JPH03170584A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH03170584A
JPH03170584A JP1311153A JP31115389A JPH03170584A JP H03170584 A JPH03170584 A JP H03170584A JP 1311153 A JP1311153 A JP 1311153A JP 31115389 A JP31115389 A JP 31115389A JP H03170584 A JPH03170584 A JP H03170584A
Authority
JP
Japan
Prior art keywords
working fluid
approximately
weight
temperature
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1311153A
Other languages
Japanese (ja)
Other versions
JP2532695B2 (en
Inventor
Yuji Yoshida
雄二 吉田
Shozo Funakura
正三 船倉
Koji Arita
浩二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1311153A priority Critical patent/JP2532695B2/en
Priority to EP90122653A priority patent/EP0430170B1/en
Priority to DE69011287T priority patent/DE69011287T2/en
Priority to KR1019900019594A priority patent/KR930010514B1/en
Publication of JPH03170584A publication Critical patent/JPH03170584A/en
Priority to US07/839,700 priority patent/US5304319A/en
Application granted granted Critical
Publication of JP2532695B2 publication Critical patent/JP2532695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain a working fluid which scarcely affects the ozonosphere and serves as an R22 substitute by mixing trifluoromethane, tetrafluoroethane, and difluoroethane. CONSTITUTION:A working fluid containing at least three hydrofluorocarbons, i.e., 5-50wt.% trifluoromethane, at most 95wt.% tetrafluoroethane, and at most 90wt.% difluoroethane. As the working fluid, particularly those comprising 10-40wt.% trifluoromethane, at most 85wt.% tetrafluoroethane, and at most 85wt.% difluoroethane are preferably used. The working fluid having a composition in the above-mentioned range has a vapor pressure comparable to that of R22 at about 0-50 deg.C, which is the service temperature of a heat pump of, e.g. an air conditioner or a refrigerator, and it can be employed as an R22 substitute in machinery now in use.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(i.エアコン・冷凍機等のヒートボンプ装置に
使用される作動流体に関すん 従来の技術 従夾 エアコン・冷凍機等のヒートポンプ装置において
(よ 作動流体としてフロン類(以下R○○またはR○
○○と記す)と呼ばれるハロゲン化炭化水素が知られて
おり、利用温度としては凝縮温度および/または蒸発温
度が略O〜略50℃の範囲において通常使用されも 中
でもクロロジフルオ口メタン(CHCIF2、R22)
は家庭用エアコン、 ビル用エアコンや大型冷凍機等の
作動流体として幅広く用いられていも 発明が解決しようとする課題 しかしなが転 近年フロンによる底層圏オゾン層破壊が
地球規模の環境問題となっており、戒層圏オゾン破壊能
力が犬であるフロン類(以下、特定フロンと記す)につ
いて(よ すでに国際条約によって使用量及び生産量の
規制がなされ さらに将来的には特定フロンの使用・生
産を廃止しようという動きがある。さて、R22はオゾ
ン破壊係数(トリクロロフルオロメタン(CCIg}’
)の戒層圏オゾン破壊能力をlとしたときの戊層圏オゾ
ン破壊能九 以下ODPと記す)が0. 05と微少で
あり、特定フロンではないものの将来的に使用量の増大
が予想され 冷凍・空調機器が広く普及した現在、R2
2の使用量及び生産量の増大が人類の生活環境に与える
影響も大きくなるものと予想されていも 従って、底層
圏オゾン破壊能カが小であるものQ 若干の破壊能力が
あるとされるR22の代替となる作動流体の早期開発も
強く要望されている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention (i. Conventional technology related to working fluids used in heat pump devices such as air conditioners and refrigerators) Fluorocarbons (hereinafter referred to as R○○ or R○
Halogenated hydrocarbons known as )
Although CFCs are widely used as working fluids in home air conditioners, building air conditioners, and large refrigerators, the problem that the invention attempts to solve remains the same. Regarding fluorocarbons (hereinafter referred to as specified fluorocarbons), which have a limited ability to deplete stratospheric ozone, international treaties have already regulated the use and production of fluorocarbons. There is a movement to abolish R22. Now, R22 has an ozone depletion coefficient (trichlorofluoromethane
) is 0. 05, and although it is not a specified CFC, usage is expected to increase in the future.Now that refrigeration and air conditioning equipment has become widespread, R2
Although it is expected that an increase in the amount of use and production of R22 will have a greater impact on the living environment of humankind, it is therefore expected that R22 has a small ability to deplete the abyssal ozone. There is also a strong demand for the early development of alternative working fluids.

本発明C友  上述の問題に鑑みて試されたもので、戒
層圏オゾン層に及ぼす影響がほとんどなI.x  R2
2の代替となる作動流体を提供するものである。
Companion of the present invention C This was tried in view of the above-mentioned problems, and the I. x R2
The present invention provides an alternative working fluid to 2.

課題を解決するための手段 本発明は上述の課題を解決するた歇 少なくとも、 ト
リフル才ロメタン(CHF*)とテトラフルオロエタン
(C2H2F−)とジフルオロエタン(CzHaF2)
(D三種のフロン類を含へ トリフルオロメタン略5〜
略50重量勉 テトラフルオロエタン0〜略95重量米
 ジフルオロエタン0〜略90重量%の組戒範囲である
ことを特徴とするものであり、特に トリフルオロメタ
ン略1o〜略40重量米 テトラフルオロエタン0〜略
85重i% ジフルオロエタン0〜略85重量%の組或
範囲が望ましいものである。
Means for Solving the Problems The present invention solves the above-mentioned problems.At least, trifluoromethane (CHF*), tetrafluoroethane (C2H2F-), and difluoroethane (CzHaF2) are used.
(Includes three types of fluorocarbons, trifluoromethane, approximately 5~
It is characterized by a composition range of approximately 50% by weight, tetrafluoroethane from 0 to approximately 95% by weight, difluoroethane from 0 to approximately 90% by weight, particularly trifluoromethane from approximately 1% to approximately 40% by weight, tetrafluoroethane from 0 to approximately 90% by weight. A range of about 85% by weight difluoroethane from 0 to about 85% by weight is desirable.

作用 本発明は 上述の組合せによって、作動流体を、オゾン
破壊能力のほとんどなし\ 分子構造中に塩素を含まな
いフロン類であるトリフルオロメタン(O D P =
 O )、テトラフルオロエタン(ODPO)およびジ
フルオロエタン(ODP=0)の混合物となすことによ
り、戒層圏オゾン層に及ぼす影響をR22よりもさらに
小さく、ほとんどなくすることを可能とするものであも
 又 本発明は上述の組戒範囲とすることによって、エ
アコン・冷凍機等のヒートボンブ装置の利用温度である
略O〜略50℃においてR22と同程度の蒸気圧を有L
A R22の代替として現行機器で使用可能な作動流体
を提供することを可能とするものである。従って上述の
組合せおよび組或範囲におけるODPもOと予想さh,
R22の代替として極めて有望な作動流体となるもので
あa またかかる混合物は非共沸混合物となり、凝縮過
程および蒸発過程において温度勾配をもったゑ 熱源流
体との温度差を近接させたロレンツサイクルを構或する
ことにより、R22よりも高い或績係数を期待できるも
のであも また一般に 戒層圏オゾン破壊能力があるフロン類41
  そのODPの値の大きさにつれて地球温暖化の効果
も大きい傾向がある力曳 本発明による作動流体はOD
Pが0であるフロン類のみの三種以上から戊る混合物に
よって構威されているたべ地球温暖化の効果はR22と
同程度あるいはR22未満と推定され 最近世界的問題
となっている地球温暖化への寄与を小とすることをも可
能とするものであも さて、本発明は特にトリフルオロメタンを含む三種以上
のフロン類から戒る混合物である。 トリフルオロメタ
ンは 臨界温度が低<(25.7℃)、蒸気圧が高いた
めに 単独では略O〜略50℃の利用温度のエアコン・
冷凍機等のヒートポンブ装置には使用できない力交 現
在でも市販されており、かかる混合物とすることによっ
て実用的なR22の代替となる作動流体を構戊すること
が可能となるものであも 実施例 以下、本発明による作動流体の実施例について、図を用
いて説明すも 第1図は トリフルオロメタン(R23)、 1,1,
  l,  2−テトラフルオロエタン(R 1 3 
4 a)、1,l−ジフルオロエタン(R152a)の
三種のフロン類の混合物によって構威される作動流体Q
 一定温度・一定圧力における平衡状態を三角座標を用
いて示したものであん 本三角座標において(よ 三角
形の各頂点に 上側頂点を基点として反時計回りに沸点
の低い順に単一物質を配置しており、座標平面上のある
点における各戒分の組戊比(重量比)(戴  点と三角
形の各辺との距離の比で表されも またこのとき、点と
三角形の辺との距離(よ 辺に相対する側にある三角座
標の頂点に記された物質の組戒比に対応ずん 第1図に
おいて11ヨ  温度O℃・圧力4.  044kg/
cm R Gにおける混合物の気液平衡線であり、この
温度・圧力はR22の飽和状態に相当する。気液平衡線
(R22  0℃相当)lの上側の線は飽和気相風 気
液平衡線(R22  0℃相当)lの下側の線は飽和液
相線を表わし この画線で挟まれた範囲においては気液
平衡状態となん また21上温度50℃・圧力18. 
 782kg/cm’Gにおける混合物の気液平衡線で
あり、この温度・圧力もR22の飽和状態に相当する。
Effect of the present invention By using the above-mentioned combination, the working fluid has almost no ozone depletion ability\trifluoromethane (O D P =
O), tetrafluoroethane (ODPO) and difluoroethane (ODP=0), the effect on the stratospheric ozone layer is even smaller than that of R22, and it is possible to almost eliminate it. In addition, by setting the above-mentioned range, the present invention has a vapor pressure comparable to that of R22 at approximately 0 to approximately 50 degrees Celsius, which is the usage temperature of heat bomb devices such as air conditioners and refrigerators.
This makes it possible to provide a working fluid that can be used in current equipment as an alternative to AR22. Therefore, the ODP in the above combination and set range is also expected to be O, h,
It is an extremely promising working fluid as an alternative to R22.a Such a mixture becomes a non-azeotropic mixture and has a temperature gradient in the condensation and evaporation processes.A Lorenz cycle in which the temperature difference between the heat source fluid and the heat source fluid is kept close is used. In general, fluorocarbons 41, which have the ability to deplete stratospheric ozone, can be expected to have a higher coefficient of performance than R22.
The effect of global warming tends to increase as the ODP value increases.The working fluid according to the present invention has an OD
The global warming effect caused by a mixture of three or more types of fluorocarbons with P of 0 is estimated to be on the same level as R22 or less than R22, which has recently become a worldwide problem. However, the present invention is particularly directed to a mixture containing three or more types of fluorocarbons, including trifluoromethane. Because trifluoromethane has a low critical temperature (25.7℃) and a high vapor pressure, it can be used alone for air conditioners and air conditioners with operating temperatures of approximately 0 to approximately 50℃.
This mixture cannot be used in heat pump devices such as refrigerators.It is still commercially available, and by making such a mixture, it is possible to construct a working fluid that can be a practical substitute for R22. Examples of working fluids according to the present invention will be explained below with reference to figures.
l, 2-tetrafluoroethane (R 1 3
4 a) Working fluid Q composed of a mixture of three types of fluorocarbons: 1,l-difluoroethane (R152a)
An equilibrium state at a constant temperature and constant pressure is shown using triangular coordinates. The ratio (weight ratio) of each precept at a certain point on the coordinate plane is expressed as the ratio of the distance between the point and each side of the triangle. This corresponds to the composition ratio of the substance written at the vertex of the triangular coordinates on the side opposite the side.
This is the vapor-liquid equilibrium line of the mixture at cm R G, and this temperature and pressure correspond to the saturated state of R22. The upper line of the vapor-liquid equilibrium line (R22, equivalent to 0℃) l represents the saturated gas phase wind. The line below the vapor-liquid equilibrium line (R22, equivalent to 0℃) l represents the saturated liquidus line, and the line sandwiched between these lines In the range 21, temperature is 50℃ and pressure is 18.
This is the vapor-liquid equilibrium line of the mixture at 782 kg/cm'G, and this temperature and pressure also correspond to the saturated state of R22.

R23を単独で使用すると、 50℃においては臨界温
度を超えてしまうものα かかる混合物となすことによ
って飽和状態が存在し 略O〜略50℃の利用温度のエ
アコン・冷凍機等のヒートボンプ装置に使用することか
可能となるものである。図からわかるように R23、
R134a及びR152aがそれぞれ略5〜略50重量
%. 0〜略95重量% 0〜略90重量%となるよう
な組戒範囲ζ上 略0〜略50℃の利用温度においてR
22とほぼ同等の蒸気圧を有するため望まし(1 さら
G,:,R23、R134a及びR152aがそれぞれ
略lO〜略40重量越 0〜略90重量基 0〜略85
重量%となるような組戊範囲(よ O℃と50℃の間の
すべての利用温度においてR22とほぼ同等の蒸気圧を
有するため特に望まし(ち 第1図中の点A+〜点F1における作動流体の組或を第
l表に示九 点A1〜点C1は気液平衡線(R22  
50℃相当〉2の飽和気相線上に 点D1〜点F+は気
液平衡線(R22  5Ot相当)2の飽和液相線上に
あり、共に気液平衡線(R220℃相当)lの飽和気相
線及び気液平衡線(R22  0℃相当)1の飽和液相
線の両線で挟まれた範囲にあることから、温度0℃・圧
力4.044 k g/ cm’G (R 2 2の飽
和状態に相当)においては気液平衡状態となん 従って
、第1表に示された組戊を有する作動流体番上 0℃・
50tにおけるR22の飽和蒸気圧の条件下で飽和状態
あるいは気液平衡状態を実現し 略0〜略5o℃の利用
温度において、同温度におけるR22の飽和蒸気圧で操
作することにより、R22とほぼ等しい凝縮温度・蒸発
温度を得ることが可能となるものである。
If R23 is used alone, the critical temperature will be exceeded at 50°C α.By forming such a mixture, a saturated state will exist, and it can be used in heat pump devices such as air conditioners and refrigerators with operating temperatures of approximately 0 to approximately 50°C. It is possible to do so. As you can see from the figure, R23,
R134a and R152a are each about 5 to about 50% by weight. 0 to approximately 95% by weight Above the composition range ζ such that 0 to approximately 90% by weight R at a usage temperature of approximately 0 to approximately 50°C
Desirable because it has almost the same vapor pressure as 22 (1 Sara G,:, R23, R134a and R152a each exceed about 1O to about 40% by weight, 0 to about 90% by weight, 0 to about 85%)
It is particularly desirable to have a vapor pressure approximately equal to that of R22 at all operating temperatures between 0°C and 50°C (from point A+ to point F1 in Figure 1). The working fluid composition is shown in Table 9. Points A1 to C1 are the vapor-liquid equilibrium line (R22
Points D1 to F+ are on the saturated liquidus line of the vapor-liquid equilibrium line (equivalent to R22 5Ot) 2, and both are on the saturated vapor phase line of the vapor-liquid equilibrium line (equivalent to R220°C) l. Since it is in the range between both the saturated liquidus line and the vapor-liquid equilibrium line (R22 0℃ equivalent) 1, the temperature is 0℃ and the pressure is 4.044 kg/cm'G (R22 Therefore, the working fluid having the structure shown in Table 1 is 0℃・
By realizing a saturated state or a vapor-liquid equilibrium state under the condition of the saturated vapor pressure of R22 at 50 tons, and operating at the saturated vapor pressure of R22 at the same temperature at a usage temperature of about 0 to about 5oC, it is almost equal to R22. This makes it possible to obtain the condensation temperature and evaporation temperature.

ここで(上 気液平衡線(R22  50℃相当)2上
の点についてのみ説明した爪 点A+〜点F1の内側に
ある戊 すなわ板 温度O℃・圧力4.0 4 4 k
 g/cm2G及び温度50℃・圧力18.782kg
/cm”G(両者ともR22の飽和状態に相当)におい
て気液平衡状態となる組戒を有する作動流体についても
同様に操作することにより、略0〜略50℃の利用温度
においてR22とほぼ等しい凝縮温度・蒸発温度を得る
ことが可能となるものであも 第2図Cよ R23、 1.  1,  2.  2−
テトラフルオロエタン(R134)、R152aの三種
のフロン類の混合物によって構或される作動流体Q一定
温度・一定圧力における平衡状態を三角座標を用いて示
したものであも 本三角座標においては 大気圧におけ
る標準沸点はR152aの方がRl34よりも低いもの
Q 第l図との関連において、三角形の各頂点に 上側
頂点を基点として反時計回りに R23、R134、R
152aの順に単一物質を配置していも 第2図におい
て31よ 温度0℃・圧力4.  044kg/cm”
Gにおける混合物の気液平衡線であり、また41よ 温
度50℃・圧力18.  782kg/cm’Gにおけ
る混合物の気液平衡線であも この場合にG;LR23
、R134及びR152aがそれぞれ略lO〜略50重
量%.O〜略90重量%,O〜略90重量%となるよう
な組或範囲力<.R22とほぼ同等の蒸気圧を有するた
め望ましく、R23、Rl34及びR152aがそれぞ
れ略l5〜略40重量%O〜略85重量%0〜略85重
量%となるような組成範囲バ 特に望ましもち 第2図中の点A2〜点F2における作動流体の組成を第
2表に示す。点A2〜点C2は気液平衡線(R22  
50℃相当)4の飽和気相線上に 点D2〜点F2は気
液平衡線(R22  50℃相当)4の飽和液相線上に
あり、共に気液平衡線(R220℃相当)3の飽和気相
線及び気液平衡線(R22  0℃相当)3の飽和液相
線の両線で挟まれた範囲にあることか転 温度O℃・圧
力4.044 k g/ cm”G (R 2 2の飽
和状態に相当)においては気液平衡状態となん 従って
、第2表に示された組戒を有する作動流体ぱ O℃・5
0℃におけるR22の飽和蒸気圧の条件下で飽和状態あ
るいは気液平衡状態を実現よ 略O〜略50℃の利用温
度において、同温度におけるR22の飽和蒸気圧で操作
することにより、R22とほぼ等しい凝縮温度・蒸発温
度を得ることが可能となるものであも ここで【よ 気液平衡線(R22  50℃相当)4上
の点についてのみ説明した力文 点A2〜点F2の内側
にある戊 すなわ板 温度O℃・圧力4.0 4 4 
kg/cm2G及び温度50℃・圧力1 8.7 8 
2kg/cm2G (両者ともR22の飽和状態に相当
)において気液平衡状態となる組或を有する作動流体に
ついても同様に操作することにより、略O〜略50℃の
利用温度においてR22とほぼ等しい凝縮温度・蒸発温
度を得ることが可能となるものである。
Here, only the points on the vapor-liquid equilibrium line (R22, equivalent to 50°C) 2 are explained (top) The hole inside point A+ to point F1 Temperature 0°C, pressure 4.0 4 4 k
g/cm2G and temperature 50℃/pressure 18.782kg
/cm"G (both correspond to the saturated state of R22) By performing the same operation on a working fluid that has a gas-liquid equilibrium state, it becomes almost equal to R22 at a usage temperature of about 0 to about 50 degrees Celsius. If it is possible to obtain the condensation temperature and evaporation temperature, see Figure 2 C. R23, 1. 1, 2. 2-
Although the working fluid Q is composed of a mixture of three types of fluorocarbons, tetrafluoroethane (R134) and R152a, the equilibrium state at a constant temperature and constant pressure is shown using triangular coordinates.In these triangular coordinates, atmospheric pressure The standard boiling point of R152a is lower than that of R134.
Even if a single substance is arranged in the order of 152a, it will be 31 in Figure 2.Temperature 0℃・Pressure 4. 044kg/cm”
It is the vapor-liquid equilibrium line of the mixture at 41. Temperature 50°C and pressure 18. The vapor-liquid equilibrium line of the mixture at 782 kg/cm'G In this case, G; LR23
, R134 and R152a each in an amount of about 10 to about 50% by weight. A certain range of assembly force such that O~approximately 90% by weight, O~approximately 90% by weight<. Particularly desirable is a composition range bar in which R23, Rl34 and R152a are respectively about 15 to about 40% by weight, O to about 85% by weight, and 0 to about 85% by weight. Table 2 shows the composition of the working fluid at points A2 to F2 in FIG. Point A2 to point C2 is the vapor-liquid equilibrium line (R22
Points D2 to F2 are on the saturated liquidus line of the vapor-liquid equilibrium line (R22, equivalent to 50°C) 4, and both are on the saturated vapor line of the vapor-liquid equilibrium line (R22, equivalent to 50°C) 3. It must be within the range between the phase line and the saturated liquid phase line (equivalent to R22 0℃) 3.Temperature 0℃・Pressure 4.044 kg/cm"G (equivalent to a saturated state of
Achieve a saturated state or a vapor-liquid equilibrium state under the condition of the saturated vapor pressure of R22 at 0°C. At a usage temperature of about 0 to about 50°C, by operating at the saturated vapor pressure of R22 at the same temperature, If it is possible to obtain equal condensation and evaporation temperatures, here we explain only the points on the vapor-liquid equilibrium line (R22, equivalent to 50°C) 4, which are inside points A2 to F2. Sunawa board Temperature 0°C/Pressure 4.0 4 4
kg/cm2G and temperature 50℃/pressure 1 8.7 8
By performing the same operation on a working fluid that has a gas-liquid equilibrium state at 2 kg/cm2G (both correspond to the saturated state of R22), condensation approximately equal to that of R22 can be obtained at a usage temperature of approximately 0 to approximately 50°C. This makes it possible to obtain temperature and evaporation temperature.

以上の実施例においては作動流体は三種のフロン類の混
合物によって構威されている力交 構造異性体を含めて
四種以上のフロンの混合物によって作動流体を構成する
ことも勿論可能であり、この場合、 トリフルオロメタ
ン略5〜略50重量勉テトラフルオロエタン0〜略95
重量% ジフルオロエタンO〜略90重量%となるよう
な組成範囲(よ 略0〜略50℃の利用温度においてR
22とほぼ同等の蒸気圧を有するため望ましし1 さら
に トリフルオロメタン略lO〜略40重量%テトラフ
ルオロエタン0〜略85重量米 ジフルオロエタン0〜
略85重量%となるような組戒範囲{よ 0℃と50℃
の間のすべての利用温度においてR22とほぼ同等の蒸
気圧を有するため特に望まし(℃ 特に上述の組合せお
よび組或範囲における○DPも0と予想さtt  R2
2の代替として極めて有望な作動流体となるものである
。またかかる混合物は非共沸混合物となり、凝縮過程お
よび蒸発過程において温度勾配をもったム 熱源流体と
の温度差を近接させたロレンツサイクルを構戊すること
により、 R22よりも高い或績係数を期待できるもの
であも 発明の効果 以上の説明から明らかなように 本発明1よ トリフル
オロメタンを含へ 作動流体を、分子構造中に塩素を含
まないフロン類のみの三種以上から成る混合物となし 
その組戊範囲を特定したことにより、 (1)底層圏オゾン層に及ぼす影響をR22よりもさら
に小さく、ほとんどなしとする作動流体の選択の幅を拡
大することが可能である。
In the above embodiments, the working fluid is constituted by a mixture of three types of fluorocarbons.It is of course possible to configure the working fluid by a mixture of four or more types of fluorocarbons, including structural isomers. In the case, trifluoromethane approximately 5 to approximately 50% by weight tetrafluoroethane 0 to approximately 95% by weight
Weight % Difluoroethane O to approximately 90% by weight (with R
It is desirable because it has almost the same vapor pressure as 22. Furthermore, trifluoromethane approximately 10 to approximately 40% by weight, tetrafluoroethane 0 to approximately 85% by weight, and difluoroethane 0 to approximately 85% by weight.
The composition range is approximately 85% by weight {0℃ and 50℃
It is particularly desirable because it has almost the same vapor pressure as R22 at all operating temperatures between (℃) ○DP is also expected to be 0 especially in the above-mentioned combinations and ranges tt R2
This is a very promising working fluid as an alternative to 2. In addition, such a mixture becomes a non-azeotropic mixture, and by constructing a Lorenz cycle in which the temperature difference between the heat source fluid and the heat source fluid is close to each other, a higher coefficient of performance than R22 is expected. Effects of the Invention As is clear from the above explanation, the working fluid containing trifluoromethane is a mixture of three or more types of fluorocarbons that do not contain chlorine in their molecular structure.
By specifying the range of the composition, it is possible to (1) expand the range of selection of working fluids that have even less influence on the bottom ozone layer than R22, and have almost no effect;

(2)トリフルオロメタン単独では使用できない機器の
利用温度においてR22と同程度の蒸気圧を有L,,R
22の代替として現行機器で使用可能である。
(2) Trifluoromethane alone has a vapor pressure similar to that of R22 at the operating temperature of equipment where it cannot be used.
It can be used in current equipment as an alternative to .22.

(3)非共沸混合物の温度勾配の性質を利用して、R2
2よりも高い戒績係数を期待できる等の効果を有するも
のであも
(3) Taking advantage of the temperature gradient properties of non-azeotropic mixtures, R2
Even if it has the effect of being able to expect a higher precept coefficient than 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第2図(表 三種のフロン類の混合物に憩であ
る。 l、 3・・・気液平衡線(R22  0℃相当)、2
、 4 気液平衡線 (R2 2 5 O℃相当)。
Figures 1 to 2 (Table) A mixture of three types of fluorocarbons is present. 1, 3... Vapor-liquid equilibrium line (R22 equivalent to 0°C), 2
, 4 Vapor-liquid equilibrium line (equivalent to R2 2 5 O°C).

Claims (2)

【特許請求の範囲】[Claims] (1)トリフルオロメタン5〜50重量%以下、テトラ
フルオロエタン95重量%以下、ジフルオロエタン90
重量%以下の少なくとも三種のフロン類を含む作動流体
(1) Trifluoromethane 5-50% by weight or less, tetrafluoroethane 95% by weight or less, difluoroethane 90%
A working fluid containing at least three types of fluorocarbons in an amount of not more than % by weight.
(2)トリフルオロメタン10〜40重量%以下テトラ
フルオロエタン85重量%以下、ジフルオロエタン85
重量%以下であることを特徴とする作動流体。
(2) Trifluoromethane 10-40% by weight or less Tetrafluoroethane 85% by weight or less, difluoroethane 85%
% by weight or less.
JP1311153A 1989-11-30 1989-11-30 Working fluid Expired - Fee Related JP2532695B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1311153A JP2532695B2 (en) 1989-11-30 1989-11-30 Working fluid
EP90122653A EP0430170B1 (en) 1989-11-30 1990-11-27 Working fluid
DE69011287T DE69011287T2 (en) 1989-11-30 1990-11-27 Work equipment.
KR1019900019594A KR930010514B1 (en) 1989-11-30 1990-11-30 Working fluid
US07/839,700 US5304319A (en) 1989-11-30 1992-02-24 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311153A JP2532695B2 (en) 1989-11-30 1989-11-30 Working fluid

Publications (2)

Publication Number Publication Date
JPH03170584A true JPH03170584A (en) 1991-07-24
JP2532695B2 JP2532695B2 (en) 1996-09-11

Family

ID=18013747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311153A Expired - Fee Related JP2532695B2 (en) 1989-11-30 1989-11-30 Working fluid

Country Status (1)

Country Link
JP (1) JP2532695B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692653B2 (en) 2001-02-16 2004-02-17 Korea Institute Of Science And Technology Refrigerant composition
US6776922B2 (en) 2002-07-24 2004-08-17 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1-difluoroethane
US6800216B2 (en) 2002-07-24 2004-10-05 Korea Institute Of Science And Technology Refrigerant composition for replacing chlorodifluoromethane
US6841087B2 (en) 2002-04-19 2005-01-11 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1,1,2-tetrafluoroethane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5752451B2 (en) * 2011-03-17 2015-07-22 旭有機材工業株式会社 Method for producing spherical furfuryl alcohol resin particles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692653B2 (en) 2001-02-16 2004-02-17 Korea Institute Of Science And Technology Refrigerant composition
US6841087B2 (en) 2002-04-19 2005-01-11 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1,1,2-tetrafluoroethane
US6776922B2 (en) 2002-07-24 2004-08-17 Korea Institute Of Science And Technology Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1-difluoroethane
US6800216B2 (en) 2002-07-24 2004-10-05 Korea Institute Of Science And Technology Refrigerant composition for replacing chlorodifluoromethane

Also Published As

Publication number Publication date
JP2532695B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JP2568774B2 (en) Working fluid
JPH03170585A (en) Working fluid
JP2580350B2 (en) Working fluid
JP2548411B2 (en) Working fluid
JP2579002B2 (en) Working fluid
JPH03170584A (en) Working fluid
JP2568775B2 (en) Working fluid
JP2579001B2 (en) Working fluid
JPH03170583A (en) Working fluid
JP2580349B2 (en) Working fluid
JP2532697B2 (en) Working fluid
JP2548412B2 (en) Working fluid
JPH0665561A (en) Working fluid
JPH03170593A (en) Working fluid
JP2532736B2 (en) Working fluid
JPH03170589A (en) Working fluid
JP2532696B2 (en) Working fluid
JPH0655943B2 (en) Working fluid
JPH03170592A (en) Working fluid
JPH05117649A (en) Working fluid
JPH03168278A (en) Working fluid
JPH03168288A (en) Working fluid
JPH03168287A (en) Working fluid
JPH03168282A (en) Working fluid
JPH03168277A (en) Working fluid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees