JPH01207644A - Humidity detector - Google Patents

Humidity detector

Info

Publication number
JPH01207644A
JPH01207644A JP3219688A JP3219688A JPH01207644A JP H01207644 A JPH01207644 A JP H01207644A JP 3219688 A JP3219688 A JP 3219688A JP 3219688 A JP3219688 A JP 3219688A JP H01207644 A JPH01207644 A JP H01207644A
Authority
JP
Japan
Prior art keywords
humidity
sensor
circuit
temperature range
humidity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3219688A
Other languages
Japanese (ja)
Inventor
Michio Yanagisawa
柳沢 通雄
Masahisa Ikejiri
昌久 池尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3219688A priority Critical patent/JPH01207644A/en
Publication of JPH01207644A publication Critical patent/JPH01207644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To improve the measurement accuracy in a low temperature range by dispersing carbon particles in sol obtained by hydrolysis from silicon alkoxide, gelatinizing, drying, and sintering it and thus obtaining a humidity sensor and using the sensor after stabilization by a heat treatment. CONSTITUTION:Carbon particles are dispersed in the sol obtained by hydrolysis from silicon alkoxide Si(OR)4 (R: alkyl group) and this is gelatinized, dried, and sintered under a vacuum or in gaseous nitrogen, inert gas, etc., within a temperature range of 500-1,500 deg.C. The humidity sensor 3 which is thus obtained is stabilized in gas containing oxygen within a temperature range of 300-500 deg.C and installed in measurement environment. This sensor 3 is used as the feedback resistance of a logarithmic amplifying circuit 5 to constitute a detection amplifier 2 which varies in amplification factor with its electric resistance. A signal which has a constant amplitude and frequency is supplied to the input of this amplifier 2 from an oscillation circuit 1 and the output of the amplifier 2 is rectified 4, and logarithmic conversion 5 is performed to obtain an output signal proportional to variation in the humidity in the measurement environment.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、相対湿度の変化を、多孔質湿度センサの電気
抵抗変化として検出し、相対温度変化に比例したアナロ
グ信号を出力する湿度検出器に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a humidity detector that detects a change in relative humidity as a change in electrical resistance of a porous humidity sensor and outputs an analog signal proportional to the change in relative temperature. Regarding.

[従来の技術] 従来、相対湿度の変化を、素子の電気的特性の変化とし
て検出する湿度センサには、電解質系、有機物系、金属
系、金属酸化物系があり、現在実用化されているものは
、吸湿性高分子樹脂中に導電性粉末を混合した結露セン
サ、導電性高分子1漢による湿度センサ、ZnCr20
4−LiZnVO4系セラミック湿度センサx  Ti
0a−V206系セラミック湿度センサ等がある。吸湿
性高分子樹脂中に導電性粉末混合した結露センサは、高
分子樹脂が吸湿すると膨張し、導電性粉末の粒子間距離
が増加し、抵抗値が増加するもので、一定の湿度になる
と急激な抵抗増加を起こす性質を利用したものである。
[Conventional technology] Conventionally, humidity sensors that detect changes in relative humidity as changes in the electrical characteristics of elements include electrolyte-based, organic material-based, metal-based, and metal oxide-based sensors, and currently in practical use. These include a condensation sensor with conductive powder mixed into a hygroscopic polymer resin, a humidity sensor with a conductive polymer, and a ZnCr20
4-LiZnVO4 ceramic humidity sensor x Ti
There are 0a-V206 series ceramic humidity sensors, etc. A dew condensation sensor made by mixing conductive powder into a hygroscopic polymer resin expands when the polymer resin absorbs moisture, increasing the distance between particles of the conductive powder and increasing the resistance value, which rapidly increases when the humidity reaches a certain level. This takes advantage of the property of causing a significant increase in resistance.

導電性高分子膜およびセラミック系湿度センサは、水の
吸着により素子の抵抗値が指数関数的に減少する性質を
利用したものである。
Conductive polymer membrane and ceramic humidity sensors utilize the property that the resistance value of the element decreases exponentially due to water adsorption.

[発明が解決しようとする問題点コ しかし従来技術では、結露センサは広範囲の湿度測定が
できず、高分子膜湿度センサは60℃以上での測定がで
きない。また、高分子膜、セラミック系湿度センサ共に
低温度域で精度が悪化するという欠点があった。セラミ
ック系湿度センサの中には一定時間ごとに数100℃ま
で加熱する必要のあるものが使用されていたが、これら
のセンサは、可燃性蒸気、またはガスの存在する場所で
は使用できない。さらにいずれのセンサも、高温、多湿
の環境で長時間使用すると劣化してしまう。
[Problems to be Solved by the Invention] However, in the prior art, dew condensation sensors cannot measure humidity over a wide range, and polymer membrane humidity sensors cannot measure at temperatures above 60°C. Additionally, both the polymer membrane and ceramic humidity sensors have a drawback in that their accuracy deteriorates in low temperature ranges. Some ceramic humidity sensors have been used that require heating to several hundred degrees Celsius at regular intervals, but these sensors cannot be used in locations where flammable vapors or gases are present. Furthermore, both sensors deteriorate if used for long periods of time in high temperature and high humidity environments.

そこで本発明はこの様な問題点を解決するもので、その
目的とするところは、高温多湿な環境で長期の使用が可
能で、広範囲な湿度域で高精度な測定が可能な湿度検出
器を提供するところにある。
Therefore, the present invention aims to solve these problems.The purpose of the present invention is to provide a humidity detector that can be used for a long period of time in a high temperature and humid environment and that can perform highly accurate measurements over a wide range of humidity. It's there to provide.

[問題点を解決するための手段] (1)本発明の湿度検出器は、ガラス中に導電性粒子を
分散させた多孔質体のセンサを用いた湿度検出器におい
て、 (a)シリコンアルコキシド(S i(OR)a 、 
 R:アルキル基)を加水分解したゾルに炭素粒子を分
散させ、該ゾルをゲル化させ乾燥し、真空中または窒素
ガス中または不活性ガス中で500℃〜1500℃の温
度範囲で焼結し、焼結後に大気中または酸素を含むガス
中で300℃〜500℃の温度範囲で熱処理を施した湿
度センサ。
[Means for Solving the Problems] (1) The humidity detector of the present invention uses a sensor made of a porous body in which conductive particles are dispersed in glass, in which (a) silicon alkoxide ( S i (OR)a,
Carbon particles are dispersed in a sol obtained by hydrolyzing R: alkyl group), the sol is gelled and dried, and sintered in a temperature range of 500°C to 1500°C in vacuum, nitrogen gas, or inert gas. , a humidity sensor subjected to heat treatment in the temperature range of 300° C. to 500° C. in the atmosphere or in a gas containing oxygen after sintering.

(b)前記湿度センサをフィードバック抵抗として用い
、前記湿度センサの抵抗値変化によって増幅率が変化す
る構成の検出アンプ回路。
(b) A detection amplifier circuit having a configuration in which the humidity sensor is used as a feedback resistor, and the amplification factor changes according to a change in the resistance value of the humidity sensor.

(c)前記検出アンプの信号源となる発振回路。(c) An oscillation circuit that serves as a signal source for the detection amplifier.

(d)前記検出アンプ回路の出力信号を整流し、前記湿
度センサによって検出された相対温度の変化に比例した
大きさの直流信号を出力する整流回路 (e)前記整流回路の出力信号を対数変換する対数増幅
回路から構成されることを特徴とする。
(d) A rectifier circuit that rectifies the output signal of the detection amplifier circuit and outputs a DC signal having a magnitude proportional to the change in relative temperature detected by the humidity sensor. (e) Logarithmically transforms the output signal of the rectifier circuit. It is characterized by being composed of a logarithmic amplification circuit.

湿度センサの焼結温度を500℃以上とすることによっ
て焼結体の機械的強度が高くなり、かつ化学的に安定な
状態となる。また、1500℃以上で焼結を行なっても
利点が無いので焼結温度は、500℃〜1500℃が望
ましい。また、焼結後の熱処理温度条件に関しては、後
の実施例で詳細に示すが、焼結後に熱処理を行なうこと
により焼結体の炭素粒子が一部焼失し、温度センサとし
て適当な細孔径分布を有する構造となる。熱処理温度条
件に関しては後の実施例で適切でない場合の比較例を示
すが、300℃未満では、炭素粒子がほとんど焼失せず
効果が無く、500℃を越えると炭素粒子がほとんど焼
失してしまうので、300〜500℃が望ましい。
By setting the sintering temperature of the humidity sensor to 500° C. or higher, the sintered body has high mechanical strength and is chemically stable. Further, since there is no advantage in sintering at a temperature higher than 1500°C, the sintering temperature is preferably 500°C to 1500°C. Regarding the temperature conditions for heat treatment after sintering, which will be shown in detail in later examples, by heat treatment after sintering, some of the carbon particles in the sintered body are burned out, resulting in a pore size distribution suitable for a temperature sensor. It becomes a structure with. Regarding the heat treatment temperature conditions, a comparative example will be shown in a later example when the heat treatment temperature conditions are not appropriate, but if the temperature is less than 300°C, the carbon particles will hardly be burned out and there is no effect, and if it exceeds 500°C, most of the carbon particles will be burned out. , 300 to 500°C is desirable.

[作用] 本発明の湿度検出器は、石英ガラス中に炭素粉末を分散
させた多孔質体を湿度センサとして測定環境中に設置し
、温度センサを反転増幅回路のフィードバック抵抗とし
て用いて湿度センサの電気抵抗の変化により増幅率の変
化する検出アンプを構成し、検出アンプ入力に発振回路
から一定振幅、一定周波数の信号を与え、検出アンプ出
力を整流し、対数変換することによって、測定環境中の
湿度変化に比例して変化する出力信号が得られる。
[Function] The humidity sensor of the present invention uses a porous body in which carbon powder is dispersed in quartz glass as a humidity sensor in a measurement environment, and uses a temperature sensor as a feedback resistor of an inverting amplifier circuit to detect the humidity sensor. By configuring a detection amplifier whose amplification factor changes with changes in electrical resistance, applying a signal of constant amplitude and constant frequency from an oscillation circuit to the detection amplifier input, and rectifying and logarithmically converting the detection amplifier output, An output signal that changes proportionally to humidity changes is obtained.

[実施例] 以下本発明について図面に基づいて詳細に説明する。[Example] The present invention will be explained in detail below based on the drawings.

第1図は本発明の湿度検出器の回路図で、発振回路1は
、一定振幅、一定周波数の信号を出力する。検出アンプ
2は湿度センサ3の抵抗値変化によって増幅率が変化す
る回路で、湿度センサの抵抗値をRsとすると入出力の
増幅率は、−Rs / R1 となり、出力信号の振幅が相対湿度の変化に伴って変化
する。整流回路4は、交流を直流に変換する回路で、検
出アンプの出力信号の絶対値の平均値を出力する。対数
増幅回路5は、入力信号を対数変換して出力する回路で
ある。対数増幅回路の基準電流は、 (VRI−VH2) /R2 となっている。
FIG. 1 is a circuit diagram of a humidity detector according to the present invention, in which an oscillation circuit 1 outputs a signal with a constant amplitude and a constant frequency. The detection amplifier 2 is a circuit whose amplification factor changes according to a change in the resistance value of the humidity sensor 3. If the resistance value of the humidity sensor is Rs, the input/output amplification factor is -Rs/R1, and the amplitude of the output signal is equal to the relative humidity. Change with change. The rectifier circuit 4 is a circuit that converts alternating current into direct current, and outputs the average value of the absolute values of the output signals of the detection amplifiers. The logarithmic amplifier circuit 5 is a circuit that logarithmically transforms an input signal and outputs the result. The reference current of the logarithmic amplifier circuit is (VRI-VH2)/R2.

つぎに本発明の湿度センサの試料の製法について説明す
る。
Next, a method for manufacturing a sample of the humidity sensor of the present invention will be explained.

(製法例1) テトラエトキシシラン(S i(OC2H3)4) 1
00m1に0.02N塩酸33m1を加え、1時間攪は
んし、テトラエトキシシランを加水分解すると透明で均
一なゾルが得られる。このゾルにカーボンブラック21
.5gを加え、30分間攪はんし、カーボンブラックを
分散させると黒色で均一なゾルが得られる。このゾルに
0.INアンモニア水を滴下してpH値を5にすると1
時間後にゲル化した。このゲルを60’Cで24時間乾
燥させた後、焼結炉に入れ、ITorr以下の真空度で
50000に加熱し、500℃で1時間保持した。得ら
れた焼結体を、体積比で酸素50%、窒素50%の混合
ガスを流しなから300℃で10時間熱処理した。熱処
理後の焼結対から5 mmx 5 mmX 1 mmの
サンプルを切り出しアルミナ基板に接着し電極を付け、
第2図に示す湿度センサを製作した。第2図において、
21は焼結体、22は電極、23はリード線、24は基
板である。第3図は、本湿度センサの感湿特性図である
(Production method example 1) Tetraethoxysilane (S i (OC2H3)4) 1
Add 33 ml of 0.02N hydrochloric acid to 0.00 ml and stir for 1 hour to hydrolyze the tetraethoxysilane to obtain a transparent and uniform sol. Carbon black 21 in this sol
.. Add 5 g and stir for 30 minutes to disperse the carbon black to obtain a black, uniform sol. This sol contains 0. When the pH value is set to 5 by dropping IN ammonia water, it becomes 1
It gelled after some time. After drying this gel at 60'C for 24 hours, it was placed in a sintering furnace, heated to 50,000 degrees under a vacuum degree of ITorr or less, and held at 500C for 1 hour. The obtained sintered body was heat-treated at 300° C. for 10 hours while flowing a mixed gas containing 50% oxygen and 50% nitrogen by volume. A sample of 5 mm x 5 mm x 1 mm was cut out from the sintered pair after heat treatment, adhered to an alumina substrate, and attached with electrodes.
A humidity sensor shown in Fig. 2 was manufactured. In Figure 2,
21 is a sintered body, 22 is an electrode, 23 is a lead wire, and 24 is a substrate. FIG. 3 is a diagram showing the humidity sensitivity characteristics of this humidity sensor.

(製法例2) カーボンブラックの量を10.8gとした以外はすべて
製法例1と同様に、乾燥ゲルを製作した。
(Production Example 2) A dried gel was produced in the same manner as Production Example 1 except that the amount of carbon black was changed to 10.8 g.

この乾燥ゲルを焼結炉内で窒素ガスを流しながら100
0℃まで加熱し、1000℃で5時間保持した。得られ
た焼結体を大気中で400″Cまで加熱し、400℃で
5時間保持した。この熱処理後の焼結体から製法例1と
同様に湿度センサを製作した。製法例2によって得られ
た温度センサの感湿特性を第4図に示す。本湿度センサ
を沸騰水中で1時間煮沸して、100℃で1時間乾燥さ
せた後に感湿特性を調べたところ、煮沸前と同様の特性
を示し、劣化は認められなかった。
This dry gel was heated in a sintering furnace for 100 minutes while flowing nitrogen gas.
It was heated to 0°C and held at 1000°C for 5 hours. The obtained sintered body was heated to 400"C in the air and held at 400°C for 5 hours. A humidity sensor was manufactured from the sintered body after this heat treatment in the same manner as in Manufacturing Example 1. Figure 4 shows the humidity sensitivity characteristics of the temperature sensor.The humidity sensor was boiled in boiling water for 1 hour and then dried at 100°C for 1 hour. The characteristics were exhibited, and no deterioration was observed.

次に特許請求の範囲に記載された熱処理温度条件以外で
熱処理を行なった場合の比較例を示す。
Next, a comparative example will be shown in which heat treatment was performed under heat treatment temperature conditions other than those described in the claims.

(比較例1) 熱処理の温度を200℃とした以外はすべて製法例2と
同様に湿度センサを製作した。感湿特性を第5図に示す
。本比較例の湿度センサは、直線性、変化範囲共に実用
的でないと考えられる。
(Comparative Example 1) A humidity sensor was manufactured in the same manner as Manufacturing Example 2 except that the heat treatment temperature was 200°C. The moisture sensitivity characteristics are shown in FIG. The humidity sensor of this comparative example is considered to be impractical in both linearity and variation range.

(比較例2) 熱処理の温度を600℃とした以外はすべて製法例2と
同様に湿度センサを製作した。本比較例の湿度センサは
極めて高抵抗で、感温特性は通常の測定器では測定不可
能であった。
(Comparative Example 2) A humidity sensor was manufactured in the same manner as Manufacturing Example 2 except that the heat treatment temperature was 600°C. The humidity sensor of this comparative example had extremely high resistance, and its temperature-sensitive characteristics could not be measured with a normal measuring device.

[発明の効果コ 以上述べたように本発明の湿度センサは、湿度センサと
して、シリコンアルコキシドを加水分解したゾルに、炭
素粒子を分散させ、該ゾルを、ゲル化させ、乾燥、焼結
して得られた湿度センサを熱処理による安定化を施した
後に用いるので、高温高温な環境で長時間使用を続けて
も安定した特性を示し、また、炭素粒子(実施例ではカ
ーボンブラック)の含有量により温度センサの感温特性
を広範囲に変化させることが出来るので、従来測定が困
難であった低湿度域での測定を高精度に行うことが可能
である。尚、本発明で用いた湿度センサはきわめて安価
なために、従来の温度センサを用いた場合に比べて低コ
ストな温度検出器が実現できる。
[Effects of the Invention] As described above, the humidity sensor of the present invention is produced by dispersing carbon particles in a sol obtained by hydrolyzing silicon alkoxide, gelling the sol, drying it, and sintering it. Since the resulting humidity sensor is used after being stabilized by heat treatment, it exhibits stable characteristics even when used for long periods of time in high-temperature environments, and due to the content of carbon particles (carbon black in the example) Since the temperature-sensing characteristics of the temperature sensor can be varied over a wide range, it is possible to perform measurements with high precision in low humidity regions, which have been difficult to measure in the past. Note that since the humidity sensor used in the present invention is extremely inexpensive, a temperature detector can be realized at a lower cost than when a conventional temperature sensor is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の湿度検出器の回路図。 第2図は、湿度センサの構造図 第3.4図は、本発明の温度センサの感湿特性図。 第5図は、比較例の感湿特性図 以上 21大克銘体 第2図 第5図 −71jF乙イ正1 (、Ω、) nMムイ直 (、Ω、) FIG. 1 is a circuit diagram of the humidity detector of the present invention. Figure 2 is a structural diagram of the humidity sensor. Fig. 3.4 is a diagram of moisture sensitivity characteristics of the temperature sensor of the present invention. Figure 5 is a diagram of moisture sensitivity characteristics of a comparative example. that's all 21 great achievements Figure 2 Figure 5 -71jF Otsui Positive 1 (,Ω,) nM Mui Nao (,Ω,)

Claims (1)

【特許請求の範囲】[Claims] (1)ガラス中に導電性粒子を分散させた多孔質体のセ
ンサを用いた湿度検出器において、(a)シリコンアル
コキシド(Si(OR)_4、R:アルキル基)を加水
分解したゾルに炭素粒子を分散させ、該ゾルをゲル化さ
せ乾燥し、真空中または窒素ガス中または不活性ガス中
で500℃〜1500℃の温度範囲で焼結し、焼結後に
大気中または酸素を含むガス中で300℃〜500℃の
温度範囲で熱処理を施した湿度センサ。 (b)前記温度センサをフィードバック抵抗として用い
、前記温度センサの抵抗値変化によって増幅率が変化す
る構成の検出アンプ回路。 (c)前記検出アンプの信号源となる発振回路。 (d)前記検出アンプ回路の出力信号を整流し、前記温
度センサによって検出された相対湿度の変化に比例した
大きさの直流信号を出力する整流回路 (e)前記整流回路の出力信号を対数変換する対数増幅
回路から構成されることを特徴とする湿度検出器。
(1) In a humidity detector using a porous sensor with conductive particles dispersed in glass, (a) carbon is added to a sol obtained by hydrolyzing silicon alkoxide (Si(OR)_4, R: alkyl group). The particles are dispersed, the sol is gelled and dried, and sintered in a temperature range of 500°C to 1500°C in vacuum, nitrogen gas, or inert gas, and after sintering, the sol is dried in the atmosphere or in a gas containing oxygen. A humidity sensor that has been heat-treated in the temperature range of 300°C to 500°C. (b) A detection amplifier circuit having a configuration in which the temperature sensor is used as a feedback resistor, and the amplification factor changes according to a change in the resistance value of the temperature sensor. (c) An oscillation circuit that serves as a signal source for the detection amplifier. (d) A rectifier circuit that rectifies the output signal of the detection amplifier circuit and outputs a DC signal with a magnitude proportional to the change in relative humidity detected by the temperature sensor. (e) Logarithmically transforms the output signal of the rectifier circuit. A humidity detector comprising a logarithmic amplification circuit.
JP3219688A 1988-02-15 1988-02-15 Humidity detector Pending JPH01207644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3219688A JPH01207644A (en) 1988-02-15 1988-02-15 Humidity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3219688A JPH01207644A (en) 1988-02-15 1988-02-15 Humidity detector

Publications (1)

Publication Number Publication Date
JPH01207644A true JPH01207644A (en) 1989-08-21

Family

ID=12352152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3219688A Pending JPH01207644A (en) 1988-02-15 1988-02-15 Humidity detector

Country Status (1)

Country Link
JP (1) JPH01207644A (en)

Similar Documents

Publication Publication Date Title
Islam et al. Relaxation oscillator-based active bridge circuit for linearly converting resistance to frequency of resistive sensor
US4541988A (en) Constant temperature catalytic gas detection instrument
JPH0517650Y2 (en)
JPS63103957A (en) Humidity detector
JPH01207644A (en) Humidity detector
JP2707246B2 (en) Humidity sensor
JPS63108257A (en) Humidity detector
JPS63173944A (en) Moisture sensor
JPH0210445Y2 (en)
JPH01105154A (en) Humidity detector
JPH0256902A (en) Humidity detector
JPS63292052A (en) Alarm for excessive drying
CN217304182U (en) Gas-phase temperature and humidity detection device
JPH01321349A (en) Moisture detector
TW446819B (en) Thermal conductivity micro moisture sensor
JPS61245049A (en) Humidity sensor
JPH01180442A (en) Production of humidity sensor
JPH0447658Y2 (en)
JPH02260503A (en) Humidity sensor
JPH06186193A (en) Carbon dioxide gas sensor element and method for measuring carbon dioxide gas concentration
JPH053973Y2 (en)
JPH02260506A (en) Humidity sensor
JPH01274055A (en) Humidity detector
SU881552A1 (en) Pressure pickup
JPH03111749A (en) Carbon-dioxide-gas detecting material