27 Ferranti Subsea Systems, Ltd. Combined power and control signal transmission system
SU1270293A1 (en) 1985-03-12 1986-11-15 Волгоградский завод буровой техники Control system for blowout-preventing equipment
US4617501A (en) * 1985-09-19 1986-10-14 John D. Gieser Control and safety system for electrically powered submersible tools and lights
US4771982A (en) * 1986-05-14 1988-09-20 Chevron Research Company Slidable electric valve device having a spring
US4745815A (en) * 1986-12-08 1988-05-24 Sundstrand Corporation Non-jamming screw actuator system
US4725039A (en) 1987-03-17 1988-02-16 Clevite Industries, Inc. Self-pressure regulating proportional valve
EP0303801B2 (en) 1987-08-10 1997-02-12 Siemens Aktiengesellschaft Valve
US4814965A (en) * 1987-09-30 1989-03-21 Spectra Physics High power flyback, variable output voltage, variable input voltage, decoupled power supply
US4814963A (en) * 1987-09-30 1989-03-21 Spectra Physics Modular power supply with variable input voltage and output voltage flyback power modules
GB8805744D0 (en) * 1988-03-10 1988-04-07 British Petroleum Co Plc Mechanical fail-safe release actuator system
US4844554A (en) 1988-05-26 1989-07-04 General Signal Corporation Empty-load valve device
DE3832304A1 (en) 1988-09-20 1990-03-29 Haberecht Helga Actuating drive
EP0384607B1 (en) 1989-02-22 1995-06-21 Cooper Cameron Corporation Actuated gate valve with manual override
EP0390184B1 (en) * 1989-03-31 1993-06-02 Kabushiki Kaisha Toshiba Improvements in variable-voltage & variable-frequency power converter
US6104707A (en) 1989-04-28 2000-08-15 Videocom, Inc. Transformer coupler for communication over various lines
JPH0395898A (en) * 1989-06-30 1991-04-22 Toshiba Corp X-ray generating device
EP0409226A3 (en) * 1989-07-21 1993-01-13 Hitachi, Ltd. Power supply control system
US5168422A (en) * 1989-09-08 1992-12-01 Allanson, Division Of Jannock Limited Self-enclosed neon transformer
DE9005411U1 (en) 1989-11-24 1990-08-30 Thomas Technik Kg Gesellschaft Fuer Magnet- Und Verfahrenstechnik, 5243 Herdorf, De
US5038622A (en) 1989-12-22 1991-08-13 Tijmann Willem B Strain gage assembly for measuring excessive tensile strain of a flexible elongated member, such as a steel structural cable, or an electrical transmission cable, or a glass fiber optic communication cable, which may slightly twist under tensile strain
SU1709511A1 (en) 1989-12-26 1992-01-30 Центральное научно-производственное объединение "Ленинец" High voltage switch
US5195721A (en) * 1990-05-04 1993-03-23 Ava International Corporation Fail safe valve actuator
GB2266943B (en) 1990-05-04 1994-05-04 Ava Int Corp Fail safe valve actuator
FR2663169A1 (en) * 1990-06-08 1991-12-13 Alcatel Espace DEVICE FOR REGULATING A PARAMETER BY A BIDIRECTIONAL CURRENT STRUCTURE.
GB9014003D0 (en) * 1990-06-22 1990-08-15 British Aerospace Data transmission apparatus
US5055991A (en) * 1990-10-12 1991-10-08 Compaq Computer Corporation Lossless snubber
FR2671677A1 (en) * 1991-01-11 1992-07-17 Rotelec Sa METHOD FOR PRODUCING AN ELECTROMAGNETIC INDUCTOR
US5301096A (en) * 1991-09-27 1994-04-05 Electric Power Research Institute Submersible contactless power delivery system
US5418707A (en) * 1992-04-13 1995-05-23 The United States Of America As Represented By The United States Department Of Energy High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs
JP2829189B2 (en) * 1992-04-15 1998-11-25 富士通株式会社 A power supply monitoring support system for submarine cable communication systems.
US5311419A (en) * 1992-08-17 1994-05-10 Sundstrand Corporation Polyphase AC/DC converter
US5982645A (en) * 1992-08-25 1999-11-09 Square D Company Power conversion and distribution system
DK0666442T3 (en) 1992-12-25 2002-07-15 Toto Ltd Mixer battery for mixing hot water with cold water
BR9300603A (en) * 1993-02-17 1994-10-04 Petroleo Brasileiro Sa Integrated system for power and signal transmission
DE4313751A1 (en) 1993-04-27 1994-11-03 Vargus Ltd Tool Manufacturing Actuator for a rotatable closure piece of a valve
EP0626670A1 (en) 1993-05-28 1994-11-30 Koninklijke Philips Electronics N.V. Selection driver comprising integrated driver circuits for a multi-beam flat display device
US5433245A (en) 1993-08-16 1995-07-18 Westinghouse Electric Corporation Online valve diagnostic monitoring system having diagnostic couplings
US5549137A (en) * 1993-08-25 1996-08-27 Rosemount Inc. Valve positioner with pressure feedback, dynamic correction and diagnostics
US5563780A (en) * 1993-12-08 1996-10-08 International Power Systems, Inc. Power conversion array applying small sequentially switched converters in parallel
DE4344709C2 (en) 1993-12-27 1995-11-09 Daimler Benz Ag Process for converting DC or AC voltages of different sizes into an arbitrarily specified voltage
JP2833460B2 (en) 1993-12-27 1998-12-09 株式会社日立製作所 Power system
WO1995020836A1 (en) 1994-01-26 1995-08-03 Onan Corporation Generator power system and method
DE4414677A1 (en) 1994-04-27 1995-11-02 Pintsch Bamag Ag High voltage DC-DC converter
US5649451A (en) 1994-06-30 1997-07-22 Ruland; Frederick W. Compact mechanism for creating simultaneous rotary and linear motion
DE4447395A1 (en) 1994-12-23 1996-06-27 Mannesmann Ag Servo-drive with two brake motors for controlling valves, stop gates etc
ES2175080T3 (en) * 1995-03-09 2002-11-16 Rca Thomson Licensing Corp POWER SUPPLY IN SWITCHED MODE WITH SYNCHRON PRECONVERTER.
US5629844A (en) * 1995-04-05 1997-05-13 International Power Group, Inc. High voltage power supply having multiple high voltage generators
US5508903A (en) * 1995-04-21 1996-04-16 Alexndrov; Felix Interleaved DC to DC flyback converters with reduced current and voltage stresses
FR2735624B1 (en) * 1995-06-16 1997-09-05 Smh Management Services Ag CHARGER FOR ELECTRIC ENERGY ACCUMULATOR
DE19528081A1 (en) 1995-07-31 1997-02-06 Wolfgang Dr Ing Nestler Pivot drive for converting original linear lift movement into rotary movement with limited rotary angle - has second axis with angular clearance at right angle and crossways to lift axis
DE19548593A1 (en) 1995-12-23 1997-07-10 Behr Gmbh & Co Mechanism for conversion of rotation to translation and vice-versa
CA2197260C (en) * 1996-02-15 2006-04-18 Michael A. Carmody Electro hydraulic downhole control device
US5811889A (en) 1996-03-11 1998-09-22 Intel Corporation Method and apparatus for redundancy circuits using power fets
GB9607381D0 (en) * 1996-04-04 1996-06-12 Council Cent Lab Res Councils Dc power converter
DE19614627A1 (en) 1996-04-13 1997-10-16 Abb Patent Gmbh High voltage converter system
US5923550A (en) * 1996-05-01 1999-07-13 General Electric Company Interference reduction by harmonic phase shift in multiple PWM rectifier operation
US5731969A (en) * 1996-07-29 1998-03-24 Small; Kenneth T. Three-phase AC power converter with power factor correction
DE19639476C1 (en) 1996-09-26 1998-05-20 Wolfgang Heyng Manually-operated rotary control grip e.g. for motorcycle or snowmobile
US5984260A (en) * 1996-10-15 1999-11-16 Baker Hughes Incorporated Electrically driven actuator with failsafe feature
DK151096A (en) * 1996-12-23 1998-07-17 Linak As Linear actuator
US5744877A (en) 1997-01-13 1998-04-28 Pes, Inc. Downhole power transmission system
US5983743A (en) * 1997-04-03 1999-11-16 Dresser Industries, Inc. Actuator assembly
US6142171A (en) 1997-04-07 2000-11-07 Hancock; Leonard H. Valve adapter
DE19714552A1 (en) 1997-04-09 1998-10-15 Knick Elektronische Mesgeraete Circuit arrangement for multiplying a current signal
US5930340A (en) * 1997-07-07 1999-07-27 Advanced Micro Devices Device and method for isolating voice and data signals on a common carrier
JPH11135322A (en) * 1997-07-31 1999-05-21 Fev Motorentechnik Gmbh & Co Kg Method for operating electromagnetic actuator taking armature motion into consideration
US6073907A (en) * 1997-11-07 2000-06-13 Erie Manufacturing Company Removable and interchangeable valve actuator system
DE19750041C1 (en) 1997-11-12 1999-01-21 Sma Regelsysteme Gmbh Semiconductor DC voltage regulator
GB2332220B (en) 1997-12-10 2000-03-15 Abb Seatec Ltd An underwater hydrocarbon production system
DE19800105A1 (en) * 1998-01-05 1999-07-15 Reinhard Kalfhaus Current-voltage converter and associated control loop
JP3361047B2 (en) * 1998-01-30 2003-01-07 株式会社東芝 Power supply for vehicles
DE19805510A1 (en) 1998-02-11 1999-08-12 Bayerische Motoren Werke Ag Actuator for a vehicle transmission
US6356384B1 (en) * 1998-03-24 2002-03-12 Xtera Communications Inc. Broadband amplifier and communication system
US6007047A (en) 1998-06-05 1999-12-28 Phipps; Jack M. Rotary actuator for stem valves
US6069802A (en) * 1998-07-31 2000-05-30 Priegnitz; Robert A. Transformer isolated driver and isolated forward converter
US6031743A (en) 1998-10-28 2000-02-29 International Business Machines Corporation Fault isolation in a redundant power converter
US6032924A (en) * 1999-01-22 2000-03-07 Sparco Inc. Motorized valve actuating device
DE69933004D1 (en) * 1999-01-27 2006-10-12 Cooper Cameron Corp Electric actuator
DE29901322U1 (en) * 1999-01-28 1999-07-08 Melcher Ag Voltage converter
FR2789439B1 (en) * 1999-02-05 2001-04-20 Schlumberger Services Petrol METHOD FOR SAVING A TOOL TRAIN INSTALLED IN AN OIL WELL AND CORRESPONDING TRANSMISSION ASSEMBLY
US6152167A (en) * 1999-02-11 2000-11-28 Cooper Cameron Valve actuator with emergency shutdown feature
DE19909712B4 (en) 1999-03-05 2009-04-23 Linde Material Handling Gmbh Control valve device for a hydraulic consumer
DE29904620U1 (en) * 1999-03-12 2000-08-03 Electrowatt Tech Innovat Corp Drive device for an actuator
US6529120B1 (en) 1999-03-25 2003-03-04 Intech 21, Inc. System for communicating over a transmission line
JP3357627B2 (en) * 1999-04-09 2002-12-16 株式会社三社電機製作所 Power supply for arc processing equipment
ES2221402T3 (en) 1999-06-29 2004-12-16 Ampo, S. Coop. VALVE FOR ALUMINUM OBTAINING FACILITIES.
US6154381A (en) * 1999-06-30 2000-11-28 General Motors Corporation High efficiency power system with plural parallel DC/DC converters
US6370039B1 (en) * 1999-11-19 2002-04-09 Iwatt Isolated power converter having primary feedback control
US6278624B1 (en) * 1999-12-01 2001-08-21 Hewlett-Packard Company High availability DC power supply with isolated inputs, diode-or-connected outputs, and power factor correction
US6659200B1 (en) 1999-12-20 2003-12-09 Halliburton Energy Services, Inc. Actuator assembly and method for actuating downhole assembly
DE19963105A1 (en) 1999-12-24 2001-06-28 Daimler Chrysler Ag Driving a bridging switch for current converter circuit with partial current converter systems e.g. for rail vehicles, involves connecting or decoupling partial current converter systems for certain operating situations
AU2000244244A1 (en) 2000-01-10 2001-07-24 Bartronics Inc. Method and apparatus for stabilization and minimization of losses of a series connection of dc/dc-converters connected to the output-side partial voltages of a three-level pwm rectifier system
JP2001193896A (en) 2000-01-12 2001-07-17 Mikuni Adec Corp Lubricating oil feeder
US6409145B1 (en) * 2000-02-28 2002-06-25 Delphi Technologies, Inc. Plunger assembly having a preset spring force pre-load
US6329726B1 (en) 2000-03-03 2001-12-11 Broadband Telcom Power, Inc. Proportional distribution of power from a plurality of power sources
WO2001073257A1 (en) * 2000-03-24 2001-10-04 Fmc Corporation Tubing head seal assembly
US6998962B2 (en) * 2000-04-14 2006-02-14 Current Technologies, Llc Power line communication apparatus and method of using the same
US6965302B2 (en) * 2000-04-14 2005-11-15 Current Technologies, Llc Power line communication system and method of using the same
NO312080B1 (en) 2000-04-28 2002-03-11 Aker Eng As Electric power distribution system
US7615893B2 (en) * 2000-05-11 2009-11-10 Cameron International Corporation Electric control and supply system
DE20115471U1 (en) 2001-09-19 2003-02-20 Biester Klaus Universal energy supply system
DE20115474U1 (en) 2001-09-19 2003-02-20 Biester Klaus DC converter device
NO312376B1 (en) * 2000-05-16 2002-04-29 Kongsberg Offshore As Method and apparatus for controlling valves of an underwater installation
US6559385B1 (en) * 2000-07-14 2003-05-06 3M Innovative Properties Company Stranded cable and method of making
DE10038814A1 (en) * 2000-08-09 2002-02-21 Abb Research Ltd High voltage direct current transformer
US6763889B2 (en) * 2000-08-14 2004-07-20 Schlumberger Technology Corporation Subsea intervention
US6741162B1 (en) 2000-10-04 2004-05-25 Conexant Systems, Inc. Power line networking apparatus and method
US6937923B1 (en) 2000-11-01 2005-08-30 Weatherford/Lamb, Inc. Controller system for downhole applications
US6269015B1 (en) * 2000-11-08 2001-07-31 Sansha Electric Manufacturing Company, Limited Power supply apparatus for ARC-utilizing apparatuses
US6438005B1 (en) 2000-11-22 2002-08-20 Linear Technology Corporation High-efficiency, low noise, inductorless step-down DC/DC converter
US6385057B1 (en) * 2001-01-31 2002-05-07 Bartronics, Inc. Power conversion system and method of power conversion
DE10114075B4 (en) 2001-03-22 2005-08-18 Semikron Elektronik Gmbh Power converter circuitry for dynamically variable power output generators
JP4200270B2 (en) 2002-05-30 2008-12-24 パナソニック株式会社 Light amount adjustment device, lens barrel, imaging device
US7075414B2 (en) * 2003-05-13 2006-07-11 Current Technologies, Llc Device and method for communicating data signals through multiple power line conductors
JP3150068U (en) 2009-01-23 2009-04-30 村上 昭雄 Wireless wake-up oscillator.

Also Published As

Publication number Publication date
US20050013148A1 (en) 2005-01-20
DE20115471U1 (en) 2003-02-20
AU2002350450A1 (en) 2003-04-01
GB2420233A (en) 2006-05-17
GB0603309D0 (en) 2006-03-29
US8106536B2 (en) 2012-01-31
GB0603268D0 (en) 2006-03-29
BRPI0212663B1 (en) 2015-06-16
US8492927B2 (en) 2013-07-23
GB2420026B (en) 2006-06-28
GB2420233B (en) 2006-06-28
WO2003026112A3 (en) 2003-11-20
WO2003026112A2 (en) 2003-03-27
GB2396492B (en) 2006-08-09
GB0408686D0 (en) 2004-05-19
WO2003026112B1 (en) 2003-12-31
GB2420026A (en) 2006-05-10
US20120169119A1 (en) 2012-07-05
BR0212663A (en) 2004-08-24
GB2396492A (en) 2004-06-23
NO20041129L (en) 2004-05-18

Similar Documents

Publication Publication Date Title
US8492927B2 (en) Universal power supply system
NO328253B1 (en) Universal energy supply system
NO328333B1 (en) Direct current converter device.
KR101655457B1 (en) Modular stacked subsea power system architectures
US9917522B2 (en) Power control apparatus for sub-module of MMC converter
US8837178B2 (en) Method and apparatus for single-path control and monitoring of an H-bridge
NO336324B1 (en) Energy supply system for an electrical device
US10014715B2 (en) Power source conversion module, power supply apparatus and power supply method
JP5327691B2 (en) Uninterruptible power system
AU2011323988A1 (en) System and method for bidirectional DC-AC power conversion
US9479011B2 (en) Method and system for a dual conversion uninterruptible power supply
CN109417353A (en) Pressure regulation Transformer Rectifier component for DC power supply application
TWI572109B (en) Dc power supply divice
US9331565B2 (en) Switching power conversion circuit and power supply using same
US7830674B2 (en) Single-stage switching power supply
KR20110076584A (en) Remote controlled power supply system
US9031198B2 (en) Power assist for use of high power X-ray generators to operate from low power single phase supply lines
CN113572362B (en) Voltage-sharing capacitor regulator for input series structure and control method thereof
CN220291735U (en) Power supply equipment and power supply system
KR20200085492A (en) Isolated high frequency type power conversion device for reducing a circulating current

Legal Events

Date Code Title Description
CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: ONESUBSEA IP UK LTD, GB

MM1K Lapsed by not paying the annual fees