JPS59232231A - Manufacture of rotor for turbine - Google Patents

Manufacture of rotor for turbine

Info

Publication number
JPS59232231A
JPS59232231A JP10674683A JP10674683A JPS59232231A JP S59232231 A JPS59232231 A JP S59232231A JP 10674683 A JP10674683 A JP 10674683A JP 10674683 A JP10674683 A JP 10674683A JP S59232231 A JPS59232231 A JP S59232231A
Authority
JP
Japan
Prior art keywords
turbine rotor
creep rupture
rotor
rupture strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10674683A
Other languages
Japanese (ja)
Inventor
Kanji Kawaguchi
川口 寛二
Mitsuo Kawai
光雄 河合
Osamu Watanabe
修 渡辺
Hiroaki Yoshioka
洋明 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10674683A priority Critical patent/JPS59232231A/en
Publication of JPS59232231A publication Critical patent/JPS59232231A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr

Abstract

PURPOSE:To improve the creep rupture strength of a rotor for a turbine at high temp. as well as the ductility and toughness by specifying the composition of a 12Cr type material for the rotor and limiting melting and heat treating methods. CONSTITUTION:The composition of a material for a rotor for a turbine formed by forging a steel ingot obtd. by electro-slag remelting is composed of, by weight, 0.1-0.25% C, <0.5% Si, 0.1-1% Mn, 0.1-1% Ni and/or Co, 9-13% Cr, 0.5-2% Mo, 0.1-0.3% V, 0.03-0.3% Nb and/or Ta, 0.5-2% W, 0.03-0.1% N, 0.005-0.05% B and the balance Fe with inevitable impurities. The material is heated at 1,020-1,150 deg.C, quenched, and tempered at 530-730 deg.C.

Description

【発明の詳細な説明】 〔発明の技術分野] この発明は高温で優れたクリープ破断強さを有する12
Cr系耐熱鋼で構成されたタービンロータの製造方法に
関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides 12
The present invention relates to a method of manufacturing a turbine rotor made of Cr-based heat-resistant steel.

[発明の技術的背景] 近年蒸気タービンやガスタービンは熱効率の向上を目的
に、使用する蒸気温度やガス温度が上昇してきている。
[Technical Background of the Invention] In recent years, steam and gas temperatures used in steam turbines and gas turbines have been increasing in order to improve thermal efficiency.

ところで、クリープ破断強さの優れたロータの一つに1
.2 Cr −Mo −V−Nb(Ta)−N鋼で構成
されたロータがあるが、今後の高温化に対処するために
は更に高温のクリープ破断強さに優れた】2C「系ロー
タが必要とされる。・ 高温のクリープ破断強さを向上さぜる方法の一つとして
焼入温度の上昇があるが、従来の12C「系ロータで行
゛なわれている高周波炉や電弧炉による溶解で製造され
たタービンロータ素体の焼入温度をただ単に上昇させた
場合にはクリープ破断強さは向上するが、反面、延性靭
性が低下し、また切欠弱化を生じやすくなる。そのため
、タービンロータの脆性破壊に対する安全性、信頼性の
観点よシ従来12C「系タービンロータの焼入温度はク
リープ破断強さと延性および靭性を考慮して通常105
0±頷°Cで行なっている。
By the way, one of the rotors with excellent creep rupture strength is 1.
.. There is a rotor made of 2Cr-Mo-V-Nb(Ta)-N steel, but in order to cope with future high temperatures, a 2C type rotor with even better creep rupture strength at higher temperatures is required. - One way to improve high-temperature creep rupture strength is to increase the quenching temperature, but melting in a high-frequency furnace or electric arc furnace, which is carried out with a conventional 12C rotor, is If the quenching temperature of a turbine rotor body manufactured by From the viewpoint of safety and reliability against brittle fracture, the quenching temperature of conventional 12C turbine rotors is usually 105% in consideration of creep rupture strength, ductility, and toughness.
Performed at 0°C.

[発明の目的] 本発明は上記点に鑑みてなされたもので、高温のクリー
プ破断強さが優れるとともに延性および靭性にも優れた
、タービンロータの脆性破壊に対する安全性、信頼性の
高い12Cr系タービンロータの製造方法を提供するこ
とを目的としたものである。
[Object of the Invention] The present invention has been made in view of the above points, and the present invention has been made in view of the above-mentioned points. The object of the present invention is to provide a method for manufacturing a turbine rotor.

[発明の概要] 本発明は従来の12Cr系タービンロータの化学組成、
溶解方法および熱処理方法など例ついて広範囲に実数、
検討した結果、高温のクリープ破断強さに優れ、かつ延
性および脆性にも優れた1、2 Cr系タービンロータ
が得られることを見いだした事による。
[Summary of the Invention] The present invention provides a chemical composition of a conventional 12Cr turbine rotor,
A wide range of real numbers and examples of melting methods, heat treatment methods, etc.
As a result of investigation, it was discovered that a 1,2 Cr-based turbine rotor can be obtained that has excellent creep rupture strength at high temperatures, as well as excellent ductility and brittleness.

すなわち、本発明に係る12C「系タービンロータは重
量パーセントでco、i〜0.25%、Si O,5係
以下、Mn 0.1〜1.0%、Cr 9.0〜13.
0 %、Ni、Coノ少すくトも一種0.1〜1,0チ
、MO05〜2.0チ、■0.1〜0.3チ、Nb、T
aの少なくとも一種0.03〜03%、W 0.5〜2
.0%、N O,03〜0.1%、B O,005〜0
.05%残部Feおよび付随的不純物より成る合金組成
を有し、エレクトロスラグ再溶解による二次溶解をして
得だ鋼塊を鍛造成形してタービンロータ素体としたのち
、1020°C〜1150°Cの温度範囲に加熱後焼入
れ、次いで530〜730°Cの温度範囲で焼戻し処理
を行うことを特徴とする高温クリープ破断強さと延性お
よび靭性に優れだ12Cr系タービンロータの製造方法
である。
That is, the 12C turbine rotor according to the present invention has a weight percentage of co, i~0.25%, SiO, 5% or less, Mn 0.1~1.0%, Cr 9.0~13.
0%, Ni, Co 0.1 to 1.0 inch, MO05 to 2.0 inch, ■ 0.1 to 0.3 inch, Nb, T
At least one kind of a 0.03-03%, W 0.5-2
.. 0%, NO, 03-0.1%, B O, 005-0
.. It has an alloy composition consisting of 0.5% balance Fe and incidental impurities, and is subjected to secondary melting by electroslag remelting, and the resulting steel ingot is forged to form a turbine rotor body, and then heated at 1020°C to 1150°C. This is a method for manufacturing a 12Cr-based turbine rotor having excellent high-temperature creep rupture strength, ductility, and toughness, which is characterized by heating to a temperature range of 530 to 730 °C, followed by quenching, and then tempering in a temperature range of 530 to 730 °C.

ここで本発明方法に係る12Cr系タービンロータの組
成および溶解、熱処理の限定理由について説明する。
Here, the reason for the limitations on the composition, melting, and heat treatment of the 12Cr turbine rotor according to the method of the present invention will be explained.

Cは引張強さやクリープ破断強さを確保するために必要
な元素であり、0.1%未満ではフェライト相が生成し
て所要の特性が得られず、また0、25%を越えると靭
性が低下することからこの範囲とする。
C is an element necessary to ensure tensile strength and creep rupture strength. If it is less than 0.1%, a ferrite phase will form and the required properties cannot be obtained, and if it exceeds 0.25%, toughness will decrease. It is set in this range because it decreases.

Slは脱酸剤として添加する元素であるが多量の添加は
靭性を劣下させるので0.5%以下とする。
Sl is an element added as a deoxidizing agent, but addition of a large amount deteriorates toughness, so the content is limited to 0.5% or less.

■は脱酸、脱硫剤として添加する元素で0.1%未満で
は十分な効果得られず、また1、0%を越えるとクリー
プ破断強さを低下させるのでこの範囲とするO NiおよびCOはフェライト相の生成を抑え均一なマル
テンサイト組織を得るため如必要な元素であるが、0.
1%未満ではその効果が発揮されにくく、またNtの場
合1.0係を越えるとクリープ破断強さを低下させるこ
と、COの場合は高価になることからこの範囲とする。
■ is an element added as a deoxidizing and desulfurizing agent, and if it is less than 0.1%, sufficient effects cannot be obtained, and if it exceeds 1.0%, the creep rupture strength will decrease, so Ni and CO should be in this range. This element is necessary to suppress the formation of ferrite phase and obtain a uniform martensitic structure, but 0.
If it is less than 1%, it is difficult to exhibit its effect, and in the case of Nt, if it exceeds 1.0, the creep rupture strength will decrease, and in the case of CO, it will be expensive, so this range is set.

Crは本発明に係るロータの機械的性質を得るために必
要な元素で、その量が9,0%未満では必要とするクリ
ープ破断強さが確保し難く、まだ130チを越えるとフ
ェライト相が生成し、クリープ破断強さが低下すること
からこの範囲とする。
Cr is an element necessary to obtain the mechanical properties of the rotor according to the present invention. If the amount is less than 9.0%, it is difficult to secure the required creep rupture strength, and if it exceeds 130%, the ferrite phase This range is set because creep rupture strength decreases.

MOはクリープ破断強さの向上と焼戻し脆性を防止する
ために必要な元素で、0.51未満ではその効果が十分
でなく、また2、0%を越えるとフェライト相の生成に
よるクリープ破断強さの低下や靭性の低下などを生ずる
ことからこの範囲とする。
MO is an element necessary to improve creep rupture strength and prevent temper brittleness. If it is less than 0.51, the effect will not be sufficient, and if it exceeds 2.0%, the creep rupture strength will decrease due to the formation of ferrite phase. This range is set because this may cause a decrease in hardness and toughness.

■はクリープ破断強さの向上に必要な元素であるが0.
1%未満ではその効果が十分でなく、また03係を越え
るとMOと同様にフェライト相が生成しクリープ破断強
さを低下させることからこの範囲とする。
■ is an element necessary for improving creep rupture strength, but 0.
If it is less than 1%, the effect will not be sufficient, and if it exceeds 03%, a ferrite phase will be generated like MO, reducing the creep rupture strength, so this range is set.

NbおよびTaは本発明に係るロータを構成する12C
「系鋼の素地中に炭窒化物として徽細に析出分散し、ク
リープ破断強さを向上させる元素で、その量が0.03
%未満では十分な効果が得られず、また0、3 %を越
えると後述するエレクトロスラグ再溶解を行なってもロ
ータ中心部に粗大な炭僚)化物を生成して延性や靭性を
劣下させることからこの範囲とする。なお、よシ優れた
クリープ破断強さを必要とする場合にはNb、Taの少
なくとも一種が0.13係以上が望ましいO Wはクリープ破断強さを向上させるに心神な元素で少な
くとも0.5%は必要であるが、多量の添加はフェライ
ト相の生成をまねきクリープ破断強さが低下することか
ら2.0チ以下とする。
Nb and Ta are 12C constituting the rotor according to the present invention.
"An element that is finely precipitated and dispersed as carbonitrides in the matrix of steel and improves creep rupture strength. Its amount is 0.03
If it is less than 0.3%, no sufficient effect will be obtained, and if it exceeds 0.3%, even if electroslag remelting is performed as described below, coarse carbonaceous substances will be formed in the center of the rotor, reducing ductility and toughness. This is the range for this reason. In addition, if very good creep rupture strength is required, it is desirable that at least one of Nb and Ta has a modulus of 0.13 or more. % is necessary, but since adding a large amount leads to the formation of a ferrite phase and lowers the creep rupture strength, the amount should be 2.0 or less.

Nはフェライト相の生成を抑えるとともに炭窒化物を生
成してクリープ破断強さを向上させるに必要な元素で0
.03%未満ではその効果が十分でなく、マた0、1%
を越えるとピンホールやブローホールを発生させること
からこの範囲とした。
N is an element necessary to suppress the formation of ferrite phase and to generate carbonitrides to improve creep rupture strength.
.. If it is less than 0.3%, the effect will not be sufficient, and it will be less than 0.1%.
This range was chosen because pinholes and blowholes will occur if it exceeds this range.

Bはクリープ破断強さを向上させるに必要な元素で、0
.005%未満では十分な効果が得られず、また0、0
5q6を越えると鍛造割れを生じ易くなることからこの
範囲゛とする。
B is an element necessary to improve creep rupture strength, and 0
.. If it is less than 0.005%, sufficient effect cannot be obtained;
If it exceeds 5q6, forging cracks are likely to occur, so this range is set.

次に本発明方法で重要なエレクトロスラグ再溶解および
熱処理について述べる。
Next, electroslag remelting and heat treatment, which are important in the method of the present invention, will be described.

エレクトロスラグ再溶解を行う理由は高温クリープ破断
強さ、延性および靭性に優れた12Cr系タービンロー
タを得るだめに1次に述べる熱処理と共に必要不可欠な
工程で、このエレクトロスラグ再溶解をしない従来の高
周波炉溶解や電弧炉溶解のままの場合には靭性や延性が
小さく、脆性破壊に対する安全性や信頼性のある12C
「系タービンロータを得ることが出来ない。また特にク
リープ破断強さを向上させるため焼入温度を高くすると
、従来の高周波炉溶解や電弧炉溶解のものは室温の衝撃
靭性や、クリープ破断延性が犬きく低下するが、本発明
方法に係るエレクトロスラグ再溶解をした場合には衝撃
靭性やクリープ破断延性の低下が小さく、脆性破壊に対
する安全性、信頼性に優れた120r系タービンロータ
を得ることが出来る。
The reason for electroslag remelting is that it is an essential process along with the heat treatment described below in order to obtain a 12Cr turbine rotor with excellent high-temperature creep rupture strength, ductility, and toughness. 12C has low toughness and ductility when melted in a furnace or electric arc furnace, and is safe and reliable against brittle fracture.
In addition, when the quenching temperature is raised to improve the creep rupture strength, conventional high-frequency furnace melting and electric arc furnace melting have poor impact toughness and creep rupture ductility at room temperature. However, when the electroslag is remelted according to the method of the present invention, the impact toughness and creep rupture ductility are reduced to a small extent, and it is possible to obtain a 120r series turbine rotor with excellent safety and reliability against brittle fracture. I can do it.

また、従来の12Cr系タービンロータでは高周波溶解
炉や電弧炉で溶解した溶湯を鋳型に流し込み凝固させて
いるため溶湯の凝固に時間がかかりタービンロータの中
心部にNbやTaを含む粗大な炭窒化物が析出して靭性
の低下をまねくことから、これまでNb +Taの含有
量は通常0.03〜o1チ程度までしか添加していなか
ったが、本発明方法によればそれ以上の添加でもタービ
ンロータ中心部に炭窒化物の粗大偏析はなく、高温クリ
ープ破断強さに優れ、かつ延性や゛靭性にも優れた12
Cr系タービンロータを得ることが出来る。1020’
C〜1150’0の温度範囲に加熱後焼入し、次いで5
30’Q〜730’0の温度範囲で焼戻しを行う理由と
しては、炭僚)化物を固溶させ均質なマルテンサイト組
織と所要の機械的特性を得るには焼入温度が1020’
O未満では十分でなく、また焼入流度が1150’Oを
越えると結晶粒の粒大化が大きくなシ靭性を害すること
からこの範囲とした。なおりリープ破断強さを向上させ
るにはNb −f Taの炭窒化物を多量に固溶再析出
することが望ましく、そのためには焼入温度が1080
°C以上が、さらに望ましくは焼入温度を1095°C
以上にするとよい。また焼戻し温度が530°C未満で
は十分な焼戻しが行なわれず所要の靭性が得られず、7
30°Cを越えた場合には所要の引張強さや耐力を得る
ことが出来ないことからこの範囲とした。
In addition, in conventional 12Cr-based turbine rotors, molten metal melted in a high-frequency melting furnace or electric arc furnace is poured into a mold and solidified, so it takes time to solidify the molten metal, and coarse carbonitriding containing Nb and Ta occurs in the center of the turbine rotor. Until now, the content of Nb + Ta was usually only added to the range of 0.03 to 0.1 inch because it caused precipitation of substances and decreased toughness. No coarse segregation of carbonitrides in the center of the rotor, excellent high-temperature creep rupture strength, and excellent ductility and toughness.
A Cr-based turbine rotor can be obtained. 1020'
After heating to a temperature range of C to 1150'0, quenching is performed, and then 5
The reason why tempering is performed in the temperature range of 30'Q to 730'0 is that the quenching temperature is 1020' to dissolve carbonates and obtain a homogeneous martensitic structure and the required mechanical properties.
If the quench flow rate is less than 1150'O, it is not sufficient, and if the quenching flow rate exceeds 1150'O, the grain size increases and the toughness is impaired, so this range was selected. In order to improve the leap rupture strength, it is desirable to redecipitate a large amount of Nb-fTa carbonitride as a solid solution, and for this purpose, the quenching temperature should be set to 1080°C.
°C or higher, more preferably the quenching temperature is 1095 °C
It is better to make it more than that. Furthermore, if the tempering temperature is lower than 530°C, sufficient tempering will not be performed and the required toughness will not be obtained.
This range was set because if the temperature exceeds 30°C, the required tensile strength and yield strength cannot be obtained.

なお本発明方法に係るタービンロータの製造方法におい
て上記エレクトロスラグ再溶解と熱処理の両者が必要不
可欠であシ、このうちの一つでも欠けた場合には高温の
クリープ破断強さに優れ、かつ延性および靭性を有する
120「系タービンロータを得ることは出来ない。
In addition, in the method for manufacturing a turbine rotor according to the method of the present invention, both the electroslag remelting and heat treatment described above are indispensable, and if even one of them is lacking, it will not be possible to obtain excellent creep rupture strength at high temperatures and ductility. It is not possible to obtain a 120mm turbine rotor with high and toughness.

[発明の実施例] 第1表に示す化学組成を有するタービンロータモデル(
直径600ミリ、長さ800ミリ)を作製したのち各種
試験を行なった。
[Embodiments of the invention] A turbine rotor model (
After fabricating a specimen with a diameter of 600 mm and a length of 800 mm, various tests were conducted.

本発明に係る実施例1,2,3.4のタービンロータモ
デルの作成は第1表に示した合金組成となるように原料
を配合したのち電弧炉で溶解次いでエレクトロスラグ再
溶解の消耗電極用モールドに鋳込みインゴットを得だ。
The turbine rotor models of Examples 1, 2, and 3.4 according to the present invention were created by mixing the raw materials to have the alloy composition shown in Table 1, melting them in an electric arc furnace, and then using them as consumable electrodes for electroslag remelting. Get the ingot cast into the mold.

引続いて、このインゴットを消耗電極としてエレクトロ
スラグ再溶解を行なったのち、鋳造を行ないタービンロ
ータモデル素体を得た。さらにこのタービンロータモデ
ル素体に第1表に併記した熱処理を施こしたのち機械加
工を行ないタービンロータモデルを(’J タ。
Subsequently, electroslag was remelted using this ingot as a consumable electrode, and then casting was performed to obtain a turbine rotor model body. Furthermore, this turbine rotor model body was subjected to the heat treatment listed in Table 1, and then machined to create a turbine rotor model ('Jta).

さらに比較例1,2は従来の12Cr系タービンロータ
の溶解方法と同様に電弧炉で溶解した溶湯をモールドに
注ぎ、インゴットを得たのち、これを鍛造してタービン
ロータモデル素体としたあと、第1表に併記した熱処理
、比較例1は従来より行なわれている熱処理、比較例2
は焼入温度を高くしだ熱処理を施こしたのち、機械加工
を行ないタービンロータモデルとした。
Furthermore, in Comparative Examples 1 and 2, the molten metal melted in an electric arc furnace was poured into a mold in the same manner as the conventional melting method for 12Cr-based turbine rotors. After obtaining an ingot, this was forged to form a turbine rotor model body. Heat treatment listed in Table 1, Comparative Example 1 is conventional heat treatment, Comparative Example 2
After applying heat treatment to a high quenching temperature, it was machined to create a turbine rotor model.

試験は上記のようにして得たタービンロータモデルのそ
れぞれについて試験片を切り出し、引張試験、衝撃試験
、クリープ破断試験を行なった。
For testing, test pieces were cut out for each of the turbine rotor models obtained as described above, and a tensile test, an impact test, and a creep rupture test were conducted.

第2表に引張試験および衝撃試験結果を、また第3表に
クリープ破断試験結果を示す。
Table 2 shows the results of the tensile test and impact test, and Table 3 shows the results of the creep rupture test.

以下余白 第2表 X下f、臼 第2表および第3表より明らかなように、本発明方法に
係る12 Cr系タービンロータモデルは比較例に比べ
引張強さが優れるとともに伸び、絞りも大きく、また衝
撃靭性が著しく大きい。さらにクリープ破断強さも従来
の12Cr系ロータ材である比較例1に比べるとクリー
プ破断伸びや絞りは同等以上でありまたクリープ破断強
さも優れている。
As is clear from Table 2 X, bottom f, and Tables 2 and 3 below, the 12Cr-based turbine rotor model according to the method of the present invention has superior tensile strength, elongation, and large aperture compared to the comparative example. , and has significantly high impact toughness. Furthermore, compared to Comparative Example 1, which is a conventional 12Cr rotor material, the creep rupture strength is the same or higher, and the creep rupture strength is also superior.

これらのことから本発明方法に係る12Cr系タービン
ロータ材は室温および高温強度に優れるとともに延性、
靭性にも優れておシ工業上有用である。
For these reasons, the 12Cr-based turbine rotor material according to the method of the present invention has excellent room temperature and high temperature strength, as well as ductility and
It also has excellent toughness and is industrially useful.

代理人 弁理士  則 近 憲 佑 (ほか1名)Agent: Patent Attorney Noriyuki Chika (1 other person)

Claims (1)

【特許請求の範囲】 (1)重量パーセントでC011〜0,25チ、Si□
、5%以下、Mn 0.1〜1.0%s Ni 、Co
(7)少なくとも一種0.1〜1.0 % Cr 9.
0〜13.0%、Mo 0.5〜2.0%、Vo、1〜
o、3%、Nb、Taの少なくとも一種0.03〜0.
3%、W 0.5〜2.0%、NO,03〜0.1%、
B O,005〜0.05t16残部Feおよび付随的
不純物よ構成る合金組成を有し、エレクトロスラグ再溶
解忙より得た鋼塊を鍛造成形してタービンロータ素体と
したのち、1020〜1150°O+7)t1度範囲に
加熱後焼入し、次いで530〜730℃の温度範囲で焼
戻し処理を行なうことを特徴とするタービンロータの製
造方法。 (2、特許請求の範囲第1項においてNb、Taの少な
くとも一種を重量%で0.13〜0.3%とした事を特
徴とするタービンロータの製造方法。 (3)%許請求の範囲第1項または第2項において焼入
温度を1080℃〜1150℃の範囲とした事を特徴と
するタービンロータの製造方法。
[Claims] (1) C011 to 0.25% by weight, Si□
, 5% or less, Mn 0.1-1.0%s Ni, Co
(7) At least one 0.1-1.0% Cr9.
0-13.0%, Mo 0.5-2.0%, Vo, 1-
o, 3%, at least one of Nb and Ta, 0.03 to 0.
3%, W 0.5-2.0%, NO, 03-0.1%,
B O,005~0.05t16The balance is Fe and incidental impurities, and the steel ingot obtained from electroslag remelting is forged to form a turbine rotor body, and then heated at 1020~1150°. O+7) A method for manufacturing a turbine rotor, which comprises heating to a temperature range of 1 degree, quenching, and then tempering at a temperature range of 530 to 730 degrees Celsius. (2. A method for manufacturing a turbine rotor, characterized in that in claim 1, at least one of Nb and Ta is 0.13 to 0.3% by weight. (3) % Claims A method for manufacturing a turbine rotor, characterized in that in item 1 or 2, the quenching temperature is set in a range of 1080°C to 1150°C.
JP10674683A 1983-06-16 1983-06-16 Manufacture of rotor for turbine Pending JPS59232231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10674683A JPS59232231A (en) 1983-06-16 1983-06-16 Manufacture of rotor for turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10674683A JPS59232231A (en) 1983-06-16 1983-06-16 Manufacture of rotor for turbine

Publications (1)

Publication Number Publication Date
JPS59232231A true JPS59232231A (en) 1984-12-27

Family

ID=14441480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10674683A Pending JPS59232231A (en) 1983-06-16 1983-06-16 Manufacture of rotor for turbine

Country Status (1)

Country Link
JP (1) JPS59232231A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103345A (en) * 1985-07-09 1987-05-13 Toshio Fujita Rotor of steam turbine for high temperature use and its manufacture
JPS62192536A (en) * 1986-02-18 1987-08-24 Nippon Chiyuutankou Kk Manufacture of turbine rotor
JPS62222027A (en) * 1986-03-25 1987-09-30 Nippon Chiyuutankou Kk Manufacture of heat resisting rotor
JPH04371551A (en) * 1991-06-18 1992-12-24 Nippon Steel Corp High strength ferritic heat resisting steel
CN108359887A (en) * 2017-01-26 2018-08-03 国家电投集团科学技术研究院有限公司 Steel and its preparation method and application
CN110923573A (en) * 2019-11-28 2020-03-27 北京科技大学 High-toughness steel with high thermal stability and in-situ nano-phase reinforcement and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613466A (en) * 1979-07-11 1981-02-09 Daido Steel Co Ltd Heat resistant steel
JPS56116858A (en) * 1980-02-20 1981-09-12 Toshiba Corp Steam turbine rotor
JPS5717925A (en) * 1980-07-08 1982-01-29 Citizen Watch Co Ltd Solution type electrochromic display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613466A (en) * 1979-07-11 1981-02-09 Daido Steel Co Ltd Heat resistant steel
JPS56116858A (en) * 1980-02-20 1981-09-12 Toshiba Corp Steam turbine rotor
JPS5717925A (en) * 1980-07-08 1982-01-29 Citizen Watch Co Ltd Solution type electrochromic display element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103345A (en) * 1985-07-09 1987-05-13 Toshio Fujita Rotor of steam turbine for high temperature use and its manufacture
JPS62192536A (en) * 1986-02-18 1987-08-24 Nippon Chiyuutankou Kk Manufacture of turbine rotor
JPS62222027A (en) * 1986-03-25 1987-09-30 Nippon Chiyuutankou Kk Manufacture of heat resisting rotor
JPH05450B2 (en) * 1986-03-25 1993-01-06 Nippon Chutanko Kk
JPH04371551A (en) * 1991-06-18 1992-12-24 Nippon Steel Corp High strength ferritic heat resisting steel
CN108359887A (en) * 2017-01-26 2018-08-03 国家电投集团科学技术研究院有限公司 Steel and its preparation method and application
CN108359887B (en) * 2017-01-26 2019-10-11 国家电投集团科学技术研究院有限公司 Steel and its preparation method and application
CN110923573A (en) * 2019-11-28 2020-03-27 北京科技大学 High-toughness steel with high thermal stability and in-situ nano-phase reinforcement and preparation method thereof
CN110923573B (en) * 2019-11-28 2021-11-16 北京科技大学 High-toughness steel with high thermal stability and in-situ nano-phase reinforcement and preparation method thereof

Similar Documents

Publication Publication Date Title
KR102037086B1 (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
KR20120075376A (en) Heat resistant cast steel, manufacturing method of heat resistant cast steel, casting parts of steam turbine and manufacturing method of casting parts of steam turbine
JPH0734202A (en) Steam turbine rotor
JP3723924B2 (en) Heat-resistant cast steel and method for producing the same
JPH0138848B2 (en)
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JPS59232231A (en) Manufacture of rotor for turbine
JPS59179718A (en) Manufacture of turbine rotor
JPS61133365A (en) Rotor for steam turbine
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JPS6132384B2 (en)
JPS61143523A (en) Manufacture of rotor for geothermal energy turbine
JP3649618B2 (en) Cast steel for pressure vessel and method for producing pressure vessel using the same
JPS59179719A (en) Manufacture of turbine rotor
JPS5845360A (en) Low alloy steel with temper embrittlement resistance
JP3504835B2 (en) Low alloy heat resistant cast steel and cast steel parts for steam turbines
US4049432A (en) High strength ferritic alloy-D53
JPH03134144A (en) Nickel-base alloy member and its manufacture
JPS6070125A (en) Manufacture of turbine rotor
JPS6031898B2 (en) Turbine rotor material
JP2004018897A (en) High-chromium alloy steel and turbine rotor using this
JPS60245772A (en) Low alloy steel for rotor of integrated high and low pressure type steam turbine
EP3255171A1 (en) Maraging steel
JP3254102B2 (en) High strength low alloy cast steel and its heat treatment method
JPS61217555A (en) Heat resistant austenitic steel