JP3662818B2 - Interference cancellation apparatus, radio terminal apparatus, and interference cancellation method - Google Patents

Interference cancellation apparatus, radio terminal apparatus, and interference cancellation method Download PDF

Info

Publication number
JP3662818B2
JP3662818B2 JP2000194330A JP2000194330A JP3662818B2 JP 3662818 B2 JP3662818 B2 JP 3662818B2 JP 2000194330 A JP2000194330 A JP 2000194330A JP 2000194330 A JP2000194330 A JP 2000194330A JP 3662818 B2 JP3662818 B2 JP 3662818B2
Authority
JP
Japan
Prior art keywords
signal
circuit
interference
correlation value
tap coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000194330A
Other languages
Japanese (ja)
Other versions
JP2002016511A (en
Inventor
光雄 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000194330A priority Critical patent/JP3662818B2/en
Publication of JP2002016511A publication Critical patent/JP2002016511A/en
Application granted granted Critical
Publication of JP3662818B2 publication Critical patent/JP3662818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Noise Elimination (AREA)
  • Radio Transmission System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、干渉除去装置、無線端末装置及び干渉除去方法に係り、特に、直接スペクトル拡散通信システムにおける位相情報を利用する干渉除去装置、無線端末装置及び干渉除去方法に関する。
【0002】
【従来の技術】
図4に、従来のスペクトル拡散通システムの構成図を示す。
このシステムは、送信機100と受信機200を備える。送信機100は、データ送信回路101、1次変調回路102、2次変調回路103、拡散符号発生回路104、アンテナ105を備える。また、受信機200は、データ受信回路201、1次復調回路202、2次復調回路203、同期回路204、アンテナ205を備える。
【0003】
ここで、d1(t)は自局が送信するデータ、a1(t)は1次変調された信号、s1(t)は2次変調された信号でスペクトル拡散信号、そしてc1(t)はスペクトルを拡散するための符号を表わす。他局からのスペクトル拡散信号をsi(t),i=2,3,〜,Kと表わしてある。
【0004】
スペクトル拡散通信システムでは、同じ周波数帯域を複数の信号が共存しあった状態で通信する。それぞれの信号には互いに直交する性質を持つ拡散符号で変調されているので、復調の際、希望する拡散符号と一致しない符号を含む信号は排除される。しかし、完全に直交していないので、相互相関値がわずかながら存在し、その総和が他局信号の数が増えると大きな値となり、同時通信局数を制限する。
【0005】
つぎに、図を参照しながらスペクトル拡散通信システムの動作を説明する。送信機100では、データ送信回路101から送信されるデータd1(t)は、+1と-1をランダムにとるデータとし、1次変調回路102による1次変調は、例えばPSK(位相シフトキーイング)とする。1次変調回路102の出力a1(t)は、次のように記述される。
a1(t) = d1(t) cos(2πfct +θ1)
ただし、fcは搬送周波数でθ1は搬送波の位相を表わす。
【0006】
ここで、c1(t)を+1と-1をとる拡散符号とする。2次変調回路103は、この拡散符号c1(t)と1次変調信号a1(t)との乗算により2次変調を行い、スペクトル拡散信号s1(t)を発生させる。スペクトル拡散信号s1(t)は、次のように記述される。
s1(t) = c1(t) d1(t) cos(2πfct +θ1)
【0007】
他局からのスペクトル拡散信号は次のように表わされる。
sk(t) = ck(t) dk(t) cos(2πfct +θk), k = 2,3,4,〜,K
一方、受信機200では、スペクトル拡散信号s1(t)を希望信号として復調する。受信信号r(t)は次のように記述される。
【0008】
【数1】

Figure 0003662818
【0009】
ただし、n(t)は受信機雑音である。
以後の説明では便宜上、雑音を省略して説明する。
同期回路204では、受信信号r(t)に含まれる拡散符号c1(t)の同期を確立し、その符号を同期回路204から2次復調回路203に供給する。2次復調回路203では、受信信号r(t)と符号c1(t)との乗算を行い、次の計算によりa1(t)を得る。
【0010】
【数2】
Figure 0003662818
【0011】
ただし、γk(t) = c1(t)×ck(t), ak(t) = dk(t) cos(2πfct +θk), k = 2,3,〜,Kで、c1(t)×c1(t) = 1の関係を使用している。
第1項が希望信号の変調信号で、第2項が、他局信号による雑音成分として寄与する項である。γk(t)は希望信号を拡散する符号c1(t)と、他局信号を拡散する符号ck(t)との積で、直交していない為、1周期積分してもゼロにならならず広帯域信号のままである。
1次復調器202では、a1(t)を復調してデータd1(t)を出力する。
【0012】
【発明が解決しようとする課題】
このように、現在、携帯電話等の通信局数を増やす方法として、スペクトル拡散による符号変調方式が主流となりつつある。しかしながら、スペクトル拡散方式では、複数の他局信号からの干渉を除去する必要があり、この干渉波が、通信局数を制限している。従来は、基地局で干渉波除去に対応しているため大規模のシステム構成になっている。
【0013】
本発明は、以上の点に鑑み、無線端末に組み込むことを可能とし、容易に他局信号からの干渉信号を除去することを目的とする。また、本発明は、スペクトル拡散通信方式において、雑音として作用する他局の信号成分を除去し、耐雑音特性を向上させ、同時通信局数を増やすことを目的とする。
【0014】
【課題を解決するための手段】
本発明の第1の解決手段によると、
受信されたスペクトル拡散信号に基づき、希望信号の拡散符号と各局からの搬送波信号を検出する同期回路と、
受信されたスペクトル拡散信号と、前記同期回路により出力された希望信号の拡散符号とを乗算する乗算回路と、
前記乗算回路からの出力と、前記同期回路から出力された各局からの搬送波信号とをそれぞれ乗算する同期検波回路と、
前記同期検波回路からの各乗算結果と希望信号の拡散符号との相関値に基づき、各非希望信号の干渉雑音成分を計算する相関値計算回路と、
各局からの搬送波信号の位相情報からタップ係数を求めるタップ係数制御回路と、
前記相関値計算回路により求められた干渉雑音成分と、タップ係数制御回路により求められたタップ係数とに基づき、合成成分を求める干渉発生部と、
前記相関値計算回路により求められた希望信号についての相関値から、前記干渉発生部により求められた合成成分を減算し、希望受信信号を得る減算回路と
を備えた干渉除去装置を提供する。
【0015】
本発明の第2の解決手段によると、
スペクトル拡散信号を受信するアンテナと、
前記アンテナで受信した信号を入力する請求項1乃至3のいずれかに記載の干渉除去装置と、
前記干渉除去装置からの出力を復調する復調回路
を備えた無線端末装置を提供する。
本発明の第3の解決手段によると、
受信されたスペクトル拡散信号と希望信号の拡散符号とを乗算した出力と、各局からの搬送波信号とをそれぞれ乗算し、
各乗算結果と希望信号の拡散符号との相関値に基づき、各非希望信号の干渉雑音成分を計算し、
求められた干渉雑音成分と、各局からの搬送波信号の位相情報から求められたタップ係数とに基づき、合成成分を求め、
希望信号についての相関値から求められた合成成分を減算し、希望受信信号を得る
ようにした干渉除去方法を提供する。
【0016】
【発明の実施の形態】
図1に、本発明に係る干渉除去装置を備えた無線端末装置の第1の実施の形態の構成図を示す。ただし、本発明は、次の条件を前提にしている。
▲1▼すべての拡散符号のチップ同期がとれていること
▲2▼各局が使用する搬送波位相の相対的な関係は保たれ、受信側で知ることができること
【0017】
この無線端末装置(受信機)は、アンテナ1、同期回路2、乗算回路3、各成分の同期検波回路4、相関値計算回路5、タップ係数制御回路6、干渉発生部7、減算回路8、判定回路9を備える。
【0018】
同期回路2は、アンテナ1から受信されたスペクトル拡散信号に基づき、希望信号の拡散符号と各局からの搬送波信号を検出する。乗算回路3は、受信されたスペクトル拡散信号と、同期回路2により出力された希望信号の拡散符号とを乗算する。同期検波回路4は、乗算回路3からの出力と、同期回路2から出力された各局からの搬送波信号とをそれぞれ乗算する。相関値計算回路5は、同期検波回路4からの各乗算結果と希望信号の拡散符号との相関値に基づき、各非希望信号の干渉雑音成分を計算する。タップ係数制御回路6は、各局からの搬送波信号の位相情報からタップ係数を求める。干渉発生部7は、相関値計算回路5により求められた干渉雑音成分と、タップ係数制御回路6により求められたタップ係数とに基づき、合成成分を求める。減算回路8は、相関値計算回路5により求められた希望信号についての相関値から、干渉発生部7により求められた合成成分を減算し、希望受信信号を得る。
【0019】
つぎに、動作を詳細に説明する。
まず、アンテナ1から入力された受信信号r(t)を次のように記述する。
【0020】
【数3】
Figure 0003662818
【0021】
ここで、k = 1を希望局の信号(希望信号)と定める。その他のk=2,3,〜,Kは非希望局の信号(非希望信号)とする。乗算回路3は、同期回路2で同期の確立した希望信号の拡散符号c1(t)を受信信号r(t)と乗算する。各成分の同期検波回路4は、その乗算結果を、同期回路2から出力した信号(各局からの搬送波信号)2cos(2πfct +θi), i = 1,2,〜,Kと乗算する。各成分の同期検波回路4により乗算された結果は、相関値計算回路5に供給される。相関値計算回路5において、相関値γiを求める操作は次の様に行われる。
【0022】
【数4】
Figure 0003662818
【0023】
なお、正弦波の和成分は積分操作で除去されるので、記述していない。また、Tbは1ビット時間である。
相関値γ 〜 γKを整理すると、次のようになる。
【0024】
【数5】
Figure 0003662818
【0025】
この計算では、希望信号に対してはフレーム同期がとれているとして、データd1が出力すると仮定している。ベクトル表示にすると、次のように整理できる。
【0026】
【数6】
Figure 0003662818
【0027】
したがって、求める干渉成分R21, R31, 〜, RK1は次の演算で求めることができる。
【0028】
【数7】
Figure 0003662818
【0029】
このようにして、干渉雑音成分、R21, R31, 〜, RK1が求まれば、この値を干渉発生部7に供給する。タップ係数w2, w3, 〜 wKの値は、タップ係数制御回路6で同時通信している干渉信号の情報(例,希望信号との位相差)から、次のように決定され、干渉発生部7に供給される。
w2 = cos(θ21)
w3 = cos(θ31)
−−
wk = cos(θk1)
希望信号の相関値γ
γ1 = d1 + R21 cos(θ21) + R31 cos(θ31) +・ ・ ・+RK1 cos(θK1)
である。
【0030】
干渉発生部7から出力される、計算により求めた干渉成分の合成信号をv(t)と表わすと、
v(t) = R21 cos(θ21) + R31 cos(θ31) +・ ・ ・+R 1 cos(θK1)
となる。減算回路8では、この信号をγ1より引き算し、x(t)を求める。判定回路9では、受信されたデータを決定して出力する。雑音が無い場合、x(t)はデータd1になる。
【0031】
つぎに、図2に、本発明に係る干渉除去装置を備えた無線端末装置の第2の実施の形態の構成図を示す。ここでは、雑音による不確実性を吸収するのに、誤差信号e(t)の命令でチップ係数制御を行うものである。
【0032】
この受信機は、アンテナ1、同期回路2、乗算回路3、各成分の同期検波回路4、相関値計算回路5、干渉発生部7、減算回路8、判定回路9、タップ係数制御回路10、リミタ11、比較器12を備える。
このような構成において、雑音がある場合は、相関値γ 〜 γKが不正確になるので、減算回路8から出力されたデータx(t)をリミタ11で制限後、減算回路12によりリミタ入力x(t)出力とd1 (t)とを比較し誤差信号e(t)を得る。タップ係数制御回路10では、この誤差信号e(t)をできるだけ小さくするように干渉発生部7におけるタップ係数w 〜 wKを制御する。減算回路8からの出力は、このようなループを経て、リミタ11の出力としてデータの予測結果d1 (t)を得る。判定回路9では、d1 (t)から受信されたデータを決定してd1^(t)を出力する。他の構成部及びその動作は、第1の実施の形態と同様である。
【0033】
つぎに、本発明に係る干渉除去のシュミレーションについて説明する。
図3に、シミュレーションについての説明図を示す。横軸は同時通信局数で、縦軸は BER ( Bit Error Rate, ビット誤り率)を示す。図の中のEb/Noは、1ビットあたりの信号対雑音比である。ここでは、一例として、拡散符号には符号長31チップのGold符号を用いた。図中、点線が干渉除去を行わない時の理論値で、実線が本発明を用いた時のシミュレーションの特性である。
【0034】
このシミュレーションで、タップ係数は、雑音があっても相関値を計算した結果だけを用い、タップ係数制御は行っていない。すなわち、この結果は、第1の実施の形態の構成についてシミュレーションを行ったものである。図から実線の結果の誤り率が低く、干渉信号が除去されていることが分る。第2の実施の形態の構成ように係数制御を最適な値に制御すれば、更に誤り率の改善を行うことができる。
本発明はPSK、BPSKの他、適宜の変調方式に適用することができる。例えば、QPSKへ適用する場合、同相成分と直交成分に本発明の回路を設けるようにすれば良い。
【0035】
【発明の効果】
本発明によると、以上のように、移動端末に組み込むことができ、容易に他局信号からの干渉信号を除去することができる。また、本発明によると、スペクトル拡散通信方式において、雑音として作用する他局の信号成分を除去し、耐雑音特性を向上させ、同時通信局数を増やすことができる。
【図面の簡単な説明】
【図1】本発明に係る干渉除去装置を備えた無線端末装置の第1の実施の形態の構成図。
【図2】本発明に係る干渉除去装置を備えた無線端末装置第2の実施の形態の構成図。
【図3】シミュレーションについての説明図。
【図4】従来のスペクトル拡散通システムの構成図。
【符号の説明】
アンテナ1
同期回路2
乗算回路3
各成分の同期検波回路4
相関値計算回路5
タップ係数制御回路6
干渉発生部7
減算回路8
判定回路9
タップ係数制御回路10
リミタ11
比較器12[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an interference cancellation apparatus, a radio terminal apparatus, and an interference cancellation method, and more particularly to an interference cancellation apparatus, a radio terminal apparatus, and an interference cancellation method that use phase information in a direct spread spectrum communication system.
[0002]
[Prior art]
FIG. 4 shows a configuration diagram of a conventional spread spectrum communication system.
This system includes a transmitter 100 and a receiver 200. The transmitter 100 includes a data transmission circuit 101, a primary modulation circuit 102, a secondary modulation circuit 103, a spread code generation circuit 104, and an antenna 105. The receiver 200 includes a data reception circuit 201, a primary demodulation circuit 202, a secondary demodulation circuit 203, a synchronization circuit 204, and an antenna 205.
[0003]
Where d 1 (t) is the data transmitted by the local station, a 1 (t) is the first-order modulated signal, s 1 (t) is the second-order modulated signal, the spread spectrum signal, and c 1 ( t) represents a code for spreading the spectrum. Spread spectrum signals from other stations are represented as s i (t), i = 2, 3,.
[0004]
In a spread spectrum communication system, communication is performed in a state where a plurality of signals coexist in the same frequency band. Since each signal is modulated with a spreading code having orthogonal characteristics, a signal including a code that does not match the desired spreading code is excluded during demodulation. However, since they are not completely orthogonal, there are a small number of cross-correlation values, and the sum thereof increases as the number of other station signals increases, limiting the number of simultaneous communication stations.
[0005]
Next, the operation of the spread spectrum communication system will be described with reference to the drawings. In the transmitter 100, data d 1 (t) transmitted from the data transmission circuit 101 is data that randomly takes +1 and −1, and the primary modulation by the primary modulation circuit 102 is, for example, PSK (phase shift keying). ). The output a 1 (t) of the primary modulation circuit 102 is described as follows.
a 1 (t) = d 1 (t) cos (2πf c t + θ 1 )
Where f c is the carrier frequency and θ 1 represents the phase of the carrier wave.
[0006]
Here, c 1 (t) is a spreading code that takes +1 and −1. Secondary modulation circuit 103, the multiplication of this spread code c 1 (t) and the primary modulation signal a 1 (t) subjected to secondary modulation, to generate a spread spectrum signal s 1 (t). The spread spectrum signal s 1 (t) is described as follows.
s 1 (t) = c 1 (t) d 1 (t) cos (2πf c t + θ 1 )
[0007]
The spread spectrum signal from the other station is expressed as follows.
s k (t) = c k (t) d k (t) cos (2πf c t + θ k ), k = 2, 3, 4, ~, K
On the other hand, the receiver 200 demodulates the spread spectrum signal s 1 (t) as a desired signal. The received signal r (t) is described as follows.
[0008]
[Expression 1]
Figure 0003662818
[0009]
Here, n (t) is receiver noise.
In the following description, noise will be omitted for convenience.
The synchronization circuit 204 establishes synchronization of the spread code c 1 (t) included in the received signal r (t), and supplies the code from the synchronization circuit 204 to the secondary demodulation circuit 203. The secondary demodulation circuit 203 multiplies the received signal r (t) and the code c 1 (t), and obtains a 1 (t) by the following calculation.
[0010]
[Expression 2]
Figure 0003662818
[0011]
Where γ k (t) = c 1 (t) × c k (t), a k (t) = d k (t) cos (2πf c t + θ k ), k = 2, 3, ~, K Therefore, the relationship c 1 (t) × c 1 (t) = 1 is used.
The first term is a modulation signal of the desired signal, and the second term is a term that contributes as a noise component due to the other station signal. γ k (t) is the product of the code c 1 (t) that spreads the desired signal and the code c k (t) that spreads the other station signal, and is not orthogonal, so it is zero even if it integrates for one period It must remain a broadband signal.
In primary demodulator 202, and outputs the data d 1 (t) demodulates a 1 a (t).
[0012]
[Problems to be solved by the invention]
Thus, as a method for increasing the number of communication stations such as mobile phones, a code modulation method using spread spectrum is becoming mainstream. However, in the spread spectrum method, it is necessary to remove interference from a plurality of other station signals, and this interference wave limits the number of communication stations. Conventionally, since the base station supports interference wave removal, the system configuration is large.
[0013]
The present invention has been made in view of the above points, and is intended to be easily incorporated into a wireless terminal and easily remove interference signals from other station signals. Another object of the present invention is to remove signal components of other stations acting as noise in a spread spectrum communication system, improve noise resistance characteristics, and increase the number of simultaneous communication stations.
[0014]
[Means for Solving the Problems]
According to the first solution of the present invention,
A synchronization circuit for detecting a spread code of a desired signal and a carrier signal from each station based on the received spread spectrum signal;
A multiplication circuit that multiplies the received spread spectrum signal by the spreading code of the desired signal output by the synchronization circuit;
A synchronous detection circuit that multiplies the output from the multiplication circuit and the carrier signal from each station output from the synchronization circuit;
A correlation value calculation circuit for calculating an interference noise component of each undesired signal based on a correlation value between each multiplication result from the synchronous detection circuit and a spreading code of the desired signal;
A tap coefficient control circuit for obtaining a tap coefficient from phase information of a carrier wave signal from each station;
Based on the interference noise component obtained by the correlation value calculation circuit and the tap coefficient obtained by the tap coefficient control circuit, an interference generator that obtains a combined component;
There is provided an interference cancellation device comprising a subtraction circuit for subtracting a combined component obtained by the interference generation unit from a correlation value for a desired signal obtained by the correlation value calculation circuit to obtain a desired received signal.
[0015]
According to the second solution of the present invention,
An antenna for receiving a spread spectrum signal;
The interference cancellation apparatus according to any one of claims 1 to 3, wherein a signal received by the antenna is input;
Provided is a wireless terminal device including a demodulation circuit that demodulates an output from the interference canceling device.
According to the third solution of the present invention,
Multiplying the output obtained by multiplying the received spread spectrum signal by the spreading code of the desired signal and the carrier signal from each station,
Based on the correlation value between each multiplication result and the spreading code of the desired signal, the interference noise component of each undesired signal is calculated,
Based on the obtained interference noise component and the tap coefficient obtained from the phase information of the carrier wave signal from each station, a composite component is obtained,
Provided is an interference cancellation method for obtaining a desired received signal by subtracting a composite component obtained from a correlation value for a desired signal.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a configuration diagram of a first embodiment of a wireless terminal apparatus including an interference canceling apparatus according to the present invention. However, the present invention is based on the following conditions.
(1) Chip synchronization of all spreading codes is taken. (2) The relative relationship of the carrier phase used by each station is maintained and can be known on the receiving side.
The wireless terminal device (receiver) includes an antenna 1, a synchronization circuit 2, a multiplication circuit 3, a synchronous detection circuit 4 for each component, a correlation value calculation circuit 5, a tap coefficient control circuit 6, an interference generation unit 7, a subtraction circuit 8, A determination circuit 9 is provided.
[0018]
The synchronization circuit 2 detects the spread code of the desired signal and the carrier signal from each station based on the spread spectrum signal received from the antenna 1. The multiplier circuit 3 multiplies the received spread spectrum signal by the spread code of the desired signal output from the synchronization circuit 2. The synchronous detection circuit 4 multiplies the output from the multiplication circuit 3 and the carrier signal from each station output from the synchronization circuit 2. The correlation value calculation circuit 5 calculates the interference noise component of each undesired signal based on the correlation value between each multiplication result from the synchronous detection circuit 4 and the spread code of the desired signal. The tap coefficient control circuit 6 obtains a tap coefficient from the phase information of the carrier wave signal from each station. The interference generator 7 obtains a composite component based on the interference noise component obtained by the correlation value calculation circuit 5 and the tap coefficient obtained by the tap coefficient control circuit 6. The subtracting circuit 8 subtracts the combined component obtained by the interference generating unit 7 from the correlation value for the desired signal obtained by the correlation value calculating circuit 5 to obtain a desired received signal.
[0019]
Next, the operation will be described in detail.
First, the received signal r (t) input from the antenna 1 is described as follows.
[0020]
[Equation 3]
Figure 0003662818
[0021]
Here, k = 1 is defined as a desired station signal (desired signal). The other k = 2, 3,..., K are undesired station signals (unwanted signals). The multiplier circuit 3 multiplies the received signal r (t) by the spread code c 1 (t) of the desired signal that has been synchronized by the synchronization circuit 2. The synchronous detection circuit 4 for each component multiplies the multiplication result by a signal (carrier signal from each station) 2cos (2πf c t + θ i ), i = 1, 2,. . The result of multiplication by the synchronous detection circuit 4 for each component is supplied to the correlation value calculation circuit 5. In the correlation value calculation circuit 5, the operation for obtaining the correlation value γ i is performed as follows.
[0022]
[Expression 4]
Figure 0003662818
[0023]
Since the sum component of the sine wave is removed by the integration operation, it is not described. Tb is one bit time.
Correlation value γ 1 ~ Γ K is organized as follows.
[0024]
[Equation 5]
Figure 0003662818
[0025]
In this calculation, it is assumed that the data d 1 is output assuming that the desired signal is frame-synchronized. In vector display, it can be organized as follows.
[0026]
[Formula 6]
Figure 0003662818
[0027]
Therefore, the interference components R 21 , R 31 ,..., R K1 to be obtained can be obtained by the following calculation.
[0028]
[Expression 7]
Figure 0003662818
[0029]
When the interference noise components R 21 , R 31 ,..., R K1 are found in this way, these values are supplied to the interference generator 7. The values of tap coefficients w 2 , w 3 ,..., W K are determined as follows from information on interference signals (for example, phase difference from the desired signal) simultaneously communicated by the tap coefficient control circuit 6, and interference It is supplied to the generator 7.
w 2 = cos (θ 21 )
w 3 = cos (θ 31 )
−−
w k = cos (θ k1 )
The correlation value γ 1 of the desired signal is γ 1 = d 1 + R 21 cos (θ 21 ) + R 31 cos (θ 31 ) + ・ ・ + R K1 cos (θ K1 )
It is.
[0030]
A combined signal of interference components obtained by calculation and output from the interference generator 7 is expressed as v (t).
v (t) = R 21 cos (θ 21 ) + R 31 cos (θ 31 ) + ・ ・ ・ + R K 1 cos (θ K1 )
It becomes. The subtracting circuit 8 subtracts this signal from γ 1 to obtain x (t). The determination circuit 9 determines the received data and outputs it. When there is no noise, x (t) becomes data d 1 .
[0031]
Next, FIG. 2 shows a configuration diagram of a second embodiment of a wireless terminal apparatus including the interference cancellation device according to the present invention. Here, in order to absorb the uncertainty due to noise, chip coefficient control is performed by an instruction of the error signal e (t).
[0032]
The receiver includes an antenna 1, a synchronization circuit 2, a multiplication circuit 3, a synchronous detection circuit 4 for each component, a correlation value calculation circuit 5, an interference generation unit 7, a subtraction circuit 8, a determination circuit 9, a tap coefficient control circuit 10, a limiter 11 and a comparator 12 are provided.
In such a configuration, when there is noise, the correlation value γ 1 Comparison Since ~ gamma K becomes inaccurate, after limited output from the subtracting circuit 8 the data x (t), in limiter 11, by the subtraction circuit 12 Limiter input x (t) output and d 1 ~ a (t) An error signal e (t) is obtained. In the tap coefficient control circuit 10, the tap coefficient w 2 in the interference generator 7 is set so as to make this error signal e (t) as small as possible. To control the ~ w K. The output from the subtraction circuit 8 passes through such a loop, and obtains the data prediction results d 1 to (t) as the output of the limiter 11. The decision circuit 9 determines the data received from d 1 to (t) and outputs d 1 ^ (t). Other components and their operations are the same as those in the first embodiment.
[0033]
Next, the simulation of interference removal according to the present invention will be described.
FIG. 3 is an explanatory diagram for the simulation. The horizontal axis represents the number of simultaneous communication stations, and the vertical axis represents BER (Bit Error Rate). Eb / No in the figure is the signal-to-noise ratio per bit. Here, as an example, a Gold code having a code length of 31 chips is used as the spreading code. In the figure, the dotted line is a theoretical value when interference removal is not performed, and the solid line is a simulation characteristic when the present invention is used.
[0034]
In this simulation, even if there is noise, the tap coefficient is only used as a result of calculating the correlation value, and tap coefficient control is not performed. That is, this result is a simulation of the configuration of the first embodiment. From the figure, it can be seen that the error rate of the result of the solid line is low and the interference signal is removed. If the coefficient control is controlled to an optimum value as in the configuration of the second embodiment, the error rate can be further improved.
The present invention can be applied to an appropriate modulation method in addition to PSK and BPSK. For example, when applied to QPSK, the circuit of the present invention may be provided for the in-phase component and the quadrature component.
[0035]
【The invention's effect】
According to the present invention, as described above, it can be incorporated into a mobile terminal, and an interference signal from another station signal can be easily removed. Further, according to the present invention, in the spread spectrum communication system, signal components of other stations that act as noise can be removed, noise resistance characteristics can be improved, and the number of simultaneous communication stations can be increased.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a first embodiment of a wireless terminal device including an interference canceller according to the present invention.
FIG. 2 is a configuration diagram of a second embodiment of a wireless terminal device including the interference canceller according to the present invention.
FIG. 3 is an explanatory diagram about simulation.
FIG. 4 is a configuration diagram of a conventional spread spectrum communication system.
[Explanation of symbols]
Antenna 1
Synchronous circuit 2
Multiplication circuit 3
Synchronous detection circuit 4 for each component
Correlation value calculation circuit 5
Tap coefficient control circuit 6
Interference generator 7
Subtraction circuit 8
Determination circuit 9
Tap coefficient control circuit 10
Limiter 11
Comparator 12

Claims (6)

受信されたスペクトル拡散信号に基づき、希望信号の拡散符号と各局からの搬送波信号を検出する同期回路と、
受信されたスペクトル拡散信号と、前記同期回路により出力された希望信号の拡散符号とを乗算する乗算回路と、
前記乗算回路からの出力と、前記同期回路から出力された各局からの搬送波信号とをそれぞれ乗算する同期検波回路と、
前記同期検波回路からの各乗算結果と希望信号の拡散符号との相関値に基づき、各非希望信号の干渉雑音成分を計算する相関値計算回路と、
各局からの搬送波信号の位相情報からタップ係数を求めるタップ係数制御回路と、
前記相関値計算回路により求められた干渉雑音成分と、タップ係数制御回路により求められたタップ係数とに基づき、合成成分を求める干渉発生部と、
前記相関値計算回路により求められた希望信号についての相関値から、前記干渉発生部により求められた合成成分を減算し、希望受信信号を得る減算回路と
を備えた干渉除去装置。
A synchronization circuit for detecting a spread code of a desired signal and a carrier signal from each station based on the received spread spectrum signal;
A multiplication circuit that multiplies the received spread spectrum signal by the spreading code of the desired signal output by the synchronization circuit;
A synchronous detection circuit that multiplies the output from the multiplication circuit and the carrier signal from each station output from the synchronization circuit;
A correlation value calculation circuit for calculating an interference noise component of each undesired signal based on a correlation value between each multiplication result from the synchronous detection circuit and a spreading code of the desired signal;
A tap coefficient control circuit for obtaining a tap coefficient from phase information of a carrier wave signal from each station;
Based on the interference noise component obtained by the correlation value calculation circuit and the tap coefficient obtained by the tap coefficient control circuit, an interference generating unit for obtaining a combined component;
An interference removal apparatus comprising: a subtraction circuit that subtracts a composite component obtained by the interference generation unit from a correlation value for a desired signal obtained by the correlation value calculation circuit to obtain a desired reception signal.
前記減算回路により求められた受信信号を制限するリミタをさらに備え、
前記タップ係数制御回路は、前記リミタの入力と出力との誤差信号に基づき、前記タップ係数を制御することを特徴とする請求項1に記載の干渉除去装置。
A limiter for limiting the received signal obtained by the subtracting circuit;
The interference removal apparatus according to claim 1, wherein the tap coefficient control circuit controls the tap coefficient based on an error signal between the input and output of the limiter.
前記相関値計算回路は、受信信号と希望信号の拡散符号と各搬送波信号との積を所定ビット時間で積分することで求めた相関値、及び、希望信号と各非希望信号との位相差に基づいて、干渉雑音成分を求めたことを特徴とする請求項1又は2に記載の干渉除去装置。The correlation value calculation circuit calculates the correlation value obtained by integrating the product of the spread code of the received signal, the desired signal and each carrier signal over a predetermined bit time, and the phase difference between the desired signal and each undesired signal. The interference cancellation apparatus according to claim 1, wherein an interference noise component is obtained based on the interference noise component. スペクトル拡散信号を受信するアンテナと、
前記アンテナで受信した信号を入力する請求項1乃至3のいずれかに記載の干渉除去装置と、
前記干渉除去装置の出力からデータを判定する判定回路と、
を備えた無線端末装置。
An antenna for receiving a spread spectrum signal;
The interference cancellation apparatus according to any one of claims 1 to 3, wherein a signal received by the antenna is input;
A determination circuit for determining data from the output of the interference cancellation device;
A wireless terminal device.
受信されたスペクトル拡散信号と希望信号の拡散符号とを乗算した出力と、各局からの搬送波信号とをそれぞれ乗算し、
各乗算結果と希望信号の拡散符号との相関値に基づき、各非希望信号の干渉雑音成分を計算し、
求められた干渉雑音成分と、各局からの搬送波信号の位相情報から求められたタップ係数とに基づき、合成成分を求め、
希望信号についての相関値から求められた合成成分を減算し、希望受信信号を得る
ようにした干渉除去方法。
Multiplying the output obtained by multiplying the received spread spectrum signal by the spreading code of the desired signal and the carrier signal from each station,
Based on the correlation value between each multiplication result and the spreading code of the desired signal, the interference noise component of each undesired signal is calculated,
Based on the obtained interference noise component and the tap coefficient obtained from the phase information of the carrier wave signal from each station, a composite component is obtained,
An interference cancellation method in which a desired component is obtained by subtracting a synthesized component obtained from a correlation value for a desired signal.
求められた希望受信信号から誤差信号を得て、
誤差信号を小さくするようにタップ係数を制御するようにした請求項5に記載の干渉除去方法。
Obtain an error signal from the desired received signal
The interference cancellation method according to claim 5, wherein the tap coefficient is controlled so as to reduce the error signal.
JP2000194330A 2000-06-28 2000-06-28 Interference cancellation apparatus, radio terminal apparatus, and interference cancellation method Expired - Fee Related JP3662818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000194330A JP3662818B2 (en) 2000-06-28 2000-06-28 Interference cancellation apparatus, radio terminal apparatus, and interference cancellation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000194330A JP3662818B2 (en) 2000-06-28 2000-06-28 Interference cancellation apparatus, radio terminal apparatus, and interference cancellation method

Publications (2)

Publication Number Publication Date
JP2002016511A JP2002016511A (en) 2002-01-18
JP3662818B2 true JP3662818B2 (en) 2005-06-22

Family

ID=18693179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000194330A Expired - Fee Related JP3662818B2 (en) 2000-06-28 2000-06-28 Interference cancellation apparatus, radio terminal apparatus, and interference cancellation method

Country Status (1)

Country Link
JP (1) JP3662818B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050006395A (en) * 2003-07-08 2005-01-17 삼성전자주식회사 Method and Apparutus for detecting synchronization signal
CN112511242A (en) * 2020-11-13 2021-03-16 广西电网有限责任公司南宁供电局 Carrier detection method and system based on passive isolation

Also Published As

Publication number Publication date
JP2002016511A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
JP4008407B2 (en) Elimination of pilot and unwanted traffic signals in CDMA systems
JP2741336B2 (en) Frequency error correction device for spread spectrum signal receiver
JP3078997B2 (en) Multiple access method of direct spreading communication system and multiple access device used therefor
US6950458B2 (en) Method and apparatus for acquiring slot timing and frequency offset correction and storage medium storing control program therefor
GB2354678A (en) CDMA receiver capable of estimating frequency offset from complex pilot symbols
JP4095249B2 (en) Frequency acquisition tracking method and apparatus for DS-SSCDMA receiver
US6094449A (en) Spread spectrum communication synchronization acquisition decoding apparatus
JP4836158B2 (en) Lead / lag detection
US6778586B1 (en) Radio communication equipment and communication method
JP3295037B2 (en) Propagation path estimation method and apparatus, and propagation path estimation system
JP3418981B2 (en) Spread spectrum communication synchronization acquisition circuit
US20010004377A1 (en) High-speed cell searching apparatus and method using DPSK-based distributed sample acquisition
JP5341241B2 (en) Tone detection using a CDMA receiver
JP3662818B2 (en) Interference cancellation apparatus, radio terminal apparatus, and interference cancellation method
JP2720745B2 (en) Signal processing circuit
JP3102460B2 (en) Mobile station transmitting device that performs transmission power control
EP1087540A1 (en) Method of receiving spread-spectrum signal and radio communication terminal device
JPH08237169A (en) Preamble synchronization system
JP4877031B2 (en) Wireless communication device
JP2002084258A (en) Communication apparatus
JP4300696B2 (en) Communication device
JP2864930B2 (en) Synchronization holding device in spread spectrum communication system
JP2002247007A (en) Interference removing part, radio terminal equipment and method for removing interference
JP2001217751A (en) System and method for radio communication
JPH0446428A (en) Demodulator for spread spectrum communication

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees