JPS62253621A - Polyimide resin - Google Patents

Polyimide resin

Info

Publication number
JPS62253621A
JPS62253621A JP9679186A JP9679186A JPS62253621A JP S62253621 A JPS62253621 A JP S62253621A JP 9679186 A JP9679186 A JP 9679186A JP 9679186 A JP9679186 A JP 9679186A JP S62253621 A JPS62253621 A JP S62253621A
Authority
JP
Japan
Prior art keywords
polyimide resin
polyimide
diamine
tetracarboxylic acid
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9679186A
Other languages
Japanese (ja)
Inventor
Shunichi Numata
俊一 沼田
Koji Fujisaki
藤崎 康二
Takae Ikeda
池田 孝栄
Takao Miwa
崇夫 三輪
Tokuyuki Kaneshiro
徳幸 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9679186A priority Critical patent/JPS62253621A/en
Publication of JPS62253621A publication Critical patent/JPS62253621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To obtain a polyimide resin suitable as semiconductor element, module base, etc., having low thermal expansion, improved hydrolytic resistance, heat resistance and processing properties of wet etching, obtained by reacting a specific diamine with a tetracarboxylic acid. CONSTITUTION:(A) A tetracarboxylic acid containing >=25mol% pyromellitic acid and (B) a diamine (e.g. p-phenylenediamine, etc.) shown by formula I, II, or III (R is alkyl; n and m are 0-4) are dissolved in a solvent (e.g. N- methylpyrrolidone, etc.) and reacted at 0-200 deg.C to give polyamic acid varnish. The varnish is processed into a film, coated, heated, dried and imidated to give the aimed resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低熱膨張性を兼備し、かつ耐加水分解性、耐
熱性等の特性が優れた。半導体素子、モジュール基板、
フレキシブルプリント基板等に有用なポリイミド樹脂に
係り、特にウェットエツチング加工性に優れたポリイミ
ド樹脂に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention has low thermal expansion and excellent properties such as hydrolysis resistance and heat resistance. Semiconductor elements, module substrates,
The present invention relates to polyimide resins useful for flexible printed circuit boards and the like, and particularly to polyimide resins with excellent wet etching processability.

〔従来の技術〕[Conventional technology]

従来のポリイミドは、ジアミノ化合物とテトラカルボン
酸またはその誘導体から得られている(例えば特公昭3
6−10999号公報)。このポリイミドは、優れた耐
熱性と機械的特性を有し、宇宙機器、半導体部品等に有
用であることが知られている。また、ある特殊な化学構
造を有するポリイミドには、従来の有機材料の常識では
考えられない非常に小さい熱膨張係数を有することが発
見されている(例えば特願昭58−139438号公報
、特願昭59−180549号公報)。
Conventional polyimides are obtained from diamino compounds and tetracarboxylic acids or derivatives thereof (for example,
6-10999). This polyimide has excellent heat resistance and mechanical properties, and is known to be useful for space equipment, semiconductor parts, and the like. Furthermore, it has been discovered that polyimide, which has a certain special chemical structure, has an extremely small coefficient of thermal expansion that would be unimaginable under the conventional wisdom of organic materials (for example, Japanese Patent Application No. 139438/1983; Publication No. 59-180549).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この種の低熱膨張性ポリイミドには、半
導体製品等に適用するのに重要なウェットエツチングに
よる加工ができないという問題があった。
However, this type of low thermal expansion polyimide has a problem in that it cannot be processed by wet etching, which is important for application to semiconductor products and the like.

一方、これらのポリイミドでも、イミド化反応が完結さ
れない状態ではウェットエツチングが可能であるが、イ
ミド化反応が完結しない状態でのウェットエツチング速
度は、イミド化率などのわずかなばらつきで大幅に変化
するため、実用上使用できないという問題がある。
On the other hand, even with these polyimides, wet etching is possible when the imidization reaction is not completed, but the wet etching speed when the imidization reaction is not completed changes significantly due to slight variations in the imidization rate, etc. Therefore, there is a problem that it cannot be used practically.

本発明はかかる問題点で解決するために、ウェットエツ
チング可能なポリイミド樹脂を提供することを目的とす
る。
SUMMARY OF THE INVENTION In order to solve these problems, it is an object of the present invention to provide a wet-etchable polyimide resin.

〔問題点を解決するための手段及び作用〕本発明者らは
、種々の化学構造を有するポリイミドのウェットエツチ
ング速度と熱膨張係数を測定し、その両者が満足する材
料の提案を行った。
[Means and effects for solving the problems] The present inventors measured the wet etching rate and thermal expansion coefficient of polyimides having various chemical structures, and proposed a material that satisfies both.

その結果、一定の組合わせのポリイミドが、上記両特性
を満足することがわかった。
As a result, it was found that a certain combination of polyimides satisfied both of the above characteristics.

本発明はこのような知見によりなされたものであり、ジ
アミン単位とテトラカルボン酸成分との共重合体からな
るポリイミド樹脂において、当該ジアミン単位が。
The present invention was made based on this knowledge, and provides a polyimide resin comprising a copolymer of a diamine unit and a tetracarboxylic acid component, wherein the diamine unit is a copolymer of a tetracarboxylic acid component.

〔Rはアルキル基、rh、mは0以上4以下の整数を示
す、〕 からなる群の少なくとも1種であり、かつ前記テトラカ
ルボン酸単位であることを特徴とするポリイミド樹脂で
ある。
[R is an alkyl group, rh and m are integers of 0 or more and 4 or less] A polyimide resin characterized by being at least one member of the group consisting of the following, and being the tetracarboxylic acid unit.

上記本発明の構成に用いられるジアミン単位としては、
例えばP−フェニレンジアミン、2.5−ジアミノトル
エン、2,6−ジアミノジュレン。
The diamine unit used in the structure of the present invention is as follows:
For example, P-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminodurene.

2.5−ジアミノ−1,3,4−)−リメチルベンゼン
、またはジアミノジュレンがある。耐熱性の点において
は、P−フェニレンジアミンが最もよ〜)。
2,5-diamino-1,3,4-)-limethylbenzene or diaminodurene. In terms of heat resistance, P-phenylenediamine is the best.

また、ピロメリット酸単位として用いられるものには、
ピロメリット酸の他にこのハロゲン化物。
In addition, those used as pyromellitic acid units include:
This halide in addition to pyromellitic acid.

無水物、エステルがある。There are anhydrides and esters.

その他に1本発明にかかるポリイミド樹脂に含まれるテ
トラカルボン酸単位としては3.3’ 。
Another tetracarboxylic acid unit contained in the polyimide resin according to the present invention is 3.3'.

4.4′−ビフェニルテトラカルボン酸誘導体や、3.
3’ 、4.4’ −ベンゾフェノンテトラカルボン酸
誘導体等を用いることができる。しかし。
4.4'-biphenyltetracarboxylic acid derivatives, 3.
3',4,4'-benzophenonetetracarboxylic acid derivatives and the like can be used. but.

これらのピロメリット酸以外のものを用いると熱膨張係
数は、ピロメリット酸誘導体や3.3’ 。
If something other than these pyromellitic acids is used, the thermal expansion coefficient will be 3.3' or a pyromellitic acid derivative.

4.4′−ビフェニルテトラカルボン酸誘導体を用いた
場合に比較して大きくなる。また、ピロメリット酸誘導
体の割合があまり多くなると、耐加水分解性が著しく低
下し1機械的にも脆くなる。
4.It is larger than when using a 4'-biphenyltetracarboxylic acid derivative. Furthermore, if the proportion of the pyromellitic acid derivative is too large, the hydrolysis resistance will be significantly reduced and the material will also become mechanically brittle.

したがって、テトラカルボン酸成分としては、ピロメリ
ット酸誘導体と3.3’ 、4,4’ −ビフェニルテ
トラカルボン酸誘導体を並用することが望ましい、その
割合は、それぞれ25 : 75〜75:25モル%の
範題がよい。ピロメリット酸誘導体が25モル%より小
さいと、ウェットエツチング速度がほとんど変ねらず、
それ以上になると急激に速くなる。また、ピロメリット
酸誘導体の量が75モル%より大きくなると耐加水分解
性、機械強度が急激に劣化してくる。
Therefore, as the tetracarboxylic acid component, it is desirable to use a pyromellitic acid derivative and a 3.3',4,4'-biphenyltetracarboxylic acid derivative together, and the ratio thereof is 25:75 to 75:25 mol%, respectively. The range of questions is good. When the pyromellitic acid derivative is less than 25 mol%, the wet etching rate hardly changes;
Beyond that, it speeds up rapidly. Furthermore, if the amount of the pyromellitic acid derivative exceeds 75 mol%, the hydrolysis resistance and mechanical strength will rapidly deteriorate.

上記本発明にかかるポリイミド樹脂において、基本的な
物性を損わない程度に、他のジアミンやその他の添加物
を加えてもよい1例えば、ジアミンとしては1機械的な
可撓性を付与するために、柔かい結合手をもつジアミン
骨格を導入する方が好ましい場合がある。このようなジ
アミンとして、m−フェニレンジアミン、2,4−ジア
ミノトルエン、ジアミノジフェニルエーテル、ジアミノ
ベンゾフェノン、ジアミノジフェニルメタン、ジアミノ
サルファイド、ジアミノジフェニルスルホン、2.2−
ジアニリノプロパン、1.4−ビス(アミノフェノキシ
)ベンゼン、4.4’−ビス(アミノフェノキシ)ビフ
ェニル、4,4′−ビス(アミノフェノキシ)ジフェニ
ルエーテル、4゜4′−ビス(アミノフェノキシ)ジフ
ェニルスルホン、2,2−ビス((アミノフェノキシ)
フェニル)プロパン、2.2−ビス((アミツブエノキ
シ)フェニル)へキサフルオロプロパンなどが挙げられ
る。但し、これらのジアミンを添加すると熱膨張係数が
大きくなるため、その添加量は、多くともポリイミド樹
脂のジアミン単位の40重量%とする必要がある。
In the above polyimide resin according to the present invention, other diamines and other additives may be added to the extent that the basic physical properties are not impaired. In some cases, it is preferable to introduce a diamine skeleton with soft bonds. Such diamines include m-phenylenediamine, 2,4-diaminotoluene, diaminodiphenyl ether, diaminobenzophenone, diaminodiphenylmethane, diaminosulfide, diaminodiphenylsulfone, 2.2-
Dianilinopropane, 1,4-bis(aminophenoxy)benzene, 4,4'-bis(aminophenoxy)biphenyl, 4,4'-bis(aminophenoxy)diphenyl ether, 4゜4'-bis(aminophenoxy)diphenyl Sulfone, 2,2-bis((aminophenoxy)
phenyl)propane, 2,2-bis((amitubuenoxy)phenyl)hexafluoropropane, and the like. However, since the addition of these diamines increases the coefficient of thermal expansion, the amount added needs to be at most 40% by weight of the diamine units of the polyimide resin.

また1本発明にかかるポリイミド樹脂は、アルミニウム
やアルミナなどに対しては優れた接着性を有するが、シ
リコンやシリカ等には接着し難い。
Furthermore, the polyimide resin according to the present invention has excellent adhesion to aluminum, alumina, etc., but has difficulty adhering to silicon, silica, etc.

そこで、接着性の改善策として、ビス(アミノプロピル
)テトラメチルジシロキサンなどのジアミノシロキサン
を共重合したり、シランカップリング剤を混合する方法
や、予め基板の方に例えばアルミニウム七ノエチルアセ
トアセテートジイソプロビラートのようなアルミニウム
キレート化合物やアミノプロピルトリメトキシシランな
どの表面処理剤で処理する方法が挙げられる。
Therefore, as measures to improve adhesion, there are methods such as copolymerizing diaminosiloxane such as bis(aminopropyl)tetramethyldisiloxane, mixing a silane coupling agent, and pre-coating aluminum heptanoethyl acetoacetate on the substrate in advance. Examples include a method of treating with an aluminum chelate compound such as diisopropylate or a surface treatment agent such as aminopropyltrimethoxysilane.

本発明にかかるポリイミド樹脂の合成方法は、従来のポ
リイミドとほぼ同様の方法である。すなわち、N−メチ
ルピロリドン(NMP)、N、N−ジメチルホルムアミ
ド(DMF) 、N、N−ジメチルアセトアミド(DM
Ac)、ジメチルスルフォキサイド(DMSO)、スル
ホラン、γ−ブチロラクトン、クレゾール、フェノール
、ハロゲン化フェノール、アセトフェノン、シクロヘキ
サノン、ジオキサン、テトラヒドロフランなどの溶液中
で、0〜200℃の範囲で行われる。比較的低温で反応
させてポリアミド酸ワニスとして、1m膜、コーティン
グした後、加熱して乾燥と同時にイミド化することがで
きる。イミド化反応の完結温度は、得られるポリイミド
の76以上である。
The method for synthesizing the polyimide resin according to the present invention is almost the same as that for conventional polyimides. Namely, N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DM
Ac), dimethyl sulfoxide (DMSO), sulfolane, γ-butyrolactone, cresol, phenol, halogenated phenol, acetophenone, cyclohexanone, dioxane, tetrahydrofuran, etc. at a temperature of 0 to 200°C. It can be reacted at a relatively low temperature to form a polyamic acid varnish, coated with a 1 m film, and then heated to dry and imidize at the same time. The completion temperature of the imidization reaction is 76 or higher for the obtained polyimide.

〔実施例〕〔Example〕

次に本発明の具体的な実施例及び従来のポリイミド樹脂
との比較例について説明する。
Next, specific examples of the present invention and comparative examples with conventional polyimide resins will be described.

各実施例及び比較例においては、ジアミン単位およびテ
トラカルボン酸(無水物)単位をそれぞれ変え、後述の
合成法によりポリイミド樹脂を合成し、各側のポリイミ
ド樹脂ごとにウェットエツチング速度及び熱膨張係数を
測定した。その結果を第1表に示す。
In each Example and Comparative Example, the diamine units and tetracarboxylic acid (anhydride) units were changed, polyimide resins were synthesized using the synthesis method described below, and the wet etching rate and coefficient of thermal expansion were determined for each polyimide resin on each side. It was measured. The results are shown in Table 1.

を、2.5−DATOは2,5−ジアミノトルエを、D
DMは4,4′−シラミノジフェニルメタは4.4′テ
ルフエニルジアミン 2−ビス(4−(4−アミノフェノキシ)フェニル)〕
プロパン れぞれ示す。
, 2,5-DATO is 2,5-diaminotolue, D
DM is 4,4'-silaminodiphenyl meta is 4,4'terphenyldiamine 2-bis(4-(4-aminophenoxy)phenyl)]
Propane is shown respectively.

また、第1表のテトラカルボン酸無水物単位においてP
MDAはピロメリット酸無水物ス[4−(4−アミノフ
ェノキシ)フェニルコブをそれぞ九示す。
In addition, in the tetracarboxylic acid anhydride unit in Table 1, P
MDA represents pyromellitic anhydride and 4-(4-aminophenoxy)phenylcob.

また、第1表のテトラカルボン酸無水物単位においてP
MDAはピロメリット酸無水物をBTDAはベンゾフェ
ノン−3,4,3’ 、4’をそれぞれ示す。
In addition, in the tetracarboxylic acid anhydride unit in Table 1, P
MDA represents pyromellitic anhydride, and BTDA represents benzophenone-3,4,3', 4'.

〔実施例1〜3.比較例1〜21〕 温度計、撹拌装置、還流コンデンサ、及び窒素吸込口を
有する4ツロフラスコに、第1表に示す量のジアミンを
入れ、N−メチル−2−ピロリドン(NMP)850g
で溶解した0次いで、0〜50℃の水浴中にフラスコを
浸漬し1発熱を抑制しながらテトラカルボン酸二無水物
を投入した。
[Examples 1 to 3. Comparative Examples 1 to 21] A 4-tube flask equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet was charged with the amount of diamine shown in Table 1, and 850 g of N-methyl-2-pyrrolidone (NMP) was added.
Then, the flask was immersed in a water bath at 0 to 50°C, and the tetracarboxylic dianhydride was added while suppressing the heat generation.

テトラカルボン酸二無水物が溶解した後、水浴をはずし
、室温付近で約5時間反応を続け、第1表に示すポリア
ミド酸ワニスを得た。ワニス粘度が非常に高くなった場
合、25℃での粘度が50ポアズになるまで80〜85
℃にて加熱撹拌(クツキング)した。
After the tetracarboxylic dianhydride was dissolved, the water bath was removed and the reaction was continued for about 5 hours at around room temperature to obtain the polyamic acid varnish shown in Table 1. If the varnish viscosity becomes very high, 80 to 85
The mixture was heated and stirred at ℃.

これらのポリアミド酸を加熱して得られるポリイミドの
エツチング速度は、次のように測定した。
The etching rate of polyimide obtained by heating these polyamic acids was measured as follows.

すなわち1表面を熱酸化法によって約4000人の5i
ns膜を形成したシリコンウェハ上に、アルミキレート
(アルミニウムーモノエチルアセテートービスブロビラ
ート)の0.5 %トルエン溶液を塗布し、空気中で3
50℃/30分間焼き付けた0次に、希釈して粘度が2
0ポアズ前後としたポリアミド酸ワニスをスピンコード
して約5μm厚に塗布し、100℃で30分、窒素中で
200℃30分加熱後、表中に示した各最終ベク条件で
、ポリイミドフィルムを得た。これらの条件で得たポリ
イミドはほぼ100%イミド化反応が進んでいる。
That is, approximately 4,000 people's 5i
A 0.5% toluene solution of aluminum chelate (aluminum monoethyl acetate bisbrobylate) was applied onto the silicon wafer on which the NS film was formed, and the solution was incubated in air for 30 minutes.
After baking at 50℃ for 30 minutes, it was diluted to a viscosity of 2.
A polyamic acid varnish with around 0 poise was spin-coded and applied to a thickness of approximately 5 μm, and after heating at 100°C for 30 minutes and 200°C in nitrogen for 30 minutes, a polyimide film was coated under each final vectoring condition shown in the table. Obtained. In the polyimide obtained under these conditions, almost 100% of the imidization reaction progressed.

次いで、東京応化製0MR83(ネガ型フォトレジスト
)を3μm厚にスピンコードし、80℃で30分間プリ
ベークした後に、マスクアライナにて露光、所定の現像
液、リンス液に浸して、パターンを形成し、さらに15
0℃で30分ポストベークした。パターンは5閤X10
mの島状パターンである。
Next, 0MR83 (negative photoresist) manufactured by Tokyo Ohka was spin-coded to a thickness of 3 μm, prebaked at 80° C. for 30 minutes, exposed with a mask aligner, and immersed in a prescribed developer and rinse solution to form a pattern. , and 15 more
Post-baked for 30 minutes at 0°C. The pattern is 5 loaves x 10
It is an island-like pattern of m.

この試料を、ヒドラジンヒトラード:エチレンジアミン
=7:3のエツチング液に浸漬して。
This sample was immersed in an etching solution containing hydrazine hydride and ethylenediamine in a ratio of 7:3.

30℃で所定時間エツチングを行った。水洗した後、東
京応化製フォトレジスト除去剤8502中に100℃で
10分間浸漬して、フォトレジストを除去した。よくメ
タノールで洗浄した後。
Etching was performed at 30°C for a predetermined time. After washing with water, the photoresist was removed by immersing it in Tokyo Ohka Photoresist Remover 8502 at 100° C. for 10 minutes. After washing well with methanol.

350℃でベークしてからエツチング深さを測定した。After baking at 350°C, the etching depth was measured.

エツチング時間とエツチング深さの関係からエツチング
速度を求めた。ポリイミドの種類によっては9両者の関
係が直線にならず、多少誘導期間を有するものがあった
が、それらについては。
The etching speed was determined from the relationship between etching time and etching depth. Depending on the type of polyimide, the relationship between the two was not linear, and there were some that had an induction period.

5μmエツチングするのに要する時間を求め、平均的な
値で示した。
The time required to etch 5 μm was determined and expressed as an average value.

また、ポリイミドの熱膨張係数は、次のようにして測定
した。ガラス板状にアプリケータを用いて均一に塗布し
、80〜100℃で0.5〜3時間乾燥してフィルム状
にし、ガラス板からはがして鉄枠に固定し、200℃で
30分、及び表中の最終ベーク条件でイミドフィルムと
した。ffl厚は30〜50μm厚とした。これを熱機
械試験機にセットした後、真空中で再び表中の最終ベー
ク温度に5分間加熱し、室温まで除去して、乾燥及び残
留応力を除去した1次に、荷重3g、昇温速度5℃/w
inの条件で加熱しながら寸法変化を測定した。
Moreover, the thermal expansion coefficient of polyimide was measured as follows. Apply it evenly on a glass plate using an applicator, dry it at 80 to 100°C for 0.5 to 3 hours to form a film, peel it off from the glass plate, fix it on an iron frame, and heat it at 200°C for 30 minutes. An imide film was prepared under the final baking conditions shown in the table. The ffl thickness was 30 to 50 μm. After setting this in a thermomechanical testing machine, it was heated again in a vacuum to the final baking temperature shown in the table for 5 minutes, and then removed to room temperature to remove drying and residual stress. 5℃/w
Dimensional changes were measured while heating under conditions of in.

各種ポリイミドのウェットエツチング速度と、熱膨張係
数との測定結果を前記第1表に示す、この結果より、エ
ツチング速度が実用の点から0.2μm/1lin以上
でかつ熱膨張係数がやはり実用の点から2.0X10−
1IK−1以下のものが極めて少ないことがわかる。な
お実施例1の場合、フィルムが非常に脆いため熱膨張係
数を測定できなかったが、後述の共重合のデータから熱
膨張係数が非常に小さいことは明らかである。
The measurement results of the wet etching speed and thermal expansion coefficient of various polyimides are shown in Table 1 above. From the results, it is found that the etching speed is 0.2 μm/1 lin or more from a practical point of view and the thermal expansion coefficient is also a practical point. From 2.0X10-
It can be seen that there are very few cases of 1IK-1 or less. In the case of Example 1, the thermal expansion coefficient could not be measured because the film was very brittle, but it is clear from the copolymerization data described below that the thermal expansion coefficient was extremely small.

〔実施例4〜14.比較例22〜24〕前記と同様の合
成方法により、第2表の如くジアミンとテトラカルボン
酸の配合比を変えて、ポリイミド酸共重合体を合成した
。同じ方法によってエツチング速度と熱膨張係数を測定
した。さらに、これらのポリイミド膜の耐湿性(耐加水
分解性)、ポリイミド/ポリイミド、及びポリイミド1
SiOx間の接着性を120℃、 2atmの水蒸気中
に放置して測定した。評価はv1膜(1μm×2)に基
盤目状にキズを付は高温水蒸気中に所定の時間放置した
後、強力粘着テープ(日東電工層)で引きはがして行っ
た。加水分解によりボリイミド膜が劣化すると、基盤目
の切り口付近が脆化して粘着テープに付着するようにな
る。また、界面の接着性が低下すると、基盤の目の1個
ずつが粘着テープに付着する。結果を第2表に示す。こ
の第2表から明らかなようにテトラカルボン酸成分の中
のPMDAの反応比が増えると、エツチング速度は速く
なるが、ポリイミドポリイミド界面の接着性や、耐加水
分解性が著しく低下することが分る。また、ジアミン成
分にDDEのような熱膨張係数が大きなものを共重合さ
せた場合、40モル%程度までは許容できることもわか
る。
[Examples 4-14. Comparative Examples 22 to 24] Polyimide acid copolymers were synthesized using the same synthesis method as described above, changing the blending ratio of diamine and tetracarboxylic acid as shown in Table 2. The etching rate and thermal expansion coefficient were measured by the same method. Furthermore, the moisture resistance (hydrolysis resistance) of these polyimide films, polyimide/polyimide, and polyimide 1
The adhesion between SiOx was measured by leaving it in water vapor at 120° C. and 2 atm. The evaluation was carried out by scratching the v1 film (1 μm x 2) in the shape of a base plate, leaving it in high-temperature steam for a predetermined period of time, and then peeling it off with a strong adhesive tape (Nitto Denko Layer). When the polyimide film deteriorates due to hydrolysis, the area around the cut end of the base grain becomes brittle and adheres to the adhesive tape. Moreover, when the adhesion of the interface decreases, each hole of the substrate adheres to the adhesive tape. The results are shown in Table 2. As is clear from Table 2, as the reaction ratio of PMDA in the tetracarboxylic acid component increases, the etching rate increases, but the adhesiveness and hydrolysis resistance of the polyimide-polyimide interface significantly decrease. Ru. It is also understood that when the diamine component is copolymerized with a material having a large coefficient of thermal expansion such as DDE, up to about 40 mol % can be tolerated.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係るポリイミド樹脂によれ
ば、ウェットエツチングが可能となる。
As explained above, the polyimide resin according to the present invention allows wet etching.

したがって、従来のポリイミド樹脂のウエッチングでは
、VLSI等の超微細加工用のドライエツチング方式し
か使用できなかったが、本発明にかかるポリイミド樹脂
には、ウェットエツチング法を使用でき、より幅広い用
途に応用できる。
Therefore, in the conventional etching of polyimide resin, only the dry etching method for ultrafine processing of VLSI etc. could be used, but the polyimide resin according to the present invention can use the wet etching method, and can be applied to a wider range of applications. can.

Claims (1)

【特許請求の範囲】 1、ジアミン単位とテトラカルボン酸単位との共重合体
からなるポリイミド樹脂において、当該ジアミン単位が ▲数式、化学式、表等があります▼ 〔Rはアルキル基、n、mは0以上4以下の整数を示す
。〕 からなる群の少なくとも1種であり、かつ前記テトラカ
ルボン酸単位の25モル%以上がピロメリット酸単位で
あることを特徴とするポリイミド樹脂。 2、前記テトラカルボン酸単位は、ピロメリット酸単位
と、3、3′、4、4′ビフェニルテトラカルボン単位
であることを特徴とする特許請求の範囲第1項のポリイ
ミド樹脂。 3、前記ピロメリット酸単位と、3、3′、4、4′−
ビフェニルテトラカルボン酸単位との比が、25:75
〜75:25モル%の範囲であることを特徴とするポリ
イミド樹脂。
[Claims] 1. In a polyimide resin consisting of a copolymer of diamine units and tetracarboxylic acid units, the diamine units have ▲ mathematical formulas, chemical formulas, tables, etc. ▼ [R is an alkyl group, n and m are Indicates an integer between 0 and 4. ] A polyimide resin which is at least one member of the group consisting of pyromellitic acid units, and 25 mol% or more of the tetracarboxylic acid units are pyromellitic acid units. 2. The polyimide resin according to claim 1, wherein the tetracarboxylic acid units are pyromellitic acid units and 3, 3', 4, 4' biphenyltetracarboxylic units. 3. The pyromellitic acid unit and 3,3',4,4'-
The ratio with biphenyltetracarboxylic acid units is 25:75
A polyimide resin characterized in that the content is in the range of 75:25 mol%.
JP9679186A 1986-04-28 1986-04-28 Polyimide resin Pending JPS62253621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9679186A JPS62253621A (en) 1986-04-28 1986-04-28 Polyimide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9679186A JPS62253621A (en) 1986-04-28 1986-04-28 Polyimide resin

Publications (1)

Publication Number Publication Date
JPS62253621A true JPS62253621A (en) 1987-11-05

Family

ID=14174459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9679186A Pending JPS62253621A (en) 1986-04-28 1986-04-28 Polyimide resin

Country Status (1)

Country Link
JP (1) JPS62253621A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175027A (en) * 1987-01-14 1988-07-19 Kanegafuchi Chem Ind Co Ltd Novel polyimide resin and production thereof
JPS63175024A (en) * 1987-01-14 1988-07-19 Kanegafuchi Chem Ind Co Ltd Novel polyimide copolymer and production thereof
JPS63175026A (en) * 1987-01-14 1988-07-19 Kanegafuchi Chem Ind Co Ltd Novel polyamic acid copolymer
JPS63254130A (en) * 1987-04-10 1988-10-20 Mitsubishi Electric Corp Copolymer of aromatic polyamic acid or ester thereof
JPH02281036A (en) * 1989-04-21 1990-11-16 Teijin Ltd Production of copolyamic acid and copolyimide fiber
JPH05222192A (en) * 1991-11-13 1993-08-31 Korea Res Inst Chem Technol Polyimide copolymer and its preparation
JPH05295115A (en) * 1992-04-24 1993-11-09 Sumitomo Bakelite Co Ltd Polyimide resin having low thermal expansion and production thereof
US5478918A (en) * 1993-02-09 1995-12-26 Central Glass Company, Limited Low stress polyimide composition and precursor composition solution of same
JP2009185101A (en) * 2008-02-01 2009-08-20 Ube Ind Ltd Polyimide film and manufacturing method of the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175027A (en) * 1987-01-14 1988-07-19 Kanegafuchi Chem Ind Co Ltd Novel polyimide resin and production thereof
JPS63175024A (en) * 1987-01-14 1988-07-19 Kanegafuchi Chem Ind Co Ltd Novel polyimide copolymer and production thereof
JPS63175026A (en) * 1987-01-14 1988-07-19 Kanegafuchi Chem Ind Co Ltd Novel polyamic acid copolymer
JPS63254130A (en) * 1987-04-10 1988-10-20 Mitsubishi Electric Corp Copolymer of aromatic polyamic acid or ester thereof
JPH02281036A (en) * 1989-04-21 1990-11-16 Teijin Ltd Production of copolyamic acid and copolyimide fiber
JPH05222192A (en) * 1991-11-13 1993-08-31 Korea Res Inst Chem Technol Polyimide copolymer and its preparation
JPH05295115A (en) * 1992-04-24 1993-11-09 Sumitomo Bakelite Co Ltd Polyimide resin having low thermal expansion and production thereof
US5478918A (en) * 1993-02-09 1995-12-26 Central Glass Company, Limited Low stress polyimide composition and precursor composition solution of same
JP2009185101A (en) * 2008-02-01 2009-08-20 Ube Ind Ltd Polyimide film and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US5304626A (en) Polyimide copolymers containing 3,3',4,4'-tetracarboxybiphenyl dianhydride (BPDA) moieties
KR960007934B1 (en) Resins of low thermal expansibility
TWI814908B (en) Metal-clad laminates and circuit boards
US6084053A (en) Electronic part and process for manufacturing the same
US4686147A (en) Magnetic head and method of producing the same
EP0448252B1 (en) Polyimide copolymers containing 4-4'-bis(aminophenoxy)biphenyl and siloxane diamine moieties
JP2000159887A (en) Polyimide film and its production
JP4665373B2 (en) Polyimide film
JP2022548897A (en) Polyimide film, method for producing the same, and flexible metal foil laminate including the same
JPS62253621A (en) Polyimide resin
KR100472805B1 (en) Manufacturing method of self-supported polyimide film
JPH1180390A (en) Polyimide film, its production and metallic laminate comprising the same as substrate
JP5547874B2 (en) Polyimide resin
JPS62135529A (en) Polyimide precursor
JPH0796618B2 (en) Low thermal expansion resin
US4975331A (en) Polyimide copolymers containing 4,4'-bis(p-aminophenoxy)biphenyl and siloxane diamine moieties
JP2000063543A (en) Polyimide film and its production
JPS63239998A (en) Manufacture of wiring material
JPH0436321A (en) Polyimidesiloxane and composition containing the same
JPH02251584A (en) Heterocyclic ring-containing polyimide composite
JP3293146B2 (en) Method for manufacturing flexible wiring board
JPS60203638A (en) Polyimide film
JPH04266082A (en) Manufacture of flexible wiring substrate
JP2662425B2 (en) Process for producing polyimide isoindoloquinazolinedione and its precursor
JPH0670136B2 (en) Method for producing modified polyimide composition