JPH0544970B2 - - Google Patents

Info

Publication number
JPH0544970B2
JPH0544970B2 JP2154485A JP2154485A JPH0544970B2 JP H0544970 B2 JPH0544970 B2 JP H0544970B2 JP 2154485 A JP2154485 A JP 2154485A JP 2154485 A JP2154485 A JP 2154485A JP H0544970 B2 JPH0544970 B2 JP H0544970B2
Authority
JP
Japan
Prior art keywords
coaxial cable
sensor
piezoelectric vibrator
temperature
antenna coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2154485A
Other languages
Japanese (ja)
Other versions
JPS61181925A (en
Inventor
Koichi Hirama
Takeshi Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2154485A priority Critical patent/JPS61181925A/en
Publication of JPS61181925A publication Critical patent/JPS61181925A/en
Publication of JPH0544970B2 publication Critical patent/JPH0544970B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧力又は温度センサ、殊に生体内の温
度測定用のセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a pressure or temperature sensor, in particular a sensor for measuring temperature within a living body.

(従来技術) 近年ガンの治療のため温熱療法が注目されてい
るが、その際ガン細胞とその周辺の正常細胞を含
めた局部の正確な温度測定技術が不可欠である。
(Prior Art) Hyperthermia therapy has been attracting attention for the treatment of cancer in recent years, but in this case, accurate temperature measurement technology for local areas including cancer cells and surrounding normal cells is essential.

従来、このような生体内の温度測定にあたつて
はアンテナ・コイルに水晶振動子等共振周波数が
温度依存性をもつた圧電振動子を接続したセンサ
を生体内の所望部分に外科的に埋込むか或はこれ
を消化器内に流すと共に生体外から所要周波数の
電磁波エネルギを照射し前記アンテナ・コイルを
介して前記圧電振動子に与えこれが共振する際の
エネルギ吸収現象を観測するか或は前記電磁波エ
ネルギ照射を中止した直後に於ける前記圧電振動
子の残響を前記アンテナ・コイルを介して受信す
る等して前記圧電振動子の共振周波数を検出しも
つて温度を測定する方法があつた。
Conventionally, to measure temperature inside a living body, a sensor with a piezoelectric vibrator whose resonant frequency is temperature dependent, such as a crystal oscillator, connected to an antenna coil is surgically implanted in a desired part of the living body. or flowing it into the digestive system, irradiating it with electromagnetic wave energy of a desired frequency from outside the body and applying it to the piezoelectric vibrator through the antenna coil, and observing the energy absorption phenomenon when it resonates. There is a method of measuring the temperature by detecting the resonant frequency of the piezoelectric vibrator by, for example, receiving the reverberation of the piezoelectric vibrator through the antenna coil immediately after the electromagnetic wave energy irradiation is stopped. .

このように電磁波を用いしかも温度センサに水
晶振動子等圧電振動子を用いる方法は生体内セン
サと体外装置間のケーブルを不要としかつ正確な
温度測定を行ううえで極めて有効である。又上述
の如く温度センサを受動型回路で構成し無電源と
することは長時間にわたつて生体内に埋込む際極
めて有効である。
This method of using electromagnetic waves and using a piezoelectric vibrator such as a crystal oscillator as a temperature sensor is extremely effective in eliminating the need for cables between the in-vivo sensor and the external device and in performing accurate temperature measurements. Further, as described above, configuring the temperature sensor with a passive circuit without power supply is extremely effective when implanted in a living body for a long period of time.

しかしながら、このような温度測定の際前記セ
ンサから得る電磁エネルギは極めて小さく他に強
力な電磁波が存在しこれが前記圧電振動子に流入
すると正確な温度測定が不可能となると云う問題
があつた。
However, when measuring temperature in this way, the electromagnetic energy obtained from the sensor is extremely small, and there is a problem that other strong electromagnetic waves exist, and if this flows into the piezoelectric vibrator, accurate temperature measurement becomes impossible.

特にガン等の温熱療法では、一般に患部に例え
ば出力1.5KW周波数13.56MHz或は2.45GHzの高出
力周波数電磁エネルギを照射することによつて加
熱する方法が採用されるが、この際上述の問題の
解決が極めて重要な課題であつた。
In particular, in thermotherapy for cancer, etc., a method is generally adopted in which the affected area is heated by irradiating high-output frequency electromagnetic energy with an output of 1.5 KW and a frequency of 13.56 MHz or 2.45 GHz. This was an extremely important issue to resolve.

(発明の目的) 本発明は上述の事情に鑑みてなされたものであ
つて、外部から照射する電磁エネルギのうち不要
なものの影響を除去するようにした温度センサを
提供することを目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a temperature sensor that eliminates the influence of unnecessary electromagnetic energy irradiated from the outside.

(発明の概要) この目的達成のため本発明では前記センサの前
記アンテナ・コイルと圧電振動子との間に除去せ
んとする電磁波長をλとするとき(2n−1)
λ/4長(nは正の整数)の同軸ケーブル或は平
衝線路を挿入接続することによつて該同軸ケーブ
ル或は平行線路の分布定数回路特性を利用してこ
れをトラツプ回路として作用せしめもつて不要高
周波の前記センサへの影響を除去するよう構成す
る。
(Summary of the Invention) In order to achieve this object, the present invention provides the electromagnetic wavelength to be removed between the antenna coil and the piezoelectric vibrator of the sensor, where λ is (2n-1).
By inserting and connecting a coaxial cable or parallel line with a length of λ/4 (n is a positive integer), the distributed constant circuit characteristics of the coaxial cable or parallel line are used to make it act as a trap circuit. The sensor is configured to eliminate the influence of unnecessary high frequencies on the sensor.

更には上述の同軸ケーブル或は平行線路の分布
定数回路はこれとほヾ同等な等価回路に置換しう
るからこれを集中定数回路によつて実現するよう
構成することも可能である。
Furthermore, since the above-mentioned distributed constant circuit of the coaxial cable or parallel line can be replaced with a substantially equivalent circuit, it is also possible to realize this by a lumped constant circuit.

(実施例) 以下本発明を図示した実施例に基づいて詳細に
説明する。
(Example) The present invention will be described in detail below based on an illustrated example.

第1図は本発明の一実施例を示す回路図であ
る。
FIG. 1 is a circuit diagram showing an embodiment of the present invention.

同図に於いてL1はアンテナ・コイルであつて
これに接続する共振周波数が20MHz近傍の水晶振
動子Xとの間にλ/4長の同軸ケーブル1を挿入
する。例えば除去すべき前記加熱用電磁波が
2.45GHzとすればλ/4≒3cmである。
In the figure, L1 is an antenna coil, and a coaxial cable 1 having a length of λ/4 is inserted between it and a crystal resonator X having a resonance frequency of around 20 MHz connected thereto. For example, if the heating electromagnetic waves to be removed are
If it is 2.45GHz, λ/4≒3cm.

このように構成したセンサに於ける前記λ/4
長同軸ケーブルの作用は次の通りである。
The above-mentioned λ/4 in the sensor configured in this way
The action of a long coaxial cable is as follows.

即ち、周知の如くλ/4長同軸ケーブルの一方
端を短絡又は開放した場合の他方開方端からみた
インピーダンスは無限大又は零となる。
That is, as is well known, when one end of a λ/4 long coaxial cable is short-circuited or opened, the impedance seen from the other open end becomes infinite or zero.

同様に上述の他方端終端インピーダンスが理想
的に短絡又は開放状態にあらずとも極めて小さい
か又は極めて大きいとき前記λ/4長同軸ケーブ
ルの他方端からみたインピーダンスは前記終端イ
ンピーダンス値に対応して極めて小さいか又は極
めて大きくなる。
Similarly, when the other end terminating impedance described above is ideally extremely small or extremely large even if it is not in a short-circuited or open state, the impedance seen from the other end of the λ/4 long coaxial cable is extremely large corresponding to the terminating impedance value. Become small or extremely large.

以下上述の原理に基づいて同図に示すセンサの
周波数2.45GHzと20MHzと近傍に於ける動作を検
討する。
Based on the above-mentioned principle, we will examine the operation of the sensor shown in the figure at frequencies around 2.45 GHz and 20 MHz.

先づ、前記水晶振動子Xの共振周波数20MHzの
信号に対しては本発明によつて挿入した前記λ/
4長同軸ケーブルは20MHzのλ/4=375(cm)に
比して極めて微少であるから単なる伝送路として
のみ作用する。
First, for the signal with the resonant frequency of 20 MHz of the crystal resonator X, the λ/
A 4-length coaxial cable is extremely small compared to 20MHz's λ/4=375 (cm), so it functions only as a transmission path.

一方、周波数2.45GHzの高周波数信号に対して
は第2図の如き等価回路によつて表わしたように
前記水晶振動子Xは電極面積或は水晶の厚み等で
異なるが大凡容量5〔PF〕程度のコンデンサとし
て作用しこのときのキヤパシタによるリアクタン
ス分は約10Ωとなる。
On the other hand, for a high frequency signal with a frequency of 2.45 GHz, the crystal resonator The reactance due to the capacitor at this time is approximately 10Ω.

又、上述したようなλ/4長同軸ケーブルの特
性インピーダンスをZo〔Ω〕とすると第3図に示
すようにこの両端を夫々インピーダンスZ1及びZ2
で終端したときのインピーダンス整合は次式を満
す時に成り立つ Z0 2=Z1・Z2 ……(1) 従つて前記第2図に示した等価回路に於ける開
放端からみたインピーダンスZ1Nは前記該同軸の
特性インピーダンスをZ0とすると Z1N=Z0 2/Zc=Z0 2/10〔Ω〕 ……(2) となる。
Furthermore, if the characteristic impedance of the above-mentioned λ/4 long coaxial cable is Zo [Ω], the impedances at both ends are Z 1 and Z 2 , respectively, as shown in Figure 3.
Impedance matching when terminated with Z 0 2 = Z 1・Z 2 ...(1) Therefore, the impedance seen from the open end in the equivalent circuit shown in Figure 2 above is When the characteristic impedance of the coaxial is Z 0 , Z 1N = Z 0 2 /Zc = Z 0 2 /10 [Ω] (2).

今同軸の特性インピーダンスZ0を仮に50〔Ω〕
とすれば前記第(2)式は Zio=(50)2/10=250〔Ω〕 ……(3) である。
Let's assume that the coaxial characteristic impedance Z 0 is 50 [Ω]
Then, the above equation (2) is Z io = (50) 2 /10 = 250 [Ω] ... (3).

更には同軸ケーブルの特性インピーダンスZ0
次式に示す如く内導体及び外部導体の直径d及び
Dの比に比例して大きくなる。
Furthermore, the characteristic impedance Z 0 of the coaxial cable increases in proportion to the ratio of the diameters d and D of the inner conductor and outer conductor, as shown in the following equation.

Z0=277log10(D/d)〔Ω〕 ……(4) 従つて同軸ケーブルの特性インピーダンスを所
要の値まで大きくすれば、前記第(2)式或は第(3)式
によつて求まる開放端インピーダンスZ1Nは所望
の高インピーダンスにまで大きくすることができ
る。
Z 0 =277log 10 (D/d) [Ω] ...(4) Therefore, if the characteristic impedance of the coaxial cable is increased to the required value, then according to the above equation (2) or (3), The open end impedance Z 1N found can be increased to a desired high impedance.

一例を示せば、仮に前記同軸の特性インピーダ
ンスZ0を150Ω(このときのdを0.5mmとすればD
は約1.7mm)とすれば前記第2図のZioは2.25〔K
Ω〕となる。
To give an example, if the characteristic impedance Z 0 of the coaxial is 150Ω (if d is 0.5mm in this case, D
is approximately 1.7 mm), Z io in Figure 2 above is 2.25 [K
Ω].

即ち、前記第1図のアンテナ・コイルL1に誘
起する2.45GHzの高周波に対して前記λ/4長同
軸は2.25〔KΩ〕の極めて大きいインピーダンス
を呈し同図水晶振動子Xへ2.45GHzの高周波電流
が流入することを阻止するよう作用する。
That is, the λ/4 long coax exhibits an extremely large impedance of 2.25 [KΩ] with respect to the 2.45 GHz high frequency induced in the antenna coil L 1 of FIG. It acts to prevent current from flowing.

このように本発明によれば、例えば高周波加熱
用として外部から照射する高周波成分の温度セン
サ用水晶振動子への影響を除去できる。
As described above, according to the present invention, it is possible to eliminate the influence of a high frequency component irradiated from the outside, for example for high frequency heating, on a crystal resonator for a temperature sensor.

尚以上述べた実施例に於いては除去すべき雑音
として2.45GHzの場合及びアンテナ・コイルと水
晶振動子との間に除去すべき雑音成分のλ/4長
の同軸ケーブルを挿入する場合を示したが、本発
明はこれに限定されるものではなく、例えば前記
同軸ケーブルの代りに平行2線伝路であつても又
その長さもλ/4長に限らずλ/4の奇数倍長の
ものであつてもよいことは自明であろう。
In the embodiments described above, the case where the noise to be removed is 2.45 GHz and the case where a coaxial cable with a length of λ/4 of the noise component to be removed is inserted between the antenna coil and the crystal resonator are shown. However, the present invention is not limited to this, and for example, even if a parallel two-wire transmission path is used instead of the coaxial cable, the length is not limited to λ/4, but may be an odd multiple of λ/4. It is obvious that it may be something.

(発明の効果) 本発明は以上説明したように構成するものであ
るから極めて簡単な構成によつて高周波加熱等の
際生ずる強力な雑音成分が温度センサに及ぼす影
響を除去し正確な温度測定を行ない得るセンサを
もたらすうえで極めて大きな効果がある。
(Effects of the Invention) Since the present invention is configured as described above, it is possible to eliminate the influence of strong noise components generated during high-frequency heating, etc. on the temperature sensor with an extremely simple configuration, and to perform accurate temperature measurement. This has an extremely large effect in providing a sensor that can be used in various applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の温度センサの概要を示す構成
図、第2図は前記第1図に示したセンサの一部分
の等価回路を示す図、第3図は本発明の動作原理
を説明するためのブロツク図である。 1……λ/4長同軸ケーブル、2……等価容
量、L1……アンテナ・コイル、X……水晶振動
子、Z1及びZ2……終端インピーダンス、Z0……特
性インピーダンス。
FIG. 1 is a configuration diagram showing an overview of the temperature sensor of the present invention, FIG. 2 is a diagram showing an equivalent circuit of a part of the sensor shown in FIG. 1, and FIG. 3 is for explaining the operating principle of the present invention. FIG. 1...λ/4 long coaxial cable, 2...Equivalent capacity, L1 ...Antenna coil, X...Crystal resonator, Z1 and Z2 ...Terminal impedance, Z0 ...Characteristic impedance.

Claims (1)

【特許請求の範囲】 1 共振周波数が温度依存性をもつた圧電振動子
にアンテナ・コイルを接続したセンサに外部から
電磁波を照射し該圧電振動子の共振周波数を観測
することによつて温度を測定する際の前記センサ
に於いて、前記アンテナ・コイルと前記圧電振動
子との間に除去しようとする雑音信号周波数波長
をλとするとき(2n−1)λ/4(nは正の整
数)長の同軸ケーブル又は平行線路を挿入したこ
とを特徴とする温度センサ。 2 前記(2n−1)λ/4長の同軸ケーブル又
は平行線路がこれらと等価に置換した集中定数回
路であることを特徴とした特許請求の範囲第1項
記載の温度センサ。 3 前記センサが能動回路素子を含んだものであ
ることを特徴とする特許請求の範囲1項又は2項
記載の温度センサ。
[Claims] 1. Temperature can be measured by externally irradiating electromagnetic waves onto a sensor in which an antenna coil is connected to a piezoelectric vibrator whose resonance frequency is temperature dependent and observing the resonance frequency of the piezoelectric vibrator. In the sensor during measurement, when the noise signal frequency wavelength to be removed between the antenna coil and the piezoelectric vibrator is λ, (2n-1)λ/4 (n is a positive integer) ) long coaxial cable or parallel line is inserted. 2. The temperature sensor according to claim 1, wherein the (2n-1)λ/4 length coaxial cable or parallel line is a lumped constant circuit equivalently replaced with the coaxial cable or parallel line. 3. The temperature sensor according to claim 1 or 2, wherein the sensor includes an active circuit element.
JP2154485A 1985-02-06 1985-02-06 Temperature sensor Granted JPS61181925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2154485A JPS61181925A (en) 1985-02-06 1985-02-06 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2154485A JPS61181925A (en) 1985-02-06 1985-02-06 Temperature sensor

Publications (2)

Publication Number Publication Date
JPS61181925A JPS61181925A (en) 1986-08-14
JPH0544970B2 true JPH0544970B2 (en) 1993-07-07

Family

ID=12057922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2154485A Granted JPS61181925A (en) 1985-02-06 1985-02-06 Temperature sensor

Country Status (1)

Country Link
JP (1) JPS61181925A (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9061139B2 (en) 1998-11-04 2015-06-23 Greatbatch Ltd. Implantable lead with a band stop filter having a capacitor in parallel with an inductor embedded in a dielectric body
US8244370B2 (en) 2001-04-13 2012-08-14 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US8977355B2 (en) 2001-04-13 2015-03-10 Greatbatch Ltd. EMI filter employing a capacitor and an inductor tank circuit having optimum component values
US7899551B2 (en) 2001-04-13 2011-03-01 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
US7787958B2 (en) 2001-04-13 2010-08-31 Greatbatch Ltd. RFID detection and identification system for implantable medical lead systems
JP2006512104A (en) 2002-05-29 2006-04-13 サージ−ビジョン インク Magnetic resonance probe
US8224462B2 (en) 2005-11-11 2012-07-17 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
JP2009514617A (en) 2005-11-11 2009-04-09 グレートバッチ リミテッド Tank filter placed in series with active medical device lead wires or circuitry to enhance MRI compatibility
US9042999B2 (en) 2006-06-08 2015-05-26 Greatbatch Ltd. Low loss band pass filter for RF distance telemetry pin antennas of active implantable medical devices
US7702387B2 (en) 2006-06-08 2010-04-20 Greatbatch Ltd. Tank filters adaptable for placement with a guide wire, in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
US8116862B2 (en) 2006-06-08 2012-02-14 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
US10080889B2 (en) 2009-03-19 2018-09-25 Greatbatch Ltd. Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD
WO2010051265A1 (en) 2008-10-30 2010-05-06 Greatbatch Ltd. Capacitor and inductor elements physically disposed in series whose lumped parameters are electrically connected in parallel to form a bandstop filter
US10350421B2 (en) 2013-06-30 2019-07-16 Greatbatch Ltd. Metallurgically bonded gold pocket pad for grounding an EMI filter to a hermetic terminal for an active implantable medical device
US11198014B2 (en) 2011-03-01 2021-12-14 Greatbatch Ltd. Hermetically sealed filtered feedthrough assembly having a capacitor with an oxide resistant electrical connection to an active implantable medical device housing
US10272252B2 (en) 2016-11-08 2019-04-30 Greatbatch Ltd. Hermetic terminal for an AIMD having a composite brazed conductive lead
US9931514B2 (en) 2013-06-30 2018-04-03 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10596369B2 (en) 2011-03-01 2020-03-24 Greatbatch Ltd. Low equivalent series resistance RF filter for an active implantable medical device
USRE46699E1 (en) 2013-01-16 2018-02-06 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
WO2014125726A1 (en) * 2013-02-12 2014-08-21 株式会社村田製作所 Wireless thermometer
WO2014129070A1 (en) * 2013-02-22 2014-08-28 株式会社村田製作所 Sensor tag and method for manufacturing sensor tag
US10249415B2 (en) 2017-01-06 2019-04-02 Greatbatch Ltd. Process for manufacturing a leadless feedthrough for an active implantable medical device
US10912945B2 (en) 2018-03-22 2021-02-09 Greatbatch Ltd. Hermetic terminal for an active implantable medical device having a feedthrough capacitor partially overhanging a ferrule for high effective capacitance area
US10905888B2 (en) 2018-03-22 2021-02-02 Greatbatch Ltd. Electrical connection for an AIMD EMI filter utilizing an anisotropic conductive layer

Also Published As

Publication number Publication date
JPS61181925A (en) 1986-08-14

Similar Documents

Publication Publication Date Title
JPH0544970B2 (en)
US5227730A (en) Microwave needle dielectric sensors
US8882670B2 (en) Apparatus and method for measuring constituent concentrations within a biological tissue structure
US5369251A (en) Microwave interstitial hyperthermia probe
US4715727A (en) Non-invasive temperature monitor
US5323778A (en) Method and apparatus for magnetic resonance imaging and heating tissues
USRE33791E (en) Non-invasive temperature monitor
US7728594B2 (en) Magnetic resonance imaging system provided with an electrical accessory device
US20030100894A1 (en) Invasive therapeutic probe
JP3459439B2 (en) Magnetic resonance equipment
Chaturvedi Microwave, Radar & RF Engineering
JPH02280735A (en) Nuclear magnetic resonance tomographic equipment
CN110799142A (en) Apparatus and method for thermal treatment of ligaments
SU1690749A1 (en) Device for transmitting a signal to the implantable portion of an artificial ear
Pchelnikov et al. Medical application of surface electromagnetic waves
Kanai Description of TEAM Workshop Problem 29: Whole body cavity resonator
JPS6138709B2 (en)
JPS61181923A (en) Non-contact type measurement of temperature or the like
JPH074600Y2 (en) Wideband measurement cell
US2659028A (en) Tunable magnetron circuit
JPS61181094A (en) Temperature measurement for heating body of electromagnetic heating
JPS6126844B2 (en)
Wang Coplanar waveguide short-gap resonator for medical applications
Fan et al. Wireless detection of signals from excitation of macula by light pulses
CN1028837C (en) Microwave diagnostic instrument with Archimedes spiral probe