JPH03168282A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH03168282A
JPH03168282A JP1309664A JP30966489A JPH03168282A JP H03168282 A JPH03168282 A JP H03168282A JP 1309664 A JP1309664 A JP 1309664A JP 30966489 A JP30966489 A JP 30966489A JP H03168282 A JPH03168282 A JP H03168282A
Authority
JP
Japan
Prior art keywords
working fluid
temperature
weight
vapor
fluorocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309664A
Other languages
Japanese (ja)
Inventor
Koji Arita
浩二 有田
Takeshi Tomizawa
猛 富澤
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1309664A priority Critical patent/JPH03168282A/en
Publication of JPH03168282A publication Critical patent/JPH03168282A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide a working fluid reduced in the affection thereof on the ozone layer of the stratosphere and capable of being employed as a substitute for dichlorodifluoromethane (R12) by containing difluoromethane, chlorodifluoromethane and dichlorofluoroethane in a specific ratio. CONSTITUTION:The objective working fluid contains at least three kinds of freons comprising (A) <=85wt.% (preferably <=75wt.%) of difluoromethane (R32), (B) <=95wt.% (preferably <=90wt.%) of chlorodifluoromethane (R22) and (C) 5-80wt.% (preferably 10-75wt.%) of 1,1-dichloro-1-fluoroethane (R141b). The working fluid is employed in freezers, heat pumps, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明C1  冷凍機・ヒートボンプ等に使用される作
動流体に関すん 従来の技術 従棗 冷凍機・ヒートポンプ等においてC上  作動流
体としてフロン類(以下ROOまたはR○○○と記す〉
と呼ばれるハロゲン化炭化水素が知られており、利用温
度としては凝縮温度および/または蒸発温度が略0〜略
50℃の範囲において通常使用されも 中でもジクロロ
ジフルオロメタン(CC1*Fm、R12)は冷蔵凧 
カーエアコンや大型冷凍機等の作動流体として幅広く用
いられていも 発明が解決しようとする課題 しかしなが転 近年フロンによる戊層圏オゾン層破壊が
地球規模の環境問題となっており、底層圏オゾン破壊能
力が大であるフロン類(以下、特定フロンと記す)につ
いて1よ すでに国際条約によって使用量及び生産量の
規制がなされ さらに将来的には特定フロンの使用・生
産を廃止しようという動きがあも さて、R12はオゾ
ン破壊係数(トリクロロフルオロメタン(CCl*F)
の底層圏オゾン破壊能力を1としたときの或層圏オゾン
破壊能九 以下ODPと記す)が1.  0の特定フロ
ンであり、冷凍・空調機器が広く普及した現&  R1
2の使用量及び生産量の削減が人類の生活環境に与える
影響は甚だ大きL〜 従って、或層圏オゾン破壊能力が
小であり、R12の代替となる作動流体の早期開発が強
く要望されていも本発明(上 上述の問題に鑑みて試さ
れたもので、戊層圏オゾン層に及ぼす影響が小さl,k
R12の代替となる作動流体を提供するものである。
Detailed Description of the Invention Industrial Application Field of the Invention C1 Conventional technology related to working fluids used in refrigerators, heat pumps, etc. In refrigerators, heat pumps, etc., fluorocarbons (hereinafter referred to as ROO Or written as R○○○〉
Halogenated hydrocarbons called halogenated hydrocarbons are known, and are usually used at a condensation temperature and/or evaporation temperature in the range of approximately 0 to approximately 50°C.Among them, dichlorodifluoromethane (CC1*Fm, R12) is used under refrigeration. kite
Although it is widely used as a working fluid in car air conditioners and large refrigerators, the problem that the invention attempts to solve continues to change. Regarding fluorocarbons, which have a large destructive capacity (hereinafter referred to as specified fluorocarbons), international treaties have already regulated their usage and production, and there are also moves to abolish the use and production of specified fluorocarbons in the future. Now, R12 is the ozone depletion coefficient (trichlorofluoromethane (CCl*F)
When the bottom-sphere ozone-depleting ability of 0 specified fluorocarbons, and is now widely used in refrigeration and air conditioning equipment.
Reducing the amount of R12 used and produced would have a tremendous impact on the human living environment. Therefore, the ability to deplete stratospheric ozone is small, and there is a strong demand for the early development of a working fluid that can replace R12. The present invention (above) was tried in view of the above problems, and has a small effect on the ozone layer in the stratospheric region.
It provides a working fluid that can replace R12.

課題を解決するための手段 本発明は上述の課題を解決するた吹 少なくとk ジフ
ルオロメタン(CH2F2)とクロロジフルオロメタン
(CHCIF2)とジクロロフルオ口エタン(CaHs
C laF)の三種のフロン類を含へジフルオロメタン
0〜略85重量勉 クロロジフルオロメタンO〜略95
重量κ ジクロロフルオロエタン略5〜略85重量%の
組或範囲であることを特徴とするものであり、特に ジ
フルオロメタンO〜略75重量米 クロロジフルオロメ
タンO〜略90重量基 ジクロロフルオ口エタン略10
〜略75重量%の組戒範囲が望ましいものであも 作用 上述の様に 作動流体を、オゾン破壊能力のほとんどな
い分子構造中に塩素を含まないフロン類であるジフルオ
ロメタン(○DP=0)と、オゾン破壊能力の極めて低
い分子構造中に塩素・水素を共に含むフロン類であるク
ロロジフルオロメタン(○DP=0.  05)および
ジクロロフルオロエタン(ODP=0.  1)の少な
くとも三種の混合物となすことにより、戒層圏オゾン層
に及ぼす影響をRl2よりもはるかに小さくすることを
可能とするものであも 又 本発明は上述の組或範囲と
することによって、冷凍機・ヒートボンブ等の利用温度
である略0〜略50℃においてR12と同程度の蒸気圧
を有L  Rl2の代替として現行機器で使用可能な作
動流体を提供することを可能とするものであも 特に上
述の組合せおよび組威範囲におけるODPは0. 02
〜0. 07と予想さh  R12の代替として極めて
有望な作動流体となるものであも またかかる混合物は
非共沸混合物となり、凝縮過程および蒸発過程において
温度勾配をもった碌 熱源流体との温度差を近接させた
ロレンツサイクルを構或することにより、R12よりも
高い戒績係数を期待できるものであも 実施例 以下、本発明による作動流体の実施例について、図を用
いて説明すも 第1図は ジフルオロメタン(R32)、クロロジフル
オロメタン(R22)、 1.  1−ジクロローl−
フルオ口エタン(RI4lb>の三種のフロン類の混合
物によって構戊される作動流体Q一定温度・一定圧力に
おける平衡状態を三角座標を用いて示したものであん 
本三角座標において(よ 三角形の各頂点に 上側頂点
を基点として反時計回りに沸点の低い順に単一物質を配
置しており、座標平面上のある点における各戊分の組或
比(重量比)C友  点と三角形の各辺との距離の比で
表されも またこのとき、点と三角形の辺との距離は 
辺に相対する側にある三角座標の頂点に記された物質の
組或比に対応ずん 第1図においてt i&  温度0
℃・圧力2.  1 1 6 kg/cm”Gにおける
混合物の気液平衡線であり、この温度・圧力はR12の
飽和状態に相当すん 気液平衡線(R12 0℃相当)
1の上側の線は飽和気相亀気液平衡線(R120℃相当
〉 1の下側の線は飽和液相線を表わし この画線で挟
まれた範囲においては気液平衡状態となん また2は 
温度50℃・圧力1 1.  373kg/cm”Gに
おける混合物の気液平衡線であり、この温度・圧力もR
12の飽和状態に相当すん 図からわかるようにR32
、R22及、びR14lbがそれぞれO〜略85重量基
 0〜略95重量κ 略5〜略80重量%となるような
組戊範囲(よ 略0〜略50℃の利用温度においてR1
2とほぼ同等の蒸気圧を有するため望まし(℃ さら!
;l,R32、R22及びR14lbがそれぞれO〜略
75重量勉 0〜略90重量越 路10〜略75重量%
となるような組或範囲(よ 0℃と50℃の間のすべて
の利用温度においてR12とほぼ同等の蒸気圧を有する
ため特に望ましL1  特に上述の組合せおよび組或範
囲におけるODPは0, 02〜0. 07と予想さh
  Rl2の代替として極めて有望な作動流体となるも
のである。
Means for Solving the Problems The present invention aims to solve the above-mentioned problems.
Difluoromethane containing three types of fluorocarbons (ClaF) 0 to approximately 85% by weight Chlorodifluoromethane O to approximately 95% by weight
Weight κ is characterized by a range of approximately 5 to approximately 85% by weight of dichlorofluoroethane, particularly difluoromethane O to approximately 75% by weight, chlorodifluoromethane O to approximately 90% by weight, dichlorofluoroethane (abbreviated) 10
As mentioned above, the working fluid should be difluoromethane (○DP=0), which is a fluorocarbon that does not contain chlorine in its molecular structure and has almost no ozone-depleting ability. and a mixture of at least three types of chlorodifluoromethane (○DP=0.05) and dichlorofluoroethane (ODP=0.1), which are fluorocarbons containing both chlorine and hydrogen in their molecular structures with extremely low ozone depletion ability. By doing so, it is possible to make the influence on the stratospheric ozone layer much smaller than Rl2.The present invention also makes it possible to make the use of refrigerators, heat bombs, etc. within the above-mentioned range. It is possible to provide a working fluid that can be used in current equipment as a substitute for L R12 and has a vapor pressure similar to that of R12 at a temperature of about 0 to about 50 ° C. The ODP in the range is 0. 02
~0. This mixture is expected to be a very promising working fluid as a replacement for R12.In addition, such a mixture will be a non-azeotropic mixture, and will have a temperature gradient in the condensation and evaporation processes. By constructing a Lorenz cycle, a higher performance coefficient than that of R12 can be expected. Difluoromethane (R32), chlorodifluoromethane (R22), 1. 1-dichlorol-
The working fluid Q is composed of a mixture of three types of fluorocarbons (RI4lb). The equilibrium state at a constant temperature and constant pressure is shown using triangular coordinates.
In this triangular coordinate system, a single substance is placed at each vertex of the triangle in the order of decreasing boiling point, starting from the upper vertex, in a counterclockwise order, and the composition ratio (weight ratio) of each component at a certain point on the coordinate plane is ) C It is also expressed as the ratio of the distance between the point and each side of the triangle.In this case, the distance between the point and the side of the triangle is
It corresponds to the composition ratio of the substance written at the vertex of the triangular coordinates on the side opposite to the side.In Figure 1, t i & temperature 0
℃・Pressure 2. This is the vapor-liquid equilibrium line of the mixture at 1 1 6 kg/cm"G, and this temperature and pressure correspond to the saturated state of R12. Vapor-liquid equilibrium line (R12 equivalent to 0°C)
The upper line of 1 represents the saturated gas phase gas-liquid equilibrium line (equivalent to R120°C) The lower line of 1 represents the saturated liquidus line, and the area between these lines is the vapor-liquid equilibrium state.2 teeth
Temperature 50℃・Pressure 1 1. This is the vapor-liquid equilibrium line of the mixture at 373 kg/cm"G, and this temperature and pressure are also R
As you can see from the figure, this corresponds to the saturation state of R32.
, R22, and R14lb are respectively O to about 85 weight groups, 0 to about 95 weight κ, about 5 to about 80 weight% (R1 at a usage temperature of about 0 to about 50°C)
It is desirable because it has almost the same vapor pressure as 2 (℃ Sara!
;1, R32, R22 and R14lb are each 0~approximately 75% by weight; 0~approximately 90% by weight; 10~approximately 75% by weight
Particularly desirable is a combination and range in which L1 has almost the same vapor pressure as R12 at all operating temperatures between 0°C and 50°C. ~0.07 h
This is a very promising working fluid as a replacement for Rl2.

第1図中の点A1〜点F1における作動流体の組或及び
ODPを第1表に示す。
Table 1 shows the working fluid composition and ODP at points A1 to F1 in FIG.

′:)木1層一白冫 第l表 同図に於ける点A1〜点CIは気液平衡線(Rl2 5
0℃相当)2の飽和気相線上に また点DI〜点F1は
気液平衡線(R12  50℃相当〉2の飽和液線上に
あると共に 気液平衡線(Rl2 0℃相当)lの飽和
気相線及び気液平衡線(R12  0℃相当) 1の飽
和液相線の画線で挟まれた範囲にあることか転 温度O
℃・圧力2.11 6 kg/cm”G (R 1 2
の飽和状態に相当)においては気液平衡状態となん 従
って、第1表に示された組或を有する作動流体&上 0
℃・50tにおけるR12の飽和蒸気圧の条件下で飽和
状態あるいは気液平衡状態を実現し 略O〜略50℃の
利用温度において、同温度におけるR12の飽和蒸気圧
で操作することにより、R12とほぼ等しい凝縮温度・
蒸発温度を得ることが可能となるものであも ここでCt  気液平衡線(R12  50℃相当)2
上の点についてのみ説明したバ 点A1〜点Flの内側
にある戊 すなわ板 温度O℃・圧力2.116kg/
cm”G及び温度50℃・圧力1 1.373kg/c
m”G(両者ともR12の飽和状態に相当)において気
液平衡状態となる組或を有する作動流体についても同様
に操作することにより、略0〜略50℃の利用温度にお
いてR12とほぼ等しい凝縮温度・蒸発温度を得ること
が可能となるものであも 本実施例においては作動流体は三種のフロン類の混合物
によって構或されている力交 構造異性体を含めて四種
以上のフロンの混合物によって作動流体を構或すること
も勿論可能であも またかかる混合物は非共沸混合物と
なり、凝縮過程および蒸発過程において温度勾配をもっ
た吹 熱源流体との温度差を近接させたロレンッサイク
ルを構或することにより、R12よりも高い或績係数を
期待できるものであも 発明の効果 以上の説明から明らかなように 本発明は 作動流体を
、分子構造中に塩素を含まないフロン類と、分子構造中
に塩素・水素を共に含むフロン類の三種以上から或る混
合物となし その組或範囲を特定したことにより、 (1)或層圏オゾン層に及ぼす影響をR12よりもはる
かに小さくするためQ 作動流体の選択の幅を拡大する
ことが可能であも (2)機器の利用温度においてR12と同程度の蒸気圧
を有L..R12の代替として現行機器で使用可能であ
も (3)非共沸混合物の温度勾配の性質を利用して、R1
2よりも高い戊績係数を期待できる等の効果を有するも
のであも
':) 1st layer of wood, 1st layer, 1st table Points A1 to CI in the same figure are the vapor-liquid equilibrium line (Rl2 5
Also, points DI to F1 are on the saturated liquid line of the vapor-liquid equilibrium line (R12, equivalent to 50°C) 2, and the saturated gas phase line of the vapor-liquid equilibrium line (Rl2, equivalent to 0°C) 2. Phase line and vapor-liquid equilibrium line (R12 equivalent to 0℃) The transition temperature O
℃・Pressure 2.11 6 kg/cm"G (R 1 2
Therefore, the working fluid having the composition shown in Table 1 & above 0
Achieving a saturated state or a vapor-liquid equilibrium state under the condition of the saturated vapor pressure of R12 at 50 t at °C, and operating at the saturated vapor pressure of R12 at the same temperature at a usage temperature of about 0 to about 50 °C, Almost equal condensing temperature
If it is possible to obtain the evaporation temperature, here Ct vapor-liquid equilibrium line (R12 equivalent to 50°C) 2
Only the above points have been explained. The hole inside points A1 to Fl. Temperature 0°C, pressure 2.116 kg/
cm”G and temperature 50℃・pressure 1 1.373kg/c
By performing the same operation on a working fluid having a composition that reaches a vapor-liquid equilibrium state at m''G (both correspond to the saturated state of R12), condensation approximately equal to that of R12 can be obtained at a usage temperature of approximately 0 to approximately 50°C. Although it is possible to obtain the temperature and evaporation temperature, in this example, the working fluid is composed of a mixture of three types of fluorocarbons. Although it is of course possible to configure the working fluid by Effects of the Invention As is clear from the above explanation, the present invention provides a working fluid with fluorocarbons that do not contain chlorine in its molecular structure. A mixture of three or more types of fluorocarbons that contain both chlorine and hydrogen in their molecular structure. By specifying the range of the combination, (1) the effect on the stratospheric ozone layer is much smaller than that of R12. Therefore, although it is possible to expand the range of working fluid selection, (2) it has a vapor pressure similar to that of R12 at the operating temperature of the equipment, and even if it can be used in current equipment as an alternative to R12 ( 3) Utilizing the temperature gradient properties of non-azeotropic mixtures, R1
Even if it has the effect that a performance coefficient higher than 2 can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は 三種のフロン類の混合物によって構戊される
作動流体α 一定温度・一定圧力における平衡状態を三
角座標を用いて示した図であも1・・・気液平衡線(R
120℃相当)、2・・・気液平衡線(R12  50
℃相当)。
Figure 1 is a diagram showing the equilibrium state of a working fluid α composed of a mixture of three types of fluorocarbons at constant temperature and constant pressure using triangular coordinates.
120℃ equivalent), 2...vapor-liquid equilibrium line (R12 50
℃ equivalent).

Claims (2)

【特許請求の範囲】[Claims] (1)ジフルオロメタン85重量%以下、クロロジフル
オロメタン95重量%以下、ジクロロフルオロエタン5
〜80重量%以下の少なくとも三種のフロン類を含む作
動流体。
(1) Difluoromethane 85% by weight or less, chlorodifluoromethane 95% by weight or less, dichlorofluoroethane 5
A working fluid containing up to 80% by weight of at least three types of fluorocarbons.
(2)ジフルオロメタン75重量%以下、クロロジフル
オロメタン90重量%以下、ジクロロフルオロエタン1
0〜75重量%以下の少なくとも三種のフロン類を含む
作動流体。
(2) Difluoromethane 75% by weight or less, chlorodifluoromethane 90% by weight or less, dichlorofluoroethane 1
A working fluid containing 0 to 75% by weight of at least three types of fluorocarbons.
JP1309664A 1989-11-29 1989-11-29 Working fluid Pending JPH03168282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309664A JPH03168282A (en) 1989-11-29 1989-11-29 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309664A JPH03168282A (en) 1989-11-29 1989-11-29 Working fluid

Publications (1)

Publication Number Publication Date
JPH03168282A true JPH03168282A (en) 1991-07-22

Family

ID=17995780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309664A Pending JPH03168282A (en) 1989-11-29 1989-11-29 Working fluid

Country Status (1)

Country Link
JP (1) JPH03168282A (en)

Similar Documents

Publication Publication Date Title
JPH05117643A (en) Working fluid
JPH0655942B2 (en) Working fluid
JPH03170594A (en) Working fluid
JPH03170591A (en) Working fluid
JPH03170586A (en) Working fluid
JPH05117645A (en) Working fluid
JPH03170584A (en) Working fluid
JPH03170590A (en) Working fluid
JPH03168282A (en) Working fluid
JPH03170593A (en) Working fluid
JPH03172386A (en) Working fluid
JPH03172385A (en) Working fluid
JPH03168262A (en) Working fluid
JPH03170592A (en) Working fluid
JPH03168284A (en) Working fluid
JPH03168288A (en) Working fluid
JPH05117649A (en) Working fluid
JPH03168265A (en) Working fluid
JPH03168287A (en) Working fluid
JPH03168283A (en) Working fluid
JPH0517755A (en) Working fluid
JPH0517753A (en) Working fluid
JPH03168289A (en) Working fluid
JPH03168278A (en) Working fluid
JPH03168264A (en) Working fluid