JPH03168283A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH03168283A
JPH03168283A JP1309665A JP30966589A JPH03168283A JP H03168283 A JPH03168283 A JP H03168283A JP 1309665 A JP1309665 A JP 1309665A JP 30966589 A JP30966589 A JP 30966589A JP H03168283 A JPH03168283 A JP H03168283A
Authority
JP
Japan
Prior art keywords
working fluid
vapor
weight
temperature
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309665A
Other languages
Japanese (ja)
Inventor
Koji Arita
浩二 有田
Takeshi Tomizawa
猛 富澤
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1309665A priority Critical patent/JPH03168283A/en
Publication of JPH03168283A publication Critical patent/JPH03168283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide a working fluid reduced in the affection thereof on the ozone layer of the stratosphere and capable of being employed as a substitute of dichlorodifluoromethane (R12) by containing difluoromethane, chlorodifluoromethane and chlorodifluoroethane in a specific ratio. CONSTITUTION:The objective working fluid contains at least three kinds of freons comprising (A) <=45wt.% (preferably <=35wt.%) of difluoromethane (R32), (B) <=75wt.% (preferably <=65wt.%) of chlorodifluoromethane (R22) and (C) 25-85wt.% (preferably 35-85wt.%) of 1-chloro-1,1-difluoroethane (R142b). The working fluid is employed in freezers, heat pumps, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 冷凍機・ヒートポンブ等に使用される作動
流体に関すん 従来の技術 従棗 冷凍機・ヒートポンプ等においてGEL  作動
流体としてフロン類(以下ROOまたはRO○Oと記す
)と呼ばれるハロゲン化炭化水素が知られており、利用
温度としては凝縮温度および/または蒸発温度が略O〜
略50℃の範囲において通常使用されも 中でもジクロ
口ジフルオロメタン(CCl*F象、R12)は冷蔵凧
 カーエアコンや大型冷凍機等の作動流体として幅広く
用いられていも 発明が解決しようとする課題 しかしなか板 近年フロンによる戒層圏オゾン層破壊が
地球規模の環境問題となっており、戒層圏オゾン破壊能
力が大であるフロン類(以下、特定フロンと記す)につ
いてt;L  すでに国際条約によって使用量及び生産
量の規制がなさ札 さらに将来的には特定フロンの使用
・生産を廃止しようという動きがあも さて、Rl2は
オゾン破壊係数(トリクロロフルオロメタン(CCl零
F)の戊層圏オゾン破壊能力を1としたときの戒層圏オ
ゾン破壊能九 以下ODPと記す)が1.  0の特定
フロンであり、冷凍・空調機器が広く普及した現&  
Rl2の使用量及び生産量の削減が人類の生活環境に与
える影響は甚だ太きへ 従って、或層圏オゾン破壊能力
が小であり、R12の代替となる作動流体の早期開発が
強く要望されている。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application Fields of the Invention The present invention relates to the conventional technology related to working fluids used in refrigerators, heat pumps, etc. Halogenated hydrocarbons called RO○O (also written as RO○O) are known, and their condensation and/or evaporation temperatures are approximately O~
Although difluoromethane (CCl*F, R12) is commonly used in the temperature range of about 50°C, it is widely used as a working fluid in refrigerator kites, car air conditioners, large refrigerators, etc. However, the problem that the invention aims to solve is Nakaita In recent years, depletion of the stratospheric ozone layer by fluorocarbons has become a global environmental issue, and fluorocarbons (hereinafter referred to as specified fluorocarbons), which have a large ability to deplete the stratospheric ozone, are already subject to international treaties. Furthermore, there is a movement to abolish the use and production of specified fluorocarbons in the future.Rl2 is the ozone depletion coefficient (trichlorofluoromethane (CCl 0F)). The stratospheric ozone depletion potential (hereinafter referred to as ODP) is 1. It is a specific fluorocarbon with 0 fluorocarbons, and it is now widely used in refrigeration and air conditioning equipment.
Reducing the amount of R12 used and produced will have a significant impact on the human living environment.Therefore, its ability to deplete stratospheric ozone is small, and there is a strong demand for the early development of a working fluid that can replace R12. There is.

本発明ζよ 上述の問題に鑑みて試されたもので、或層
圏オゾン層に及ぼす影響が小さし\ R12の代替とな
る作動流体を提供するものである。
The present invention ζ has been tried in view of the above-mentioned problems and provides a working fluid that has a small effect on the stratospheric ozone layer and can be used as an alternative to R12.

課題を解決するための手段 本発明は上述の課題を解決するた取 少なくとL ジフ
ルオロメタン(CHAF!)とクロロジフルオ口メタン
(CHCIF2)とクロロジフルオロエタン(CaHs
C I F2)の三種のフロン類を含へジフルオ口メタ
ンO〜略45重量勉 クロロジフルオロメタンO〜略7
5重量% クロロジフルオロエタン略25〜略85重量
%の組戊範囲であることを特徴とするものであり、特に
 ジフルオロメタン0〜略35重量米 クロロジフルオ
口メタン0〜略65重量米 クロロジフルオロエタン略
35〜略85重量%の組或範囲が望ましいものであも 作用 上述の様に 作動流体を、オゾン破壊能力のほとんどな
い分子構造中に塩素を含まないフロン類であるジフルオ
口メタン(ODP=O)と、オゾン破壊能力の極めて低
い分子構造中に塩素・水素を共に含むフロン類であるク
ロロジフルオロメタン(ODP=0.  05)および
クロロジフルオロエタン(○DP=0.  06)の少
なくとも三種の混合物となすことにより、戒層圏オゾン
層に及ぼす影響をRl2よりもはるかに小さくすること
を可能とするものであも 又 本発明は上述の組戊範囲
とすることによって、冷凍機・ヒートボンブ等の利用温
度である略O〜略50℃においてRl2と同程度の蒸気
圧を有L,R12の代替として現行機器で使用可能な作
動流体を提供することを可能とするものであも 特に上
述の組合せおよび組威範囲におけるODPは0. 04
〜0. 06と予想さit,R12の代替として極めて
有望な作動流体となるものであも またかかる混合物は
非共沸混合物となり、凝縮過程および蒸発過程において
温度勾配をもったゑ 熱源流体との温度差を近接させた
ロレンツサイクルを構或することにより、R12よりも
高い或績係数を期待できるものである。
Means for Solving the Problems The present invention solves the above problems by using at least L difluoromethane (CHAF!), chlorodifluoromethane (CHCIF2), and chlorodifluoroethane (CaHs).
Chlorodifluoromethane containing three types of fluorocarbons (C I F2): 0 to approximately 45% by weight Chlorodifluoromethane O to approximately 7% by weight
It is characterized by a composition range of about 25 to about 85% by weight of chlorodifluoroethane, particularly difluoromethane of about 0 to about 35% by weight, chlorodifluoromethane of about 0 to about 65% by weight, and chlorodifluoroethane of about 35 to about 35% by weight. Although a composition range of about 85% by weight is desirable, as mentioned above, the working fluid is difluoromethane (ODP=O), a fluorocarbon that does not contain chlorine in its molecular structure and has little ozone depletion ability. , a mixture of at least three types of chlorodifluoromethane (ODP=0.05) and chlorodifluoroethane (○DP=0.06), which are fluorocarbons containing both chlorine and hydrogen in their molecular structures with extremely low ozone depletion ability. This makes it possible to make the influence on the stratospheric ozone layer much smaller than Rl2.Also, by setting the above-mentioned assembly range, the present invention can reduce the temperature at which refrigerators, heat bombs, etc. are used. It is possible to provide a working fluid that can be used in current equipment as a substitute for L and R12 and has a vapor pressure similar to that of R12 at a temperature of about 0 to about 50°C. The ODP in the range is 0. 04
~0. It is predicted that it will be a very promising working fluid as an alternative to R12.In addition, such a mixture will be a non-azeotropic mixture and will have a temperature gradient in the condensation and evaporation processes. By constructing Lorenz cycles close to each other, a higher performance coefficient than R12 can be expected.

実施例 以下、本発明による作動流体の実施例について、図を用
いて説明すも 第1図は ジフルオロメタン(R32)、クロロジフル
オ口メタン(R22)、 1−クロロー1,1−ジフル
オロエタン(R142b)の三種のフロン類の混合物に
よって構威される作動流体Q一定温度・一定圧力におけ
る平衡状態を三角座標を用いて示したものであん 本三
角座標において;友 三角形の各頂点に 上側頂点を基
点として反時計回りに沸点の低い順に単一物質を配置し
ており、座標平面上のある点における各或分の組或比(
重量比)【ヨ  点と三角形の各辺との距離の比で表さ
れも またこのとよ 点と三角形の辺との距離:上 辺
に相対する側にある三角座標の頂点に記された物質の組
戊比に対応すん 第1図においてI C&  温度0℃
・圧力2.  1 1 6 kg/cm”Gにおける混
合物の気液平衡線であり、この温度・圧力はRl2の飽
和状態に相当すん 気液平衡線(R12  0℃相当)
1の上側の線は飽和気相線気液平衡線(R120℃相当
)lの下側の線は飽和液相線を表わし この両線で挟ま
れた範囲においては気液平衡状態となん また2番よ 
温度50℃・圧力1 1.  373kg/cm”Gに
おける混合物の気液平衡線であり、この温度・圧力もR
12の飽和状態に相当すん 図からわかるようにR32
、R22及びR142bがそれぞれo〜略45重量米 
0〜略75重量瓢 略25〜略85重量%となるような
組或範囲(友 略O〜略50tの利用温度においてR1
2とほぼ同等の蒸気圧を有するため望まし鶏 さらに 
R32、R22及びR142bがそれぞれO〜略35重
量%0〜略65重量% 略35〜略85重量%となるよ
うな組威範囲(友 0℃と50℃の間のすべての利用温
度においてR12とほぼ同等の蒸気圧を有するため特に
望まし賎 特に上述の組合せおよび組戒範囲におけるO
DPは0. 04〜0. 06と予想さtt  R12
の代替として極めて有望な作動流体となるものであも 第1図中の点A1〜点F1における作動流体の組或及び
ODPを第l表に示す。
EXAMPLES Below, examples of working fluids according to the present invention will be explained with reference to the drawings. Fig. 1 shows examples of working fluids according to the present invention. Figure 1 shows examples of working fluids according to the present invention. The equilibrium state of the working fluid Q constituted by a mixture of three types of fluorocarbons at constant temperature and constant pressure is shown using triangular coordinates. Single substances are arranged clockwise in descending order of boiling point, and the ratio of each component at a certain point on the coordinate plane (
Weight ratio) [Yo] It is also expressed as the ratio of the distance between a point and each side of a triangle.Distance between a point and a side of a triangle: Top The substance written at the vertex of the triangular coordinates on the side opposite to the side. In Figure 1, I C & temperature 0℃
・Pressure 2. This is the vapor-liquid equilibrium line of the mixture at 1 1 6 kg/cm"G, and this temperature and pressure corresponds to the saturated state of Rl2. Vapor-liquid equilibrium line (R12 equivalent to 0°C)
The upper line of 1 represents the saturated vapor phase line and the vapor-liquid equilibrium line (equivalent to R120°C). The lower line of 1 represents the saturated liquidus line. The range between these two lines is in a state of vapor-liquid equilibrium. It's your turn
Temperature 50℃・Pressure 1 1. This is the vapor-liquid equilibrium line of the mixture at 373 kg/cm"G, and this temperature and pressure are also R
As you can see from the figure, this corresponds to the saturation state of R32.
, R22 and R142b each weigh approximately 45 mm
0 to approximately 75% by weight Approximately 25 to approximately 85% by weight
It is desirable because it has almost the same vapor pressure as 2.
R32, R22, and R142b are respectively O~approximately 35% by weight, 0~approximately 65% by weight, and approximately 35~approximately 85% by weight. This is especially desirable because it has almost the same vapor pressure.
DP is 0. 04-0. Expected to be 06tt R12
Table 1 shows the working fluid combinations and ODP at points A1 to F1 in FIG.

同図に於ける点A1〜点C1は気液平衡線(Rl2 5
0℃相当)2の飽和気相線上にあると共に 気液平衡線
(Rl2  0℃相当)1の飽和気相線及び気液平衡線
(R12  0℃相当)lの飽和液相線の画線で挟まれ
た範囲にあることか転温度O℃・圧力2.  1 1 
6 k g/cm2G (R 1 2の飽和状態に相当
)においては気液平衡状態となも また 点DI〜点F
1は気液平衡線(R120℃相当)lの飽和液線上にあ
ると共に 気液平衡線(R12  50℃相当)2の飽
和気相線及び気液平衡線(R12  50℃相当)2の
飽和液相線の画線で挟まれた範囲にあることか収 温度
50℃・圧力II.  373kg/Cm”G(R12
第1表 の飽和状態に相当)においては気液平衡状態となん 従
って、第1表に示された組或を有する作動流体ζi0℃
・50℃におけるRl2の飽和蒸気圧の条件下で飽和状
態あるいは気液平衡状態を実現し 略O〜略50℃の利
用温度において、同温度におけるR12の飽和蒸気圧で
操作することにより、Rl2とほぼ等しい凝縮温度・蒸
発温度を得ることが可能となるものであも ここでGA  気液平衡線(Rl2  0℃相当〉 1
あるいは気液平衡線(R12  50℃相当〉2上の点
についてのみ説明した力交 点A1〜点F1の内側にあ
る戊 すなわ板 温度O℃・圧力2.  116kg/
cm”G及び温度50℃・圧力11.37 3 kg/
cm”G (両者ともR12の飽和状態に相当〉におい
て気液平衡状態となる組或を有する作動流体についても
同様に操作することにより、略0〜略50℃の利用温度
においてR12とほぼ等しい凝縮温度・蒸発温度を得る
ことが可能となるものであも 本実施例においては作動流体は三種のフロン類の混合物
によって構戊されているパ 構造異性体を含めて四種以
上のフロンの混合物によって作動流体を構成することも
勿論可能であも またかかる混合物は非共沸混合物とな
り、凝縮過程および蒸発過程において温度勾配をもった
△ 熱源流体との温度差を近接させたロレンッサイクル
をitすることにより、R12よりも高い戊績係数を期
待できるものであも 発明の効果 以上の説明から明らかなように 本発明(友 作動流体
を、分子構造中に塩素を含まないフロン類と、分子構造
中に塩素・水素を共に含むフロン類の三種以上から或る
混合物となし その組成範囲を特定したことにより、 (1)Fl層圏オゾン層に及ぼす影響をR12よりもは
るかに小さくするためQ 作動流体の選択の幅を拡大す
ることが可能であも (2)機器の利用温度においてRl2と同程度の蒸気圧
を有L  R12の代替として現行機器で使用可能であ
る。
Points A1 to C1 in the figure are the vapor-liquid equilibrium line (Rl2 5
It is on the saturated vapor phase line of 2 (equivalent to 0°C) and the saturated vapor line of vapor-liquid equilibrium line (Rl2, equivalent to 0°C) 1 and the saturated liquidus line of vapor-liquid equilibrium line (R12, equivalent to 0°C) l. The temperature must be within the range between 0°C and pressure 2. 1 1
At 6 kg/cm2G (corresponding to the saturated state of R 1 2), there is a vapor-liquid equilibrium state. Also, from point DI to point F
1 is on the saturated liquid line of the vapor-liquid equilibrium line (R12 equivalent to 50°C) 1, and the saturated liquid line of the vapor-liquid equilibrium line (R12 equivalent to 50°C) 2 and the saturated liquid line of the vapor-liquid equilibrium line (R12 equivalent to 50°C) 2 The temperature is 50℃ and the pressure II. 373kg/Cm”G (R12
(corresponding to the saturated state in Table 1) is a vapor-liquid equilibrium state. Therefore, the working fluid ζi0℃ having the composition shown in Table 1
・Achieving a saturated state or a vapor-liquid equilibrium state under the condition of the saturated vapor pressure of Rl2 at 50°C, and operating at the saturated vapor pressure of R12 at the same temperature at a usage temperature of about 0 to about 50°C. If it is possible to obtain almost equal condensation and evaporation temperatures, here is the GA vapor-liquid equilibrium line (Rl2 equivalent to 0°C) 1
Alternatively, the force intersection explained only about the points on the gas-liquid equilibrium line (R12, equivalent to 50℃) 2. The hole located inside the points A1 to F1, that is, the plate Temperature 0℃, Pressure 2.
cm”G and temperature 50℃・pressure 11.37 3 kg/
cm"G (both correspond to the saturated state of R12)" By performing the same operation on a working fluid having a composition that reaches a vapor-liquid equilibrium state, condensation approximately equal to that of R12 can be obtained at a usage temperature of approximately 0 to approximately 50°C. In this example, the working fluid is composed of a mixture of three types of fluorocarbons, and a mixture of four or more types of fluorocarbons including structural isomers. Although it is of course possible to form a working fluid, such a mixture becomes a non-azeotropic mixture and has a temperature gradient in the condensation process and evaporation process. As a result, even if a higher performance coefficient than R12 can be expected, it is clear from the above explanation that the present invention (partner) has a working fluid that does not contain chlorine in its molecular structure and a fluorocarbon that does not contain chlorine in its molecular structure. By specifying the composition range of a mixture of three or more types of fluorocarbons containing both chlorine and hydrogen, (1) Q operation to make the effect on the Fl stratospheric ozone layer much smaller than that of R12. Although it is possible to expand the range of fluid selection, (2) L has a vapor pressure similar to that of Rl2 at the operating temperature of the equipment, and can be used in current equipment as a substitute for Rl2.

(3)非共沸混合物の温度勾配の性質を利用して、R1
2よりも高い或績係数を期待できる等の効果を有するも
のであも
(3) Taking advantage of the temperature gradient properties of non-azeotropic mixtures, R1
Even if it has an effect such that a performance coefficient higher than 2 can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は 三種のフロン類の混合物によって構或される
作動流体α 一定温度・一定圧力における平衡状態を三
角座標を用いて示す図であも1・・・気液平衡線(R1
20℃相当〉、 2・・・気液平衡線(R12  50
℃相当)。
Figure 1 is a diagram showing the equilibrium state of a working fluid α composed of a mixture of three types of fluorocarbons at constant temperature and constant pressure using triangular coordinates.
Equivalent to 20℃>, 2... Vapor-liquid equilibrium line (R12 50
℃ equivalent).

Claims (2)

【特許請求の範囲】[Claims] (1)ジフルオロメタン45重量%以下、クロロジフル
オロメタン75重量%以下、クロロジフルオロエタン2
5〜85重量%以下の少なくとも三種のフロン類を含む
作動流体。
(1) Difluoromethane 45% by weight or less, chlorodifluoromethane 75% by weight or less, chlorodifluoroethane 2
A working fluid containing 5 to 85% by weight of at least three types of fluorocarbons.
(2)ジフルオロメタン35重量%以下、クロロジフル
オロメタン65重量%以下、クロロジフルオロエタン3
5〜85重量%以下の少なくとも三種のフロン類を含む
作動流体。
(2) Difluoromethane 35% by weight or less, chlorodifluoromethane 65% by weight or less, chlorodifluoroethane 3
A working fluid containing 5 to 85% by weight of at least three types of fluorocarbons.
JP1309665A 1989-11-29 1989-11-29 Working fluid Pending JPH03168283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309665A JPH03168283A (en) 1989-11-29 1989-11-29 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309665A JPH03168283A (en) 1989-11-29 1989-11-29 Working fluid

Publications (1)

Publication Number Publication Date
JPH03168283A true JPH03168283A (en) 1991-07-22

Family

ID=17995791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309665A Pending JPH03168283A (en) 1989-11-29 1989-11-29 Working fluid

Country Status (1)

Country Link
JP (1) JPH03168283A (en)

Similar Documents

Publication Publication Date Title
JPH03170594A (en) Working fluid
JPH03170591A (en) Working fluid
JPH03168283A (en) Working fluid
JPH03170590A (en) Working fluid
JPH03170584A (en) Working fluid
JPH03172386A (en) Working fluid
JPH03168262A (en) Working fluid
JPH03168288A (en) Working fluid
JPH03170593A (en) Working fluid
JPH03170589A (en) Working fluid
JPH03172384A (en) Working fluid
JPH03168287A (en) Working fluid
JPH03168284A (en) Working fluid
JPH03170592A (en) Working fluid
JPH03168282A (en) Working fluid
JPH03168273A (en) Working fluid
JPH03168278A (en) Working fluid
JPH03168270A (en) Working fluid
JPH03168277A (en) Working fluid
JPH03168285A (en) Working fluid
JPH03168272A (en) Working fluid
JPH03168281A (en) Working fluid
JPH03168279A (en) Working fluid
JPH03168276A (en) Working fluid
JPH03168261A (en) Working fluid