JPH08237169A - Preamble synchronization system - Google Patents

Preamble synchronization system

Info

Publication number
JPH08237169A
JPH08237169A JP7037081A JP3708195A JPH08237169A JP H08237169 A JPH08237169 A JP H08237169A JP 7037081 A JP7037081 A JP 7037081A JP 3708195 A JP3708195 A JP 3708195A JP H08237169 A JPH08237169 A JP H08237169A
Authority
JP
Japan
Prior art keywords
data
preamble
modulator
modulation
spread spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7037081A
Other languages
Japanese (ja)
Inventor
Keiji Kitagawa
恵司 北川
Souichirou Kotaki
総一朗 小滝
Kiyoshi Kawamoto
潔 川本
Yukihiro Maruyama
幸宏 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7037081A priority Critical patent/JPH08237169A/en
Publication of JPH08237169A publication Critical patent/JPH08237169A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain the system where correction of the stability of synchronization acquisition in deteriorated channel quality and of Doppler shift is simplified in the mobile communication equipment employing the spread spectrum system. CONSTITUTION: A transmitter is made up of a primary data modulator 6, a secondary spread spectrum modulator 7, and a preamble generator 5, the preamble generator 5 generates consecutive data of '1' or '0' for a preamble period, generates a non-modulation wave for the preamble period by giving the data to the primary modulator 6. The non-modulation data only for the preamble period are given to the spread spectrum modulator 7, in which spread spectrum modulation is conducted to improve the reception S/N by minimizing a demodulation signal band at synchronization acquisition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は無線伝送路上でスペクト
ル拡散通信方式によりバースト的に同期を行なう同期方
式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchronization system for performing burst-like synchronization by a spread spectrum communication system on a wireless transmission line.

【0002】[0002]

【従来の技術】従来、無線LANや移動体通信装置にス
ペクトル拡散通信方式を用いてる。これによれば、デー
タの多重化が可能となり通信容量を増加でき、また、混
信に強く秘話性に優れているため周波数の有効利用に役
立っている。
2. Description of the Related Art Conventionally, a spread spectrum communication system has been used for a wireless LAN and a mobile communication device. According to this, data can be multiplexed, the communication capacity can be increased, and since it is strong against interference and has excellent confidentiality, it is useful for effective use of frequencies.

【0003】しかしながら、スペクトル拡散通信の特徴
を活かすためには、スペクトル拡散変調を行なうため拡
散符号の同期が必要であり、使用するあらゆるシステム
の要求仕様を基に同期方式を考える必要が有る。
However, in order to make full use of the characteristics of spread spectrum communication, it is necessary to synchronize spread codes for performing spread spectrum modulation, and it is necessary to consider a synchronization method based on the required specifications of all the systems used.

【0004】従来の技術では、1次変調方式としてPS
K変調方式を用いる場合、図3の搬送波再生回路を利用
してAFC回路を構成し、ドップラーシフトの対策を行
なっている。(日本測量協会編:GPS参照) 図において、11はアンプ部、12は周波数てい倍器
1、13は位相比較器、14はループフィルタ、15は
電圧制御発振器、16は周波数てい倍器2である。この
搬送波再生回路を用いた方式では、1次変調方式にPS
K方式を用いた場合に可能となるのみであり、かつ搬送
波再生回路の時定数がある程度制限されるという問題が
ある。
In the prior art, PS is used as the primary modulation method.
When the K modulation method is used, the carrier recovery circuit of FIG. 3 is used to configure an AFC circuit to take measures against Doppler shift. (Refer to GPS by Japan Surveyors Association) In the figure, 11 is an amplifier unit, 12 is a frequency multiplier 1, 13 is a phase comparator, 14 is a loop filter, 15 is a voltage controlled oscillator, and 16 is a frequency multiplier 2. is there. In the system using this carrier recovery circuit, PS is used as the primary modulation system.
This is only possible when the K method is used, and there is a problem that the time constant of the carrier recovery circuit is limited to some extent.

【0005】その他関連技術として、特開平1−198
133号公報、特開平4−172727号公報、特開平
6−177858号公報等がある。
As another related technique, Japanese Patent Laid-Open No. Hei 1-198.
133, JP-A-4-172727, JP-A-6-177858 and the like.

【0006】[0006]

【発明が解決しようとする課題】上記のように、スペク
トル拡散通信の同期捕捉を行なう場合、1次変調信号を
用いて相関検出を行なっているが、データ変調波である
ためデータ変調速度により信号レベルが下がり相関検出
フィルタの帯域が広くなり相関検出S/Nが下がってし
まう欠点がある。
As described above, when performing synchronization acquisition of spread spectrum communication, correlation detection is performed using a primary modulation signal, but since it is a data modulation wave, the signal is detected at the data modulation speed. There is a drawback that the level is lowered and the band of the correlation detection filter is widened to lower the correlation detection S / N.

【0007】また、搬送波再生回路を用いた方式では、
1次変調方式にPSK方式を用いた場合に可能となるの
みであり、かつ搬送波再生回路の時定数がある程度制限
されるという問題がある。
Further, in the method using the carrier wave reproducing circuit,
This is only possible when the PSK method is used as the primary modulation method, and there is a problem that the time constant of the carrier recovery circuit is limited to some extent.

【0008】本発明の目的は、スペクトル拡散通信方式
を用いる無線機において決められた帯域内でドップラー
シフトの影響を考慮し拡散符号の同期を確実に行なうこ
とが出来る同期方式を提供することにある。
An object of the present invention is to provide a synchronization system capable of reliably performing spread code synchronization by considering the influence of Doppler shift within a band determined in a radio device using a spread spectrum communication system. .

【0009】[0009]

【課題を解決するための手段】上記目的は、プリアンブ
ル期間内の1次変調データを”1”または”0”の連続
した無変調状態とし、1次復調後の復調信号帯域幅を狭
帯域にすることにより相関検出S/Nを向上せしめる。
The above-mentioned object is to make primary modulation data within the preamble period into a continuous non-modulation state of "1" or "0" and reduce the demodulation signal bandwidth after primary demodulation to a narrow band. By doing so, the correlation detection S / N can be improved.

【0010】すなわち、データの先頭にプリアンブル期
間を設けて、ある一定期間無変調状態を保持することに
より同期捕捉時のS/Nを向上させ同期捕捉が確実に行
なえるようにすることによって、達成される。
That is, it is achieved by providing a preamble period at the beginning of the data and maintaining an unmodulated state for a certain period of time to improve the S / N at the time of synchronous acquisition and ensure the synchronous acquisition. To be done.

【0011】また、プリアンブル期間内の1次変調デー
タを”1”または”0”として、ドップラーシフトによ
る位相の回転量を検出しやすくすることによって、達成
される。
This is also achieved by setting the primary modulation data in the preamble period to "1" or "0" to facilitate detection of the phase rotation amount due to Doppler shift.

【0012】[0012]

【作用】上記手段を用いると、プリアンブル発生器によ
りプリアンブル期間の1次変調データを”1”または”
0”の連続したデータとして発生させる。このデータを
1次変調器に入力し無変調信号を発生させる。
With the above means, the preamble generator converts the primary modulation data in the preamble period to "1" or "1".
It is generated as continuous data of 0 ". This data is input to the primary modulator to generate an unmodulated signal.

【0013】プリアンブル期間中無変調信号を発生させ
ることにより受信側で1次復調(スペクトル逆拡散)を
行なった後に無変調信号が復調される。
The unmodulated signal is demodulated after the primary demodulation (spectrum despreading) is performed on the receiving side by generating the unmodulated signal during the preamble period.

【0014】同期捕捉用の復調信号が無変調波であるた
め狭帯域な信号となり同期捕捉時のS/Nを向上でき、
回線品質の劣化時においても確実に同期捕捉が行なえ
る。
Since the demodulation signal for synchronization acquisition is a non-modulated wave, it becomes a narrow band signal and the S / N ratio at the time of synchronization acquisition can be improved.
Even if the line quality deteriorates, the synchronization can be reliably acquired.

【0015】また、ブリアンブル期間中は1次変調デー
タを“1”または“0”の連続したデータとしているた
めに、ドップラーシフトによる位相の回転量が検出しや
すくなる。
Further, since the primary modulation data is continuous data of "1" or "0" during the preamble period, the phase rotation amount due to the Doppler shift can be easily detected.

【0016】[0016]

【実施例】以下、本発明を実施例によって説明する。EXAMPLES The present invention will be described below with reference to examples.

【0017】図1は、本発明の一実施例データフォーマ
ットであり、プリアンブル1、スタートワード2、子局
アドレス3、データ4により構成している。
FIG. 1 shows a data format according to an embodiment of the present invention, which comprises a preamble 1, a start word 2, a slave station address 3 and data 4.

【0018】図2は、本発明の一実施例の送信機側のブ
ロック図であり、プリアンブル発生器5、1次変調器
6、スペクトル拡散変調器7、周波数変換器8、パワー
アンプ部9、拡散符号発生器10により構成している。
FIG. 2 is a block diagram on the transmitter side according to one embodiment of the present invention. The preamble generator 5, the primary modulator 6, the spread spectrum modulator 7, the frequency converter 8, the power amplifier unit 9, It is composed of a spread code generator 10.

【0019】以下回路動作について説明すると、プリア
ンブル発生器5により図1の通りプリアンブル1期間
に”1”または”0”の連続データを発生させ、プリア
ンブル期間終了後データの先頭ワードであるスタートワ
ード2をつなげ、次に送信を行ないたい相手機を指定す
るための子局アドレス3をつなげ、最後に送信すべきデ
ータ4をつなげたデータフォーマットを発生させる。
The circuit operation will be described below. The preamble generator 5 generates continuous data of "1" or "0" in the preamble 1 period as shown in FIG. 1, and the start word 2 which is the first word of the data after the end of the preamble period. Then, a slave station address 3 for designating a partner device to be transmitted next is connected, and finally a data format in which data 4 to be transmitted is connected is generated.

【0020】プリアンブル発生器5にて発生させたデー
タを1次変調器6に入力し、PSK変調またはFSK変
調等を行いプリアンブル期間中のみ無変調の変調波を発
生させる。このプリアンブル期間中のみ無変調であるデ
ータをスペクトル拡散変調器7に入力し、必要な帯域幅
まで拡散符号発生基器10から発生させた拡散符号によ
りスペクトル拡散変調を行い、次いで必要な周波数帯ま
で周波数変換器8にて周波数変換を行い、パワーアンプ
部9にて必要な送信レベルまで電力増幅を行い送信アン
テナより送信を行なう。
The data generated by the preamble generator 5 is input to the primary modulator 6, and PSK modulation or FSK modulation is performed to generate a non-modulated modulated wave only during the preamble period. Data that is not modulated only during this preamble period is input to the spread spectrum modulator 7, spread spectrum modulation is performed by the spread code generated from the spread code generation base 10 up to the required bandwidth, and then up to the required frequency band. The frequency converter 8 performs frequency conversion, the power amplifier unit 9 amplifies power to a required transmission level, and transmits from a transmission antenna.

【0021】図示しない受信機側では、プリアンブル1
期間に受信信号に対し受信側の拡散符号発生器により発
生させた拡散符号でマッチドフィルタもしくはスライデ
ィング相関器等を用いた1次復調部でスペクトル逆拡散
を行ない、相関検出を行なう。 ところで、スペクトル
拡散通信方式では、送信側と受信側の拡散符号が一致し
た場合のみ復調出力が得られる、受信側の拡散符号がず
れて一致していない場合は、ノイズレベルとなる。
On the receiver side (not shown), the preamble 1
During the period, the spread code generated by the spread code generator on the receiving side is used to perform spectrum despreading in the primary demodulation section using a matched filter or a sliding correlator to detect correlation. By the way, in the spread spectrum communication system, a demodulated output can be obtained only when the spreading codes on the transmitting side and the receiving side match, and when the spreading codes on the receiving side do not match due to deviation, the noise level is reached.

【0022】このため回線品質の良好時には特に問題が
ないが、移動体通信にスペクトル拡散通信方式を用いた
場合、外来ノイズや、混信等の影響により回線品質が劣
化した場合に相関検出時のS/Nが低下し、誤同期の原
因となる。
Therefore, there is no particular problem when the line quality is good, but when the spread spectrum communication system is used for mobile communication, when the line quality is deteriorated due to the influence of external noise or interference, S at the time of correlation detection is used. / N decreases, which causes erroneous synchronization.

【0023】しかしながら、上記のようにプリアンブル
期間の送信データを“1”または“0”の連続データと
しているため、復調出力として狭帯域な無変調波信号が
復調され相関検出時のフィルタを狭帯域とすることによ
り時間積分後の相関検出出力S/Nが向上し、混信や外
来ノイズ等により回線品質の悪化した状態においても誤
同期を防止し確実に相関検出が行なえ拡散符号同期が完
了できる。
However, since the transmission data in the preamble period is continuous data of "1" or "0" as described above, a narrow band unmodulated wave signal is demodulated as a demodulation output and the filter at the time of correlation detection is narrow band. By doing so, the correlation detection output S / N after time integration is improved, and even in a state where the line quality is deteriorated due to interference, external noise, etc., false synchronization can be prevented and correlation detection can be reliably performed, and spread code synchronization can be completed.

【0024】また、受信機側で、データ復調器とドップ
ラーシフト量検出器を設けてドップラーシフト量の検出
を行なうときは、プリアンブル期間の送信データを
“1”または“0”の連続データとしているため、伝送
路上でドップラーシフトが発生した場合でもプリアンブ
ル期間内は無変調波であり、変調波と比べて位相シフト
量が検出しやすく、復調データより容易にドップラーシ
フトによる位相の回転量を検出でき、復調データをプリ
アンブル期間中に検出されたドップラーシフトによる位
相の回転量で補正を行なって、伝送路上で発生したドッ
プラーシフトの影響を除去することができる。
Further, when the receiver side is provided with a data demodulator and a Doppler shift amount detector to detect the Doppler shift amount, the transmission data in the preamble period is continuous data of "1" or "0". Therefore, even if a Doppler shift occurs on the transmission line, it is an unmodulated wave within the preamble period, the phase shift amount is easier to detect than the modulated wave, and the phase rotation amount due to the Doppler shift can be detected more easily than the demodulated data. By correcting the demodulated data with the amount of phase rotation due to the Doppler shift detected during the preamble period, the influence of the Doppler shift generated on the transmission path can be removed.

【0025】以上のようにして、プリアンブル期間内で
拡散符号同期が完了するとデータ等により1次変調され
た変調波が復調され、1次変調方式に対応した復調方式
であるPSKまたはFSK方式により2次復調を行ない
スタートワードを検出してデータの始まりを検出する。
As described above, when the spread code synchronization is completed within the preamble period, the modulated wave which is primary-modulated by data or the like is demodulated, and the PSK or FSK method which is a demodulation method corresponding to the primary modulation method is used. Next demodulation is performed and the start word is detected to detect the start of data.

【0026】また、スタトーワードを検出後自局ヘの送
信データであるか異なるかを区別するための子局アドレ
スを検出し、自局への送信データであれば、受信動作を
継続する。
After detecting the status word, the slave station address for distinguishing whether it is the transmission data to the own station or different is detected, and if it is the transmission data to the own station, the receiving operation is continued.

【0027】本実施例によれば、プリアンブル期間同期
捕捉用に無変調波を用いるために、従来の技術と異なり
1次変調方式に関係なく、同期捕捉時のS/Nが向上
し、また、伝送路上で発生するドップラーシフトの影響
を容易に補正出来る。
According to the present embodiment, since the unmodulated wave is used for the preamble period synchronization acquisition, the S / N at the time of synchronization acquisition is improved regardless of the primary modulation method, unlike the prior art. The effect of Doppler shift occurring on the transmission line can be easily corrected.

【0028】[0028]

【発明の効果】以上の本発明によれば、プリアンブル期
間において同期捕捉用に無変調波を用いるために、同期
捕捉時のS/Nが向上し回線品質の劣化時においても安
定して同期捕捉が行なえる。また、無変調波を用いるた
めに、伝送路上で発生するドップラーシフトの影響を簡
単に補正出来る効果が得られる。
As described above, according to the present invention, since the non-modulated wave is used for the synchronization acquisition during the preamble period, the S / N at the acquisition of the synchronization is improved and the synchronization is stably acquired even when the line quality is deteriorated. Can be done. Moreover, since the non-modulated wave is used, the effect of easily correcting the influence of the Doppler shift generated on the transmission line can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のデータフォーマット図である。FIG. 1 is a data format diagram of the present invention.

【図2】本発明の一実施例送信機側のブロック図であ
る。
FIG. 2 is a block diagram of a transmitter according to an embodiment of the present invention.

【図3】従来の搬送波再生回路のブロック図である。FIG. 3 is a block diagram of a conventional carrier recovery circuit.

【符号の説明】[Explanation of symbols]

1……プリアンブル部、2……スタートワード部、3…
…子局アドレス、4……データ部、5……プリアンブル
発生器、6……1次変調器、7……スペクトル拡散変調
器、8……周波数変換器、9……パワーアンプ部、10
……拡散符号発生器。
1 ... Preamble part, 2 ... Start word part, 3 ...
... Slave station address, 4 ... Data section, 5 ... Preamble generator, 6 ... Primary modulator, 7 ... Spread spectrum modulator, 8 ... Frequency converter, 9 ... Power amplifier section, 10
... Spread code generator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸山 幸宏 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立アドバンストシステムズ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukihiro Maruyama 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Hitachi Advanced Systems Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 バースト的にデータを伝送する無線機に
おいて、送信機側は1次データ変調器と2次スペクトル
拡散変調器と同期捕捉用のプリアンブルを発生するプリ
アンブル発生器により構成され、受信機側は同期捕捉用
の狭帯域受信フィルタと受信フィルタ切替器により構成
され、上記送信機側でプリアンブル期間内の1次変調デ
ータを全て”1”または”0”の連続したデータとして
2次変調のみ行ない、同期捕捉後の復調信号帯域を最小
として受信S/Nを向上させるようにしたことを特徴と
するプリアンブル同期方式。
1. In a radio device for transmitting data in bursts, a transmitter side comprises a primary data modulator, a secondary spread spectrum modulator, and a preamble generator for generating a preamble for synchronization acquisition, and a receiver. The side is composed of a narrow band reception filter for synchronization acquisition and a reception filter switcher, and the transmitter side converts only the primary modulation data in the preamble period into all "1" or "0" continuous data and only the secondary modulation. A preamble synchronization system characterized in that the reception S / N is improved by minimizing the demodulation signal band after synchronization acquisition.
【請求項2】 バースト的にデータを伝送する無線機に
おいて、送信機側は1次データ変調器と2次スペクトル
拡散変調器と同期捕捉用のプリアンブルを発生するプリ
アンブル発生器により構成され、受信機側はデータ復調
器とドップラーシフト量検出用の検出器により構成さ
れ、上記送信機側でプリアンブル期間内の1次変調デー
タを全て”1”または”0”の連続したデータとして2
次変調のみ行ない、同期捕捉後の復調信号帯域を最小と
してドップラーシフト量の検出をしやすくしたことを特
徴とするプリアンブル同期方式。
2. In a radio device for transmitting data in bursts, a transmitter side is composed of a primary data modulator, a secondary spread spectrum modulator and a preamble generator for generating a preamble for synchronization acquisition, and a receiver. The side is composed of a data demodulator and a detector for detecting the amount of Doppler shift. At the transmitter side, all the primary modulation data within the preamble period are treated as continuous data of "1" or "0".
A preamble synchronization method characterized by performing only the next modulation and minimizing the demodulation signal band after synchronization acquisition to facilitate detection of the Doppler shift amount.
JP7037081A 1995-02-24 1995-02-24 Preamble synchronization system Pending JPH08237169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7037081A JPH08237169A (en) 1995-02-24 1995-02-24 Preamble synchronization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7037081A JPH08237169A (en) 1995-02-24 1995-02-24 Preamble synchronization system

Publications (1)

Publication Number Publication Date
JPH08237169A true JPH08237169A (en) 1996-09-13

Family

ID=12487608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7037081A Pending JPH08237169A (en) 1995-02-24 1995-02-24 Preamble synchronization system

Country Status (1)

Country Link
JP (1) JPH08237169A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0847145A2 (en) * 1996-12-03 1998-06-10 Canon Kabushiki Kaisha Spread-spectrum communication method and apparatus
WO1999041867A1 (en) * 1998-02-17 1999-08-19 Root Inc. Radio communication equipment and communication method
KR100328219B1 (en) * 1999-12-09 2002-03-18 김덕중 Method for threshold set up of preamble initial acquisition
JP2004274794A (en) * 1998-12-14 2004-09-30 Interdigital Technol Corp Method for generating code related to preamble in random access channel
US7035232B1 (en) 1996-12-03 2006-04-25 Canon Kabushiki Kaisha Spread-spectrum communication method and apparatus
US7583638B2 (en) 1999-10-06 2009-09-01 Infineon Technologies Ag Device and method for processing a digital data signal in a CDMA radio transmitter

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035232B1 (en) 1996-12-03 2006-04-25 Canon Kabushiki Kaisha Spread-spectrum communication method and apparatus
US7706317B2 (en) 1996-12-03 2010-04-27 Canon Kabushiki Kaisha Spread-spectrum communication method and apparatus
EP0847145A3 (en) * 1996-12-03 2003-06-11 Canon Kabushiki Kaisha Spread-spectrum communication method and apparatus
EP0847145A2 (en) * 1996-12-03 1998-06-10 Canon Kabushiki Kaisha Spread-spectrum communication method and apparatus
WO1999041867A1 (en) * 1998-02-17 1999-08-19 Root Inc. Radio communication equipment and communication method
JP2010057196A (en) * 1998-12-14 2010-03-11 Interdigital Technol Corp Method for generating code associated with preamble for random access channel
JP2007068237A (en) * 1998-12-14 2007-03-15 Interdigital Technol Corp Method for generating code associated with preamble for random access channel
JP2004274794A (en) * 1998-12-14 2004-09-30 Interdigital Technol Corp Method for generating code related to preamble in random access channel
JP4589662B2 (en) * 1998-12-14 2010-12-01 インターデイジタル テクノロジー コーポレーション Method for generating a code associated with a preamble of a random access channel
JP4589911B2 (en) * 1998-12-14 2010-12-01 インターデイジタル テクノロジー コーポレーション Method for generating a code associated with a preamble of a random access channel
JP4681665B2 (en) * 1998-12-14 2011-05-11 インターデイジタル テクノロジー コーポレーション Method for generating a code associated with a preamble of a random access channel
US8036180B2 (en) 1998-12-14 2011-10-11 Interdigital Technology Corporation Random access channel preamble
US8218508B2 (en) 1998-12-14 2012-07-10 Interdigital Technology Corporation Random access channel preamble
US8958397B2 (en) 1998-12-14 2015-02-17 Interdigital Technology Corporation Random access channel preamble
US9276669B2 (en) 1998-12-14 2016-03-01 Interdigital Technology Corporation Random access channel preamble
US7583638B2 (en) 1999-10-06 2009-09-01 Infineon Technologies Ag Device and method for processing a digital data signal in a CDMA radio transmitter
KR100328219B1 (en) * 1999-12-09 2002-03-18 김덕중 Method for threshold set up of preamble initial acquisition

Similar Documents

Publication Publication Date Title
US6084905A (en) Frequency hopped wireless communication system and communication equipment using a preamble field and information transfer field succeeding the preamble field
JP2624964B2 (en) Wireless communication device
US5832022A (en) Method and apparatus for controlling the modulation index of continuous phase modulated (CPM) signals
US4926440A (en) Spread-spectrum communication apparatus
JPH0292035A (en) Delay lock loop circuit in diffused spectrum receiver
US6005896A (en) Radio data communication device and radio data communication method
US6678312B1 (en) Method for extending digital receiver sensitivity using analog correlation
JPH08237169A (en) Preamble synchronization system
JP3124717B2 (en) Orthogonal frequency division multiplexed signal transmission method and receiver thereof
JP3487508B2 (en) Communication device, communication method, communication control program, receiving device, receiving method, and receiving control program
US8194787B2 (en) Communication system, transmitter, communication method, and transmitter detection method
US6763058B1 (en) Low signal to noise ratio acquisition and link characterization techniques for VSAT spread spectrum modems
US7194046B2 (en) Frequency error correction unit and method in a wireless LAN system
JPS6411178B2 (en)
JP3197581B2 (en) Spread spectrum receiver, spread spectrum transmitter, and spread spectrum communication system
JPH0779176A (en) Spread spectrum radio equipment
JP3662818B2 (en) Interference cancellation apparatus, radio terminal apparatus, and interference cancellation method
JP3457099B2 (en) Parallel combination spread spectrum transmission and reception system.
JPH07183828A (en) Spread spectrum transmitter and receiver
JPH0255978B2 (en)
JP2929232B2 (en) Method and apparatus for demodulating spread spectrum signal
JP2864930B2 (en) Synchronization holding device in spread spectrum communication system
JP2792292B2 (en) Receiving machine
JPS634982B2 (en)
JP2984216B2 (en) Spread spectrum communication method and apparatus