JP3723924B2 - Heat-resistant cast steel and method for producing the same - Google Patents

Heat-resistant cast steel and method for producing the same Download PDF

Info

Publication number
JP3723924B2
JP3723924B2 JP10470596A JP10470596A JP3723924B2 JP 3723924 B2 JP3723924 B2 JP 3723924B2 JP 10470596 A JP10470596 A JP 10470596A JP 10470596 A JP10470596 A JP 10470596A JP 3723924 B2 JP3723924 B2 JP 3723924B2
Authority
JP
Japan
Prior art keywords
cast steel
heat
content
resistant cast
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10470596A
Other languages
Japanese (ja)
Other versions
JPH08333657A (en
Inventor
美佐雄 沖野
政之 山田
陽一 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Steel Works Ltd
Original Assignee
Toshiba Corp
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Steel Works Ltd filed Critical Toshiba Corp
Priority to JP10470596A priority Critical patent/JP3723924B2/en
Publication of JPH08333657A publication Critical patent/JPH08333657A/en
Application granted granted Critical
Publication of JP3723924B2 publication Critical patent/JP3723924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火力発電プラントにおけるタービンケーシングやバルブ類等に使用される耐熱鋳鋼およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、大型火力発電プラントでは出力を増大させるために、超々臨界圧で使用されるタービンの開発が進められている。このような超々臨界圧下で用いられるタービンケーシング、フランジ、バルブ等の材料としては、蒸気タービン用鋳鋼品が使用されており、この鋳鋼品には、苛酷な使用環境に耐えられるように、高温特性に優れていることは勿論のこと、高靱性で経年劣化の少ないことが要求される。 従来、このような観点から、上記用途に使用される鋳鋼品としては、12Cr−Mo−V−Nb−N鋳鋼や12Cr−Mo−V−Nb−N−W鋳鋼等が使用されている。
【0003】
【発明が解決しようとする課題】
しかし、蒸気温度の高温高圧化に伴い、従来の耐熱鋳鋼では、クリープ破断強度が十分でないため、より高いクリープ破断強度を有し、かつ延靱性が良好で高温強度にも優れた12Cr系耐熱鋳鋼の開発が望まれている。
本発明は、上記事情を背景としてなされたものであり、延靱性、高温強度ともに優れ、特に高温クリープ破断強度に優れた新規の12Cr系の耐熱鋳鋼とその製造方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
上記課題を解決するため、本願発明のうち第1の発明の耐熱鋳鋼は、重量%で、C:0.05〜0.15%、Mn:0.10〜1.50%、Ni:1.0%以下、Cr:9.0〜13.0%、Mo:0.65〜1.5%、V:0.1〜0.3%、N:0.005〜0.10%、W:0.1〜5.0%、Co:1.5〜5.0%、B:0.004〜0.022%を含有し、残部がFeおよび不可避不純物からなることを特徴とする。
第2の発明の耐熱鋳鋼は、第1の発明の組成に、さらに重量%で、Nb:0.01〜0.2%、Ta:0.01〜0.2%、Ti:0.1%以下の1種以上を含有することを特徴とする
【0005】
【作用】
以下に本願発明の作用を、各成分の限定理由とともに説明する。
C:0.05〜0.15%
Cは、炭化物生成元素と結びついて炭化物を形成し、高温強度を向上させるが0.05%未満であると強度が不十分であり、一方、0.15%を超えると炭化物が粗大化し高温性質を低下させるので、その範囲を0.05〜0.15%とした。 なお、同様の理由で下限を0.09%、上限を0.13%とするのが望ましい。
【0006】
Mn:0.10〜1.50%
Mnは、Siとともに脱酸剤として使用される元素であり、十分な脱酸効果を得るためには0.10%以上の含有が必要であるが、1.50%を超えて含有させると靱性を損なうため、0.10〜1.50%に限定した。なお、同様の理由で下限を0.45%、上限を0.70%とするのが望ましい。
Ni:1.0%以下
Niは焼入れ性を向上させ、またFATT、靱性を改善する元素であり、0.25%以上含有させるのが望ましいが、1.0%を超えて含有させると高温クリープ強さが低下するためその許容範囲を1.0%以下とした。なお、望ましくは0.30〜0.70%を含有させる。
一方、主として高温特性の改善を目的とする場合はNiを添加しない。この場合、原材料より不可避的に混入することを考慮し、0.25%未満を不純物として許容する。
【0007】
Cr:9.0〜13.0%
Crは、この鋼種において焼入性、高温強度を高める基本合金成分であり、9.0%以上必要であるが、13.0%を越えて含有させるとδフェライトが晶出して高温性質および切欠靭性を劣化させるので、その上限を13.0%とした。なお、同様の理由で望ましくは下限を9.5、上限を10.5%とする。
Mo:0.65〜1.5%
Moは、焼戻軟化抵抗を高め、また高温強度を改善するために0.65%以上必要であるが、1.5%を超えて含有させても、それ以上の効果は期待できず、また有害なδフェライトが生成しクリープ破断強度を低下させるため0.65〜1.5%に限定した。なお、同様の理由で、上限を0.95%とするのが望ましい。
【0008】
V:0.1〜0.3%
Vは、安定した炭化物を形成しクリープ強度を向上させる作用を有するが、0.1%未満だと効果はなく、一方、0.3%を超えて含有させると延靱性が低下するので0.1〜0.3%に限定した。なお、同様の理由で下限を0.15%、上限を0.25%とするのが望ましい。
N:0.005〜0.10%
Nは、基地を強化するばかりでなく、Moと共存してクリープ強度の向上に有効に作用する。その含有量が0.005%未満では、その効果が認められず、また0.10%を越えて含有させるとブローホールを発生するので、その含有量を0.005〜0.10%とした。なお、同様の理由で下限を0.01%、上限を0.06%とするのが望ましい。
【0009】
W:0.1〜5.0%
Wは、高温強度を向上させるために含有させるが、0.1%未満だと、その効果はなく、一方、5.0%を越えて含有させると偏析傾向が増大し、また延靱性を低下させるので0.1〜5.0%に限定した。なお、同様の理由で下限を1.5%、上限を3.5%とするのが望ましい。
Co:0.1〜5.0%
Coは、δフェライトの析出を抑えることで衝撃性質を向上させ、またクリープ破断強度を向上させるために含有させる。ただし、0.1%未満では、その効果がなく、5.0%を越えて添加すると、その効果が飽和するため、0.1%〜5.0%に限定した。なお、同様の理由で下限を1.5%、上限を3.5%とするのが望ましい。
【0010】
B:0.001〜0.022%
Bは、微量の含有で焼入れ性が増大し、靱性を向上させるとともに粒界および粒内の炭化物の析出凝集を抑え、高温クリープ強さに寄与する。しかし、その含有量は、0.001%未満では、上記効果が不十分である。また、0.022%を越えると高温クリープ延性が著しく低下するため、さらに溶接性を悪化させるためその含有量を0.001〜0.022%に限定した。なお、同様の理由で下限を0.002%、上限を0.015%とするのが望ましい。さらには0.003〜0.007%とするのが一層望ましい。
【0011】
Nb:0.01〜0.2%
Nbは、微細な炭窒化物を形成し高温強度を向上させるので選択成分として含有させる。ただし、0.01%未満の含有では効果はなく、0.2%を越えて含有させると炭窒化物が増大し、延靱性を低下させるため、その範囲を0.01〜0.2%とした。なお、同様の理由で下限を0.03%、上限を0.12%とするのが望ましい。
Ta:0.01〜0.2%
Taは、微細な炭化物を析出し高温強度を向上させるので選択成分として含有させる。ただし、0.01%未満の含有では効果がなく、0.2%を越えて含有させると炭化物が増大し、延靱性を低下させるため、その範囲を0.01〜0.2%とした。なお、同様の理由で下限を0.03%、上限を0.12%とするのが望ましい。
Ti:0.1%以下
Tiは、脱酸剤の一つであり、また炭化物あるいは窒化物を形成し高温特性を向上させるので選択成分として含有させる。ただし、0.1%を越えて含有させると介在物を多く発生させて延靱性を低下させるので上限を0.1%とした。なお、同様の理由で上限を0.05%とするのが望ましい。
【0012】
その他
Siは脱酸剤として使用されるため不可避的に含有される。しかし、その含有量を低減していくとマクロ偏析、特に逆V偏析が軽微となり、肉厚内部における延性および切欠靱性の不均一性が改善される。また、Si含有量が高いと焼戻脆化感受性が極めて大となり、切欠靱性が損なわれる。したがって、Si含有量は低い方が望ましい。しかし脱酸剤として使用される元素であり、その上限を極端に低く定めることは製造上の裕度が小さく実用的でないので0.20%未満を不純物として許容する。
【0013】
本発明の耐熱鋳鋼において対象としているケーシング等は鋳込重量10〜150トン(製品重量が5〜50トン)程度の大型になるので、内部品質の良好な鋳鋼を製作するためには高度な製鋼技術および鋳造技術が必要となる。本発明における耐熱鋳鋼は、合金材料を電気炉にて溶解し、炉外精錬にて精錬、脱ガスを十分行い、また積極的に指向性凝固させる砂型鋳型を使用して、鋳込み成形することにより鋳造欠陥の少ない健全な鋳鋼が製造でき、上記大型のケーシング等に好適な材料が得られる。
【0014】
また、鋳込み成形された耐熱鋳鋼を1000〜1150℃で焼鈍し、1000〜1200℃に加熱し強制冷却する焼準を行い、その後500〜700℃で焼戻、続いて700〜780℃で第2段目の焼戻を行うことで、高いクリープ破断強度が確保できる。
なお、焼鈍および焼準温度は、炭窒化物の固溶およびδフェライトの分解を行うために1000℃以上とする必要があるが、高すぎると結晶粒の粗大化やδフェライトへの再変態が起きるので上限温度1150℃或いは1200℃とした。また2回の焼戻により、残留オーステナイトを完全に分解し、均一なマルテンサイト組織が得られ、さらに炭窒化物を微細析出させクリープ破断強度を向上することができる。
【0015】
なお、本発明鋼は必要に応じて構造溶接、補修溶接等の溶接を行うことができ、例えば、上記した一連の熱処理後、溶接を行い、その後、650℃〜760℃の応力除去焼鈍を行う。
また、該溶接は、上記一連の工程途中、すなわち、焼鈍後であって、焼準の前に行うことができ、その後は、上記工程に従って、焼準、焼戻、第2段目の焼戻が行われる。この場合、上記した応力除去焼鈍は不要となる。また、この工程(熱処理中途の溶接工程を含む)においては、必要に応じて、上記第2段目の焼戻後に、さらに、溶接を行うことも可能であり、該溶接後には、上記した応力除去焼鈍を行う。
上記のように、熱処理工程の中途に溶接工程を含む場合には、構造溶接部や補修溶接部に対しても、上記と同様の焼準、焼戻が行われるため、溶接部においても高いクリープ破断強度と良好な靭性が確保できる。
【0016】
【実施例】
(実施例1)
表1、2に示す組成を有する合金(実施例および比較例)を、真空溶解炉にて溶製し、砂型に鋳込んだyブロック50kg鋼塊を試験材とした。これらの試験材に所定の熱処理を施した後、機械的性質および溶接性を評価し、その結果を表3に示した。
溶接性の評価は図1に示した平板1(280mm長×100mm幅×30mm厚)を製作し、その板面に所定の溶接棒により3パスの溶接を行い、その後、溶接ビード2に垂直な5断面について割れ発生の有無を調査した。この結果をB含有量との関係で整理したものを図2に示した。
表3および図2から明らかなように本発明材はクリープ破断強度と溶接性に優れていることが明らかとなった。
【0017】
【表1】

Figure 0003723924
【0018】
【表2】
Figure 0003723924
【0019】
【表3】
Figure 0003723924
【0020】
(実施例2)
本発明の耐熱鋳鋼を目標達成とする合金原料を電気炉で溶解し、炉外精錬により組成調整後、脱ガス等を行い砂型鋳型で鋳込み成形して、鋳込重量20トン(製品重量約9トン)のモデルケーシングを製作した。この鋳鋼を1070℃で20時間保持後炉冷の焼鈍を行い、1070℃で10時間保持後強制冷却の焼準を行い、さらに第1段焼戻として570℃で8時間保持後空冷し、続いて第2段目の焼戻として740℃で16時間保持後炉冷した。
このモデルケーシングの機械的性質を評価したところ、クリープ破断強度は600℃の105時間で12kgf/mm2、625℃の105時間で9kgf/mm2、FATT60℃を確保できた。
【0021】
【発明の効果】
以上説明したように本発明の耐熱鋳鋼によれば、重量%で、C:0.05〜0.15%、Mn:0.10〜1.50%、Ni:1.0%以下、Cr:9.0〜13.0%、Mo:0.65〜1.5%、V:0.1〜0.3%、N:0.005〜0.10%、W:0.1〜5.0%、Co:1.5〜5.0%、B:0.004〜0.022%を含有し、さらに所望により、Nb:0.01〜0.2%、Ta:0.01〜0.2%、Ti:0.1%以下の1種以上を含有し、残部がFeおよび不可避不純物からなるので、延靭性、高温強度に優れ、特にクリープ破断強度が向上し、また溶接性も優れている。この特性により、より高温高圧化された火力発電プラントでの使用が可能になり、発電プラントでの高効率化、高出力化に寄与することができる。
【0022】
また、上記鋳塊を製造する際に、合金原料を電気炉にて溶解し、炉外精錬にて精錬後、砂型鋳型に鋳込み成形すれば、鋳造欠陥が少なく内部品質の良好な鋳鋼を製造することができ、大型のケーシング等に好適な材料を提供することができる。
【0023】
また、上記工程により鋳込み成形された耐熱鋳鋼を1000〜1150℃で焼鈍し、1000〜1200℃に加熱し強制冷却する焼準を行い、その後500〜700℃で焼戻、続いて700〜780℃で第2段目の焼戻を行えば、高いクリープ破断強度が確保でき、靭性も向上させることができる。
【図面の簡単な説明】
【図1】 溶接評価試験片における切断位置を示す概略図である。
【図2】 B含有量と溶接割れ率との関係を示すグラフである。
【符号の説明】
1 平板
2 溶接ビード[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-resistant cast steel used for a turbine casing, valves and the like in a thermal power plant and a method for producing the same.
[0002]
[Prior art]
In recent years, large-scale thermal power plants have been developing turbines that are used at ultra-supercritical pressures in order to increase output. Cast turbine products for steam turbines are used as materials for turbine casings, flanges, valves, etc. used under such super-supercritical pressures, and these cast steel products have high temperature characteristics so that they can withstand harsh usage environments. Of course, it is required to have high toughness and little deterioration over time. Conventionally, from this point of view, 12Cr—Mo—V—Nb—N cast steel, 12Cr—Mo—V—Nb—N—W cast steel, and the like are used as cast steel products used for the above applications.
[0003]
[Problems to be solved by the invention]
However, with the increase in steam temperature, the conventional heat-resistant cast steel has insufficient creep rupture strength, so it has higher creep rupture strength, good ductility and good high-temperature strength. Development is desired.
The present invention has been made against the background described above, and an object thereof is to provide a novel 12Cr heat-resistant cast steel excellent in both ductility and high-temperature strength, particularly excellent in high-temperature creep rupture strength, and a method for producing the same. Is.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the heat-resistant cast steel according to the first invention of the present invention is C: 0.05-0.15%, Mn: 0.10-1.50%, Ni: 1. 0% or less, Cr: 9.0 to 13.0%, Mo: 0.65 to 1.5%, V: 0.1 to 0.3%, N: 0.005 to 0.10%, W: It contains 0.1 to 5.0%, Co: 1.5 to 5.0%, B: 0.004 to 0.022%, and the balance is made of Fe and inevitable impurities.
In the heat-resistant cast steel of the second invention, the composition of the first invention is further weight percent, Nb: 0.01 to 0.2%, Ta: 0.01 to 0.2%, Ti: 0.1% It contains one or more of the following .
[0005]
[Action]
The operation of the present invention will be described below together with the reasons for limiting each component.
C: 0.05 to 0.15%
C forms carbides in combination with carbide-forming elements and improves high-temperature strength. However, if it is less than 0.05%, the strength is insufficient. On the other hand, if it exceeds 0.15%, the carbide becomes coarse and high-temperature properties are increased. Therefore, the range was made 0.05 to 0.15%. For the same reason, it is desirable that the lower limit is 0.09% and the upper limit is 0.13%.
[0006]
Mn: 0.10 to 1.50%
Mn is an element used as a deoxidizing agent together with Si. To obtain a sufficient deoxidizing effect, Mn is required to be contained in an amount of 0.10% or more. Therefore, the content is limited to 0.10 to 1.50%. For the same reason, it is desirable to set the lower limit to 0.45% and the upper limit to 0.70%.
Ni: 1.0% or less Ni is an element that improves hardenability and improves FATT and toughness, and is preferably contained in an amount of 0.25% or more. Since the strength decreases, the allowable range is set to 1.0% or less. Desirably, 0.30 to 0.70% is contained.
On the other hand, Ni is not added mainly for the purpose of improving high temperature characteristics. In this case, in consideration of inevitable mixing from the raw material, less than 0.25% is allowed as an impurity.
[0007]
Cr: 9.0 to 13.0%
Cr is a basic alloy component that enhances hardenability and high-temperature strength in this steel type, and is required to be 9.0% or more. However, if it exceeds 13.0%, δ ferrite crystallizes, and high-temperature properties and notches are required. Since the toughness is deteriorated, the upper limit is set to 13.0%. For the same reason, the lower limit is preferably 9.5 and the upper limit is 10.5%.
Mo: 0.65 to 1.5%
Mo needs to be 0.65% or more in order to increase the temper softening resistance and improve the high temperature strength, but even if it exceeds 1.5%, no further effect can be expected. In order to generate harmful δ ferrite and reduce the creep rupture strength, the content was limited to 0.65 to 1.5%. For the same reason , the upper limit is desirably 0.95%.
[0008]
V: 0.1 to 0.3%
V has the effect of forming a stable carbide and improving the creep strength. However, if less than 0.1%, there is no effect. Limited to 1-0.3%. For the same reason, it is desirable to set the lower limit to 0.15% and the upper limit to 0.25%.
N: 0.005-0.10%
N not only strengthens the base, but also effectively coexists with Mo and improves the creep strength. If the content is less than 0.005%, the effect is not recognized, and if it exceeds 0.10%, blowholes are generated, so the content was made 0.005 to 0.10%. . For the same reason, it is desirable to set the lower limit to 0.01% and the upper limit to 0.06%.
[0009]
W: 0.1-5.0%
W is added to improve the high temperature strength, but if it is less than 0.1%, there is no effect. On the other hand, if it exceeds 5.0%, the segregation tendency increases and the ductility decreases. Therefore, it was limited to 0.1 to 5.0%. For the same reason, it is desirable to set the lower limit to 1.5% and the upper limit to 3.5%.
Co: 0.1-5.0%
Co is contained in order to improve the impact properties by suppressing the precipitation of δ ferrite and to improve the creep rupture strength. However, if the content is less than 0.1%, the effect is not obtained. If the content exceeds 5.0%, the effect is saturated, so the content is limited to 0.1% to 5.0%. For the same reason, it is desirable to set the lower limit to 1.5% and the upper limit to 3.5%.
[0010]
B: 0.001 to 0.022%
B is contained in a small amount to increase hardenability, improve toughness, suppress precipitation and aggregation of carbides in grain boundaries and grains, and contribute to high temperature creep strength. However, the content is less than 0.001%, the above effects are insufficient. Moreover, since the high temperature creep ductility will fall remarkably when it exceeds 0.022%, in order to worsen weldability further, the content was limited to 0.001-0.022%. For the same reason, it is desirable that the lower limit is 0.002% and the upper limit is 0.015%. Furthermore, it is more desirable to set it as 0.003 to 0.007%.
[0011]
Nb: 0.01 to 0.2%
Nb is included as a selective component because it forms fine carbonitrides and improves high-temperature strength. However, if the content is less than 0.01%, there is no effect, and if the content exceeds 0.2%, the carbonitride increases and the toughness decreases, so the range is 0.01-0.2%. did. For the same reason, it is desirable that the lower limit is 0.03% and the upper limit is 0.12%.
Ta: 0.01 to 0.2%
Ta precipitates fine carbides and improves the high-temperature strength, so is included as a selective component. However, if the content is less than 0.01%, there is no effect, and if the content exceeds 0.2%, the carbide increases and the ductility is lowered, so the range was made 0.01 to 0.2%. For the same reason, it is desirable that the lower limit is 0.03% and the upper limit is 0.12%.
Ti: 0.1% or less Ti is one of deoxidizers, and forms carbides or nitrides to improve high temperature characteristics, so is included as a selective component. However, if the content exceeds 0.1%, more inclusions are generated and the ductility is lowered, so the upper limit was made 0.1%. For the same reason, it is desirable to set the upper limit to 0.05%.
[0012]
In addition, Si is inevitably contained because it is used as a deoxidizer. However, as the content is reduced, macrosegregation, particularly reverse V segregation, becomes minor, and the nonuniformity of ductility and notch toughness inside the wall thickness is improved. Moreover, when Si content is high, the temper embrittlement sensitivity becomes very large, and notch toughness is impaired. Therefore, a lower Si content is desirable. However, it is an element used as a deoxidizing agent, and setting its upper limit to be extremely low has a small manufacturing margin and is impractical, so that less than 0.20% is allowed as an impurity.
[0013]
Since the casings and the like targeted in the heat-resistant cast steel of the present invention are about 10 to 150 tons in weight (product weight is 5 to 50 tons), advanced steel making is necessary for producing cast steel with good internal quality. Technology and casting technology are required. The heat-resistant cast steel according to the present invention is obtained by casting an alloy material using a sand mold that melts the alloy material in an electric furnace, thoroughly refines it by out-of-furnace refining, sufficiently degasses, and actively solidifies directionally. Sound cast steel with few casting defects can be manufactured, and a material suitable for the large casing and the like can be obtained.
[0014]
Also, the cast heat-resistant cast steel is annealed at 1000 to 1150 ° C., heated to 1000 to 1200 ° C., subjected to forced cooling, then tempered at 500 to 700 ° C., and then second annealed at 700 to 780 ° C. By performing the tempering step, high creep rupture strength can be secured.
The annealing and normalizing temperatures need to be 1000 ° C. or higher in order to dissolve carbonitride and decompose δ ferrite. However, if the temperature is too high, coarsening of crystal grains and retransformation into δ ferrite will occur. Since this occurs, the upper limit temperature is set to 1150 ° C or 1200 ° C. Further, by tempering twice, the retained austenite can be completely decomposed to obtain a uniform martensite structure, and carbonitride can be finely precipitated to improve the creep rupture strength.
[0015]
In addition, this invention steel can perform welding, such as structural welding and repair welding, as needed, for example, after the above-mentioned series of heat treatments, welding is performed, and then stress-relieving annealing at 650 ° C. to 760 ° C. .
Further, the welding can be performed during the above-described series of steps, that is, after annealing and before normalization, and thereafter normalization, tempering, and second-stage tempering according to the above-described steps. Is done. In this case, the above-described stress relief annealing is not necessary. In this step (including a welding step in the middle of heat treatment), if necessary, further welding can be performed after the second stage of tempering. Perform removal annealing.
As described above, when a welding process is included in the middle of the heat treatment process, the same normalization and tempering as described above are performed for structural welds and repair welds. Breaking strength and good toughness can be secured.
[0016]
【Example】
(Example 1)
Alloys (Examples and Comparative Examples) having the compositions shown in Tables 1 and 2 were melted in a vacuum melting furnace and cast into sand molds as y-block 50 kg steel ingots as test materials. These test materials were subjected to a predetermined heat treatment, and mechanical properties and weldability were evaluated. The results are shown in Table 3.
The weldability is evaluated by manufacturing the flat plate 1 shown in FIG. 1 (280 mm long × 100 mm wide × 30 mm thick), performing three-pass welding on the plate surface with a predetermined welding rod, and then perpendicular to the weld bead 2. The presence or absence of cracking was investigated for 5 sections. FIG. 2 shows the results arranged in relation to the B content.
As is apparent from Table 3 and FIG. 2, the material of the present invention was found to be excellent in creep rupture strength and weldability.
[0017]
[Table 1]
Figure 0003723924
[0018]
[Table 2]
Figure 0003723924
[0019]
[Table 3]
Figure 0003723924
[0020]
(Example 2)
An alloy raw material that achieves the goal of the heat-resistant cast steel of the present invention is melted in an electric furnace, adjusted in composition by out-of-furnace refining, degassed, and cast in a sand mold, resulting in a cast weight of 20 tons (product weight of about 9 Ton) model casing. This cast steel is held at 1070 ° C. for 20 hours, and then furnace-cooled annealing is performed. After holding at 1070 ° C. for 10 hours, forced cooling is normalized, and then maintained at 570 ° C. for 8 hours as the first stage tempering, followed by air cooling. As the second stage tempering, the furnace was cooled at 740 ° C. for 16 hours and then cooled.
When the mechanical properties of this model casing were evaluated, the creep rupture strength was 12 kgf / mm 2 at 10 5 hours at 600 ° C., 9 kgf / mm 2 at 10 5 hours at 625 ° C., and FATT 60 ° C.
[0021]
【The invention's effect】
As described above, according to the heat-resistant cast steel of the present invention, C: 0.05 to 0.15%, Mn: 0.10 to 1.50%, Ni: 1.0% or less, Cr: 9.0~13.0%, Mo: 0.65 ~1.5% , V: 0.1~0.3%, N: 0.005~0.10%, W: 0.1~5. 0%, Co: 1.5 to 5.0%, B: 0.004 to 0.022%, Nb: 0.01 to 0.2%, Ta: 0.01 to 0 if desired .2%, Ti: contain one or more of 0.1% or less, and the balance consists of Fe and inevitable impurities, so excellent toughness and high temperature strength, especially improved creep rupture strength, and excellent weldability ing. This characteristic enables use in a thermal power plant with higher temperature and pressure and contributes to higher efficiency and higher output in the power plant.
[0022]
Also, when producing the above ingot, the alloy raw material is melted in an electric furnace, refined by out-of-furnace refining, and cast into a sand mold to produce cast steel with few casting defects and good internal quality. Therefore, a material suitable for a large casing or the like can be provided.
[0023]
Moreover, the heat-resistant cast steel cast-molded by the above process is annealed at 1000 to 1150 ° C., heated to 1000 to 1200 ° C., forcibly cooled, then tempered at 500 to 700 ° C., and subsequently 700 to 780 ° C. If the second tempering is performed, a high creep rupture strength can be secured and the toughness can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a cutting position in a weld evaluation test piece.
FIG. 2 is a graph showing the relationship between B content and weld crack rate.
[Explanation of symbols]
1 Flat plate 2 Weld bead

Claims (2)

重量%で、C:0.05〜0.15%、Mn:0.10〜1.50%、Ni:1.0%以下、Cr:9.0〜13.0%、Mo:0.65〜1.5%、V:0.1〜0.3%、N:0.005〜0.10%、W:0.1〜5.0%、Co:1.5〜5.0%、B:0.004〜0.022%を含有し、残部がFeおよび不可避不純物からなる耐熱鋳鋼。By weight, C: 0.05 to 0.15%, Mn: 0.10 to 1.50%, Ni: 1.0% or less, Cr: 9.0 to 13.0%, Mo: 0.65 -1.5%, V: 0.1-0.3%, N: 0.005-0.10%, W: 0.1-5.0%, Co: 1.5-5.0%, B: Heat-resistant cast steel containing 0.004 to 0.022%, with the balance being Fe and inevitable impurities. 請求項1記載の組成に、さらに重量%で、Nb:0.01〜0.2%、Ta:0.01〜0.2%、Ti:0.1%以下の1種以上を含有する耐熱鋳鋼。  The composition according to claim 1, further comprising one or more of Nb: 0.01 to 0.2%, Ta: 0.01 to 0.2%, and Ti: 0.1% or less by weight%. Cast steel.
JP10470596A 1995-04-03 1996-04-02 Heat-resistant cast steel and method for producing the same Expired - Lifetime JP3723924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10470596A JP3723924B2 (en) 1995-04-03 1996-04-02 Heat-resistant cast steel and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9946195 1995-04-03
JP7-99461 1995-04-03
JP10470596A JP3723924B2 (en) 1995-04-03 1996-04-02 Heat-resistant cast steel and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08333657A JPH08333657A (en) 1996-12-17
JP3723924B2 true JP3723924B2 (en) 2005-12-07

Family

ID=26440598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10470596A Expired - Lifetime JP3723924B2 (en) 1995-04-03 1996-04-02 Heat-resistant cast steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3723924B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284633B2 (en) 2010-12-28 2016-03-15 Kabushiki Kaisha Toshiba Heat resistant cast steel, manufacturing method thereof, cast parts of steam turbine, and manufacturing method of cast parts of steam turbine
CN112626413A (en) * 2020-11-28 2021-04-09 四川维珍高新材料有限公司 Aviation case product and production process thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959747A (en) * 1995-08-25 1997-03-04 Hitachi Ltd High strength heat resistant cast steel, steam turbine casing, steam turbine electric power plant, and steam turbine
JPH10245658A (en) * 1997-03-05 1998-09-14 Mitsubishi Heavy Ind Ltd High cr precision casting material and turbine blade
JPH1136038A (en) * 1997-07-16 1999-02-09 Mitsubishi Heavy Ind Ltd Heat resistant cast steel
JPH11209851A (en) * 1998-01-27 1999-08-03 Mitsubishi Heavy Ind Ltd Gas turbine disk material
JP4262414B2 (en) * 2000-12-26 2009-05-13 株式会社日本製鋼所 High Cr ferritic heat resistant steel
FR2823226B1 (en) * 2001-04-04 2004-02-20 V & M France STEEL AND STEEL TUBE FOR HIGH TEMPERATURE USE
JP4542491B2 (en) * 2005-09-29 2010-09-15 株式会社日立製作所 High-strength heat-resistant cast steel, method for producing the same, and uses using the same
JP4664857B2 (en) * 2006-04-28 2011-04-06 株式会社東芝 Steam turbine
CN101962739A (en) * 2010-11-15 2011-02-02 广东省韶铸集团有限公司 Cast steel material suitable for high-pressure resistant cylinder body and manufacturing method thereof
US20130323522A1 (en) * 2012-06-05 2013-12-05 General Electric Company Cast superalloy pressure containment vessel
CN108998638B (en) * 2018-09-13 2019-10-08 天津重型装备工程研究有限公司 A kind of heat treatment method of 620 DEG C or more supercritical turbine casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9284633B2 (en) 2010-12-28 2016-03-15 Kabushiki Kaisha Toshiba Heat resistant cast steel, manufacturing method thereof, cast parts of steam turbine, and manufacturing method of cast parts of steam turbine
CN112626413A (en) * 2020-11-28 2021-04-09 四川维珍高新材料有限公司 Aviation case product and production process thereof

Also Published As

Publication number Publication date
JPH08333657A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
JP5562825B2 (en) Heat-resistant cast steel, method for producing heat-resistant cast steel, cast component for steam turbine, and method for producing cast component for steam turbine
EP0639691B1 (en) Rotor for steam turbine and manufacturing method thereof
KR102037086B1 (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
JP6432070B2 (en) Hot die steel for long-life die casting excellent in high-temperature thermal conductivity and method for producing the same
JP3723924B2 (en) Heat-resistant cast steel and method for producing the same
JP3358951B2 (en) High strength, high toughness heat-resistant cast steel
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JP3422658B2 (en) Heat resistant steel
JP3649618B2 (en) Cast steel for pressure vessel and method for producing pressure vessel using the same
JPH093604A (en) High speed tool steel for precision casting
JPH0941076A (en) High strength and high toughness low alloy steel
JP3504835B2 (en) Low alloy heat resistant cast steel and cast steel parts for steam turbines
JPH0770713A (en) Heat resistant cast steel
JP3576234B2 (en) Cast steel for steam turbine cabin or pressure vessel
JPS59232231A (en) Manufacture of rotor for turbine
KR100424354B1 (en) Heat resistant cast steel
JP2004002963A (en) Heat resistant steel and manufacturing method therefor
JP2019011501A (en) Method for producing nozzle plate of steam turbine
JPS6031898B2 (en) Turbine rotor material
JP5996403B2 (en) Heat resistant steel and method for producing the same
JP3254102B2 (en) High strength low alloy cast steel and its heat treatment method
JPH11217655A (en) High strength heat resistant steel and its production
JPH11181549A (en) Cold tool made of casting excellent in weldability and its production
JPH10152759A (en) Maraging steel excellent in toughness
JPS61217554A (en) Heat resistant 12cr steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term