JPH03170587A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH03170587A
JPH03170587A JP1311156A JP31115689A JPH03170587A JP H03170587 A JPH03170587 A JP H03170587A JP 1311156 A JP1311156 A JP 1311156A JP 31115689 A JP31115689 A JP 31115689A JP H03170587 A JPH03170587 A JP H03170587A
Authority
JP
Japan
Prior art keywords
working fluid
approximately
vapor
temperature
liquid equilibrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1311156A
Other languages
Japanese (ja)
Other versions
JP2532696B2 (en
Inventor
Yuji Yoshida
雄二 吉田
Shozo Funakura
正三 船倉
Koji Arita
浩二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1311156A priority Critical patent/JP2532696B2/en
Priority to EP90122653A priority patent/EP0430170B1/en
Priority to DE69011287T priority patent/DE69011287T2/en
Priority to KR1019900019594A priority patent/KR930010514B1/en
Publication of JPH03170587A publication Critical patent/JPH03170587A/en
Priority to US07/839,700 priority patent/US5304319A/en
Application granted granted Critical
Publication of JP2532696B2 publication Critical patent/JP2532696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain a working fluid which scarcely affects the ozonosphere and serves as an R22 substitute by mixing difluoromethane, tetrafluoroethane, and difluoroethane. CONSTITUTION:A working fluid containing at least three hydrofluorocarbons, i.e., 20-60wt.% difluoromethane, at most 80wt.% tetrafluoroethane, and at most 65wt.% difluoroethane. As the working fluid, particularly those comprising 25-50wt.% difluoromethane, at most 75wt.% tetrafluoroethane, and at most 65wt.% difluoroethane are preferably used. The working fluid having a composition in the above-mentioned range has a vapor pressure comparable to that of R22 at about 0-50 deg.C, which is the service temperature of a heat pump of, e.g. an air conditioner or a refrigerator, and it can be employed as an R22 substitute in machinery now in use.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ エアコン・冷凍機等のヒートボンプ装置に
使用される作動流体に関すも 従来の技術 従棗 エアコン・冷凍機等のヒートボンプ装置において
は 作動流体としてフロン類(以下R○○またはR○○
○と記す)と呼ばれるハロゲン化炭化水素が知られてお
り、利用温度としては凝縮温度および/または蒸発温度
が略0〜略50℃の範囲において通常使用されも 中で
もクロロジフルオロメタン(CHCIFs、R22)は
家庭用エアコン、ビル用エアコンや大型冷凍機等の作動
流体として幅広く用いられていも 発明が解決しようとする課題 しかしなか板 近年フロンによる戒層圏オゾン層破壊が
地球規模の環境問題となっており、戒層圏オゾン破壊能
力が大であるフロン類(以下、特定フロンと記す)につ
いてCヨ  すでに国際条約によって使用量及び生産量
の規制がなされ さらに将来的には特定フロンの使用・
生産を廃止しようという動きがあも さて、R22はオ
ゾン破壊係数(トリクロロフルオロメタン(CC1sF
)の戊層圏オゾン破壊能力を1としたときの戊層圏オゾ
ン破壊能九 以下ODPと記す)が0. 05と微少で
あり、特定フロンではないものの将来的に使用量の増大
が予想され 冷凍・空調機器が広く普及した現&  R
22の使用量及び生産量の増大が人類の生活環境に与え
る影響も大きくなるものと予想されていも 従って、底
層圏オゾン破壊能力が小であるものα 若干の破壊能力
があるとされるR22の代替となる作動流体の早期開発
も強く要望されている。
[Detailed Description of the Invention] Industrial Fields of Application The present invention relates to working fluids used in heat pump devices such as air conditioners and refrigerators. as fluorocarbons (hereinafter referred to as R○○ or R○○
Halogenated hydrocarbons (denoted as ○) are known, and are usually used at a condensation temperature and/or evaporation temperature in the range of approximately 0 to approximately 50°C.Among them, chlorodifluoromethanes (CHCIFs, R22) Although it is widely used as a working fluid in home air conditioners, building air conditioners, and large refrigerators, it is still a problem that the invention attempts to solve.In recent years, depletion of the stratospheric ozone layer by fluorocarbons has become a global environmental problem. The use and production of fluorocarbons (hereinafter referred to as specified fluorocarbons), which have a large ability to deplete stratospheric ozone, has already been regulated by international treaties.
Now, there is a movement to abolish production of R22.
) is 0. 05, and although it is not a specified CFC, usage is expected to increase in the future.
Although it is expected that an increase in the amount of R22 used and produced will have a greater impact on the human living environment, it is therefore expected that R22, which has a small ozone depletion ability in the lower stratum of the earth, will have a small depleting ability. There is also a strong need for the early development of alternative working fluids.

本発明は 上述の問題に鑑みて試されたもので、戊層圏
オゾン層に及ぼす影響がほとんどなt,k  R22の
代替となる作動流体を提供するものであも課題を解決す
るための手段 本発明は上述の課題を解決するた吹 少なくとL ジフ
ルオロメタン(CH2F2)とテトラフルオロエタン(
C2HeFd とジフルオロエタン(C2H4F2)の
三種のフロン類を含へ ジフルオ口メタン略20〜略6
0重量% テトラフルオロエタンO〜略80重量κ ジ
フルオロエタン0〜略65重量%の組戊範囲であること
を特徴とするものであり、特に ジフルオロメタン略2
5〜略50重量瓢 テトラフルオ口エタンO〜略75重
量賊ジフルオロエタンO〜略65重量%の組或範囲が望
ましいものであも 作用 本発明は 上述の組合せによって、作動流体を、オゾン
破壊能力のほとんどなし\ 分子構造中に塩素を含まな
いフロン類であるジフルオロメタン(○DP==0)、
テトラフルオロエタン(○DP=0)およびジフルオロ
エタン(○DP=0)の混合物となすことにより、戒層
圏オゾン層に及ぼす影響をR22よりもさらに小さく、
ほとんどなくすることを可能とするものであも 又 本
発明は上述の組或範囲とすることによって、エアコン・
冷凍機等のヒートボンプ装置の利用温度である略0〜略
50℃においてR22と同程度の蒸気圧を有L  R2
2の代替として現行機器で使用可能な作動流体を提供す
ることを可能とするものである。
The present invention was attempted in view of the above-mentioned problems, and provides a working fluid that has little effect on the stratospheric ozone layer and is an alternative to t,k R22.It is also a means to solve the problems. The present invention solves the above-mentioned problems by combining at least L difluoromethane (CH2F2) and tetrafluoroethane (
Contains three types of fluorocarbons: C2HeFd and difluoroethane (C2H4F2) Difluoromethane approximately 20 to approximately 6
It is characterized by a composition range of 0% by weight, tetrafluoroethane O to approximately 80% by weight κ, difluoroethane 0 to approximately 65% by weight, particularly difluoromethane approximately 2% by weight.
Although a range of 5% to approximately 50% by weight of tetrafluoroethane O to approximately 75% by weight of difluoroethane O to approximately 65% by weight is preferable, the present invention is advantageous in that the above-mentioned combination allows the working fluid to have most of its ozone depleting ability. None\ Difluoromethane (○DP==0), which is a fluorocarbon that does not contain chlorine in its molecular structure,
By forming a mixture of tetrafluoroethane (○DP=0) and difluoroethane (○DP=0), the effect on the stratospheric ozone layer is even smaller than that of R22.
However, by incorporating the above-mentioned range, the present invention can reduce air conditioners.
L R2 has a vapor pressure similar to that of R22 at approximately 0 to approximately 50°C, which is the operating temperature of heat pump devices such as refrigerators.
This makes it possible to provide a working fluid that can be used in current equipment as an alternative to 2.

従って上述の組合せおよび組戒範囲におけるODPもO
と予想さit,R22の代替として極めて有望な作動流
体となるものであも またかかる混合物は非共沸混合物
となり、凝縮過程および蒸発過程において温度勾配をも
った敗 熱源流体との温度差を近接させたロレンツサイ
クルを構戒することにより、R22よりも高い或績係数
を期待できるものである。
Therefore, ODP in the above combination and group precept range is also O
It is predicted that it will be a very promising working fluid as a replacement for R22.In addition, such a mixture will be a non-azeotropic mixture, and will have a temperature gradient during the condensation and evaporation processes. By paying close attention to the Lorenz cycle, a higher performance coefficient than R22 can be expected.

また一般に 戒層圏オゾン破壊能力があるフロン類は 
そのODPの値の大きさにつれて地球温暖化の効果も大
きい傾向がある力丈 本発明による作動流体はODPが
Oであるフロン類のみの三種以上から戒る混合物によっ
て構或されているた数地球温暖化の効果はR22と同程
度あるいはR22未満と推定され 最近世界的問題とな
っている地球温暖化への寄与を小とすることをも可能と
するものであも 実施例 以下、本発明による作動流体の実施例について、図を用
いて説明すも 第1図1よ ジフルオ口メタン(R32)、 1,1,
  1.  2−テトラフルオロエタン(R134a)
、1,1−ジフルオロエタン(Rl52a)の三種のフ
ロン類の混合物によって構或される作動流体Q 一定温
度・一定圧力における平衡状態を三角座標を用いて示し
たものであん 本三角座標においては 三角形の各頂点
に 上側頂点を基点として反時計回りに沸点の低い順に
単一物質を配置しており、座標平面上のある点における
各或分の組或比(重量比)(ヨ  点と三角形の各辺と
の距離の比で表される。またこのとき、点と三角形の辺
との距離(よ 辺に相対する側にある三角座標の頂点に
記された物質の組或比に対応すん 第1図において11
よ 温度O℃・圧力4.  044kg/cm”Gにお
ける混合物の気液平衡線であり、この温度・圧力はR2
2の飽和状態に相当すん 気液平衡線(R22  0℃
相当)lの上側の線は飽和気相颯 気液平衡線(R22
  0℃相当)lの下側の線は飽和液相線を表わし こ
の画線で挟まれた範囲においては気液平衡状態となん 
また2(よ温度50℃・圧力18.  7 8 2kg
/cm”Gにおける混合物の気液平衡線であり、この温
度・圧力もR22の飽和状態に相当すも 図からわかる
ように R32、R134a及びRl52aがそれぞれ
略20〜略60重量賊 0〜略80重量勉0〜略65重
量%となるような組或範囲ζ上 略O〜略50℃の利用
温度においてR22とほぼ同1の蒸気圧を有するため望
まし(1 さらGQ  R 3 SRl34a及びR1
52aがそれぞれ略25〜鵡50重量%.O〜略75重
量瓢 0〜略65重1%となるような組或範囲ζ&  
01と50tの間eすべでの利用温度においてR22と
ほぼ同等の寮気圧を有するため特に望まし(ち 第1図中の点A1〜点F1における作動流体の紹戊を第
1表に示す。点A+〜点C+は気液平衡線(R22  
50t相当)2の飽和気相線上にあると共に 気液平衡
線(R22  0t相当)1の飽和気相線及び気液平衡
線(R22  0t:相当)1の飽和液相線の両線で挟
まれた範囲にあることから温度0℃・圧カ4.  04
4kg/cm’G (R2:の飽和状態に相当)におい
ては気液平衡状態となる。また 点D1〜点F1は気液
平衡線(R220℃相当)1の飽和液線上にあると共に
 気液平衡線(R22  5Ot相当)2の飽和気相線
及び気液平衡線(R22  5Ot相当)2の飽和液相
線の画線で挟まれた範囲にあることか転 温度5争 a [ ) 0℃・圧力18.  782kg/cm”G (R22
の飽和状態に相当)においては気液平衡状態となん従っ
て、第1表に示された組或を有する作動流体Lt,  
O℃・50℃におけるR22の飽和蒸気圧の条件下で飽
和状態あるいは気液平衡状態を実現し略O〜略50℃の
利用温度において、同温度におけるR22の飽和蒸気圧
で操作することにより、R22とほぼ等しい凝縮温度・
蒸発温度を得ることが可能となるものであも ここで番上 気液平衡線(R22  0℃相当)1ある
いは気液平衡線(R22  50℃相当)2上の点につ
いてのみ説明したバ 点A1〜点F1の内側にある点、
すなわ板 温度O℃・圧力4.044kg/cm2G及
び温度50℃・圧力18.782 k g / c.m
2G (両者ともR22の飽和状態に相当〉において気
液平衡状態となる組戒を有する作動流体についても同様
に操作することにより、略0〜略50℃の利用温度にお
いてR22とほぼ等しい凝縮温度・蒸発温度を得ること
が可能となるものである。
In general, fluorocarbons have the ability to destroy stratospheric ozone.
The effect of global warming tends to increase as the ODP value increases. The global warming effect is estimated to be on the same level as R22 or less than R22, and it is possible to minimize the contribution to global warming, which has recently become a worldwide problem. An example of the working fluid will be explained with reference to the drawings, as shown in Figure 1.
1. 2-tetrafluoroethane (R134a)
, 1,1-difluoroethane (Rl52a) The working fluid Q is composed of a mixture of three types of fluorocarbons: At each vertex, single substances are arranged counterclockwise from the upper vertex as the base point in descending order of boiling point. It is expressed as the ratio of the distance between the point and the side of the triangle.In this case, the distance between the point and the side of the triangle (as the distance between the point and the side of the triangle) In the figure 11
yo Temperature 0℃・Pressure 4. This is the vapor-liquid equilibrium line of the mixture at 044 kg/cm"G, and this temperature and pressure are R2
This corresponds to the saturated state of 2. The vapor-liquid equilibrium line (R22 0℃
(equivalent) The upper line of l is the saturated gas phase, the vapor-liquid equilibrium line (R22
(equivalent to 0°C) The lower line represents the saturated liquidus line, and the area between these lines is considered to be in a vapor-liquid equilibrium state.
Also 2 (temperature 50℃, pressure 18.7 8 2kg
This is the vapor-liquid equilibrium line of the mixture at /cm''G, and this temperature and pressure also correspond to the saturated state of R22. It is desirable to have a vapor pressure of approximately 1 as that of R22 at a usage temperature of approximately 0 to approximately 50° C. (1, moreover, GQ R 3 SRl34a and R1
52a is approximately 25 to 50% by weight, respectively. 0~approximately 75 weight gourd 0~approximately 65 weight 1% range ζ&
It is particularly desirable because it has a dormer pressure almost equal to that of R22 at all operating temperatures between 01 and 50t (Table 1 shows the introduction of the working fluid at points A1 to F1 in FIG. 1). Points A+ to C+ are the vapor-liquid equilibrium line (R22
It is on the saturated gas phase line of 2 (equivalent to 50t) and is sandwiched between the saturated gas phase line of vapor-liquid equilibrium line (equivalent to R22 0t) 1 and the saturated liquidus line of vapor-liquid equilibrium line (equivalent to R22 0t) 1. The temperature is 0℃ and the pressure is 4. 04
At 4 kg/cm'G (corresponding to the saturated state of R2), a gas-liquid equilibrium state is reached. In addition, points D1 to F1 are on the saturated liquid line of the vapor-liquid equilibrium line (equivalent to R220℃) 1, and the saturated vapor phase line and vapor-liquid equilibrium line (equivalent to R22 5Ot) 2 of the vapor-liquid equilibrium line (equivalent to R22 5Ot) 2 It must be within the range between the lines of the saturated liquidus line. 782kg/cm”G (R22
Therefore, the working fluid Lt, which has the composition shown in Table 1, is in a gas-liquid equilibrium state.
By realizing a saturated state or a vapor-liquid equilibrium state under the conditions of the saturated vapor pressure of R22 at 0°C and 50°C, and operating at the saturated vapor pressure of R22 at the same temperature at a usage temperature of approximately 0 to approximately 50°C, Condensing temperature almost equal to R22
It is possible to obtain the evaporation temperature. Point A1 is only explained about the points on the vapor-liquid equilibrium line (R22, equivalent to 0°C) 1 or the vapor-liquid equilibrium line (R22, equivalent to 50°C) 2. ~A point inside point F1,
In other words, the temperature is 0°C, the pressure is 4.044 kg/cm2G, and the temperature is 50°C, the pressure is 18.782 kg/c. m
By performing the same operation on a working fluid that has a gas-liquid equilibrium state at 2G (both correspond to the saturated state of R22), the condensation temperature is almost equal to R22 at a usage temperature of about 0 to about 50°C This makes it possible to obtain the evaporation temperature.

第2図Cよ R32、 1.  l,  2.  2−
テトラフルオ口エタン(R134)、Rl52aの三種
のフロン類の混合物によって構或される作動流体。
Figure 2 C R32, 1. l, 2. 2-
A working fluid composed of a mixture of three types of fluorocarbons: tetrafluoroethane (R134) and Rl52a.

一定温度・一定圧カにおける平衡状態を三角座標を用い
て示したものである。本三角座標において1友 大気圧
における標準沸点はR152aの方がR134よりも低
いもの。第1図との関連において、三角形の各頂点に 
上側頂点を基点として反時計回りに R32、R134
、R152a(7)順に単一物質を配置している。第2
図において31よ 温度O℃・圧カ4.  044kg
/cm”Gにおける混合物の気液平衡線であり、また4
(よ 温度50℃・圧カ18.  782kg/crn
2Gにおける混合物の気液平衡線であも この場合にぱ
 R32、R134及びR152aがそれぞれ略3o〜
略60重量%.0〜略7o重量越 0〜略65重量%と
なるような組或範囲力<.  R22とほぼ同等の蒸気
圧を有するため望ましく、R32、R134及びRI5
2aがそれぞれ略35〜略5o重量% 0〜略65重1
7κ 0〜略65重量%となるような組戒範囲力文 特
に望ましL℃ 第2図中の点A2〜点F2における作動流体の組戒を第
2表に示す。点A2〜点C2は気液平衡線(R22  
50℃相当)4の飽和気相線上に 点D2〜点E2は気
液平衡線(R22  50℃相当)4の飽和液相線上に
あり、共に気液平衡線(R220℃相当)3の飽和気相
線及び気液平衡線(R22 0℃相当)3の飽和液相線
の画線で挟まれた範囲にあることか板 温度O℃・圧力
4.044 kg/cm2G (R2 2の飽和状態に
相当)においては気液平衡状態となん また 点F2は
気液平衡線(R22  0℃相当)3の飽和液相線上に
あると共に 気液平衡線(R22  50℃相当)4の
飽和気相線及び気液平衡線(R22  50℃相当)4
の飽和液相線の画線で挟まれた範囲にあることから、温
度50℃・圧力18.  782kg/cm2G(R2
2の飽和状態に相当)においては気液平衡状態となる。
The equilibrium state at constant temperature and constant pressure is shown using triangular coordinates. In this triangular coordinate, R152a has a lower standard boiling point at atmospheric pressure than R134. In relation to Figure 1, at each vertex of the triangle
Counterclockwise from the upper vertex R32, R134
, R152a(7). Second
In the figure, 31. Temperature 0°C/Pressure 4. 044kg
/cm”G is the vapor-liquid equilibrium line of the mixture, and 4
(Temperature: 50℃・Pressure: 18.782kg/crn
In this case, R32, R134, and R152a are each approximately 3o~
Approximately 60% by weight. 0 to approximately 7o weight exceeded 0 to approximately 65% by weight <. R32, R134 and RI5 are desirable because they have almost the same vapor pressure as R22.
2a is about 35 to about 5o weight% 0 to about 65 weight 1
Table 2 shows the working fluid range from point A2 to point F2 in FIG. 2, which is particularly desirable. Point A2 to point C2 is the vapor-liquid equilibrium line (R22
Points D2 to E2 are on the saturated liquidus line of the vapor-liquid equilibrium line (R22, equivalent to 50°C) 4, and both are on the saturated vapor line of the vapor-liquid equilibrium line (R22, equivalent to 50°C) 3. It must be in the range between the phase line and the vapor-liquid equilibrium line (equivalent to R22 0℃) 3 and the saturated liquidus line. Also, point F2 is on the saturated liquidus line of the vapor-liquid equilibrium line (R22, equivalent to 0°C) 3, and the saturated vapor phase line of the vapor-liquid equilibrium line (R22, equivalent to 50°C) 4. Gas-liquid equilibrium line (R22 equivalent to 50℃) 4
Since it is in the range between the lines of the saturated liquidus line, the temperature is 50°C and the pressure is 18. 782kg/cm2G (R2
(corresponding to the saturated state of 2), the state is in vapor-liquid equilibrium.

従って、第2表に示された組戊を有する作動流体は 0
℃・50℃におけるR22の飽和蒸気圧の条件下で飽和
状態あるいは気液平衡状態を実現し 略0〜略50℃の
利用温度において、同温度におけるR22の飽和蒸気圧
で操作することにより、R22とほぼ等しい凝縮温度・
蒸発温度を得ることが可能となるものであもここでは 
気液平衡線(R22  0℃相当)3あるいは気液平衡
線(R22  50℃相当)4上の点についてのみ説明
した力失 点A2〜点Ftの内側にある戊 すなわ執 
温度0℃・圧力4.044kg/cm2G及び温度50
℃・圧力18.782kg/cm”G(両者ともR22
の飽和状態に相当)において気液平衡状態となる組或を
有する作動流体についても同様に操作することにより、
略0〜略50℃の利用温度においてR22とほぼ等しい
凝縮温度・蒸発温度を得ることが可能となるものである
Therefore, the working fluid with the composition shown in Table 2 is 0
By realizing a saturated state or a vapor-liquid equilibrium state under the conditions of the saturated vapor pressure of R22 at 50°C and 50°C, and operating at the saturated vapor pressure of R22 at the same temperature at a usage temperature of about 0 to about 50°C, R22 The condensing temperature is almost equal to
Here, it is possible to obtain the evaporation temperature.
Power loss explained only about the points on the vapor-liquid equilibrium line (R22, equivalent to 0°C) 3 or the vapor-liquid equilibrium line (R22, equivalent to 50°C) 4.
Temperature 0℃, pressure 4.044kg/cm2G and temperature 50
℃・Pressure 18.782kg/cm"G (both R22
By performing the same operation for a working fluid that has a gas-liquid equilibrium state (corresponding to the saturated state of
It is possible to obtain condensation and evaporation temperatures almost equal to R22 at a usage temperature of approximately 0 to approximately 50°C.

以上の実施例においては作動流体は三種のフロン類の混
合物によって構戒されている力丈 構造異性体を含めて
四種以上のフロンの混合物によって作動流体を構或する
ことも勿論可能であり、この場合、 ジフルオ口メタン
略20〜略60重量%テトラフルオロエタンO〜略80
重量κ ジフルオロエタンO〜略65重量%となるよう
な組戒範囲ぱ 略0〜略50℃の利用温度においてR2
2とほぼ同等の蒸気圧を有するため望まし(t さらに
 ジフルオ口メタン略25〜略50重量米 テトラフル
オロエタン0〜略75重量κ ジフルオロエタンO〜略
65重量%となるような組或範囲{友 O℃と50℃の
間のすべての利用温度においてR22とほぼ同等の蒸気
圧を有するため特に望まし(1 特に上述の組合せおよ
び組戒範囲における○DPもOと予想さh  R22の
代替として極めて有望な作動流体となるものであも ま
たかかる混合物は非共沸混合物となり、凝縮過程および
蒸発過程において温度勾配をもった数 熱源流体との温
度差を近接させたロレンツサイクルを構戊することによ
り、R22よりも高い戒績係数を期待できるものであも 発明の効果 以上の説明から明らかなように 本発明(よ 作動流体
を、分子構造中に塩素を含まないフロン類のみの三種以
上から戊る混合物となし その組戒範囲を特定したこと
により、 (1)戊層圏オゾン層に及ぼす影響をR22よりもさら
に小さく、ほとんどなしとする作動流体の選択の幅を拡
大することが可能である (2)機器の利用温度においてR22と同程度の蒸気圧
を有LA R22の代替として現行機器で使用可能であ
る (3〉非共沸混合物の温度勾配の性質を利用して、R2
2よりも高い成績係数を期待できる等の効果を有するも
のである。
In the above embodiments, the working fluid is composed of a mixture of three types of fluorocarbons.Of course, the working fluid can also be composed of a mixture of four or more types of fluorocarbons, including structural isomers. In this case, difluoromethane approximately 20 to approximately 60% by weight tetrafluoroethane O to approximately 80% by weight
Weight κ Difluoroethane O ~ Approximately 65% by weight R2 at the operating temperature of approximately 0 to approximately 50°C
It is desirable because it has a vapor pressure almost equal to that of 2 (t), difluoromethane (approximately 25 to approximately 50% by weight), tetrafluoroethane (0 to approximately 75% by weight), difluoroethane (O) to approximately 65% by weight. It is particularly desirable because it has almost the same vapor pressure as R22 at all operating temperatures between 0°C and 50°C. Even if the mixture is a promising working fluid, it becomes a non-azeotropic mixture, and by constructing a Lorenz cycle with a temperature gradient in the condensation process and the evaporation process, the temperature difference between the heat source fluid and the heat source fluid is made close to each other. Although it is expected to have a higher performance coefficient than R22, it is clear from the above explanation that the working fluid of the present invention is made from three or more types of fluorocarbons that do not contain chlorine in their molecular structure. By specifying the range of mixtures and mixtures that can be used, (1) It is possible to expand the range of choices for working fluids that have even less impact on the stratospheric ozone layer than R22, and have almost no effect on the stratospheric ozone layer. (2) It can be used in current equipment as a substitute for LA R22, which has a vapor pressure similar to that of R22 at the operating temperature of the equipment. (3) R2
It has the effect that a higher coefficient of performance can be expected than 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第2図(よ 三種のフロン類の混合物に姻であ
る。 l、 3・・・気液平衡線(R22  0℃相当)、2
、 4・・・気液平衡線(R22  50℃相当)。
Figures 1 to 2 (This is a mixture of three types of fluorocarbons. 1, 3... Vapor-liquid equilibrium line (R22 equivalent to 0°C), 2
, 4... Gas-liquid equilibrium line (R22 equivalent to 50°C).

Claims (2)

【特許請求の範囲】[Claims] (1)ジフルオロメタン20〜60重量%以下テトラフ
ルオロエタン80重量%以下、ジフルオロエタン65重
量%以下の少なくとも三種のフロン類を含む作動流体。
(1) A working fluid containing at least three types of fluorocarbons: 20 to 60% by weight of difluoromethane, 80% by weight or less of tetrafluoroethane, and 65% by weight or less of difluoroethane.
(2)ジフルオロメタン25〜50重量%以下テトラフ
ルオロエタン75重量%以下、ジフルオロエタン65重
量%以下であることを特徴とする作動流体。
(2) A working fluid characterized by containing 25 to 50% by weight of difluoromethane, 75% by weight or less of tetrafluoroethane, and 65% by weight or less of difluoroethane.
JP1311156A 1989-11-30 1989-11-30 Working fluid Expired - Fee Related JP2532696B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1311156A JP2532696B2 (en) 1989-11-30 1989-11-30 Working fluid
EP90122653A EP0430170B1 (en) 1989-11-30 1990-11-27 Working fluid
DE69011287T DE69011287T2 (en) 1989-11-30 1990-11-27 Work equipment.
KR1019900019594A KR930010514B1 (en) 1989-11-30 1990-11-30 Working fluid
US07/839,700 US5304319A (en) 1989-11-30 1992-02-24 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311156A JP2532696B2 (en) 1989-11-30 1989-11-30 Working fluid

Publications (2)

Publication Number Publication Date
JPH03170587A true JPH03170587A (en) 1991-07-24
JP2532696B2 JP2532696B2 (en) 1996-09-11

Family

ID=18013774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311156A Expired - Fee Related JP2532696B2 (en) 1989-11-30 1989-11-30 Working fluid

Country Status (1)

Country Link
JP (1) JP2532696B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290466A (en) * 1991-10-31 1994-03-01 E. I. Du Pont De Nemours And Company Compositions of difluoromethane and tetrafluoroethane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290466A (en) * 1991-10-31 1994-03-01 E. I. Du Pont De Nemours And Company Compositions of difluoromethane and tetrafluoroethane
US5589098A (en) * 1991-10-31 1996-12-31 E. I. Du Pont De Nemours And Company Compositions of difluoromethane and tetrafluoroethane

Also Published As

Publication number Publication date
JP2532696B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JPH05117643A (en) Working fluid
JPH03170585A (en) Working fluid
JP2580350B2 (en) Working fluid
JP2548411B2 (en) Working fluid
JP2579002B2 (en) Working fluid
JPH03170583A (en) Working fluid
JP2568775B2 (en) Working fluid
JP2579001B2 (en) Working fluid
JP2580349B2 (en) Working fluid
JP2532695B2 (en) Working fluid
JP2532697B2 (en) Working fluid
JPH03170587A (en) Working fluid
JPH0665561A (en) Working fluid
JP2548412B2 (en) Working fluid
JPH03170589A (en) Working fluid
JPH03170593A (en) Working fluid
JP2532736B2 (en) Working fluid
JPH03170592A (en) Working fluid
JPH0517753A (en) Working fluid
JPH0517746A (en) Working fluid
JPH0517750A (en) Working fluid
JPH05117649A (en) Working fluid
JPH03168287A (en) Working fluid
JPH0517744A (en) Working fluid
JPH03168282A (en) Working fluid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees