JPH03170589A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH03170589A
JPH03170589A JP1311159A JP31115989A JPH03170589A JP H03170589 A JPH03170589 A JP H03170589A JP 1311159 A JP1311159 A JP 1311159A JP 31115989 A JP31115989 A JP 31115989A JP H03170589 A JPH03170589 A JP H03170589A
Authority
JP
Japan
Prior art keywords
working fluid
approximately
temperature
weight
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1311159A
Other languages
Japanese (ja)
Inventor
Yuji Yoshida
雄二 吉田
Shozo Funakura
正三 船倉
Koji Arita
浩二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1311159A priority Critical patent/JPH03170589A/en
Priority to KR1019900019595A priority patent/KR930010515B1/en
Publication of JPH03170589A publication Critical patent/JPH03170589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)

Abstract

PURPOSE:To obtain a working fluid which does not affect the ozonosphere and has an improved coefficient of performance by mixing trifluoromethane, trifluoroethane, and difluoroethane. CONSTITUTION:At most 50wt.% trifluoromethane is mixed with at most 80wt.% trifluoroethane and 20-90wt.% difluoroethane.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(上 エアコン・冷凍機等のヒートボンプ装置に
使用される作動流体に関すん 従来の技術 従来 エアコン・冷凍機等のヒートボンプ装置において
は 作動流体としてフロン類(以下R○○またはR○○
○と記す)と呼ばれるハロゲン化炭化水素が知られてお
り、利用温度としては凝縮温度および/または蒸発温度
が略0〜略50℃の範囲において通常使用されも 中で
もクロロジフルオロメタン(CHCIFa、R22)は
家庭用エアコン、ビル用エアコンや大型冷凍機等の作動
流体として幅広く用いられていも 発明が解決しようとする課題 しかしなが板 近年フロンによる戊層圏オゾン層破壊が
地球規模の環境問題となっており、戒層圏オゾン破壊能
力が犬であるフロン類(以下、特定フロンと記す)につ
いて(よ すでに国際条約によって使用量及び生産量の
規制がなされ さらに将来的には特定フロンの使用・生
産を廃止しようという動きがある。さて、 R22はオ
ゾン破壊係数(トリクロロフルオロメタン(CCIsF
)の戒層圏オゾン破壊能力を1としたときの戒層圏オゾ
ン破壊能九 以下ODPと記す)が0. 05と微少で
あり、特定フロンではないものの将来的に使用量の増大
が予想され 冷凍・空調機器が広く普及した現&  R
22の使用量及び生産量の増大が人類の生活環境に与え
る影響も大きくなるものと予想されている。従って、戊
層圏オゾン破壊能力が小であるものα 若干の破壊能力
があるとされるR22の代替となる作動流体の早期開発
も強く要望されている。
[Detailed description of the invention] Industrial application field of the present invention (Part 1) Conventional technology related to working fluid used in heat pump devices such as air conditioners and refrigerators Conventional technology As a working fluid in heat pump devices such as air conditioners and refrigerators Freon (hereinafter referred to as R○○ or R○○
Halogenated hydrocarbons called halogenated hydrocarbons (denoted as ○) are known, and are usually used at a condensation temperature and/or evaporation temperature range of approximately 0 to approximately 50°C. Among them, chlorodifluoromethane (CHCIFa, R22) is known. Although it is widely used as a working fluid in home air conditioners, building air conditioners, and large refrigerators, it is still a problem that the invention attempts to solve. The use and production of fluorocarbons (hereinafter referred to as specified fluorocarbons), whose ability to deplete stratospheric ozone is limited, has already been regulated by international treaties. There is a movement to abolish the ozone depletion coefficient (trichlorofluoromethane (CCIsF)).
) has a stratospheric ozone depletion potential of 9 (hereinafter referred to as ODP) of 0. 05, and although it is not a specified CFC, usage is expected to increase in the future.
It is expected that an increase in the amount of use and production of No. 22 will have a greater impact on the living environment of humankind. Therefore, there is a strong demand for the early development of a working fluid that can replace R22, which has a small ability to deplete stratospheric ozone.

本発明Cヨ  上述の問題に鑑みて試されたもので、戒
層圏オゾン層に及ぼす影響がほとんどな(\ R22の
代替となる作動流体を提供するものである。
The present invention was tried in view of the above-mentioned problems, and provides a working fluid that has little effect on the stratospheric ozone layer (\ R22).

課題を解決するための手段 本発明は上述の課題を解決するた数 少なくとL トリ
フルオロメタン(CHFs)とトリフルオロエタン(C
++HsF*)とジフルオ口エタン(C2HJF2)の
三種のフロン類を含ム トリフルオロメタンO〜略50
重量勉 トリフルオロエタン0〜略80重量勉 ジフル
オロエタン略20〜略90重量%の組戒範囲であること
を特徴とするものであり、特に トリフルオロメタンO
〜略40重量% トリフルオロエタン0〜略80重量與
 ジフルオ口エタン略20〜略85重量%の組戒範囲が
望ましいものである。
Means for Solving the Problems The present invention solves the above-mentioned problems by using at least L trifluoromethanes (CHFs) and trifluoroethane (C
Contains three types of fluorocarbons: ++HsF*) and difluoroethane (C2HJF2) Trifluoromethane O ~ approx. 50
It is characterized by a composition range of 0 to approximately 80% by weight of trifluoroethane and approximately 20 to approximately 90% by weight of difluoroethane, particularly trifluoromethane O.
A range of about 40% by weight of trifluoroethane, 0 to about 80% by weight of difluoroethane, and about 20% to about 85% by weight of difluoroethane is desirable.

作用 本発明は 上述の組合せによって、作動流体を、オゾン
破壊能力のほとんどなし\ 分子構造中に塩素を含まな
いフロン類であるトリフルオロメタン(O D P =
 0 )、 トリフルオロエタン(O D P =0)
およびジフルオ口エタン(○DP=0)の混合物となす
ことにより、戊層圏オゾン層に及ぼす影響をR22より
もさらに小さく、ほとんどなくすることを可能とするも
のであも 又 本発明は上述の組戊範囲とすることによ
って、エアコン・冷凍機等のヒートポンプ装置の利用温
度である略0〜略50℃においてR22と同程度の蒸気
圧を有L  R22の代替として現行機器で使用可能な
作動流体を提供することを可能とするものである。
Effect of the present invention By using the above-mentioned combination, the working fluid has almost no ozone depletion ability\trifluoromethane (O D P =
0 ), trifluoroethane (O D P =0)
By forming a mixture of R22 and difluoroethane (○DP=0), the effect on the stratospheric ozone layer is even smaller than that of R22, and it is possible to almost eliminate it. By making the assembly range L, it has a vapor pressure comparable to that of R22 at temperatures of approximately 0 to approximately 50 degrees Celsius, which is the operating temperature of heat pump devices such as air conditioners and refrigerators.A working fluid that can be used in current equipment as an alternative to R22. This makes it possible to provide the following.

従って上述の組合せおよび組或範囲におけるODPもO
と予想さif,R22の代替として極めて有望な作動流
体となるものであも またかかる混合物は非共沸混合物
となり、凝縮過程および蒸発過程において温度勾配をも
った△ 熱源流体との温度差を近接させたロレンッサイ
クルを構威することにより、R22よりも高い戒績係数
を期待できるものであも また一般に 戒層圏オゾン破壊能力があるフロン類(よ
 そのODPの値の大きさにつれて地球温暖化の効果も
大きい傾向がある爪 本発明による作動流体は○DPが
0であるフロン類のみの三種以上から戊る混合物によっ
て構戊されているたべ地球温暖化の効果はR22と同程
度あるいはR22未満と推定され 最近世界的問題とな
っている地球温暖化への寄与を小とすることをも可能と
するものであも さて、本発明は特にトリフルオロメタンを含む三種以上
のフロン類から或る混合物である。 トリフルオロメタ
ン(よ 臨界温度が低<(25.7℃)、蒸気圧が高い
ために 単独では略O〜略50℃の利用温度のエアコン
・冷凍機等のヒートボンプ装置には使用できない力曳 
現在でも市販されており、かかる混合物とすることによ
って実用的なR22の代替となる作動流体を構或するこ
とが可能となるものであも 実施例 以下、本発明による作動流体の実施例について、図を用
いて説明する。
Therefore, ODP in the above combinations and ranges is also O
If it is predicted that it will be a very promising working fluid as a replacement for R22, such a mixture will be a non-azeotropic mixture, and will have a temperature gradient in the condensation process and evaporation process. By using a Lorrenck cycle with a high ODP level, a higher coefficient of performance can be expected than R22. The working fluid according to the present invention is composed of a mixture of three or more only fluorocarbons with a DP of 0. The present invention also makes it possible to reduce the contribution to global warming, which is estimated to be less than 30% and has recently become a worldwide problem. It is a mixture. Because trifluoromethane has a low critical temperature (25.7℃) and a high vapor pressure, it cannot be used alone in heat pump devices such as air conditioners and refrigerators that have operating temperatures of about 0 to about 50℃. force pulling
It is still commercially available at present, and by making such a mixture, it is possible to construct a working fluid that is a practical substitute for R22. This will be explained using figures.

図(よ トリフルオロメタン(R23)、 1,  1
.1−1リフルオロエタン(R143a)、 1,1ジ
フルオ口エタン(R152a)の三種のフロン類の混合
物によって構戒される作動流体へ定温度・一定圧力にお
ける平衡状態を三角座標を用いて示したものであも 本
三角座標において(戴三角形の各頂点に 上側頂点を基
点として反時計回りに沸点の低い順に単一物質を配置し
ており、座標平面上のある点における各或分の組或比(
重量比)(上  点と三角形の各辺との距離の比で表さ
れる。またこのとき、点と三角形の辺との距離(よ辺に
相対する側にある三角座標の頂点に記された物質の組戊
比に対応する。図において1(上 温度O℃・圧力4.
  0 4 4 kg/cm2Gにおける混合物の気液
平衡線であり、この温度・圧力はR22の飽和状態に相
当すん 気液平衡線(R22  0℃相当)1の上側の
線は飽和気相颯 気液平衡線(R22  0℃相当)■
の下側の線は飽和液相線を表わし この画線で挟まれた
範囲においては気液平衡状態となる。また2(よ 温度
50℃・圧力18.  782kg/cm2Gにおける
混合物の気液平衡線であり、この温度・圧力もR22の
飽和状態に相当する。R23を単独で使用すると、 5
0℃においては臨界温度を超えてしまうものQ かかる
混合物となすことによって飽和状態が存在し略0〜略5
0℃の利用温度のエアコン・冷凍機等のヒートボンプ装
置に使用することが可能となるものである。図からわか
るようE,R23、Rl43a及びR152aがそれぞ
れ0〜略50重量9%.O〜略80重量基 略20〜略
90重量%となるような組戒範囲(戴 略0〜略50℃
の利用温度においてR22とほぼ同等の蒸気圧を有する
ため望ましい。さらに R23、R143a及びRl5
2aがそれぞれO〜略40重量%. 0〜略80重量米
 略20〜略85重量%となるような組戒範囲(よ 0
℃と50℃の間のすべての利用温度においてR22とほ
ぼ同等の蒸気圧を有するため特に望ましし℃ 図中の点A1〜点F1における作動流体の組或を表に示
す。点A1〜点C1は気液平衡線(R2250℃相当)
2の飽和気相線上に 点D1〜点F+は気液平衡線(R
22  50℃相当)2の飽和液相線上にあり、共に気
液平衡線(R22  0℃相当)lの飽和気相線及び気
液平衡線(R22  0℃相当)lの飽和液相線の画線
で挟まれた範囲にあることから、温度0℃・圧力4. 
 044kg/cm2G(R22の飽和状態に相当)に
おいては気液平衡状態となる。従って、第l表に示され
た組成を有ずる作動流体(よ O℃・50℃におけるR
22の飽和蒸気圧の条件下で飽和状態あるいは気液平衡
状態を実現し 略0〜略50℃の利用温度において、同
温度におけるR22の飽和蒸気圧で操作することにより
、R22とほぼ等しい凝縮温度・蒸発温度を得ることが
可能となるものであもここで(友 気液平衡線(R22
  50℃相当)2上の点についてのみ説明したバ 点
A1〜点F1の内側にある点、すなわ板 温度O℃・圧
力4.0 4 4 kg/cm2G及び温度50℃・圧
力18.7 8 2kg/cm”G (両者ともR22
の飽和状態に相当)において気液平衡状態となる組或を
有する作動流体についても同様に操作することにより、
略O〜略50℃の利用温度においてR22とほぼ等しい
凝縮温度・蒸発温度を得ることが可能となるものである
Figure (trifluoromethane (R23), 1, 1
.. Using triangular coordinates, the equilibrium state at constant temperature and constant pressure for a working fluid treated with a mixture of three types of fluorocarbons, 1-1 difluoroethane (R143a) and 1,1 difluoroethane (R152a), is shown. In this triangular coordinate system, a single substance is placed at each vertex of the triangle in the order of decreasing boiling point, starting from the upper vertex, and in order of decreasing boiling point. ratio(
It is expressed as the ratio of the distance between the point and each side of the triangle.At this time, the distance between the point and the side of the triangle (weight ratio) (upper) is expressed as the ratio of the distance between the point and each side of the triangle. Corresponds to the composition ratio of the substance.In the figure, 1 (upper temperature, 0°C, pressure 4.
This is the vapor-liquid equilibrium line of the mixture at 0 4 4 kg/cm2G, and this temperature and pressure correspond to the saturated state of R22. Equilibrium line (R22 equivalent to 0℃) ■
The lower line represents the saturated liquidus line, and the area between these lines is in a vapor-liquid equilibrium state. In addition, 2 (y) is the vapor-liquid equilibrium line of the mixture at a temperature of 50°C and a pressure of 18.782 kg/cm2G, and this temperature and pressure also correspond to the saturated state of R22. When R23 is used alone, 5
Q that exceeds the critical temperature at 0°C By forming such a mixture, a saturated state exists and the temperature is about 0 to about 5
It can be used in heat pump devices such as air conditioners and refrigerators that have an operating temperature of 0°C. As can be seen from the figure, E, R23, Rl43a and R152a each have a weight of 0 to approximately 50% and 9%. 0 to approximately 80% by weight, approximately 20 to approximately 90% by weight (approximately 0 to approximately 50℃)
It is desirable because it has almost the same vapor pressure as R22 at the usage temperature of R22. Furthermore, R23, R143a and Rl5
2a is O to about 40% by weight, respectively. 0 to approximately 80% by weight Approximately 20 to approximately 85% by weight
It is particularly desirable because it has a vapor pressure approximately equal to R22 at all operating temperatures between 50°C and 50°C. The working fluid combinations at points A1 to F1 in the figure are shown in the table. Points A1 to C1 are vapor-liquid equilibrium lines (equivalent to R2250°C)
On the saturated vapor phase line of 2, points D1 to F+ are on the vapor liquid equilibrium line (R
22 is on the saturated liquidus line of 2 (equivalent to 50°C), and both are on the saturated gas phase line of the vapor-liquid equilibrium line (R22 equivalent to 0°C) l and the saturated liquidus line of the vapor-liquid equilibrium line (equivalent to R22 0°C) l. Since it is within the range between the lines, the temperature is 0°C and the pressure is 4.
At 044 kg/cm2G (corresponding to the saturated state of R22), a gas-liquid equilibrium state is reached. Therefore, a working fluid having the composition shown in Table 1 (R at 0°C and 50°C)
By realizing a saturated state or a vapor-liquid equilibrium state under the condition of the saturated vapor pressure of R22, and operating at the saturated vapor pressure of R22 at the operating temperature of approximately 0 to approximately 50°C, the condensation temperature is approximately equal to that of R22.・It is possible to obtain the evaporation temperature here (Friend Vapor-Liquid Equilibrium Line (R22)
(equivalent to 50°C) 2 Points inside points A1 to F1, that is, the plate Temperature 0°C, pressure 4.0 4 4 kg/cm2G and temperature 50°C, pressure 18.7 8 2kg/cm”G (both R22
By performing the same operation for a working fluid that has a gas-liquid equilibrium state (corresponding to the saturated state of
It is possible to obtain condensation and evaporation temperatures almost equal to R22 at a usage temperature of approximately 0 to approximately 50°C.

本実施例においては作動流体は三種のフロン類の混合物
によって構或されている力交 構造異性体を含めて四種
以上のフロンの混合物によって作動流体を構戊すること
も勿論可能である。特に上述の組合せおよび組戊範囲に
おける○DPも0と予想さh,R22の代替として極め
て有望な作動流体となるものである。またかかる混合物
は非共沸混合物となり、凝縮過程および蒸発過程におい
て温度勾配をもったべ 熱源流体との温度差を近接させ
たロレンツサイクルを構或することにより、R22より
も高い或績係数を期待できるものである。
In this embodiment, the working fluid is constituted by a mixture of three types of fluorocarbons.Of course, it is also possible to constitute the working fluid by a mixture of four or more types of fluorocarbons, including structural isomers. In particular, in the combination and assembly range described above, the DP is also expected to be 0, making it an extremely promising working fluid as an alternative to R22. In addition, such a mixture becomes a non-azeotropic mixture and has a temperature gradient in the condensation process and evaporation process. By constructing a Lorenz cycle in which the temperature difference between the heat source fluid and the heat source fluid is close to each other, a higher coefficient of performance than R22 can be expected. It is something.

発明の効果 以上の説明から明らかなように 本発明は トリフルオ
ロメタンを含ム 作動流体を、分子構造中に塩素を含ま
ないフロン類のみの三種以上から戒る混合物となし そ
の組或範囲を特定したことにより、 (1)戊層圏オゾン層に及ぼす影響をR22よりもさら
に小さく、ほとんどなしとする作動流体の選択の幅を拡
大することが可能である (2)トリフルオロメタン単独では使用できない機器の
利用温度においてR22と同程度の蒸気圧を有L,,R
22の代替として現行機器で使用可能である (3)非共沸混合物の温度勾配の性質を利用して、R2
2よりも高い戊績係数を期待できる等の効果を有するも
のであも
Effects of the Invention As is clear from the above explanation, the present invention uses a trifluoromethane-containing working fluid as a mixture of three or more types of fluorocarbons that do not contain chlorine in their molecular structure, and specifies the range of their composition. By doing this, (1) it is possible to expand the range of selection of working fluids that have even less influence on the stratospheric ozone layer than R22, and (2) it is possible to expand the range of choices for working fluids that have almost no effect on the stratospheric ozone layer. It has a vapor pressure similar to that of R22 at the usage temperature L,,R
(3) Utilizing the temperature gradient properties of non-azeotropic mixtures, R2 can be used as an alternative to R22.
Even if it has the effect that a performance coefficient higher than 2 can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

図は 三種のフロン類の混合物によって構戊さl・・・
気液平衡線(R’22  0℃相当)、・気液平衡線(
R22  50℃相当)。
The figure is constructed by a mixture of three types of fluorocarbons...
Vapor-liquid equilibrium line (R'22 0℃ equivalent), - Vapor-liquid equilibrium line (
R22 equivalent to 50°C).

Claims (2)

【特許請求の範囲】[Claims] (1)トリフルオロメタン50重量%以下、トリフルオ
ロエタン80重量%以下、ジフルオロエタン20〜90
重量%以下の少なくとも三種のフロン類を含む作動流体
(1) Trifluoromethane 50% by weight or less, trifluoroethane 80% by weight or less, difluoroethane 20-90%
A working fluid containing at least three types of fluorocarbons in an amount of not more than % by weight.
(2)トリフルオロメタン40重量%以下、トリフルオ
ロエタン80重量%以下、ジフルオロエタン20〜85
重量%以下であることを特徴とする作動流体。
(2) Trifluoromethane 40% by weight or less, trifluoroethane 80% by weight or less, difluoroethane 20-85%
% by weight or less.
JP1311159A 1989-11-30 1989-11-30 Working fluid Pending JPH03170589A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1311159A JPH03170589A (en) 1989-11-30 1989-11-30 Working fluid
KR1019900019595A KR930010515B1 (en) 1989-11-30 1990-11-30 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311159A JPH03170589A (en) 1989-11-30 1989-11-30 Working fluid

Publications (1)

Publication Number Publication Date
JPH03170589A true JPH03170589A (en) 1991-07-24

Family

ID=18013809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311159A Pending JPH03170589A (en) 1989-11-30 1989-11-30 Working fluid

Country Status (1)

Country Link
JP (1) JPH03170589A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692653B2 (en) 2001-02-16 2004-02-17 Korea Institute Of Science And Technology Refrigerant composition
US6776922B2 (en) 2002-07-24 2004-08-17 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1-difluoroethane
US6800216B2 (en) 2002-07-24 2004-10-05 Korea Institute Of Science And Technology Refrigerant composition for replacing chlorodifluoromethane
US6841087B2 (en) 2002-04-19 2005-01-11 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1,1,2-tetrafluoroethane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692653B2 (en) 2001-02-16 2004-02-17 Korea Institute Of Science And Technology Refrigerant composition
US6841087B2 (en) 2002-04-19 2005-01-11 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1,1,2-tetrafluoroethane
US6776922B2 (en) 2002-07-24 2004-08-17 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1-difluoroethane
US6800216B2 (en) 2002-07-24 2004-10-05 Korea Institute Of Science And Technology Refrigerant composition for replacing chlorodifluoromethane

Similar Documents

Publication Publication Date Title
JPH03170585A (en) Working fluid
JP2580350B2 (en) Working fluid
JP2548411B2 (en) Working fluid
JP2579002B2 (en) Working fluid
JPH03170589A (en) Working fluid
JPH03170583A (en) Working fluid
JPH0665561A (en) Working fluid
JPH03170593A (en) Working fluid
JPH03172384A (en) Working fluid
JPH03170586A (en) Working fluid
JPH03170584A (en) Working fluid
JPH03170590A (en) Working fluid
JPH05117645A (en) Working fluid
JPH03172386A (en) Working fluid
JPH03172385A (en) Working fluid
JPH03170592A (en) Working fluid
JPH0517746A (en) Working fluid
JPH0517750A (en) Working fluid
JPH0517753A (en) Working fluid
JPH03170587A (en) Working fluid
JPH03220285A (en) Working fluid
JPH0517747A (en) Working fluid
JPH0517755A (en) Working fluid
JPH03168265A (en) Working fluid
JPH03168271A (en) Working fluid