JP2604181B2 - Non-contact temperature / pressure detection method using ultrasonic waves - Google Patents

Non-contact temperature / pressure detection method using ultrasonic waves

Info

Publication number
JP2604181B2
JP2604181B2 JP62277980A JP27798087A JP2604181B2 JP 2604181 B2 JP2604181 B2 JP 2604181B2 JP 62277980 A JP62277980 A JP 62277980A JP 27798087 A JP27798087 A JP 27798087A JP 2604181 B2 JP2604181 B2 JP 2604181B2
Authority
JP
Japan
Prior art keywords
sensor
ultrasonic
temperature
pressure
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62277980A
Other languages
Japanese (ja)
Other versions
JPH01119729A (en
Inventor
剛 大島
Original Assignee
東洋通信機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社 filed Critical 東洋通信機株式会社
Priority to JP62277980A priority Critical patent/JP2604181B2/en
Publication of JPH01119729A publication Critical patent/JPH01119729A/en
Application granted granted Critical
Publication of JP2604181B2 publication Critical patent/JP2604181B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超音波を用いて被測定物体中に位置せしめた
温度/圧力センサの共振周波数を検出することによっ
て,非接触にて温度/圧力を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention detects a resonance frequency of a temperature / pressure sensor positioned in an object to be measured by using ultrasonic waves, thereby enabling non-contact temperature / pressure detection. A method for measuring

(従来技術) 近年生物学,医学上の研究,特にガンの治療等を目的
として生体内各部の温度或は圧力を測定する為長期間生
体内に埋込んだ無電源センサと生体外の測定器との間を
有線にて接続することなくして測定する方法が提案され
ている。
(Prior art) In recent years, a non-powered sensor and an in vitro measuring instrument embedded in a living body for a long period of time to measure the temperature or pressure of various parts in the living body for the purpose of biological and medical research, particularly for the treatment of cancer, etc. There has been proposed a method of performing measurement without connecting a wire between the two.

上述の測温又は圧力測定方法としては第2図(a)に
示す如くアンテナ・コイルL1に水晶振動子Xと超音波ト
ランスデューサSWとを接続したセンサを生体内の所望の
位置に外科的に埋込み生体外から所要周波数の電磁エネ
ルギを照射し該エネルギを前記アンテナ・コイルL1を介
して前記水晶振動子Xに与え該振動子がこれに共振する
際の電流によって前記超音波トランスデューサSWを駆動
制御する際発生する超音波を生体外から観測する方法が
ある(特願昭60−021542参照) この際使用する温度又は圧力測定装置としては第2図
(b)に示すものが一般的である。
Surgically in the desired position as temperature measuring or pressure measuring method described above in vivo a sensor connected to a crystal resonator X and ultrasonic transducer SW to the antenna coil L 1 as shown in FIG. 2 (a) driving the ultrasonic transducer SW by a current when the vibrator applied to the crystal resonator X the energy irradiated with electromagnetic energy required frequency from outside the embedded living body through the antenna coil L 1 resonates to There is a method of observing an ultrasonic wave generated during control from outside the living body (see Japanese Patent Application No. 60-021542). In this case, a temperature or pressure measuring device shown in FIG. 2 (b) is generally used. .

即ち同図に於いてSENは前記第2図(a)に示したセ
ンサであって,その水晶振動子Xは8MHz近傍に直列共振
点をもちこれと閉ループをなす如くアンテナコイルL1
超音波トランスデューサSWを接続してセンサとしたもの
であり,これを生体内の所要部に埋め込むと共に該セン
サに接近した生体表面にアンテナコイルL2を位置せしめ
これに8MHz近傍の電磁波を発生する可変周波数発振器1
と周波数計2からなる送信部と超音波マイクロホン3,高
周波増幅器4及びレベルメータ6などを含んで受信部を
構成する。
That SEN In the figure a sensor shown in the second diagram (a), the quartz crystal resonator X and the antenna coil L 1 as forming the mochi this closed loop series resonance point 8MHz vicinity ultrasonic connect the transducer SW is obtained by the sensor, a variable frequency oscillator which generates an electromagnetic wave of 8MHz near thereto allowed position of the antenna coil L 2 in the biological surface closer to the sensor is buried in a required portion of the living body 1
And a transmitting unit including a frequency meter 2 and an ultrasonic microphone 3, a high-frequency amplifier 4, a level meter 6, and the like.

測定にあたっては可変周波数発振器1の出力をアンテ
ナコイルL2を介して上述のセンサSENに照射すると共に
該センサの超音波トランスデューサSWから発する超音波
をマイクロホン3によって受信しその電気信号を高周波
アンプ4に於いて所要レベルまで増幅したのちレベルメ
ータ6によって監視する。更にこの状態にて前記可変周
波数発振器1の発振周波数を変化し前記レベルメータの
読みが最大となる点をみつければこのときの照射電磁波
周波数が上述のセンサの水晶振動子の共振周波数とな
る。(第2図(c)参照)。
The output of the measurement when the variable frequency oscillator 1 and the electrical signal received by the microphone 3 ultrasound emitted from the ultrasound transducer SW of the sensor irradiates the sensor SEN described above through the antenna coil L 2 to the high-frequency amplifier 4 After amplification to a required level, the level is monitored by a level meter 6. Further, in this state, if the oscillation frequency of the variable frequency oscillator 1 is changed and a point at which the reading of the level meter becomes maximum is found, the irradiation electromagnetic wave frequency at this time becomes the resonance frequency of the quartz oscillator of the above-described sensor. (See FIG. 2 (c)).

従って,上述のセンサに組込んだ水晶振動子Xの共振
周波数と温度又は圧力との関係が既知であれば生体内の
温度又は圧力を正確に測定することができる。
Therefore, if the relationship between the resonance frequency and the temperature or the pressure of the quartz oscillator X incorporated in the above-described sensor is known, the temperature or the pressure in the living body can be accurately measured.

しかしながら,上述した如く外部から電磁波を照射
し,センサからの超音波を検出する方法では,必然的に
センサの構成が複雑となってその小型化に限界がある。
However, in the method of irradiating an electromagnetic wave from the outside and detecting the ultrasonic wave from the sensor as described above, the configuration of the sensor is inevitably complicated, and there is a limit to miniaturization.

即ち,このためのセンサには最低アンテナコイルと,
水晶振動子及び超音波トランスデューサとが不可欠とな
り形状が大型とならざるを得ない。
In other words, the sensor for this is the minimum antenna coil,
A quartz oscillator and an ultrasonic transducer are indispensable, and the shape must be large.

更に,電磁波を利用するものであるから,他の電子機
器殊にガンの温熱治療等に用いる電磁加温装置等からの
強力な電磁波を受けて誤動作する虞れがある。
Further, since electromagnetic waves are used, there is a possibility that a malfunction may occur due to strong electromagnetic waves from other electronic devices, particularly an electromagnetic heating device used for thermal treatment of a gun.

又,生体内は導電成分を有するから電磁波の吸収即ち
減衰が大きく,センサコイルと外部アンテナコイルとの
距離を大きくできないと云う問題があった。
In addition, since the living body has a conductive component, absorption or attenuation of electromagnetic waves is large, and there is a problem that the distance between the sensor coil and the external antenna coil cannot be increased.

電磁波を用いず,超音波のみによって動力炉,核燃料
炉の冷却水等の温度を計測する方法が提案されている
が,(特開昭59−100831)この方法は,前記冷却水等の
流動力によって超音波センサに機械的振動を与え,これ
が発する超音波信号を抽出するから,生体内の如く超音
波センサに振動を与える媒体が存在しない環境では使用
することができない。
There has been proposed a method of measuring the temperature of cooling water or the like of a power reactor or a nuclear fuel reactor using only ultrasonic waves without using electromagnetic waves (Japanese Patent Laid-Open No. 59-100831). Thus, mechanical vibration is applied to the ultrasonic sensor, and an ultrasonic signal generated by the mechanical vibration is extracted. Therefore, the ultrasonic sensor cannot be used in an environment where there is no medium that vibrates the ultrasonic sensor, such as in a living body.

(発明の目的) 同一出願人はこれらの問題を解決するためにセンサに
電磁波の代りに超音波を照射して温度/圧力を測定する
のに有用なるセンサを既に提案している(特願昭61−21
1888)。
(Object of the Invention) In order to solve these problems, the same applicant has already proposed a sensor useful for measuring temperature / pressure by irradiating a sensor with ultrasonic waves instead of electromagnetic waves (Japanese Patent Application No. 61-21
1888).

本発明は上述した従来の温度圧力測定に於ける問題点
を解決するためになされたものであって,例えば同一出
願人が既に出願済みの温度/圧力センサを用いることに
よって,電磁波を用いることなく,しかもセンサの形状
が小型で済み,かつ高感度な超音波による非接触温度/
圧力検知方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the conventional temperature and pressure measurement. For example, by using a temperature / pressure sensor which has already been filed by the same applicant, it is possible to eliminate the need for using electromagnetic waves. In addition, the size of the sensor can be small and the non-contact temperature /
It is an object to provide a pressure detection method.

(発明の概要) この目的を達成する手段として、本発明に於いては用
いるセンサとして温度又は圧力により共振周波数が変化
すると共に調音波に応答してその共振周波数の超音波を
発生する超音波トランスデューサの機能をもった圧電振
動子又は機械振動子を用い,該センサに超音波を照射し
かつその応答信号としての超音波周波数を検出すること
によって所望物の温度/圧力を測定するように構成する
ものである。
(Summary of the Invention) As a means for achieving this object, as a sensor used in the present invention, an ultrasonic transducer whose resonance frequency changes with temperature or pressure and generates ultrasonic waves of the resonance frequency in response to a harmonic wave It is configured to measure the temperature / pressure of a desired object by irradiating an ultrasonic wave to the sensor and detecting an ultrasonic frequency as a response signal using a piezoelectric vibrator or a mechanical vibrator having the function of Things.

(実施例) 以下,図示した実施例に基づいて本発明を詳細に説明
するが,それに先だち,本発明の理解を助けるために,
同一出願人が提案したセンサについて詳しく説明する。
(Examples) Hereinafter, the present invention will be described in detail with reference to the illustrated examples, but before that, in order to help understanding of the present invention,
The sensor proposed by the same applicant will be described in detail.

従来の水晶振動子に代表される機械振動体は共振尖鋭
度Q値をできるだけ大きくする為,該Q値の劣化の主た
る原因である支持部からの音響エネルギの漏洩を減らす
べく振動変位の最も少ない部分を支持部に選ぶのが一般
的であったのに対し,同一出願人は先の提案に於いて係
る振動子はその音響エネルギの一部をその支持部を通し
て容器に伝えることによって超音波の受授を行なうよう
にした。
In a mechanical vibrator represented by a conventional quartz oscillator, the resonance sharpness Q value is increased as much as possible. In order to reduce the leakage of acoustic energy from the supporting portion, which is a main cause of the deterioration of the Q value, the vibration displacement is minimized. Whereas it was common to select the part as the support, the same applicant has proposed that the vibrator of the earlier proposal transmit an ultrasonic energy by transmitting a portion of its acoustic energy to the container through the support. We will give and receive.

即ち,その具体的構造は第3図(a)に示す如く,音
叉型水晶振動子7のベース高(H)とベース底部(D)
の比H/Dをおよそ3以下となるようにする。このように
することによって音響エネルギーの一部を振動子7の保
持部8を経て容器9へと伝えることが可能となる。
That is, as shown in FIG. 3 (a), the specific structure thereof is such that the base height (H) and the base bottom (D) of the tuning-fork type quartz vibrator 7 are formed.
Is set to be about 3 or less. By doing so, it becomes possible to transmit a part of the acoustic energy to the container 9 via the holder 8 of the vibrator 7.

同図(b)は前記H/Dと漏洩エネルギとの関係を示す
実験結果の図であって,第3図(a)に示したセンサの
振動子7に所要の励振電極を設け電気的に励振し,その
音響漏洩エネルギをマイクロホンで測定したものであ
る。
FIG. 4B is a diagram of an experimental result showing the relationship between the H / D and the leakage energy. The required excitation electrode is provided on the vibrator 7 of the sensor shown in FIG. It is excited and its acoustic leakage energy is measured with a microphone.

以上の実験結果から第1図(a)に示す様に構成した
センサは外部から超音波エネルギを印加することによっ
て振動子7を励振し,電極を介して前記信号を取り出す
ことも可能であるし,又超音波を容器9を介して再放射
させることも可能でありこの場合前記振動子7に電極を
要しないことは自明であろう。
From the above experimental results, the sensor constructed as shown in FIG. 1 (a) can excite the vibrator 7 by applying ultrasonic energy from the outside and extract the signal through the electrode. It is also possible to re-emit the ultrasonic wave via the container 9, and in this case, it is obvious that the vibrator 7 does not need an electrode.

本発明は以上説明したような超音波によって励振さ
れ,それが共振する周波数の超音波を発する如きセンサ
を用いて温度/圧力を測定するものである。
The present invention measures temperature / pressure by using a sensor which is excited by the above-described ultrasonic wave and emits an ultrasonic wave having a frequency at which the ultrasonic wave resonates.

第1図(a)は本発明の一実施例を示すシステム構成
図である。
FIG. 1A is a system configuration diagram showing an embodiment of the present invention.

同図に於いてMは超音波信号を送信しかつ受信するた
めのマイクロホンであって,その入出力信号を切替スイ
ッチSを経て一方の受信信号をバンドパスフィルタFIL
に,又該FILの出力を位相比較器PDと電圧制御発振器VCO
とを含むフィードバックループであるフェーズロックル
ープPLLに入力し更に,前記電圧制御発振器VCOの出力を
周波数カウンタ・countと前記切替スイッチSの送信
端とに夫々入力する。
In the figure, M is a microphone for transmitting and receiving an ultrasonic signal, and the input / output signal of the microphone is passed through a changeover switch S and one of the received signals is transmitted to a band-pass filter FIL.
The output of the FIL is compared with the phase comparator PD and the voltage controlled oscillator VCO.
The output of the voltage-controlled oscillator VCO is input to a frequency counter / count and the transmission terminal of the changeover switch S, respectively.

又,この切替スイッチSはタイミング回路TIMEによっ
て制御し,所定時間毎に送信側,受信側に交互に切替え
るものとする。
The changeover switch S is controlled by a timing circuit TIME, and alternately switches between a transmission side and a reception side at predetermined time intervals.

この装置に用いて,例えば生体内等に位置せしめた温
度又は圧力センサSENSの共振周波数を検出し,もってそ
の温度/圧力を測定する方法を説明する。
A method of detecting the temperature or the resonance frequency of the pressure sensor SENS positioned in a living body or the like and using the device to measure the temperature / pressure will be described.

第1図(b)は各部の信号波形を説明する図であっ
て,まずタイミング回路TIMEは同図(イ)に示す如く所
定周期の矩形波信号を発生し,切替スイッチSを送信T
と受信Rとに交互に切替える。
FIG. 1 (b) is a diagram for explaining signal waveforms at various parts. First, a timing circuit TIME generates a rectangular wave signal having a predetermined period as shown in FIG.
And reception R alternately.

一方フェーズロックループPLLブロック中の電圧制御
発振器VCOの出力の一部は前記切替スイッチSの送信端
部Tを介してマイクロホンMに伝達し,該マイクロホン
によって超音波信号として同図(b)(ロ)に示すよう
に断続的にセンサSENSに照射する。センサSENSは第3図
に示したように構成したものであり超音波信号によって
内部の振動子が励振されて,同図(ハ)に示す如く前記
印加した超音波が停止した後も一定時間残響振動として
超音波信号を発する。
On the other hand, part of the output of the voltage-controlled oscillator VCO in the phase-locked loop PLL block is transmitted to the microphone M via the transmission end T of the changeover switch S, and is converted into an ultrasonic signal by the microphone as shown in FIG. Irradiate the sensor SENS intermittently as shown in ()). The sensor SENS is configured as shown in FIG. 3, and the internal vibrator is excited by the ultrasonic signal, and the reverberation continues for a certain period of time even after the applied ultrasonic wave is stopped as shown in FIG. An ultrasonic signal is emitted as vibration.

従って,切替スイッチSが受信側Rに接続される間,
同図(ニ)に示す超音波残響成分がマイクロホンMにて
電気信号に変換されてフィルタFILを介してフェーズロ
ック・ループPLLに至る。
Therefore, while the changeover switch S is connected to the receiving side R,
The ultrasonic reverberation component shown in FIG. 4D is converted into an electric signal by the microphone M, and reaches the phase lock loop PLL via the filter FIL.

フェーズロックループPLLは周知の如く,フィルタFIL
を介して入力する信号とフィードバックせしめた電圧制
御発振器VCO出力との位相差が零となるように該VCO発振
周波数を自動的に調節するものであるから,このとき得
られるVCO出力は前記センサSENSから抽出した超音波信
号周波数と一致したものとなる。
As is well known, a phase locked loop PLL is a filter FIL
The VCO oscillation frequency is automatically adjusted so that the phase difference between the signal input via the VCO and the feedback output of the voltage controlled oscillator VCO becomes zero. It becomes the same as the ultrasonic signal frequency extracted from.

この際の超音波信号周波数はセンサ自身の自己共振周
波数となり,この共振周波数が温度に依存して変化する
よう構成しておけば,該センサからの超音波信号周波数
を検出することによって被測定部の温度を検知すること
ができる。
At this time, the ultrasonic signal frequency becomes the self-resonant frequency of the sensor itself. If the resonance frequency is configured to change depending on the temperature, the ultrasonic signal frequency from the sensor is detected to detect the part to be measured. Temperature can be detected.

尚,前記PLLに於いて,フィルタFILからの入力信号が
途切れる期間があって,その間位相比較器P.D出力が生
ぜず,フィードバック・ループを形成しなくなる不具合
を生ずるが,この対策として当該期間に切替スイッチS
の送信端Tの信号を一部フィルタFILに漏洩させると
か,或はVCO制御電圧を当該期間直前の値に固定するこ
とを行なえばよいであろう。
In the above-mentioned PLL, there is a period during which the input signal from the filter FIL is interrupted, during which the output of the phase comparator PD does not occur and a feedback loop is not formed. Switch S
In this case, the signal of the transmitting end T may be partially leaked to the filter FIL, or the VCO control voltage may be fixed to the value immediately before the period.

このような方法によれば,生体内等被測定物中の温度
を電磁波を用いることなく,超音波のみによって測定す
ることが可能となる。
According to such a method, it is possible to measure the temperature in an object to be measured such as in a living body by using only ultrasonic waves without using electromagnetic waves.

尚、本発明を温度センサを用いた場合を例に説明して
きたが本発明はこれに限定されるものではなく、例えば
前記センサとして圧力感応用ベローズに連結した圧力セ
ンサを用いたものに適用してもよく、この場合は圧力を
測定しうること明らかである。
Although the present invention has been described by taking the case of using a temperature sensor as an example, the present invention is not limited to this. For example, the present invention is applied to a case using a pressure sensor connected to a pressure sensitive application bellows as the sensor. Obviously, in this case the pressure can be measured.

又,前記センサは上述した例に限らず,より強力な超
音波応答を得るために第4図(a)に示す如く,水晶振
動子Xと超音波トランスデューサSTとをループ状に接続
したもの或は同図(b)の如く,更に両者間をインピー
ダンスマッチング用トランスTで接続したものとしても
よい。
Further, the sensor is not limited to the above-mentioned example, but may be one in which a quartz oscillator X and an ultrasonic transducer ST are connected in a loop as shown in FIG. 4 (a) in order to obtain a stronger ultrasonic response. May be further connected between them by an impedance matching transformer T as shown in FIG.

(発明の効果) 本発明は以上説明したように温度/圧力センサに超音
波を照射し直接そのセンサの共振周波数の超音波信号を
得るようにしたものであるから,電磁波信号を用いるこ
となく非接触にて温度/圧力を測定することができ,電
磁波ノイズの多い環境下であっても正確に測定をするこ
とができる。
(Effect of the Invention) As described above, the present invention irradiates an ultrasonic wave to a temperature / pressure sensor and directly obtains an ultrasonic signal having a resonance frequency of the sensor. Temperature / pressure can be measured by contact, and accurate measurement can be performed even in an environment with a lot of electromagnetic noise.

更に,液体あるいは生体内等では超音波伝搬特性に優
れた物質に於いては電磁波に較べ飛躍的にセンサと外部
装置との距離を大きくすることができる。
Furthermore, the distance between the sensor and the external device can be remarkably increased as compared with electromagnetic waves in a liquid or a substance having excellent ultrasonic wave propagation characteristics in a living body or the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a),(b)は本発明の一実施例を示す測定装
置のブロック図及び波形図,第2図(a)(b)(c)
は従来の温度測定装置を示すブロック図,センサ構成図
及びセンサの特性図,第3図は同一出願人が既に提案し
たセンサ構造図及び寸法と超音波漏洩エネルギ量との関
係を示す図,第4図(a)(b)は本発明に於いて用い
るセンサの他の実施例を示す回路図である。 SENS……センサ,M……マイクロホン,S……切替スイッ
チ,PLL……フェーズロック・ループ,・count……周
波数カウンタ,TIME……タイミング回路。
1 (a) and 1 (b) are a block diagram and a waveform diagram of a measuring apparatus showing an embodiment of the present invention, and FIGS. 2 (a), 2 (b) and 2 (c).
Is a block diagram showing a conventional temperature measuring device, a sensor configuration diagram and a characteristic diagram of the sensor, FIG. 3 is a diagram showing a sensor structure proposed by the same applicant and a diagram showing the relationship between dimensions and ultrasonic leakage energy, and FIG. 4 (a) and (b) are circuit diagrams showing another embodiment of the sensor used in the present invention. SENS: Sensor, M: Microphone, S: Changeover switch, PLL: Phase lock loop, count: Frequency counter, TIME: Timing circuit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01K 11/26 G01K 11/26 G01L 1/10 G01L 1/10 Z 11/04 11/00 C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location G01K 11/26 G01K 11/26 G01L 1/10 G01L 1/10 Z 11/04 11/00 C

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】振動子と該振動子を収納する容器とからな
り共振周波数が温度/圧力に依存する圧電振動子センサ
又は機械振動子センサを被測定物中に位置せしめると共
に、被測定物の外部から該センサに超音波信号を断続的
に照射することによって前記センサを励振せしめ、前記
超音波信号が断の間に前記センサの残響振動を受信し、
該受信信号を位相比較器と電圧制御発振器とを含むフェ
ーズロックループ(PLL)に入力することによって前記
残響振動の周波数を検出し前記被測定物温度/圧力を検
知すると共に、前記フェーズロックループの出力を前記
超音波信号として前記センサに照射することを特徴とす
る超音波による非接触温度/圧力検知方法。
1. A piezoelectric vibrator sensor or a mechanical vibrator sensor comprising a vibrator and a container for accommodating the vibrator and having a resonance frequency dependent on temperature / pressure, is located in the object to be measured, and Exciting the sensor by intermittently irradiating an ultrasonic signal to the sensor from the outside, receiving the reverberation vibration of the sensor during the ultrasonic signal is interrupted,
By inputting the received signal to a phase locked loop (PLL) including a phase comparator and a voltage controlled oscillator, the frequency of the reverberation is detected to detect the temperature / pressure of the device under test, A non-contact temperature / pressure detection method using ultrasonic waves, comprising irradiating an output to the sensor as the ultrasonic signal.
【請求項2】前記フェーズロックループへの入力が途切
れる期間は、照射するための前記超音波信号の一部を前
記フェーズロックループへ入力せしめる若しくは前記電
圧制御発振器の制御電圧を当該期間直前の値に固定する
ことを特徴とする特許請求の範囲第1項記載の超音波に
よる非接触温度/圧力検知方法。
2. A period in which the input to the phase lock loop is interrupted, a part of the ultrasonic signal to be irradiated is input to the phase lock loop, or the control voltage of the voltage controlled oscillator is set to a value immediately before the period. 2. A non-contact temperature / pressure detecting method using ultrasonic waves according to claim 1, wherein the non-contact temperature / pressure detecting method is fixed.
JP62277980A 1987-11-02 1987-11-02 Non-contact temperature / pressure detection method using ultrasonic waves Expired - Lifetime JP2604181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62277980A JP2604181B2 (en) 1987-11-02 1987-11-02 Non-contact temperature / pressure detection method using ultrasonic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62277980A JP2604181B2 (en) 1987-11-02 1987-11-02 Non-contact temperature / pressure detection method using ultrasonic waves

Publications (2)

Publication Number Publication Date
JPH01119729A JPH01119729A (en) 1989-05-11
JP2604181B2 true JP2604181B2 (en) 1997-04-30

Family

ID=17590949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62277980A Expired - Lifetime JP2604181B2 (en) 1987-11-02 1987-11-02 Non-contact temperature / pressure detection method using ultrasonic waves

Country Status (1)

Country Link
JP (1) JP2604181B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753726A1 (en) * 1995-07-11 1997-01-15 Landis & Gyr Technology Innovation AG Arrangement for the determination of a parameter measured by a sensor
US6770032B2 (en) 2001-12-03 2004-08-03 Microsense Cardiovascular Systems 1996 Passive ultrasonic sensors, methods and systems for their use
US8162839B2 (en) 2003-08-27 2012-04-24 Microtech Medical Technologies Ltd. Protected passive resonating sensors
JP2008532590A (en) * 2005-03-04 2008-08-21 カーディオメムス インコーポレイテッド Communication with embedded wireless sensor
CA2953282C (en) * 2011-04-25 2019-06-18 Endotronix, Inc. Wireless sensor reader
CN105222919A (en) * 2015-10-23 2016-01-06 珠海黑石电气自动化科技有限公司 A kind of passive wireless temperature sensor based on surface acoustic wave
DE102017007594A1 (en) * 2017-08-12 2019-02-14 Albert-Ludwigs-Universität Freiburg Measuring device with a passive cooperative target
CN108151804A (en) * 2017-12-25 2018-06-12 宁波精致诚检测技术服务有限公司 A kind of outdoor environment monitoring device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102195A (en) * 1977-02-08 1978-07-25 Westinghouse Electric Corp. Hot spot temperature sensor

Also Published As

Publication number Publication date
JPH01119729A (en) 1989-05-11

Similar Documents

Publication Publication Date Title
JP3571345B2 (en) Method and system for measuring fluid parameters by ultrasonic method
US20010037066A1 (en) Resonance based pressure transducer system
JP2604181B2 (en) Non-contact temperature / pressure detection method using ultrasonic waves
JP3619464B2 (en) Resonant pressure transducer system
US3019636A (en) Ultrasonic inspection and measuring means
JP2516747B2 (en) Ultrasonic temperature / pressure sensor
JP2605239B2 (en) Ultrasonic temperature / pressure measuring device
JPH0448176B2 (en)
JPH07270261A (en) Contact force and tactile sensor using piezoelectric vibration having three-terminal structure
JP2632190B2 (en) Non-contact temperature measurement device
JP2632193B2 (en) Sampling hold circuit in non-contact temperature measurement device
JP2003083815A (en) Noncontact temperature measuring device and temperature sensor
SU1437816A1 (en) Method of measuring magnetostriction coefficient
RU2029265C1 (en) Method of measuring physical parameters of medium condition
SU492802A1 (en) Apparatus for studying the mechanical properties of solids by the ultrasonic resonance method
SU1530172A1 (en) Sensor for recording low-frequency electric field of biological objects
RU2045029C1 (en) Liquid density metering device
SU1161816A1 (en) Method of measuring coordinates of workpieces
RU2045030C1 (en) Liquid density metering device
JPS62159642A (en) Method and system for measuring temperature in living body by ultrasonic wave
Parks Automatic Measurement of Ultrasonic Velocity Changes
RU30980U1 (en) Device for measuring pressure in a vessel
SU1626145A1 (en) Method of determining physical and mechanical properties of liquid crystals
SU1196695A1 (en) Method of checking radiation power of acoustic-electrical transducer
RU2178985C2 (en) Device for taking living tissue impedance measurements from biological objects

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11