JP2516747B2 - Ultrasonic temperature / pressure sensor - Google Patents

Ultrasonic temperature / pressure sensor

Info

Publication number
JP2516747B2
JP2516747B2 JP61211888A JP21188886A JP2516747B2 JP 2516747 B2 JP2516747 B2 JP 2516747B2 JP 61211888 A JP61211888 A JP 61211888A JP 21188886 A JP21188886 A JP 21188886A JP 2516747 B2 JP2516747 B2 JP 2516747B2
Authority
JP
Japan
Prior art keywords
temperature
ultrasonic
sealed container
vibrator
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61211888A
Other languages
Japanese (ja)
Other versions
JPS6366427A (en
Inventor
剛 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP61211888A priority Critical patent/JP2516747B2/en
Publication of JPS6366427A publication Critical patent/JPS6366427A/en
Application granted granted Critical
Publication of JP2516747B2 publication Critical patent/JP2516747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は温度或は圧力センサ,殊に生体内の温度又は
圧力を超音波を信号伝送媒体として測定するに適した超
音波利用温度/圧力センサに関する。
Description: TECHNICAL FIELD The present invention relates to a temperature or pressure sensor, and particularly to an ultrasonic wave temperature / pressure suitable for measuring the temperature or pressure in a living body by using ultrasonic waves as a signal transmission medium. Regarding sensors.

(従来技術) 近年生物学,医学上の研究或は特にガンの治療等を目
的として生体内各部の温度或は圧力を測定する為長期間
生体内に埋込んだ無電源センサと生体外の測定器との間
を有線にて接続することなくして測定する方法が提案さ
れている。
(Prior Art) In recent years, in order to measure the temperature or pressure of each part in the living body for the purpose of biology, medical research or cancer treatment in particular, a non-power source sensor embedded in the living body for a long time and measurement in vitro. A method has been proposed in which measurement is performed without a wired connection to the instrument.

上述の如き測温又は圧力測定方法としてはアンテナ・
コイルに水晶振動子と超音波トランスジューサとを接続
したセンサを生体内の所望の位置に外科的に埋込み生体
外から所要周波数の電磁エネルギを照射し該エネルギを
前記アンテナ・コイルを介して前記水晶振動子に与え該
振動子がこれに共振する際の電流によって前記超音波ト
ランスジューサを制御することによって発生する超音波
を生体外から観測する方法がある(特願昭60-021542参
照) この際使用する温度又は圧力センサ及び該センサから
発する超音波を生体外から検出するピックアップ装置と
しては第2図(a)に示すものが一般的である。
As the temperature measurement or pressure measurement method as described above, an antenna
A sensor in which a crystal oscillator and an ultrasonic transducer are connected to a coil is surgically implanted at a desired position in the living body, and electromagnetic energy of a required frequency is irradiated from outside the living body to oscillate the energy through the antenna coil. There is a method of observing the ultrasonic wave generated from the outside of the body by controlling the ultrasonic transducer with the electric current given to the child when the vibrator resonates with it (see Japanese Patent Application No. 60-021542). A temperature or pressure sensor and a pickup device for detecting ultrasonic waves emitted from the sensor from outside the body are generally shown in FIG. 2 (a).

即ち同図に於いてXは8MHz近傍に直列共振点をもつ水
晶振動子であってこれと閉ループをなす如くアンテナコ
イルL1と超音波トランスジューサSWを接続してセンサと
し生体内の所要部に埋め込むと共に該センサに最寄の生
体表面にアンテナコイルL2を位置せしめこれに8MHz近傍
の電磁波を発生する可変周波数発振器1と周波数計2か
らなる送信部と超音波マイクロホン3,高周波増幅器4及
びレベルメータ6などからなる受信部で測定系を構成す
る。
That is, in the figure, X is a crystal oscillator having a series resonance point in the vicinity of 8 MHz, and an antenna coil L 1 and an ultrasonic transducer SW are connected to form a closed loop with the crystal oscillator and embedded as a sensor in a required part in the living body. Along with the sensor, an antenna coil L 2 is located on the surface of the living body, and a transmitter comprising a variable frequency oscillator 1 and a frequency meter 2 for generating an electromagnetic wave near 8 MHz, an ultrasonic microphone 3, a high frequency amplifier 4, and a level meter. A measuring system is composed of a receiving unit composed of 6 or the like.

測定にあたっては可変周波数発振器1の出力をこれに
接続したアンテナコイルL2を介して上述のセンサの照射
すると共に該センサが発振する前記超音波をマイクロホ
ン3によって受信しその電気信号を高周波アンプ4に於
いて所要レベルまで増幅したのちレベルメータ6によっ
て監視しつつ前記可変周波数発振器1の発振周波数を変
化せしめ前記レベルメータの読みが最大となる点で上述
のセンサの水晶振動子の共振周波数を検出することがで
きる(第2図(c)参照)。
In the measurement, the output of the variable frequency oscillator 1 is applied to the above-mentioned sensor via the antenna coil L 2 connected thereto, and the ultrasonic wave oscillated by the sensor is received by the microphone 3 and the electric signal thereof is sent to the high-frequency amplifier 4. At the point where the oscillation frequency of the variable frequency oscillator 1 is changed while being amplified to a required level and then monitored by the level meter 6, the resonance frequency of the crystal oscillator of the sensor is detected at the point where the reading of the level meter becomes maximum. It is possible (see FIG. 2 (c)).

従って,上述のセンサに組込んだ水晶振動子Xの共振
周波数と温度又は圧力との関係が既知であれば生体内の
温度又は圧力を正確に測定することができる。
Therefore, if the relationship between the resonance frequency of the crystal unit X incorporated in the above-described sensor and the temperature or pressure is known, the temperature or pressure in the living body can be accurately measured.

又,このような測定に用いる生体内埋込み用センサの
構成は,従来第2図(b)に示すようなものが一般的で
あった。
Further, the structure of the in-vivo implantable sensor used for such measurement has been generally the one shown in FIG. 2 (b).

しかしながらこの様な構成を有するセンサは,小型の
アンテナコイルを使用するものであるからその受信感度
を高くすることが困難であるのみならず,部品点数も多
く小型化しえないという欠陥があった。
However, since the sensor having such a configuration uses a small antenna coil, it is difficult to increase the receiving sensitivity thereof, and there is a defect that the number of components is large and the sensor cannot be miniaturized.

更に電磁波を利用するものであるから他の電子機器と
の間で悪影響を与えたり,妨害を受けたりすることが少
なくなかった。
Furthermore, since it uses electromagnetic waves, it often causes adverse effects and interference with other electronic devices.

(発明の目的) 本発明は上述した如き従来の超音波センサの欠陥を除
去するためになされたものであって,温度又は圧力によ
り共振周波数が変化する機能を持ち,かつ超音波トラン
スジューサの機能を兼ねることを可能とした圧電又は機
械振動子を提供することを目的とする。
(Object of the Invention) The present invention has been made in order to eliminate the defects of the conventional ultrasonic sensor as described above, and has the function of changing the resonance frequency by temperature or pressure and the function of the ultrasonic transducer. It is an object of the present invention to provide a piezoelectric or mechanical oscillator that can also serve as a piezoelectric element.

(発明の概要) 従来の水晶振動子に代表される機械振動体は共振尖鋭
度Q値をできるだけ大きくする為,該Q値の劣化の主た
る原因である支持部からの音響エネルギの漏洩を減らす
べく振動変位の最も少ない部分を支持部に選ぶのが一般
的であったのに対し,本発明に係る振動子はその音響エ
ネルギの一部をその支持部を通して容器に伝えることに
よって超音波の受授を行なうようにしたものである。
(Summary of the Invention) Since a mechanical oscillator represented by a conventional crystal oscillator has a resonance sharpness Q value as large as possible, it is necessary to reduce leakage of acoustic energy from a support portion, which is a main cause of deterioration of the Q value. While it was common to select the part with the smallest vibration displacement as the support part, the vibrator according to the present invention transmits and receives ultrasonic waves by transmitting a part of its acoustic energy to the container through the support part. It was designed to do.

(発明の実施例) 以下本発明を図示した実施例に基づいて詳細に説明す
る。第1図(a)は本発明の一実施例を示すセンサの構
造図である。同図において音叉型水晶振動子7のベース
高(H)とベース底部(D)の比H/Dをおよそ3以下と
なるようにする。このようにすることによって音響エネ
ルギーの一部を振動子7の保持部8を経て容器9へと伝
えることが可能となる。
(Examples of the Invention) The present invention will be described in detail below based on illustrated examples. FIG. 1A is a structural diagram of a sensor showing an embodiment of the present invention. In the figure, the ratio H / D between the base height (H) and the base bottom portion (D) of the tuning fork type crystal unit 7 is set to about 3 or less. By doing so, a part of the acoustic energy can be transmitted to the container 9 via the holding portion 8 of the vibrator 7.

同図(b)は前記H/Dと漏洩エネルギとの関係を示す
実験結果の図であって,第1図(a)に示したセンサの
振動子7に所要の励振電極を設け電気的に励振し,その
音響漏洩エネルギをマイクロホンで測定したものであ
る。
FIG. 2B is a diagram of the experimental results showing the relationship between the H / D and the leakage energy, and a required excitation electrode is electrically provided on the vibrator 7 of the sensor shown in FIG. 1A. Excitation was performed and the acoustic leakage energy was measured with a microphone.

以上の実験結果から第1図(a)に示すように構成し
たセンサは外部から超音波エネルギを印加することによ
って振動子7を励振し、その音響エネルギーを容器9に
伝え、保持部8或いは容器9を介して超音波を再放射さ
せることが可能であり、この場合前記振動子7に電極を
必要としないことは自明であろう。
From the above experimental results, the sensor configured as shown in FIG. 1 (a) excites the vibrator 7 by applying ultrasonic energy from the outside, transmits the acoustic energy to the container 9, and holds the container 8 or the container. It will be appreciated that it is possible to re-emit the ultrasonic waves via 9, in which case the transducer 7 does not require electrodes.

尚、前記実施例では振動子7に電極を付さない場合を
示したが、振動子に電極を付すことも可能であり、第3
図に示すように振動子に電極を付して閉ループをなす如
くアンテナコイルを直列に接続すれば、外部から電磁エ
ネルギを印加することによって前記アンテナコイルに高
周波電流を発生させ、その電気信号を上記電極に印加し
て振動子を励振し、該振動子の振動を保持部或いは容器
に漏洩させこの超音波エネルギをマイクロホンで受信し
て取り出すことが可能である。
In addition, in the above-described embodiment, the case where no electrode is attached to the vibrator 7 is shown, but it is also possible to attach an electrode to the vibrator.
As shown in the figure, if the antenna coils are connected in series so as to form a closed loop by attaching electrodes to the vibrator, a high frequency current is generated in the antenna coil by applying electromagnetic energy from the outside, and the electric signal thereof is It is possible to apply the vibration to the electrode to excite the vibrator, leak the vibration of the vibrator to the holding portion or the container, and receive the ultrasonic energy by the microphone and take it out.

第3図は前記第2図の測定系をそのまま使用しセンサ
のみが第1図(a)に示す振動子7にさらに電極を附し
た超音波漏洩形のセンサ10を適用したものである。
FIG. 3 is an application of the ultrasonic leak type sensor 10 in which the measuring system of FIG. 2 is used as it is, and only the sensor is a vibrator 7 shown in FIG.

斯くすることによって,超音波トランスジューサと温
度センサとが一体化され小型化が可能となる為,殊に生
体内温度を測定する植込み型センサに適している。
By doing so, the ultrasonic transducer and the temperature sensor are integrated and the size can be reduced, which is particularly suitable for an implantable sensor for measuring the temperature in the living body.

更に前記振動子7に電極を附することなく単なる機械
振動子として使用する場合には第4図に示す如く送受信
兼用超音波トランスジューサ11からセンサ12に対し超音
波を放射しその周波数が温度センサ12の共振周波数とほ
ゞ一致していれば強力に再放射される超音波エネルギを
前記送受信兼用超音波トランスジューサ11でとらえ,ゲ
ート回路13,RFアンプ14,フィルタ15を介してレベルメー
タ16にてその強さを測定し,その強さが最大となる様に
可変周波数発振器17を調整するとともに周波数カウンタ
18にてその周波数を測定する。
Further, when the vibrator 7 is used as a simple mechanical vibrator without attaching an electrode, ultrasonic waves are radiated from the ultrasonic transducer 11 for both transmission and reception to the sensor 12 as shown in FIG. If it substantially matches the resonance frequency of, the ultrasonic energy that is strongly re-radiated is caught by the ultrasonic transducer 11 for both transmission and reception, and the level meter 16 passes it through the gate circuit 13, the RF amplifier 14, and the filter 15. Measure the strength, adjust the variable frequency oscillator 17 so that the strength is maximized, and adjust the frequency counter.
Measure the frequency at 18.

前記可変周波数発振器17の出力は他のゲート回路19を
介して前記送受信兼用超音波トランスジューサ11に印加
されその発振周波数を可変するので,前記周波数カウン
タ18の値から温度センサ12のある温度に於ける共振周波
数を知ることができるから,その温度を知ることができ
る。
The output of the variable frequency oscillator 17 is applied to the transmitting / receiving ultrasonic transducer 11 through another gate circuit 19 to change the oscillation frequency thereof, so that the temperature of the temperature sensor 12 can be changed from the value of the frequency counter 18 to a certain temperature. Since the resonance frequency can be known, its temperature can be known.

尚,20は制御回路であって,可変周波発振器17の出力
をゲート回路19を開閉することによって断続させるとと
もに,その出力が直接前記RFアンプ14に入力しないよう
ゲート回路13を制御するものである。
Reference numeral 20 is a control circuit for intermittently opening and closing the output of the variable frequency oscillator 17 by opening and closing the gate circuit 19 and controlling the gate circuit 13 so that the output is not directly input to the RF amplifier 14. .

以上センサの振動子として音叉型水晶振動子について
のみ説明をしたが本発明は他の形式の振動子を使うこと
も可能である。
Although only the tuning fork type crystal oscillator has been described above as the oscillator of the sensor, the present invention can use oscillators of other types.

たとえば,第5図に示す如く縦振動水晶振動子21を使
用し,振動子21の両節部から一体的に延びる支持部22の
等価長lをλ/4にならないよう選ぶことや,支持部22を
含む左右のバランスを若干くずすことによって所要の振
動エネルギを保持部8を介して容器9から放射させるこ
とができる。
For example, as shown in FIG. 5, a longitudinal vibrating crystal oscillator 21 is used, and the equivalent length l of the support portion 22 integrally extending from both nodes of the oscillator 21 is selected so as not to be λ / 4. By slightly breaking the left and right balance including 22, the required vibration energy can be emitted from the container 9 via the holding portion 8.

又,前記容器9の超音波受授面の形状を第6図(a)
又は(b)の如く凸面23レンズ状あるいは凹面状24レン
ズにすることによって超音波ビームの広がりを制御する
ことができる。
The shape of the ultrasonic wave receiving surface of the container 9 is shown in FIG. 6 (a).
Alternatively, the divergence of the ultrasonic beam can be controlled by forming the convex 23 lens shape or the concave 24 lens as in (b).

以上本発明に係るセンサを温度センサとして使用する
場合についてのみ説明したが,本発明はこれのみに限定
されるものでなく,容器をベロースやダイアフラムに換
え,振動子として両持構造のものを使用すれば,圧力セ
ンサとして使用可能である。
Although the case where the sensor according to the present invention is used as a temperature sensor has been described above, the present invention is not limited to this, and the container is replaced with a bellows or a diaphragm, and a vibrator having a double-supported structure is used. Then, it can be used as a pressure sensor.

(発明の効果) 本発明は以上説明した如く構成するものであるから温
度又は圧力の情報を持つ水晶振動子が同時に超音波トラ
ンスジューサの機能をも兼ね備えるものであるのでセン
サを小型化しうるのみならず殊に超音波の受授による測
定系に適用した場合には小型のアンテナコイルを必要と
しない為感度良好となり,更にこれを生体内植込み型温
度/圧力センサとして用いる場合にはセンサ容器をチタ
ン等の生体適合金属のみで形成すれば良くプラスチック
等でアンテナコイルの部分を包う必要のある従来のセン
サに比べ体液の浸透による特性劣化の問題がなく長期間
に亘る使用に耐えるのでガンの温熱療法等の温度測定系
に使用する上で著しい効果を発揮する。
(Advantages of the Invention) Since the present invention is configured as described above, the crystal unit having temperature or pressure information simultaneously has the function of an ultrasonic transducer, so that the sensor can be miniaturized. Especially when it is applied to a measurement system that receives and transmits ultrasonic waves, it does not require a small antenna coil, resulting in good sensitivity. When using this as an in-vivo temperature / pressure sensor, the sensor container is made of titanium or the like. Hyperthermia of cancer because it can be used for a long time without the problem of deterioration of characteristics due to penetration of body fluid compared to the conventional sensor which needs to be formed only with biocompatible metal and needs to wrap the antenna coil part with plastic etc. It exhibits a remarkable effect when used in temperature measurement systems such as.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明に係るセンサの一実施例を示す断
面図,同図(b)はそのエネルギ漏洩の程度を示す実験
結果の図,第2図(a)は従来の温度測定系の構成を示
すブロック図,同図(b)はそのセンサの構成を示す模
式図,同図(c)はセンサの共振特性を示す図,第3図
及び第4図は本発明に係るセンサを利用したそれぞれ異
った温度測定系の実施例を示すブロック図,第5図は本
発明に係るセンサの他の実施例を示す断面図、第6図
(a),(b)はそれぞれ本発明に係るセンサ容器の異
った実施例を示す外観図である。 7,21……圧電又は機械振動子,9……密封容器,23,24……
レンズ状断面。
FIG. 1 (a) is a sectional view showing an embodiment of the sensor according to the present invention, FIG. 1 (b) is a diagram showing experimental results showing the degree of energy leakage, and FIG. 2 (a) is a conventional temperature measurement. FIG. 3B is a block diagram showing the configuration of the system, FIG. 2B is a schematic diagram showing the configuration of the sensor, FIG. 3C is a diagram showing the resonance characteristics of the sensor, and FIGS. 3 and 4 are sensors according to the present invention. FIG. 5 is a block diagram showing an embodiment of different temperature measurement systems utilizing the same, FIG. 5 is a sectional view showing another embodiment of the sensor according to the present invention, and FIGS. It is an external view which shows a different Example of the sensor container which concerns on invention. 7,21 …… Piezoelectric or mechanical oscillator, 9 …… Sealed container, 23,24 ……
Lenticular cross section.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 A61B 8/08 A61B 8/08 G01K 1/02 G01K 1/02 Z 7/32 7/32 D G01L 1/10 G01L 1/10 A 11/04 11/00 C ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area A61B 8/08 A61B 8/08 G01K 1/02 G01K 1/02 Z 7/32 7/32 D G01L 1/10 G01L 1/10 A 11/04 11/00 C

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】温度又は圧力の変動に応じて共振周波数が
変化する圧電又は機械振動子を密封容器に封入すると共
に前記圧電又は機械振動子の機械的振動エネルギの一部
を前記密封容器に伝搬せしめることによって前記密封容
器を介して超音波振動の送受を可能ならしめたことを特
徴とする超音波利用温度/圧力センサ。
1. A piezoelectric or mechanical oscillator whose resonance frequency changes in response to temperature or pressure fluctuations is enclosed in a sealed container, and a part of mechanical vibration energy of the piezoelectric or mechanical oscillator is propagated to the sealed container. An ultrasonic temperature / pressure sensor characterized in that ultrasonic vibration can be transmitted and received through the hermetically sealed container.
【請求項2】温度又は圧力の変動に応じて共振周波数が
変化する圧電振動子に電極を付し、該圧電振動子のベー
ス高(H)とベース底部(D)の比H/Dを3以下とした
音叉型振動子を、その底部を保持部に当接した状態で密
封容器に封入することによって前記振動子の振動エネル
ギの一部を前記密封容器に伝搬せしめ、前記密封容器を
介して超音波振動の送受を可能ならしめたことを特徴と
する超音波利用温度/圧力センサ。
2. A piezoelectric vibrator, the resonance frequency of which changes in response to a change in temperature or pressure, is provided with an electrode, and the ratio H / D of the base height (H) and the base bottom portion (D) of the piezoelectric vibrator is 3. The following tuning fork type vibrator is caused to propagate a part of the vibration energy of the vibrator to the hermetically-sealed container by enclosing the tuning-fork-type vibrator in a state where the bottom part thereof is in contact with the holding part, An ultrasonic temperature / pressure sensor characterized by enabling transmission and reception of ultrasonic vibrations.
【請求項3】温度又は圧力の変動に応じて共振周波数が
変化する縦振動水晶振動子の両節部から一体的に延びる
支持部の一部を保持部に当接した状態で密封容器に封入
することによって、前記支持部の等価長lをλ/4になら
ないよう選択することによって前記振動子の振動エネル
ギの一部を前記密封容器に伝搬せしめ、前記密封容器を
介して超音波振動の送受を可能ならしめたことを特徴と
する超音波利用温度/圧力センサ。
3. A hermetically sealed container in which a part of a support portion integrally extending from both nodes of a longitudinally vibrating crystal unit whose resonance frequency changes in accordance with a change in temperature or pressure is in contact with a holding portion. By so doing, the equivalent length l of the supporting portion is selected so as not to be λ / 4 so that a part of the vibration energy of the vibrator is propagated to the sealed container, and ultrasonic vibration is transmitted and received through the sealed container. Ultrasonic temperature / pressure sensor characterized by enabling
【請求項4】前記圧電又は機械振動子封入容器の一端面
をレンズ状の断面形状としたことを特徴とする特許請求
の範囲(1)又は(2)又は(3)記載の超音波利用温
度/圧力センサ。
4. An ultrasonic temperature according to claim 1, wherein one end surface of the piezoelectric or mechanical oscillator enclosure has a lens-shaped cross section. / Pressure sensor.
JP61211888A 1986-09-09 1986-09-09 Ultrasonic temperature / pressure sensor Expired - Lifetime JP2516747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61211888A JP2516747B2 (en) 1986-09-09 1986-09-09 Ultrasonic temperature / pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61211888A JP2516747B2 (en) 1986-09-09 1986-09-09 Ultrasonic temperature / pressure sensor

Publications (2)

Publication Number Publication Date
JPS6366427A JPS6366427A (en) 1988-03-25
JP2516747B2 true JP2516747B2 (en) 1996-07-24

Family

ID=16613296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61211888A Expired - Lifetime JP2516747B2 (en) 1986-09-09 1986-09-09 Ultrasonic temperature / pressure sensor

Country Status (1)

Country Link
JP (1) JP2516747B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575550B1 (en) * 1999-03-11 2009-08-18 Biosense, Inc. Position sensing based on ultrasound emission
DE102004045199B4 (en) * 2004-09-17 2006-08-17 Siemens Ag Measuring device and method for determining temperature and / or pressure and use of the measuring device
JP5388253B1 (en) * 2013-03-26 2014-01-15 克巳 奈良▲崎▼ Odor sensor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135429A (en) * 1982-02-04 1983-08-12 Yokogawa Hokushin Electric Corp Detector of temperature change amount
JPS61126442A (en) * 1984-11-26 1986-06-13 Seiko Electronic Components Ltd Pressure sensor

Also Published As

Publication number Publication date
JPS6366427A (en) 1988-03-25

Similar Documents

Publication Publication Date Title
US6517481B2 (en) Method and sensor for wireless measurement of physiological variables
US5339051A (en) Micro-machined resonator oscillator
US6461301B2 (en) Resonance based pressure transducer system
US5619997A (en) Passive sensor system using ultrasonic energy
US7236092B1 (en) Passive sensor technology incorporating energy storage mechanism
US5921928A (en) Acoustic force generation by amplitude modulating a sonic beam
JP5222955B2 (en) A device that measures pressure, sound pressure fluctuation, magnetic field, acceleration, vibration, or gas composition
JP2009532113A (en) Telemetry method and apparatus using a magnetically driven MEMS resonant structure
US11813045B2 (en) Implantable intravascular pressure sensing apparatus and method of operating it
JP2007256287A (en) Pressure sensor
US5989190A (en) Passive sensor system using ultrasonic energy
JP2516747B2 (en) Ultrasonic temperature / pressure sensor
JP2604181B2 (en) Non-contact temperature / pressure detection method using ultrasonic waves
JP2605239B2 (en) Ultrasonic temperature / pressure measuring device
US4579464A (en) Electronic clinical thermometer
JP3619464B2 (en) Resonant pressure transducer system
US20030231696A1 (en) Electronic clinical thermometer
JPH0368828A (en) Pressure measuring apparatus
JPH0448176B2 (en)
JPS635228A (en) Temperature or pressure sensor
JPS62147317A (en) Remote measuring apparatus
JPH06323927A (en) Structure of temperature sensor using ultrasonic waves as temperature information transmission medium
JP2003083815A (en) Noncontact temperature measuring device and temperature sensor
SU1012044A1 (en) Temperature meter
SU181848A1 (en) PRESSURE SENSOR WITH FREQUENCY OUTPUT SIGNAL

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term