JPH0448176B2 - - Google Patents

Info

Publication number
JPH0448176B2
JPH0448176B2 JP60021542A JP2154285A JPH0448176B2 JP H0448176 B2 JPH0448176 B2 JP H0448176B2 JP 60021542 A JP60021542 A JP 60021542A JP 2154285 A JP2154285 A JP 2154285A JP H0448176 B2 JPH0448176 B2 JP H0448176B2
Authority
JP
Japan
Prior art keywords
temperature
frequency
probe
pressure
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60021542A
Other languages
Japanese (ja)
Other versions
JPS61181923A (en
Inventor
Koichi Hirama
Takeshi Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP60021542A priority Critical patent/JPS61181923A/en
Publication of JPS61181923A publication Critical patent/JPS61181923A/en
Publication of JPH0448176B2 publication Critical patent/JPH0448176B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/26Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非接触型温度或は圧力の測定方法、殊
に生体内の温度測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a non-contact temperature or pressure measurement method, particularly to a method for measuring temperature within a living body.

(従来技術) 近年ガンの治療のため温熱療法が注目されてい
るが、その際ガン細胞とその周辺の正常細胞を含
めた局部の正確な温度測定技術が不可欠である。
(Prior Art) Hyperthermia therapy has been attracting attention for the treatment of cancer in recent years, but in this case, accurate temperature measurement technology for local areas including cancer cells and surrounding normal cells is essential.

従来、このような生体内の温度測定にあたつて
はアンテナ・コイルに水晶振動子等の如く共振周
波数が温度依存性をもつて変化する圧電振動子を
接続したプローブを生体内の所望部分に外科的に
埋込むか或はこれを消化器内に流すと共に生体外
から所要周波数の電磁波エネルギを照射し前記ア
ンテナ・コイルを介して前記圧電振動子に与えこ
れが共振する際のエネルギ吸収現象を観測するか
或は前記電磁波エネルギ照射を中止した直後に於
ける前記圧電振動子の残響を前記アンテナ・コイ
ルを介して受信する等して前記圧電振動子の共振
周波数を検出しもつて温度を測定する方法が提案
されている。
Conventionally, when measuring temperature inside a living body, a probe with a piezoelectric vibrator, such as a crystal oscillator, whose resonant frequency changes depending on the temperature, is connected to an antenna coil at a desired part of the living body. Surgically implant it or pass it into the digestive tract, and irradiate electromagnetic wave energy of a desired frequency from outside the body and apply it to the piezoelectric vibrator via the antenna coil and observe the energy absorption phenomenon when it resonates. Alternatively, the temperature is measured by detecting the resonant frequency of the piezoelectric vibrator by, for example, receiving the reverberation of the piezoelectric vibrator through the antenna coil immediately after the electromagnetic wave energy irradiation is stopped. A method is proposed.

このように電磁波を用いしかも温度センサに水
晶振動子等圧電振動子を用いる方法は生体内プロ
ーブと体外装置間のケーブルを不要としかつ正確
な温度測定を行ううえで極めて有効であつて更に
上述の如く温度センサを受動型回路で構成し無電
源とすることは長期間にわたつて生体内に埋込む
際極めて有効である。
This method of using electromagnetic waves and using a piezoelectric vibrator such as a crystal oscillator as a temperature sensor is extremely effective in eliminating the need for cables between the in-vivo probe and the external device and in performing accurate temperature measurements. Configuring a temperature sensor with a passive circuit without power supply is extremely effective when implanted in a living body for a long period of time.

しかしながら、上述の如く受動回路による温度
センサを用いその電磁波吸収現象或は残響現象を
利用する方法ではこれから得る電磁波レベルが極
めて微弱であるため測定が非常に困難であつてし
かも前記センサのアンテナ・コイルと生体外装置
のピツクアツプコイルとの離隔距離を大きくとれ
ないと云う欠点があつた。
However, as mentioned above, in the method of using a temperature sensor with a passive circuit and utilizing its electromagnetic wave absorption phenomenon or reverberation phenomenon, the electromagnetic wave level obtained from this is extremely weak, making it very difficult to measure. The drawback was that it was not possible to maintain a large separation distance between the pickup coil and the pickup coil of the in vitro device.

更に、上述の如く前記プローブから電磁波を導
出する方法では、被測定体が生体である場合電磁
波が生体外に至るまでに大きな減衰を受けるため
生体内に於いて抽出しうるエネルギが極めて微弱
であるうえ、商用電源周波数をはじめ雑多な電磁
的雑音が充満する条件下での測定は一層困難なも
のであつた。
Furthermore, in the method of deriving electromagnetic waves from the probe as described above, when the object to be measured is a living body, the electromagnetic waves are greatly attenuated before reaching outside the living body, so the energy that can be extracted inside the living body is extremely weak. Furthermore, measurements were even more difficult under conditions where various electromagnetic noises such as commercial power supply frequencies were present.

このような電磁的雑音はガン等の温熱療法に一
般に使用される高周波加熱装置に於いては非常に
大きなものであつて上述した従来の測温方法では
これからの雑音除去に多大の労力を費していた。
Such electromagnetic noise is extremely loud in high-frequency heating devices commonly used for thermotherapy for cancer, etc., and the conventional temperature measurement method described above requires a great deal of effort to eliminate the noise. was.

実験によれば、上述した従来の方法では生体内
センサのアンテナ・コイルと体外装置のピツク・
アツプ・コイルの離隔距離はせいぜい5cm程度で
あつて、例えば生体内深部の温度測定にあたつて
は前記センサの圧電振動子とアンテナ・コイルと
を所要間隔離した細長い形状とするか或はこれら
両者をケーブルで延長する等して前記アンテナ・
コイルを体表近くに位置せしめなければ測定がで
きず極めて不便であつた。
According to experiments, the above-mentioned conventional method has shown that the antenna coil of the in-vivo sensor and the pick-up of the external device are
The separation distance between the up coils is about 5 cm at most. For example, when measuring the temperature deep inside a living body, the piezoelectric vibrator of the sensor and the antenna coil should be separated by a long and narrow shape, or they should be separated by a long and narrow shape. The antenna and
This was extremely inconvenient as measurements could not be taken unless the coil was placed close to the body surface.

又、同様の方法によつて圧力の測定が可能であ
つて、この場合はセンサの構造が若干異なるのみ
である。
It is also possible to measure pressure in a similar manner, with only a slight difference in the structure of the sensor.

(発明の目的) 本発明は上述の如き温度又は圧力の測定方法の
問題点に鑑みてなされたものであつて、生体内に
於ける減衰が比較的少なく、かつ雑音成分レベル
が小さい超音波を利用することによつて測定を容
易にすると共に生体内深部に於ける温度又は圧力
の測定を可能とした非接触型温度等の測定方法を
提供することを目的とする。
(Object of the Invention) The present invention has been made in view of the problems of the temperature or pressure measurement method described above, and is an object of the present invention to utilize ultrasonic waves that have relatively little attenuation in the living body and have a low noise component level. It is an object of the present invention to provide a non-contact temperature measurement method that facilitates measurement and enables measurement of temperature or pressure deep within a living body.

(発明の概要) 上述の目的を達成するために本発明では以下の
如き手段を講ずる。
(Summary of the invention) In order to achieve the above object, the present invention takes the following measures.

即ち、アンテナ・コイルに共振周波数が温度又
は圧力依存性を有する圧電振動子と該圧電振動子
の共振周波数とほゞ同一の共振周波数を有する超
音波トランスデユーサとをループを形成する如く
接続したものをセンサ用プローブとなし被測定体
表面又は内部に装着すると共に、外部から前記圧
電振動子の共振周波数近傍の電磁波を前記アンテ
ナ・コイルを介して前記プローブに与えこれに共
振して前記圧電振動子に流れる電流によつて前記
超音波トランスデユーサを発振動せしめこれが発
する超音波を外部から観測することによつて前記
被測定体の温度又は圧力を測定するよう構成す
る。
That is, a piezoelectric vibrator whose resonant frequency is temperature- or pressure-dependent and an ultrasonic transducer whose resonant frequency is substantially the same as that of the piezoelectric vibrator are connected to the antenna coil so as to form a loop. The object is used as a sensor probe and is attached to the surface or inside of the object to be measured, and an electromagnetic wave near the resonant frequency of the piezoelectric vibrator is applied from the outside to the probe via the antenna coil, causing the probe to resonate and generate the piezoelectric vibration. The ultrasonic transducer is caused to oscillate by a current flowing through the transducer, and the ultrasonic waves emitted by the transducer are observed from the outside to measure the temperature or pressure of the object to be measured.

(実施例) 以下本発明を図示した実施例に基づいて、詳細
に説明する。
(Example) The present invention will be described in detail below based on illustrated examples.

第1図は本発明に於いて使用するセンサとして
のプローブの一実施例を示す回路図である。
FIG. 1 is a circuit diagram showing one embodiment of a probe as a sensor used in the present invention.

同図に於いてL1はアンテナ・コイルであつて、
これに水晶振動子Xと超音波トランスデユーサ
SWとを直列に接続しこれら三者が閉ループを成
す如く構成したものである。
In the figure, L1 is the antenna coil,
This includes a crystal oscillator X and an ultrasonic transducer.
SW is connected in series so that these three components form a closed loop.

尚前記超音波トランスデユーサSWとしては例
えばチタン酸バリウム振動子或は水晶振動子等の
圧電振動子を厚み縦振動モードで用い、その共振
周波数を前記センサ用水晶振動子Xとほゞ同一、
例えば13.56MHzとする。
As the ultrasonic transducer SW, a piezoelectric vibrator such as a barium titanate vibrator or a crystal vibrator is used in a thickness longitudinal vibration mode, and its resonance frequency is approximately the same as that of the sensor crystal vibrator X.
For example, let it be 13.56MHz.

このように構成したプローブに、前記アンテ
ナ・コイルL1を介して前記水晶振動子Xの共振
周波数近傍の電磁波を与えると、該電磁波が前記
水晶振動子の共振周波数と一致するとき最も大き
い高周波電流が前記閉ループに流れ、これによつ
て前記超音波トランスデユーサが作動し該共振周
波数と同一の超音波を発生する。
When an electromagnetic wave near the resonant frequency of the crystal oscillator X is applied to the probe configured in this way through the antenna coil L1 , when the electromagnetic wave matches the resonant frequency of the crystal oscillator, the highest high-frequency current is generated. flows into the closed loop, thereby activating the ultrasound transducer to generate ultrasound at the same resonant frequency.

従つて外部から該超音波を導出しその周波数を
測定すれば前記水晶振動子の共振周波数を知るこ
とができ、あらかじめ該共振周波数と温度又は圧
力の関係がわかつていればそのときのこれらの値
を測定することができる。
Therefore, if the ultrasonic wave is derived from the outside and its frequency is measured, the resonant frequency of the crystal oscillator can be determined, and if the relationship between the resonant frequency and temperature or pressure is known in advance, these values at that time can be determined. can be measured.

尚、前記水晶振動子Xと超音波トランスデユー
サSWとの共振周波数がすべての温度又は圧力に
関して常に同一であることが望ましいが、この超
音波トランスデユーサーのQ値はかなり低下され
た状態としてあるので例えこれが幾分異るとして
も若干効率の低下はあるものの水晶の共振周波数
に応じた超音波振動出力が得られることには異い
がない。
Although it is desirable that the resonant frequency of the crystal oscillator Therefore, even if this is slightly different, there is no difference in that an ultrasonic vibration output corresponding to the resonant frequency of the crystal can be obtained, although there may be a slight decrease in efficiency.

この超音波トランスデユーサの構造としては
種々考えられるが例えば第3図に示すように構成
すればよい。
Although various structures are conceivable for this ultrasonic transducer, it may be constructed as shown in FIG. 3, for example.

即ち、共振周波数が前記水晶振動子とほゞ等し
くなる様な共振周波数をもつたチタン酸バリウム
を厚み縦振動モードで用いた振動子7の振動方向
両端に電極8,8を付加すると共に該電極の一方
を挾みエポキシ樹脂9にニツケルの微粉末10を
混入したものを前記振動子7の厚みのほゞ2倍の
長さ付加せしめることによつて、超音波トランス
デユーサの感度を使用周波数内でほゞ一定とする
とともに、不要なスプリアスの出現を防いだ超音
波トランスデユーサと前記水晶振動子Xとアンテ
ナ・コイルL1と該電極8,8とを直列に接続す
るよう構成したものである。
That is, electrodes 8, 8 are added to both ends in the vibration direction of the vibrator 7, which uses barium titanate in the thickness longitudinal vibration mode and has a resonance frequency that is almost equal to that of the crystal resonator. By sandwiching one side of the epoxy resin 9 mixed with fine nickel powder 10 and adding a length approximately twice the thickness of the transducer 7, the sensitivity of the ultrasonic transducer can be adjusted to the operating frequency. The ultrasonic transducer is configured such that the crystal oscillator X, the antenna coil L1 , and the electrodes 8, 8 are connected in series, and the ultrasonic transducer is made almost constant within the range and prevents the appearance of unnecessary spurious signals. It is.

尚上述の水晶振動子の周波数を検出する方法と
しては前記超音波トランスデユーサのSWの超音
波周波数を測定する代りに、前記外部から照射す
る電磁波周波数を変化せしめ前記超音波出力が最
大となる前記電磁波周波数を観測することによつ
て行なつてもよい。
In addition, as a method of detecting the frequency of the crystal oscillator described above, instead of measuring the ultrasonic frequency of the SW of the ultrasonic transducer, the frequency of the electromagnetic wave irradiated from the outside is changed to maximize the ultrasonic output. This may be carried out by observing the electromagnetic wave frequency.

即ち、第2図にこのような測定方法を実施する
場合に用いる外部測定装置の一実施例のブロツク
図を示す。
That is, FIG. 2 shows a block diagram of an embodiment of an external measuring device used when carrying out such a measuring method.

同図に於いて1は周波数カウンタ2を付した可
変周波数発振器であつて、これに接続した送信用
アンテナ・コイルL2を介して前記プローブに電
磁波を照射すると共に該プローブが発振する前記
超音波をマイクロホン3によつて受信しその電気
信号を高周波アンプ4に於いて所要レベルまで増
幅したのちフイルタ5によつて前記超音波と同一
周波数の電気信号を抽出しそのレベルをレベル計
6によつて観測するよう測定系を構成すると共
に、前記可変周波数発振器1の発振周波数を変化
せしめ前記レベル計の読みが最大となる点のその
周波数を前記周波数カウンタ2によつて検出す
る。
In the figure, reference numeral 1 denotes a variable frequency oscillator equipped with a frequency counter 2, which irradiates the probe with electromagnetic waves via a transmitting antenna coil L2 connected to it, and the ultrasonic wave oscillated by the probe. is received by a microphone 3, the electric signal is amplified to a required level in a high frequency amplifier 4, an electric signal having the same frequency as the ultrasonic wave is extracted by a filter 5, and its level is measured by a level meter 6. A measurement system is constructed to perform the observation, and the oscillation frequency of the variable frequency oscillator 1 is varied, and the frequency at which the reading of the level meter becomes maximum is detected by the frequency counter 2.

尚、この際前記レベル計6の読みが最大となる
点を検出する手段を付加しその手段の出力によつ
て前記可変周波発振器1の発振周波数を制御する
よう構成すれば前記超音波出力が最大となる電磁
波周波数を自動的に測定することができ極めて便
利である。
At this time, if a means is added to detect the point at which the reading of the level meter 6 is maximum, and the oscillation frequency of the variable frequency oscillator 1 is controlled by the output of the means, the ultrasonic output can be maximized. It is extremely convenient to be able to automatically measure the electromagnetic wave frequency.

以上本発明を一実施例に基づいて詳細に説明し
たが、本発明はこれに限定する必要はなく、例え
ば前記プローブに於いて外部から照射する電磁波
を一旦直流化しこれを新らたに構成した超音波発
振回路の電源となすと共に該超音波発振器の振動
子に温度或は圧力依存性をもつたものを用い外部
から超音波周波数を計測するようにしてもよい。
Although the present invention has been described in detail based on one embodiment, the present invention does not need to be limited to this. For example, the electromagnetic waves irradiated from the outside in the probe may be converted into direct current and then newly constructed. The ultrasonic frequency may be measured externally by using a temperature- or pressure-dependent vibrator as the power source for the ultrasonic oscillator circuit and as a vibrator of the ultrasonic oscillator.

又、前記プローブの超音波トランスデユーサを
温度依存性を有したものとし、前記圧電振動子を
除去して共振回路を構成してもよい。
Further, the ultrasonic transducer of the probe may be temperature-dependent, and the piezoelectric vibrator may be removed to form a resonant circuit.

更に以上の説明は測温方法を主として説明した
が、前記圧電振動子は圧力に対しても共振周波数
が依存性を有すること周知であるから上述の説明
と同様の方法によつて圧力の測定が可能であるこ
とが明らかである。
Furthermore, although the above explanation has mainly focused on the temperature measurement method, it is well known that the resonant frequency of the piezoelectric vibrator has dependence on pressure as well, so it is also possible to measure pressure using the same method as explained above. It is clear that it is possible.

(発明の効果) 本発明は以上説明したように構成し外部から照
射する電磁波を生体内に於ける伝播特性が優れた
超音波に変換し、該超音波の観測によつて温度或
は圧力を測するものであるから種々雑多存在する
電磁波雑音の影響を除去せしめ効率のよい非接触
型の温度又は圧力を測定する方法をもたらすうえ
で著効を奏する。
(Effects of the Invention) The present invention is configured as described above, converts electromagnetic waves irradiated from the outside into ultrasonic waves with excellent propagation characteristics in the living body, and measures temperature or pressure by observing the ultrasonic waves. Since this method is used to measure temperature or pressure, it is effective in eliminating the effects of various electromagnetic noises and providing an efficient non-contact method for measuring temperature or pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に於いて使用するプローブの一
実施例を示す回路図、第2図は本発明に於いて使
用する体外測定装置の一実施例を示すブロツク
図、第3図は本発明のプローブに用いる超音波ト
ランスデユーサの構造の一実施例を示す図であ
る。 1……可変周波数発振器、2……周波数カウン
タ、3……超音波マイクロホン、4……高周波増
幅器、5……フイルタ、6……レベルメータ、7
及び9……チタン酸バリウム振動子、8,8……
電極、L1及びL2……アンテナ・コイル、X……
水晶振動子、SW……超音波トランスデユーサ。
Fig. 1 is a circuit diagram showing an embodiment of the probe used in the present invention, Fig. 2 is a block diagram showing an embodiment of the in vitro measuring device used in the present invention, and Fig. 3 is a circuit diagram showing an embodiment of the in vitro measuring device used in the present invention. FIG. 2 is a diagram showing an example of the structure of an ultrasonic transducer used in the probe of FIG. 1... Variable frequency oscillator, 2... Frequency counter, 3... Ultrasonic microphone, 4... High frequency amplifier, 5... Filter, 6... Level meter, 7
and 9...barium titanate oscillator, 8,8...
Electrode, L 1 and L 2 ... Antenna coil, X ...
Crystal oscillator, SW... Ultrasonic transducer.

Claims (1)

【特許請求の範囲】 1 被測定体内或は表面に温度或は圧力依存性を
持つた圧電振動子を含む共振回路と超音波トラン
スジユーサとを含んで構成したプローブを装着す
ると共に、体外から前記プローブに電磁波を照射
しこれに共振する際の前記圧電振動子に流れる電
流によつて前記超音波トランスジユーサを制御し
もつて超音波を発生せしめ、体外から該超音波を
観測することによつて温度或は圧力を測定するよ
うにしたことを特徴とする非接触型温度或は圧力
の測定方法。 2 前記プローブの超音波トランスジユーサを温
度或は圧力依存性を有したものとし、前記圧電振
動子を除去して共振回路を構成したことを特徴と
する特許請求の範囲第1項記載の非接触型温度或
は圧力の測定方法。
[Claims] 1. A probe comprising a resonant circuit including a piezoelectric vibrator having temperature or pressure dependence and an ultrasonic transducer is attached to the inside or surface of the body to be measured, and The ultrasonic transducer is controlled by a current flowing through the piezoelectric vibrator when electromagnetic waves are irradiated to the probe and resonates with the electromagnetic wave to generate ultrasonic waves, and the ultrasonic waves are observed from outside the body. 1. A non-contact temperature or pressure measuring method characterized in that the temperature or pressure is thus measured. 2. The non-conventional device according to claim 1, wherein the ultrasonic transducer of the probe is temperature- or pressure-dependent, and the piezoelectric vibrator is removed to form a resonant circuit. Contact temperature or pressure measurement method.
JP60021542A 1985-02-06 1985-02-06 Non-contact type measurement of temperature or the like Granted JPS61181923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60021542A JPS61181923A (en) 1985-02-06 1985-02-06 Non-contact type measurement of temperature or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60021542A JPS61181923A (en) 1985-02-06 1985-02-06 Non-contact type measurement of temperature or the like

Publications (2)

Publication Number Publication Date
JPS61181923A JPS61181923A (en) 1986-08-14
JPH0448176B2 true JPH0448176B2 (en) 1992-08-06

Family

ID=12057864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60021542A Granted JPS61181923A (en) 1985-02-06 1985-02-06 Non-contact type measurement of temperature or the like

Country Status (1)

Country Link
JP (1) JPS61181923A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575550B1 (en) * 1999-03-11 2009-08-18 Biosense, Inc. Position sensing based on ultrasound emission
JP3456924B2 (en) * 1999-07-01 2003-10-14 アオイ電子株式会社 Microphone device
CN101517827B (en) * 2006-09-28 2013-06-12 罗斯蒙德公司 Wireless field device with antenna and radome for industrial locations
DE102017007594A1 (en) * 2017-08-12 2019-02-14 Albert-Ludwigs-Universität Freiburg Measuring device with a passive cooperative target

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190736A (en) * 1982-04-30 1983-11-07 Hiroyasu Funakubo Apparatus for measuring temperature
JPS59186542A (en) * 1983-04-07 1984-10-23 インタ−・ノバ株式会社 Clinical temperature measuring method of living body interior

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190736A (en) * 1982-04-30 1983-11-07 Hiroyasu Funakubo Apparatus for measuring temperature
JPS59186542A (en) * 1983-04-07 1984-10-23 インタ−・ノバ株式会社 Clinical temperature measuring method of living body interior

Also Published As

Publication number Publication date
JPS61181923A (en) 1986-08-14

Similar Documents

Publication Publication Date Title
US5921928A (en) Acoustic force generation by amplitude modulating a sonic beam
US4513749A (en) Three-dimensional temperature probe
US6461301B2 (en) Resonance based pressure transducer system
WO2000038567A3 (en) Method and sensor for wireless measurement of physiological variables
Kim et al. An implantable pressure sensing system with electromechanical interrogation scheme
JPH0544970B2 (en)
JP2003225226A (en) Implantable and insertable passive tag
US7017404B1 (en) Wireless system for measuring pressure and flow in tubes
JPH0448176B2 (en)
JP2604181B2 (en) Non-contact temperature / pressure detection method using ultrasonic waves
JPWO2014080905A1 (en) Pulse detection device and pulse detection method
Liang et al. A novel implantable saw sensor for blood pressure monitoring
JP3619464B2 (en) Resonant pressure transducer system
JP2605239B2 (en) Ultrasonic temperature / pressure measuring device
JP2516747B2 (en) Ultrasonic temperature / pressure sensor
WO2005071437A1 (en) Contrast dual frequency imaging
JPH06101384B2 (en) Method for measuring the temperature of the object to be heated in electromagnetic wave heating
US20060241436A1 (en) Method and apparatus for non-invasive measurement of a temperature change inside a living body
JPS635228A (en) Temperature or pressure sensor
JPS6098323A (en) Probe for measuring temperature in living body
JPS6315127A (en) Temperature or pressure measuring apparatus
JP2632193B2 (en) Sampling hold circuit in non-contact temperature measurement device
JPS61181924A (en) Temperature/pressure sensor with active type oscillator and measurement therewith
JPH0426518B2 (en)
JP2632190B2 (en) Non-contact temperature measurement device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees