JPS634982B2 - - Google Patents

Info

Publication number
JPS634982B2
JPS634982B2 JP3308782A JP3308782A JPS634982B2 JP S634982 B2 JPS634982 B2 JP S634982B2 JP 3308782 A JP3308782 A JP 3308782A JP 3308782 A JP3308782 A JP 3308782A JP S634982 B2 JPS634982 B2 JP S634982B2
Authority
JP
Japan
Prior art keywords
frequency
carrier wave
reference pilot
pilot
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3308782A
Other languages
Japanese (ja)
Other versions
JPS58151132A (en
Inventor
Hideo Okinaka
Toshio Takahashi
Yasuo Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP3308782A priority Critical patent/JPS58151132A/en
Publication of JPS58151132A publication Critical patent/JPS58151132A/en
Publication of JPS634982B2 publication Critical patent/JPS634982B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/68Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for wholly or partially suppressing the carrier or one side band

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は基準パイロツト信号を用いた自動周波
数制御方式に関し、例えば、SCPC(Single
Channel Per Carrier)方式と呼ばれている1搬
送波に1音声回線を割当てるFDMA(周波数分割
多元接続)方式に用いて好適なものである。 海事衛星通信システムや国内衛星通信システム
ではSCPC方式が広く用いられているが、SCPC
方式では各通信搬送波の占有周波数帯域幅が狭
く、また搬送波間の周波数間隔が狭いため、送信
周波数と受信周波数が良く一致する必要がある。
そこで、衛生中継器(トランスポンダ)の局部発
振器の周波数変動,地球局設備内の各種局部発振
器の周波数変動あるいは衛星の運動に伴うドツプ
ラ偏移等に起因する通信搬送波の周波数偏差を補
償するため、基準パイロツトを利用した自動周波
数制御(AFC)が行われる。つまり、各地球局
は共通に或いは個別に基準パイロツトを衛星に向
けて送出し、衛星で中継されたのち受信した自局
のパイロツトを用いてAFCをかける。これによ
り、上述した各種の周波数変動要因に起因する周
波数偏差の大部分を補正できる。なお、衛星通信
システムではトランスポンダの周波数変動が大き
なウエイトを占めているため、共通の基準パイロ
ツトを用いた場合でも、周波数偏差のかなりの部
分を補正することができる。 個別の基準パイロツトを用いたAFCは個別パ
イロツト方式と称され、高精度のAFCを実現で
きるが、この方式では従来、基準パイロツトに無
変調搬送波を用いるのが一般的であつた。ところ
が無変調パイロツトの場合は以下に述べるような
欠点がある。即ち、 (1) 混変調雑音など狭い帯域内にエネルギーが集
中している雑音の影響を受け易く、これによる
同期外れの危険性がある。衛星のトランスポン
ダは非直線性が強いため、SCPC方式の多数の
狭帯域搬送波がトランスポンダで共通増幅され
ると狭帯域性の混変調積が多数発生し、無変調
パイロツトと間違えてしまう。混変調雑音の影
響を除くにはパイロツトの復調後のS/Nマー
ジンを十分とれば良いのだが、これはパイロツ
トの増幅に消費される衛星電力の増大を意味す
るので適切でない。 (2) 各地球局が送出する基準パイロツトの送出元
を誤りなく識別するために必要となる保護用の
周波数帯域が大きく、衛星通信システムの周波
数利用効率が著しく低下する。各地球局は他局
の基準パイロツトを誤つて捕捉してはならない
ため、各基準パイロツトには見込まれる最大周
波数偏差の2倍以上の専用帯域を持たせ十分な
周波数間隔をおく必要があり、一般的な衛星通
信システムでは100KHz〜200KHzの間隔が必要
とされる。因みにインマルサツト(国際海事衛
星機構)システムの如く最大周波数偏差が±
55KHzと見込まれるシステムで20の地球局がア
クセスする場合を想定すると、20の基準パイロ
ツトに専用される周波数帯域は55×2×20=
2200KHz(=2.2MHz)となる。この数値はト
ランスポンダの周波数帯域が7.5MHzであるイ
ンマルサツトシステムでは、全体の30%にも達
し、周波数利用効率が極めて悪くなる。 なお、上記のうち(1)の欠点は共通の基準パイロ
ツトを用いたAFCについても当てはまるもので
ある。 本発明は上記従来技術に鑑み、狭い帯域にエネ
ルギが集中している雑音に強く且つAFCのため
に占有される周波数帯域が狭い自動周波数制御方
式を提供することを目的とする。 上記の目的は、基準パイロツトには搬送波を
PN符号系列で変調したものを用い、受信した基
準パイロツトの搬送波成分を変調に用いたと同じ
パターンのPN符号系列との相関を求めることに
より再生し、再生した搬送波成分の周波数と予め
定まる公称周波数との差から通信搬送波の周波数
偏差を補正するように受信系と送信系の少なくと
も一方における周波数変換用局部発振器の発振周
波数を制御することにより達成できる。以下、図
面を参照して本発明を説明する。 第1図a〜cは本発明を適用することができる
通信システムの代表例を示し、同図aは通信衛星
STを介した陸上局Eと航空機,船舶あるいは自
動車などの移動局Mとの衛星通信システムを示
し、同図bは通信衛星STを介した陸上局E間の
衛星通信システムを示し、同図cは通信衛星を使
用しない固定局L間の通常の通信システムを示
す。この他、各種の通信システムに適用できる。 本発明ではPN符号系列即ち擬似ランダムパタ
ーンとも呼ばれるパターンの繰返周期が極めて長
いパルスパターンで搬送波を変調して基準パイロ
ツトとするため、受信時には変調に用いたと同じ
PN符号系列との相関をとることにより、搬送波
周波数が同じであつてもPN符号系列が異なる他
の基準パイロツトとは明確に区別できる。もちろ
ん搬送波周波数が異なれば区別が一層明確にな
る。一方、搬送波をPN符号系列で変調するとス
ペクトラムが拡散され、次に相関を求めることに
より拡散したスペクトルが集中するのであるが、
混変調雑音など狭い帯域内にエネルギーが集中し
ている雑音は相関を求めることによりエネルギー
が拡散してしまう。したがつて多数の強力な混変
調雑音を受けても、相関を求めることによりエネ
ルギーが拡散されるから、基準パイロツトの搬送
波だけを捕捉することができ、同期外れが生じな
くなる。 本発明は周波数制御を送信系で行つて相手局に
対する通信搬送波の周波数を受信時に一定となる
ように制御する場合と、周波数制御を受信側で行
つて相手局の通信搬送波の周波数が変動してもこ
れに受信周波数を追従させる場合の2通りがある
が、第1図aの移動局Mと陸上局E間の衛星通信
システムでは移動局に周波数制御設備を持たせる
ことはスペース的あるいは経済的に不都合が多い
ので、陸上局Eに当該陸上局Eが送信する通信搬
送波を周波数制御させるAFC設備と移動局Mか
らの無制御の通信搬送波を追従受信するAFC設
備とを併せ備えると都合良い。またPN符号系列
で変調した基準パイロツトは、衛星通信システム
など1つの局が送信すればこれを他の局が受信で
きるシステムでは、各局が個々に送信する必要が
なく、受信可能な地域内で1局が代表して基準パ
イロツトを送信すれば(共通パイロツト方式)こ
れを利用して他の局も受信系あるいは送信系に
AFCをかけることができる。なお、共通パイロ
ツト方式で送信系にAFCをかける場合は、通信
搬送波の周波数だけを制御し、基準パイロツトの
周波数は制御しないことが肝要である。もちろ
ん、個別パイロツト方式で通信系にAFCをかけ
る場合は通信搬送波と基準パイロツトを連動して
周波数制御してかまわない。 第2図に基準パイロツトを作成する回路の一例
を示す。同図において、1は基準パイロツト用搬
送波発振器(REFOSC)、2は平衡変調器
(MOD)、3はPN符号発生器、4はバンドパス
フイルタ、5は出力端子である。同図に示す基準
パイロツト作成回路6の動作は以下の通りであ
る。搬送波発振器1からの搬送波はリング変調器
などの平衡変調器2によりPN符号発生器3から
のPN符号系列により平衡変調され、変調出力は
バンドパスフイルタ4により不要周波数成分を除
去された後、出力端子5へ出力される。つまり出
力端子5の信号は変調に用いたPN符号系列のビ
ツトレート即ちクロツクを伝送レートとする2相
PSK波となつており、そのスペクトラムはPN符
号系列のクロツクに等しい周波数帯域内に拡散さ
れていることになる。このようにして作つた基準
パイロツトは通信設備内のアツプコンバータによ
つて所望の無線周波数に変換された後、通信衛星
へ向けて若しくは直接相手局へ向けて送出され
る。 第3図に基準パイロツトの搬送波を再生し、周
波数制御用信号を作る回路の一例を示す。同図に
おいて、7はダウンコンバータからの受信信号の
入力端子、8はバンドパスフイルタ、9は相関
器、10は位相可変のPN符号発生器、11は
PN符号の位相同期回路、12は搬送波抽出回
路、13はフエーズロツクドループ(PLL)、1
4は公称周波数信号の入力端子、15と15aは
互いに逆極性の制御信号の出力端子、16は反転
増幅器である。なお、相関器9としては平衡変調
器が使用される。搬送波抽出回路12は一定レベ
ル以上の入力信号を通し、且つ過大信号は振幅を
リミツトする。入力端子14に入る信号は捕捉す
べき基準パイロツトの搬送波の公称中間周波数信
号である。以下、第3図に示す搬送波再生及び制
御信号作成回路17の動作を説明する。通信設備
内のダウンコンバータで中間周波数とされた受
信々号はバンドパスフイルタ8により通信々号と
分離され、受信基準パイロツトだけが相関器9に
入力される。相関器9ではPN符号発生器10か
らのPN符号系列と2相PSK波の受信基準パイロ
ツトとを掛け合せ、つまり、受信基準パイロツト
をPN符号系列で平衡変調して両者の相関をと
る。前述の如くPN符号系列のパターンが一致し
ていなければ相関出力は低いが、一致していても
位相がずれていれば相関出力が低い。そこで相関
器9の出力信号がPN符号の位相同期回路11に
入力され、この位相同期回路11は相関出力が最
大となるように位相可変のPN符号発生器10が
発生するPN符号系列の位相を制御する。つま
り、相関器9,位相同期回路11及び位相可変の
PN符号発生器10で構成されるフイードバツク
ループにより、スペクトラム拡散している受信基
準パイロツトから元の基準パイロツトの搬送波成
分が再生され、相関器9から出力される。相関器
9の出力信号は搬送波抽出回路12に入力され、
入力レベルが所定のスレツシヨルドを越えた場合
は所望の基準パイロツトを受信しているものと判
定し、入力した搬送波成分がそのままPLL13
に出力される。スレツシヨルド以下の場合は他の
基準パイロツトあるいは雑音であり、これらは採
用されない。PLL13は搬送波抽出回路12か
らの入力信号と参照用入力端子14からの公称周
波数信号の周波数差を検出し、周波数差を示す信
号を制御信号として出力端子15,15aに出力
する。この制御信号は通信搬送波にAFCをかけ
る場合は一方の出力端子例えば15から送信系の
アツプコンバータの局部発振器に与えられ、受信
周波数を通信搬送波に追従させる場合は他方の出
力端子例えば15aから受信系のダウンコンバー
タの局部発振器に与えられ、いずれの場合も周波
数差が零になるように局部発振周波数が制御され
る。なお、参照用入力端子14に入る信号として
は、基準パイロツトの送出と受信が同一局で行わ
れる場合は基準パイロツト作成回路6内の搬送波
発振器1からの信号を用いることもできるが、送
受が異なる局の場合は同一発振周波数の発振器を
別に設ける。 第4図に、海事衛星通信システムに本発明を適
用した場合の一例を示す。この例は陸上局に送受
双方の自動周波数制御の機能を持たせ、船舶局の
設備負担を省いている。第4図aは陸上局の送信
系自動周波数制御方式を示し、第4図bは同じく
陸上局の受信系自動周波数制御方式を示す。 まず、第4図aの回路を説明するに、101は
電話回線、102は音声信号の変調器、103は
基準パイロツトと変調信号の合成器であり、合成
器出力は第1,2アツプコンバータ104,10
5により6GHz帯に周波数変換され、アンテナ1
06より通信衛星へ向け送出される。通信衛星の
トランスポンダでは6GHzが1.5GHzに変換されて
船舶局に転送されるので、陸上局もこの1.5GHz
を受信し、第1,2ダウンコンバータ107,1
08で中間周波数に変換して搬送波再生及び制御
信号作成回路17に入力する。この回路17の制
御出力は端子15から送信系の第1アツプコンバ
ータ104の周波数可変の局部発振器104aに
与えられ、再生した基準パイロツトの搬送波成分
が公称周波数と一致するように、局部発振周波数
が制御される。つまり、周波数偏差と逆方向に偏
差量だけ局部発振周波数が変化する。これにより
トランスポンダ等で生じる周波数偏差が補正さ
れ、船舶局が受信する1.5GHz帯の通信搬送波が
一定に保たれる。よつて船舶局は受信にAFCを
かけなくても済む。 第4図bの回路を説明するに、船舶局が送出す
る通信搬送波は1.6GHz帯であり、これが衛星ト
ランスポンダで4GHz帯に変換されて陸上局に転
送される。そこで陸上局では第1,2アツプコン
バータ109,110により基準パイロツトを
1.6GHzに変換して送出する。当該陸上局は自局
の送出した基準パイロツトが衛星で中継されて
4GHzとされたものを受信し、第1,2ダウンコ
ンバータ111,112により中間周波数に変換
してから搬送波再生及び制御信号作成回路17に
入力する。この回路17の制御出力は端子15a
から第2ダウンコンバータ112の周波数可変の
局部発振器112aに与えられ、再生した基準パ
イロツトの搬送波成分が公称周波数に一致するよ
うに、局部発振周波数が制御される。つまり、周
波数偏差と同方向に偏差量だけ局部発振周波数が
変化する。これによりトランスポンダ等で生じる
周波数偏差が補正され、船舶局が送信にAFCを
かけなくても陸上局は周波数が偏差した通信搬送
波を追従受信できる。従つて、第2ダウンコンバ
ータ112から出力端子113に得られる受信々
号が周波数補正済みの信号となり、復調器114
からは所望の船舶局の音声信号が得られる。 第4図aでは通信搬送波と共に送出される基準
パイロツトにAFCがかかり基準パイロツトの周
波数が変動するので、この基準パイロツトを用い
て他の局が当該局の送信系あるいは受信系に
AFCをかけるには不都合が生じる。つまり、第
4図aは個別パイロツト方式に適切なAFCと言
える。一方、第4図bでは送出される基準パイロ
ツト自体にはAFCがかからないので、この基準
パイロツトを用いて他局がその受信系にAFCを
かけることができる。この場合、当該他局は基準
パイロツトの送出設備が不要であり、第4図b中
のアンテナ106と第1ダウンコンバータ111
以降、搬送波再生及び制御信号作成回路17まで
備え、且つ公称周波数信号の発振器を備えれば良
い。つまり、第4図bは個別パイロツト方式と共
通パイロツト方式のいずれにも適用できる。 共通パイロツト方式で通信搬送波にAFCをか
ける場合の具体例を第5図に示す。第5図が第4
図aと大きく異なる点は、基準パイロツトのアツ
プコンバータ系には何らAFCをかけず、通信搬
送波のアツプコンバータ系にのみAFCをかけて
いることである。つまり、基準パイロツト作成回
路6の出力と変調器102の出力はそれぞれ別の
第1アツプコンバータ104′と104を通して
から合成器103で一緒にし、搬送波再生及び制
御信号作成回路17の制御信号を端子15から通
信搬送波用のアツプコンバータ104の周波数可
変局部発振器104aにのみ与えている。これに
より、送出された基準パイロツトにはAFCがか
からないので、他局はこの基準パイロツトを受信
しその搬送波成分の周波数と別途用意した発振器
からの公称周波数とを比較することにより、通信
搬送波をAFCをかけて送出できる。 第5図の例では搬送波再生及び制御信号作成回
路17の出力端子15aからの制御信号を第2ダ
ウンコンバータ108の周波数可変局部発振器1
08aに与え、基準パイロツトの受信系にAFC
をかけている。これは送出された基準パイロツト
にはAFCがかけられていないため、受信時には
衛星のトランスポンダ等により受ける周波数偏差
によつて受信可能な周波数帯域を外れてしまう恐
れがあることを考慮したものである。つまり、大
きな周波数偏差を受けても、常時、受信可能な周
波数帯域内で基準パイロツトを受信できる。 第6図及び第7図に本発明の他の実施例を示
す。この実施例は基準パイロツトの初期捕捉に要
する同期引込時間をできるだけ短縮させることを
目的としたものであり、第2図及び第3図の各実
施例が常にスペクトラム拡散した基準パイロツト
を使用しているのに対し、初期捕捉時のみは無変
調パイロツトを用いるようにしている。つまり、
スペクトラム拡散した基準パイロツトだけ使用す
ると、搬送波再生のために相関をとる際に、周波
数が一致し且つ可変位相のPN符号発生器10の
位相が同期するまでに時間がかかる。そこで初期
捕捉時だけ無変調パイロツトを用いればPN符号
の位相同期の必要がないので時間がかからない。
なお、この場合従来と同様の欠点即ち占有周波数
帯域が広くなる等の欠点が懸念されるところであ
るが、複数のパイロツトが同時に無変調パイロツ
トになる確率は極めて低いこと、スペクトラム拡
散のパイロツトにとつて無変調パイロツトの周波
数が重つても妨害にならないこと、逆に無変調パ
イロツトにとつてもスペクトラム拡散の基準パイ
ロツトは雑音にみえること、初期捕捉といつた短
時間での周波数変化は極めて小さいため捕捉後に
スペクトラム拡散を行うとPN符号の位相同期確
立中に周波数同期が外れることが少ないこと、等
の理由により従来の欠点は事実上生じない。 第6図は基準パイロツト作成回路であり、第2
図の回路に切換スイツチ18,19を追加してモ
ード切換を行つている。既に基準パイロツトが捕
捉されAFCループが同期状態となつている時間
帯では、スイツチ18,19はそれぞれ拡散モー
ド側接点18a,19aに投入され、回路は第2
図の例と同じ動作をする。AFCループの同期が
外れ基準パイロツトの捕捉を試みている時間帯で
はスイツチが初期捕捉モード側接点18b,19
bに投入され、基準パイロツトの搬送波はスペク
トラム拡散を受けず、無変調のまま出力端子5に
出力される。なお、AFCループの同期外れは、
例えば搬送波抽出回路12の出力が零即ちAFC
の周期が外れていると見なされる状態が予め位相
同期回路11の動作特性等を考慮して定めた一定
時間以上継続したことで検知できる。 第7図は搬送波再生及び制御信号作成回路であ
り、第3図の回路に切換スイツチ20,21を追
The present invention relates to an automatic frequency control method using a reference pilot signal, for example, SCPC (Single
This is suitable for use in the FDMA (Frequency Division Multiple Access) system, which allocates one voice line to one carrier wave, which is called the Channel Per Carrier system. The SCPC method is widely used in maritime satellite communication systems and domestic satellite communication systems;
In this method, the occupied frequency bandwidth of each communication carrier wave is narrow, and the frequency interval between carrier waves is narrow, so the transmission frequency and reception frequency must match well.
Therefore, in order to compensate for the frequency deviation of the communication carrier wave caused by the frequency fluctuation of the local oscillator of the satellite repeater (transponder), the frequency fluctuation of various local oscillators in the earth station equipment, or the Doppler shift due to the movement of the satellite, the standard Automatic frequency control (AFC) using a pilot is performed. That is, each earth station transmits a reference pilot to the satellite, either commonly or individually, and performs AFC using its own pilot, which is relayed by the satellite and received. This makes it possible to correct most of the frequency deviations caused by the various frequency fluctuation factors mentioned above. Note that in a satellite communication system, frequency fluctuations of transponders play a large role, so even when a common reference pilot is used, a considerable part of the frequency deviation can be corrected. AFC using individual reference pilots is called the individual pilot method, and can achieve highly accurate AFC, but in the past, this method generally used an unmodulated carrier wave for the reference pilot. However, the non-modulated pilot has the following drawbacks. That is, (1) It is susceptible to noise such as cross-modulation noise where energy is concentrated in a narrow band, and there is a risk of synchronization being lost due to this. Satellite transponders have strong nonlinearity, so when many narrowband carrier waves in the SCPC system are commonly amplified by the transponder, many narrowband cross-modulation products occur, which can be mistaken for non-modulated pilots. In order to eliminate the influence of cross-modulation noise, it is sufficient to provide a sufficient S/N margin after pilot demodulation, but this is not appropriate because it means an increase in the satellite power consumed for pilot amplification. (2) The protection frequency band required to identify without error the source of the reference pilot transmitted by each earth station is large, and the frequency usage efficiency of the satellite communication system is significantly reduced. Each earth station must not mistakenly capture the reference pilot of another station, so each reference pilot must have a dedicated band that is at least twice the expected maximum frequency deviation, with sufficient frequency spacing. A typical satellite communication system requires an interval of 100KHz to 200KHz. Incidentally, like the Inmarsat (International Maritime Satellite Organization) system, the maximum frequency deviation is ±
Assuming a system expected to be 55KHz and accessed by 20 earth stations, the frequency band dedicated to the 20 reference pilots is 55 x 2 x 20 =
It becomes 2200KHz (=2.2MHz). In the Inmarsat system, where the transponder's frequency band is 7.5MHz, this figure reaches 30% of the total, resulting in extremely poor frequency utilization efficiency. Note that the drawback (1) above also applies to AFC using a common reference pilot. In view of the above-mentioned prior art, it is an object of the present invention to provide an automatic frequency control system that is resistant to noise where energy is concentrated in a narrow band and that has a narrow frequency band occupied for AFC. The above purpose is to use a carrier wave as the reference pilot.
Using the PN code sequence modulated, the carrier wave component of the received reference pilot is reproduced by determining the correlation with the PN code sequence of the same pattern used for modulation, and the frequency of the reproduced carrier wave component and a predetermined nominal frequency are determined. This can be achieved by controlling the oscillation frequency of a local oscillator for frequency conversion in at least one of the receiving system and the transmitting system so as to correct the frequency deviation of the communication carrier wave from the difference between the two. The present invention will be described below with reference to the drawings. Figures 1a to 1c show typical examples of communication systems to which the present invention can be applied, and Figure 1a shows a communication satellite.
Figure b shows a satellite communication system between a land station E and a mobile station M such as an aircraft, ship, or automobile via a communication satellite ST. shows a normal communication system between fixed stations L that does not use communication satellites. In addition, it can be applied to various communication systems. In the present invention, the carrier wave is modulated with a pulse pattern having an extremely long repetition period, which is also called a PN code sequence, or a pseudo-random pattern, and used as a reference pilot.
By correlating with the PN code sequence, it can be clearly distinguished from other reference pilots that have the same carrier frequency but different PN code sequences. Of course, if the carrier frequencies are different, the distinction will become clearer. On the other hand, when the carrier wave is modulated with a PN code sequence, the spectrum is spread, and then by calculating the correlation, the spread spectrum is concentrated.
For noises whose energy is concentrated within a narrow band, such as cross-modulation noise, the energy is diffused when correlation is determined. Therefore, even if a large number of strong intermodulation noises are received, the energy is spread by determining the correlation, so that only the carrier wave of the reference pilot can be captured, and no synchronization occurs. The present invention applies frequency control in the transmitting system so that the frequency of the communication carrier wave for the other station remains constant during reception, and two cases in which frequency control is performed on the receiving side so that the frequency of the communication carrier wave for the other station changes. There are two ways to follow this, but in the satellite communication system between mobile station M and land station E in Figure 1a, it is not space-friendly or economical to provide the mobile station with frequency control equipment. Since there are many inconveniences, it is convenient to equip the land station E with AFC equipment that controls the frequency of communication carrier waves transmitted by the land station E and AFC equipment that follows and receives uncontrolled communication carrier waves from the mobile station M. In addition, in systems such as satellite communication systems where one station can receive the reference pilot modulated with a PN code sequence, each station does not have to transmit it individually, and only one pilot can be used within the receivable area. If a station transmits a reference pilot on its behalf (common pilot method), other stations can also use this to transmit or receive signals.
AFC can be applied. Note that when applying AFC to the transmission system using the common pilot method, it is important to control only the frequency of the communication carrier wave and not the frequency of the reference pilot. Of course, when AFC is applied to the communication system using the individual pilot method, the frequency may be controlled by linking the communication carrier wave and the reference pilot. FIG. 2 shows an example of a circuit for creating a reference pilot. In the figure, 1 is a reference pilot carrier oscillator (REFOSC), 2 is a balanced modulator (MOD), 3 is a PN code generator, 4 is a bandpass filter, and 5 is an output terminal. The operation of the reference pilot creation circuit 6 shown in the figure is as follows. A carrier wave from a carrier wave oscillator 1 is balanced modulated by a balanced modulator 2 such as a ring modulator using a PN code sequence from a PN code generator 3, and the modulated output is output after removing unnecessary frequency components by a bandpass filter 4. Output to terminal 5. In other words, the signal at output terminal 5 is a two-phase signal whose transmission rate is the bit rate of the PN code sequence used for modulation, that is, the clock.
It is a PSK wave, and its spectrum is spread within a frequency band equal to the clock of the PN code sequence. The reference pilot thus created is converted to a desired radio frequency by an up converter within the communication equipment, and then sent to the communication satellite or directly to the other station. FIG. 3 shows an example of a circuit that regenerates a reference pilot carrier wave and generates a frequency control signal. In the figure, 7 is an input terminal for the received signal from the down converter, 8 is a bandpass filter, 9 is a correlator, 10 is a variable phase PN code generator, and 11 is a
12 is a carrier extraction circuit, 13 is a phase-locked loop (PLL), 1
4 is an input terminal for a nominal frequency signal, 15 and 15a are output terminals for control signals having opposite polarities, and 16 is an inverting amplifier. Note that a balanced modulator is used as the correlator 9. The carrier extraction circuit 12 passes input signals above a certain level, and limits the amplitude of excessive signals. The signal entering input terminal 14 is the nominal intermediate frequency signal of the carrier of the reference pilot to be acquired. The operation of the carrier wave regeneration and control signal generation circuit 17 shown in FIG. 3 will be explained below. The received signal, which has been converted to an intermediate frequency by a down converter in the communication equipment, is separated from the communication signal by a bandpass filter 8, and only the received reference pilot is input to a correlator 9. The correlator 9 multiplies the PN code sequence from the PN code generator 10 by the reception reference pilot of the two-phase PSK wave, that is, balance-modulates the reception reference pilot with the PN code sequence and correlates the two. As described above, if the patterns of the PN code sequences do not match, the correlation output will be low, but even if they match, if the phases are shifted, the correlation output will be low. Therefore, the output signal of the correlator 9 is input to the PN code phase synchronization circuit 11, and this phase synchronization circuit 11 adjusts the phase of the PN code sequence generated by the phase variable PN code generator 10 so that the correlation output is maximized. Control. In other words, the correlator 9, the phase synchronization circuit 11 and the phase variable
A feedback loop constituted by the PN code generator 10 reproduces the carrier wave component of the original reference pilot from the reception reference pilot undergoing spectrum spreading, and outputs it from the correlator 9. The output signal of the correlator 9 is input to the carrier extraction circuit 12,
If the input level exceeds a predetermined threshold, it is determined that the desired reference pilot is being received, and the input carrier wave component is directly transmitted to the PLL 13.
is output to. If it is below the threshold, it is another reference pilot or noise, and these are not adopted. The PLL 13 detects the frequency difference between the input signal from the carrier extraction circuit 12 and the nominal frequency signal from the reference input terminal 14, and outputs a signal indicating the frequency difference as a control signal to output terminals 15, 15a. This control signal is applied to the local oscillator of the up converter in the transmission system from one output terminal, e.g. 15, when applying AFC to the communication carrier wave, and is applied from the other output terminal, e.g. is applied to the local oscillator of the down converter, and the local oscillation frequency is controlled so that the frequency difference becomes zero in both cases. Note that as the signal input to the reference input terminal 14, if the reference pilot is transmitted and received at the same station, the signal from the carrier wave oscillator 1 in the reference pilot creation circuit 6 can be used, but if the transmission and reception are different. In the case of a station, a separate oscillator with the same oscillation frequency is provided. FIG. 4 shows an example in which the present invention is applied to a maritime satellite communication system. In this example, the land station has the function of automatic frequency control for both transmission and reception, thereby eliminating the burden on the ship station's equipment. FIG. 4a shows an automatic frequency control system for the transmission system of a land station, and FIG. 4b shows an automatic frequency control system for the reception system of the land station. First, to explain the circuit shown in FIG. 4a, 101 is a telephone line, 102 is an audio signal modulator, 103 is a reference pilot and modulation signal synthesizer, and the output of the synthesizer is sent to the first and second up converters 104. ,10
5, the frequency is converted to the 6GHz band, and antenna 1
From 06, it is sent to a communication satellite. Communication satellite transponders convert 6GHz to 1.5GHz and transmit it to ship stations, so land stations also use this 1.5GHz.
and the first and second down converters 107,1
At step 08, the signal is converted to an intermediate frequency and input to the carrier wave regeneration and control signal generation circuit 17. The control output of this circuit 17 is given from a terminal 15 to a variable frequency local oscillator 104a of the first up converter 104 of the transmission system, and the local oscillation frequency is controlled so that the carrier wave component of the reproduced reference pilot matches the nominal frequency. be done. In other words, the local oscillation frequency changes by the deviation amount in the opposite direction to the frequency deviation. This corrects frequency deviations caused by transponders, etc., and keeps the 1.5GHz band communication carrier wave received by the ship station constant. Therefore, the ship station does not need to apply AFC to reception. To explain the circuit shown in FIG. 4b, the communication carrier wave transmitted by the ship station is in the 1.6 GHz band, which is converted to the 4 GHz band by the satellite transponder and transmitted to the land station. Therefore, the land station uses the first and second up converters 109 and 110 to convert the reference pilot.
Convert to 1.6GHz and transmit. The land station in question receives the reference pilot sent out by the station and is relayed by satellite.
The frequency of 4 GHz is received, converted to an intermediate frequency by the first and second down converters 111 and 112, and then input to the carrier wave regeneration and control signal generation circuit 17. The control output of this circuit 17 is at terminal 15a.
is applied to the variable frequency local oscillator 112a of the second down converter 112, and the local oscillation frequency is controlled so that the carrier wave component of the regenerated reference pilot matches the nominal frequency. In other words, the local oscillation frequency changes by the deviation amount in the same direction as the frequency deviation. This corrects frequency deviations caused by transponders, etc., and allows land stations to follow and receive communication carrier waves with frequency deviations even if the ship station does not apply AFC to transmission. Therefore, the received signal obtained from the second down converter 112 to the output terminal 113 becomes a frequency-corrected signal, and the received signal is transmitted to the demodulator 114.
The audio signal of the desired ship station can be obtained from. In Figure 4a, AFC is applied to the reference pilot that is sent out along with the communication carrier wave, and the frequency of the reference pilot fluctuates, so other stations can use this reference pilot to control the transmitting or receiving system of the station in question.
There are some inconveniences when applying AFC. In other words, Fig. 4a can be said to be an AFC suitable for the individual pilot method. On the other hand, in FIG. 4b, since AFC is not applied to the transmitted reference pilot itself, other stations can use this reference pilot to apply AFC to their receiving systems. In this case, the other station does not need the reference pilot transmission equipment, and the antenna 106 and the first down converter 111 in FIG.
Thereafter, it is sufficient to include up to the carrier wave regeneration and control signal generation circuit 17 and an oscillator for a nominal frequency signal. In other words, FIG. 4b can be applied to both the individual pilot system and the common pilot system. A specific example of applying AFC to a communication carrier wave using the common pilot method is shown in FIG. Figure 5 is the fourth
The major difference from Figure A is that no AFC is applied to the up-converter system of the reference pilot, and AFC is applied only to the up-converter system of the communication carrier. That is, the output of the reference pilot generation circuit 6 and the output of the modulator 102 are passed through separate first up converters 104' and 104, respectively, and then combined in the combiner 103, and the control signal of the carrier wave regeneration and control signal generation circuit 17 is sent to the terminal 15. It is applied only to the variable frequency local oscillator 104a of the up converter 104 for communication carrier waves. As a result, AFC is not applied to the transmitted reference pilot, so other stations receive this reference pilot and compare the frequency of its carrier wave component with the nominal frequency from a separately prepared oscillator, thereby applying AFC to the communication carrier wave. You can send it out over the phone. In the example shown in FIG.
08a and AFC to the reference pilot's receiving system.
is being applied. This is done in consideration of the fact that since AFC is not applied to the transmitted reference pilot, there is a possibility that it may fall outside the receivable frequency band due to frequency deviations received by the satellite's transponder etc. during reception. In other words, even if a large frequency deviation occurs, the reference pilot can always be received within the receivable frequency band. Other embodiments of the present invention are shown in FIGS. 6 and 7. This embodiment is intended to reduce the synchronization acquisition time required for initial acquisition of the reference pilot as much as possible, and each of the embodiments shown in FIGS. 2 and 3 always uses a spread spectrum reference pilot. On the other hand, a non-modulated pilot is used only during initial acquisition. In other words,
If only a spread spectrum reference pilot is used, it takes time for the frequencies of the PN code generators 10, which have the same frequency and variable phase, to synchronize in phase when correlation is taken for carrier wave recovery. Therefore, if a non-modulated pilot is used only during initial acquisition, there is no need for phase synchronization of the PN code, which saves time.
In this case, there are concerns about the same drawbacks as in the past, such as the widening of the occupied frequency band, but the fact that the probability of multiple pilots becoming unmodulated pilots at the same time is extremely low, and for spread spectrum pilots, Even if the frequencies of unmodulated pilots overlap, they do not cause interference; conversely, even to unmodulated pilots, a spread spectrum reference pilot looks like noise; and the frequency change in a short period of time, such as initial acquisition, is extremely small, so acquisition is difficult. If the spread spectrum is applied later, the disadvantages of the conventional method virtually do not occur because frequency synchronization is less likely to be lost during the establishment of phase synchronization of the PN code. Figure 6 shows the reference pilot creation circuit.
Mode switching is performed by adding changeover switches 18 and 19 to the circuit shown in the figure. During the time period when the reference pilot has already been acquired and the AFC loop is in synchronization, the switches 18 and 19 are turned on to the diffusion mode side contacts 18a and 19a, respectively, and the circuit is switched to the second
It works the same as the example in the figure. During the period when the AFC loop is out of synchronization and an attempt is made to capture the reference pilot, the switch is activated by the initial acquisition mode side contacts 18b and 19.
The carrier wave of the reference pilot is not subjected to spectrum spreading and is output to the output terminal 5 without being modulated. In addition, when the AFC loop is out of synchronization,
For example, if the output of the carrier extraction circuit 12 is zero, that is, AFC
This can be detected when a state in which the period is considered to be out of alignment continues for a certain period of time or more predetermined in consideration of the operating characteristics of the phase synchronization circuit 11 and the like. Figure 7 shows a carrier wave regeneration and control signal generation circuit, with changeover switches 20 and 21 added to the circuit in Figure 3.

【表】【table】

【表】 以上説明したように、本発明ではPN符号系列
を用いた直接拡散によつて基準パイロツトのスペ
クトルを拡散しているので、2波以上の基準パイ
ロツトの占有周波数帯域が重なり合つても各局は
所望の局例えば自局の基準パイロツトを他と分離
できる。したがつて基準パイロツト間の周波数間
隔を見込まれる最大周波数偏差の2倍よりも相当
小さくすることができ、更には基準パイロツト数
がそれ程多くない場合には全ての基準パイロツト
を同一周波数で送出することもできる。即ち、基
準パイロツトに占有される周波数帯域幅が従来の
方式よりも極めて狭くなり、システム全体の周波
数帯域利用効率が高くなる。 更に本発明ではスペクトラム拡散を行つている
ため、混変調雑音等の狭い周波数帯域内にエネル
ギーが集中している雑音を受けても、これらの雑
音は復調時に逆にエネルギーが拡散されてしま
い、雑音の影響が極めて軽減される。 なお、基準パイロツトの搬送波周波数が十分ず
れていればスペクトラム拡散用のPN符号系列が
同じ基準パイロツトを同一通信システムで複数用
いることができる。もつとも、PN符号系列が異
つていればPN符号同期により捕捉したパイロツ
トが自局送出等の所望のパイロツトであることが
識別できる。
[Table] As explained above, in the present invention, the spectrum of the reference pilot is spread by direct spreading using a PN code sequence, so even if the occupied frequency bands of two or more reference pilots overlap, each station can can separate the reference pilot of a desired station, for example, the own station, from others. Therefore, the frequency spacing between reference pilots can be made considerably smaller than twice the expected maximum frequency deviation, and furthermore, if the number of reference pilots is not very large, all reference pilots can be sent out at the same frequency. You can also do it. That is, the frequency bandwidth occupied by the reference pilot becomes much narrower than in the conventional system, and the frequency band utilization efficiency of the entire system is increased. Furthermore, since the present invention uses spread spectrum, even if noise such as cross-modulation noise whose energy is concentrated in a narrow frequency band is received, the energy of these noises will be spread out during demodulation, resulting in noise. The impact of this will be greatly reduced. Note that, if the carrier frequencies of the reference pilots are sufficiently shifted, a plurality of reference pilots with the same PN code sequence for spread spectrum can be used in the same communication system. However, if the PN code sequences are different, it is possible to identify that the pilot captured by PN code synchronization is the desired pilot for transmission to the local station.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用できる通信システムの例
を示す説明図、第2図及び第3図は本発明の一実
施例を示すブロツク図、第4図は第2,3図の例
を海事衛星通信システムに適用した具体例を示す
ブロツク図、第5図は他の具体例を示すブロツク
図、第6図及び第7図は本発明の他の実施例を示
すブロツク図、第8図はパイロツト配置例を示す
説明図である。 図面中、1は基準パイロツト用搬送波発振器、
2は平衡変調器、3はPN符号発生器、4はバン
ドパスフイルタ、5は出力端子、6はスペクトラ
ム拡散の基準パイロツト作成回路、7は受信々号
の入力端子、8はバンドパスフイルタ、9は相関
器、10は位相可変のPN符号発生器、11は位
相同期回路、12は搬送波抽出回路、13はフエ
ーズロツクドループ、14は公称周波数信号の入
力端子、15及び15aは周波数制御用信号の出
力端子、16は反転増幅器、17は搬送波再生及
び制御信号作成回路、18〜21はモード切換ス
イツチ、22は狭帯域バンドパスフイルタ、23
は包絡線検波器、101は電話回線、102は変
調器、103は合成器、104,104′,10
5,109及び110はアツプコンバータ、10
6はアンテナ、107,108,111及び11
2はダウンコンバータ、104a,108a及び
112aは周波数可変の局部発振器、113は受
信々号出力端子、114は復調器である。
FIG. 1 is an explanatory diagram showing an example of a communication system to which the present invention can be applied, FIGS. 2 and 3 are block diagrams showing an embodiment of the present invention, and FIG. FIG. 5 is a block diagram showing a specific example applied to a satellite communication system, FIG. 5 is a block diagram showing another specific example, FIGS. 6 and 7 are block diagrams showing other embodiments of the present invention, and FIG. FIG. 3 is an explanatory diagram showing an example of pilot arrangement. In the drawing, 1 is a reference pilot carrier wave oscillator,
2 is a balanced modulator, 3 is a PN code generator, 4 is a bandpass filter, 5 is an output terminal, 6 is a spread spectrum reference pilot creation circuit, 7 is an input terminal for received signals, 8 is a bandpass filter, 9 is a correlator, 10 is a variable phase PN code generator, 11 is a phase locked circuit, 12 is a carrier extraction circuit, 13 is a phase locked loop, 14 is an input terminal for a nominal frequency signal, 15 and 15a are signals for frequency control 16 is an inverting amplifier, 17 is a carrier wave regeneration and control signal generation circuit, 18 to 21 are mode changeover switches, 22 is a narrowband bandpass filter, 23
is an envelope detector, 101 is a telephone line, 102 is a modulator, 103 is a combiner, 104, 104', 10
5, 109 and 110 are up converters, 10
6 is an antenna, 107, 108, 111 and 11
2 is a down converter; 104a, 108a and 112a are variable frequency local oscillators; 113 is a received signal output terminal; and 114 is a demodulator.

Claims (1)

【特許請求の範囲】[Claims] 1 送信側においては基準パイロツト信号となる
搬送波をPN符号系列を用いて変調して送信し、
受信側においては受信信号と前記PN符号系列に
等しい符号系列の信号との相関を求めることによ
り受信した基準パイロツトの搬送波成分を再生
し、該再生された搬送波成分の周波数と予め定ま
る公称搬送波周波数との差から通信搬送波の周波
数偏差を補正するように受信系と送信系の少なく
とも一方の周波数変換用局部発振器の発振周波数
を制御することを特徴とする自動周波数制御方
式。
1 On the transmitting side, the carrier wave serving as the reference pilot signal is modulated using a PN code sequence and transmitted.
On the receiving side, the received reference pilot carrier wave component is regenerated by determining the correlation between the received signal and a signal of a code sequence equal to the PN code sequence, and the frequency of the regenerated carrier wave component is matched with a predetermined nominal carrier frequency. An automatic frequency control method characterized in that the oscillation frequency of a local oscillator for frequency conversion in at least one of a receiving system and a transmitting system is controlled so as to correct a frequency deviation of a communication carrier wave from the difference in frequency.
JP3308782A 1982-03-04 1982-03-04 Automatic frequency controlling system Granted JPS58151132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3308782A JPS58151132A (en) 1982-03-04 1982-03-04 Automatic frequency controlling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3308782A JPS58151132A (en) 1982-03-04 1982-03-04 Automatic frequency controlling system

Publications (2)

Publication Number Publication Date
JPS58151132A JPS58151132A (en) 1983-09-08
JPS634982B2 true JPS634982B2 (en) 1988-02-01

Family

ID=12376899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3308782A Granted JPS58151132A (en) 1982-03-04 1982-03-04 Automatic frequency controlling system

Country Status (1)

Country Link
JP (1) JPS58151132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11034183B2 (en) 2015-06-30 2021-06-15 ACCO Brands Corporation Flexible binding mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724804B1 (en) 1998-07-13 2004-04-20 Kabushiki Kaisha Kobe Seiko Sho Frequency converter and radio communications system employing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11034183B2 (en) 2015-06-30 2021-06-15 ACCO Brands Corporation Flexible binding mechanism
US11433698B2 (en) 2015-06-30 2022-09-06 ACCO Brands Corporation Flexible binding mechanism

Also Published As

Publication number Publication date
JPS58151132A (en) 1983-09-08

Similar Documents

Publication Publication Date Title
US5400359A (en) Spread spectrum communication system and an apparatus for communication utilizing this system
US7099292B2 (en) Spread spectrum communications using a reference and a message signal system and method
EP0477862B1 (en) Spread spectrum communications system
US4941150A (en) Spread spectrum communication system
US4926440A (en) Spread-spectrum communication apparatus
US5832022A (en) Method and apparatus for controlling the modulation index of continuous phase modulated (CPM) signals
EP0878077B1 (en) Forward link carrier recovery in an ocdma spread spectrum communication system without a pilot tone
JP3280141B2 (en) Spread spectrum receiver
JPH0779283B2 (en) Spread spectrum communication device
EP0564937B1 (en) CDMA Radio communication system with pilot signal transmission between base station and handsets for channel distortion compensation
WO1999034529A2 (en) Apparatus and method for code tracking in an is-95 spread spectrum communication system
US4953178A (en) Spread spectrum communication system
US4121159A (en) Method for the synchronization of a transmission path
US6188716B1 (en) Radio and communication method using a transmitted intermediate frequency
US4457003A (en) Time reference tracking loop for frequency hopping systems
US7804883B2 (en) Method and system for frequency hopping radio communication
JPS634982B2 (en)
JPH08237169A (en) Preamble synchronization system
JP2556141B2 (en) Spread spectrum communication system
JPH0142528B2 (en)
KR100198958B1 (en) Frequency hopping system with pilot channel
JP2605639B2 (en) Transceiver
GB2251533A (en) Spread-spectrum communication apparatus
JPH05244117A (en) Multichannel type spread spectrum modem
JPH1188290A (en) Spread spectrum communication system