JP7175999B2 - レーザシステム、及び電子デバイスの製造方法 - Google Patents

レーザシステム、及び電子デバイスの製造方法 Download PDF

Info

Publication number
JP7175999B2
JP7175999B2 JP2020556433A JP2020556433A JP7175999B2 JP 7175999 B2 JP7175999 B2 JP 7175999B2 JP 2020556433 A JP2020556433 A JP 2020556433A JP 2020556433 A JP2020556433 A JP 2020556433A JP 7175999 B2 JP7175999 B2 JP 7175999B2
Authority
JP
Japan
Prior art keywords
laser
semiconductor
light
laser system
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020556433A
Other languages
English (en)
Other versions
JPWO2020095418A1 (ja
Inventor
泰祐 三浦
理 若林
裕紀 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Publication of JPWO2020095418A1 publication Critical patent/JPWO2020095418A1/ja
Application granted granted Critical
Publication of JP7175999B2 publication Critical patent/JP7175999B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0092Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06808Stabilisation of laser output parameters by monitoring the electrical laser parameters, e.g. voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/509Wavelength converting amplifier, e.g. signal gating with a second beam using gain saturation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/163Single longitudinal mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/1001Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2251ArF, i.e. argon fluoride is comprised for lasing around 193 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06253Pulse modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Description

本開示は、レーザシステム、及び電子デバイスの製造方法に関する。
半導体集積回路の微細化、高集積化につれて、半導体露光装置においては解像力の向上が要請されている。半導体露光装置を以下、単に「露光装置」という。このため露光用光源から出力される光の短波長化が進められている。露光用光源には、従来の水銀ランプに代わってガスレーザ装置が用いられている。現在、露光用のガスレーザ装置としては、波長248nmの紫外線を出力するKrFエキシマレーザ装置ならびに、波長193nmの紫外線を出力するArFエキシマレーザ装置が用いられている。
現在の露光技術としては、露光装置側の投影レンズとウエハ間の間隙を液体で満たして、当該間隙の屈折率を変えることによって、露光用光源の見かけの波長を短波長化する液浸露光が実用化されている。ArFエキシマレーザ装置を露光用光源として用いて液浸露光が行われた場合は、ウエハには等価における波長134nmの紫外光が照射される。この技術をArF液浸露光という。ArF液浸露光はArF液浸リソグラフィとも呼ばれる。
KrF、ArFエキシマレーザ装置の自然発振におけるスペクトル線幅は約350~400pmと広いため、露光装置側の投影レンズによってウエハ上に縮小投影されるレーザ光(紫外線光)の色収差が発生して解像力が低下する。そこで色収差が無視できる程度となるまでガスレーザ装置から出力されるレーザ光のスペクトル線幅を狭帯域化する必要がある。スペクトル線幅はスペクトル幅とも呼ばれる。このためガスレーザ装置のレーザ共振器内には狭帯域化素子を有する狭帯域化部(Line Narrow Module)が設けられ、この狭帯域化部によりスペクトル幅の狭帯域化が実現されている。なお、狭帯域化素子はエタロンやグレーティング等であってもよい。このようにスペクトル幅が狭帯域化されたレーザ装置を狭帯域化レーザ装置という。
米国特許出願公開第2017/0338617号明細書 特開平8-6078号公報 米国特許出願公開第2004/0012844号明細書 米国特許出願公開第2017/0037346号明細書 国際公開第2017/175561号 特開2011-249399号公報
概要
本開示の1つの観点に係るレーザシステムは、第1のパルスレーザ光を出力する第1の半導体レーザシステムであって、シングル縦モードで発振する第1の半導体レーザと、第1の半導体レーザから出力される第1のレーザ光にチャーピングを発生させるように第1の半導体レーザに流す電流を制御する第1の電流制御器と、第1のレーザ光をパルス増幅する第1の半導体光増幅器と、を含む第1の半導体レーザシステムと、第1の半導体光増幅器によって増幅されて第1の半導体レーザシステムから出力された第1のパルスレーザ光を増幅する第1の増幅器と、第1の増幅器によって増幅された第2のパルスレーザ光を紫外線の第3のパルスレーザ光に波長変換する波長変換システムと、第3のパルスレーザ光を増幅するエキシマ増幅器と、外部装置から指令された目標スペクトル線幅のエキシマレーザ光が得られるように、第1の半導体レーザシステムから出力される第1のパルスレーザ光のチャーピング量を制御する制御部と、を備えるレーザシステムである。
本開示の他の1つの観点に係る電子デバイスの製造方法は、シングル縦モードで発振する第1の半導体レーザと、第1の半導体レーザから出力される第1のレーザ光にチャーピングを発生させるように第1の半導体レーザに流す電流を制御する第1の電流制御器と、第1のレーザ光をパルス増幅する第1の半導体光増幅器と、を含む第1の半導体レーザシステムと、第1の半導体光増幅器によって増幅されて第1の半導体レーザシステムから出力された第1のパルスレーザ光を増幅する第1の増幅器と、第1の増幅器によって増幅された第2のパルスレーザ光を紫外線の第3のパルスレーザ光に波長変換する波長変換システムと、第3のパルスレーザ光を増幅するエキシマ増幅器と、外部装置から指令された目標スペクトル線幅のエキシマレーザ光が得られるように、第1の半導体レーザシステムから出力される第1のパルスレーザ光のチャーピング量を制御する制御部と、を備えるレーザシステムによってエキシマレーザ光を生成し、エキシマレーザ光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板上にエキシマレーザ光を露光することを含む電子デバイスの製造方法である。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、典型的なレーザ光のスペクトル形状を示す図である。 図2は、エキシマレーザ光のスペクトル線幅の定義を説明するための図である。 図3は、パルスレーザ光の各時間におけるスペクトル波形の例を示す図である。 図4は、チャーピング量の定義を説明するための図である。 図5は、レーザシステムの構成例を概略的に示す図である。 図6は、同期システムの構成例を示すブロック図である。 図7は、レーザシステムのタイミングチャートの例である。 図8は、レーザ制御部における処理内容の例を示すフローチャートである。 図9は、レーザシステムの初期設定サブルーチンの例を示すフローチャートである。 図10は、固体レーザシステムの制御サブルーチンの例を示すフローチャートである。 図11は、レーザシステムの制御サブルーチンの例を示すフローチャートである。 図12は、固体レーザシステム制御部における処理内容の例を示すフローチャートである。 図13は、固体レーザシステムの初期設定サブルーチンの例を示すフローチャートである。 図14は、第1の半導体レーザシステムの制御サブルーチンの例を示すフローチャートである。 図15は、第1の半導体レーザシステムの目標中心波長λ1ctを計算する処理のサブルーチンの例を示すフローチャートである。 図16は、固体レーザシステムのエネルギ制御サブルーチンの例を示すフローチャートである。 図17は、半導体レーザシステムの構成例を概略的に示す図である。 図18は、分布帰還型半導体レーザから出力されるレーザ光のスペクトル波形の例を示す図である。 図19は、第1の半導体レーザ制御部における処理内容の例を示すフローチャートである。 図20は、実施形態1に係るレーザシステムの構成例を概略的に示す図である。 図21は、第1の半導体レーザシステムの構成例を概略的に示す図である。 図22は、チャーピングによって実現されるスペクトル線幅の概念図である。 図23は、第1の半導体レーザに流れる電流とチャーピングによる波長変化とスペクトル波形と光強度との関係を示す説明図である。 図24は、第1の半導体光増幅器の立ち上がり時間を説明するためのグラフである。 図25は、レーザ制御部における処理内容の例を示すフローチャートである。 図26は、固体レーザシステムの制御サブルーチン(2)の例を示すフローチャートである。 図27は、第1の半導体システムの目標スペクトル線幅Δλ1chtを計算する処理の例を示すフローチャートである。 図28は、エキシマ光のスペクトル線幅Δλと第1の半導体レーザシステムのスペクトル線幅Δλ1chとの関係を表す関数の例を示すグラフである。 図29は、固体レーザシステム制御部における処理内容の例を示すフローチャートである。 図30は、固体レーザシステムの初期設定サブルーチン(2)の例を示すフローチャートである。 図31は、第1の半導体レーザシステムの制御サブルーチンの例を示すフローチャートである。 図32は、第1の半導体レーザ制御部114における処理内容の例を示すフローチャートである。 図33は、第1の半導体レーザの制御サブルーチン(2)の例1を示すフローチャートである。 図34は、第1の半導体レーザの制御サブルーチン(2)の例2を示すフローチャートである。 図35は、中心波長λ1cとスペクトル線幅Δλ1chの計測処理の例を示すフローチャートである。 図36は、第1のスペクトルモニタで計測されたスペクトル波形から中心波長λ1cを計算する処理の例1を示すフローチャートである。 図37は、第1のスペクトルモニタで計測されるスペクトル波形の例であり、スペクトル波形の重心から中心波長λ1cを計算する処理の説明図である。 図38は、第1のスペクトルモニタで計測されたスペクトル波形から中心波長λ1cを計算する処理の例2を示すフローチャートである。 図39は、第1のスペクトルモニタで計測されるスペクトル波形の例であり、スペクトル波形から中心波長λ1cを計算する処理の説明図である。 図40は、第1のスペクトルモニタで計測されたスペクトル波形からスペクトル線幅Δλ1chを計算する処理の例1を示すフローチャートである。 図41は、第1のスペクトルモニタで計測されるスペクトル波形の例であり、スペクトル波形から中心波長λ1cを計算する処理の説明図である。 図42は、第1のスペクトルモニタで計測されたスペクトル波形からスペクトル線幅Δλ1chを計算する処理の例2を示すフローチャートである。 図43は、第1のスペクトルモニタで計測されるスペクトル波形の例であり、スペクトル波形からスペクトル線幅Δλ1chを計算する処理の説明図である。 図44は、第1の半導体レーザシステムのスペクトル線幅Δλ1chと中心波長λ1cとを計算及び判定する処理の例を示すフローチャートである。 図45は、第1の半導体レーザシステムの変形例を概略的に示す図である。 図46は、第1の半導体レーザに流れる電流とチャーピングによる波長変化とスペクトル波形と光強度との関係を示す説明図である。 図47は、実施形態2に係るレーザシステムの要部構成を概略的に示す図である。 図48は、実施形態2における同期システムの構成の例を概略的に示すブロック図である。 図49は、実施形態2に係るレーザシステムのタイミングチャートの例である。 図50は、第1の半導体レーザから出力されるパルスレーザ光のチャーピングと第1の半導体光増幅器による増幅との関係を示すグラフである。 図51は、固体レーザシステム制御部における処理内容の例を示すフローチャートである。 図52は、固体レーザシステムの初期設定サブルーチン(3)の例を示すフローチャートである。 図53は、実施形態2に係るレーザシステムの第1の半導体レーザ制御部における処理内容の例を示すフローチャートである。 図54は、第1の半導体レーザの制御サブルーチン(3)の例1を示すフローチャートである。 図55は、第1の半導体レーザから出力されるパルスレーザ光のチャーピングと第1の半導体光増幅器による増幅との関係を示すグラフである。 図56は、第1の半導体レーザの制御サブルーチン(3)の例2を示すフローチャートである。 図57は、第1の半導体レーザから出力されるパルスレーザ光のチャーピングと第1の半導体光増幅器による増幅との関係を示すグラフである。 図58は、第1の半導体レーザの制御サブルーチン(3)の例3を示すフローチャートである。 図59は、第1の半導体レーザから出力されるパルスレーザ光のチャーピングと第1の半導体光増幅器による増幅との関係を示すグラフである。 図60は、第1の半導体レーザの制御サブルーチン(3)の例4を示すフローチャートである。 図61は、第1の半導体レーザから出力されるパルスレーザ光のチャーピングと第1の半導体光増幅器による増幅との関係を示すグラフである。 図62は、実施形態3に係るレーザシステムの構成を概略的に示す図である。 図63は、実施形態3における同期システムの構成を概略的に示すブロック図である。 図64は、スペクトルモニタの構成例を概略的に示す図である。 図65は、スペクトルモニタの他の構成例を概略的に示す図である。 図66は、エキシマ増幅器の構成例を概略的に示す図である。 図67は、リング共振器を採用したエキシマ増幅器の構成例を概略的に示す図である。 図68は、エタロン分光器を用いるスペクトルモニタの構成例を概略的に示す図である。 図69は、レーザ光のスペクトルの一例を示す図である。 図70は、CW発振基準レーザ光源の一例を示すブロック図である。 図71は、CW発振基準レーザ光源の他の例を示すブロック図である。 図72は、半導体光増幅器の構成例を概略的に示す図である。 図73は、実施形態4に係るレーザシステムの例を概略的に示す図である。 図74は、実施形態5におけるレーザ制御部の処理例を示すフローチャートである。 図75は、エキシマレーザ光のスペクトル線幅確認サブルーチンの例を示すフローチャートである。 図76は、ΔΔλexが0に近づくように目標スペクトル線幅Δλ1chtを補正する処理の例を示すフローチャートである。 図77は、露光装置の構成例を概略的に示す図である。
実施形態
-目次-
1.用語の説明
1.1 エキシマレーザ光のスペクトル線幅Δλの定義
1.2 チャーピング量の定義
2.レーザシステムの概要
2.1 構成
2.2 動作
2.3 レーザ制御部の処理例
2.4 固体レーザシステム制御部の処理例
2.5 半導体レーザシステムの例
2.5.1 構成
2.5.2 動作
2.6 第1の半導体レーザ制御部の処理例
3.課題
4.実施形態1
4.1 構成
4.2 動作
4.3 第1の半導体レーザシステムの動作
4.3.1 その他
4.4 レーザ制御部の処理例
4.5 固体レーザシステム制御部の処理例
4.6 第1の半導体レーザ制御部の処理例
4.7 作用・効果
4.8 変形例1
4.9 変形例2
4.9.1 構成
4.9.2 動作
5.実施形態2
5.1 構成
5.2 動作
5.2.1 固体レーザシステム制御部の処理例
5.2.2 第1の半導体レーザ制御部の処理例
5.2.3 第1の半導体レーザの制御サブルーチン(3)の例1
5.3 作用・効果
5.4 変形例
5.4.1 第1の半導体レーザの制御サブルーチン(3)の例2
5.4.2 第1の半導体レーザの制御サブルーチン(3)の例3
5.4.3 第1の半導体レーザの制御サブルーチン(3)の例4
6.実施形態3
6.1 構成
6.2 動作
6.3 作用・効果
6.4 変形例
6.4.1 マルチ縦モードで発振する半導体レーザの利用
6.4.2 実施形態2で説明した構成との組み合わせ
6.4.3 第2の固体レーザ装置のチャーピング制御
7.スペクトルモニタの具体例
7.1 分光器と基準レーザ光源とを用いるスペクトルモニタの例
7.1.1 構成
7.1.2 動作
7.2 ヘテロダイン干渉計を用いるスペクトルモニタの例
7.2.1 構成
7.2.2 動作
8.エキシマ増幅器の例
8.1 マルチパスで増幅する形態
8.2 リング共振器で増幅する形態
9.エタロン分光器を用いるスペクトルモニタの例
10.CW発振基準レーザ光源の例
10.1 1547.2nm又は1554nmの波長領域のCW発振基準レーザ光源
10.2 1030nmの波長領域のCW発振基準レーザ光源
11.半導体光増幅器の例
11.1 構成
11.2 動作
12.実施形態4
12.1 構成
12.2 動作
13.実施形態5
13.1 構成
13.2 動作
13.3 作用・効果
14.電子デバイスの製造方法
15.外部装置の他の例
16.その他
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.用語の説明
1.1 エキシマレーザ光のスペクトル線幅Δλの定義
本明細書では、エキシマレーザ光のスペクトル幅全面積のうち95%の線幅をエキシマレーザ光のスペクトル線幅Δλと定義する。一般的には、図1に示すように、スペクトル線幅とは、レーザ光のスペクトル波形の光量閾値における全幅である。例えばピーク値の半値を線幅閾値0.5という。なお、線幅閾値0.5におけるスペクトル波形の全幅W1/2を特別に半値全幅又はFWHM(Full Width at Half Maximum)という。ところが、エキシマレーザ光のスペクトルの半値全幅だけでは、投影レンズの解像力を反映することは難しい。
そこで、投影レンズの解像力を反映するスペクトル線幅Δλは、例えば、図2に示すように、全スペクトルエネルギのうち波長λ0を中心として95%を占める部分の全幅W95%であって、下記の式(1)が成り立つ。
Figure 0007175999000001
なお、本明細書では、エキシマレーザ光のスペクトル線幅Δλは、スペクトル幅全面積のうち95%の線幅だけでなく、投影レンズの解像力を反映するスペクトル線幅であればよい。例えば、使用する投影レンズデータと、エキシマレーザ光のスペクトル波形とに基づいて、波長と光強度分布を入力して計算された解像力でスペクトル線幅を評価してもよい。また、本明細書では、エキシマレーザ光を「エキシマ光」と表記する場合がある。
1.2 チャーピング量の定義
図3にパルスレーザ光の各時間におけるスペクトル波形の例を示す。この例の場合、各時間のスペクトルの波長が時間ともに、長波長側にチャーピングしている。「チャーピング」は「波長チャーピング」とも呼ばれる。図4に各々のスペクトルをパルス時間積分した場合のスペクトル波形を示す。ここで、チャーピング量とは、この時間積分したスペクトル波形から計算されるスペクトル線幅と定義する。チャーピング量は「チャーピングによるスペクトル線幅」と呼ばれる場合がある。
2.レーザシステムの概要
2.1 構成
図5は、レーザシステム1の構成例を概略的に示す。レーザシステム1は、固体レーザシステム10と、第1の高反射ミラー11と、第2の高反射ミラー12と、エキシマ増幅器14と、モニタモジュール16と、同期システム17と、レーザ制御部18と、を含む。
固体レーザシステム10は、第1の固体レーザ装置100と、波長変換システム300と、ビームスプリッタ328と、第1のパルスエネルギモニタ330と、固体レーザシステム制御部350と、を含む。
第1の固体レーザ装置100は、波長約1547.2nmのレーザ光を出力する第1の半導体レーザシステム110と、第1のダイクロイックミラー130と、第1のパルス励起光源132と、Erファイバ増幅器140と、を含む。
第1の半導体レーザシステム110は、第1の半導体レーザ111と、第1の波長モニタ112と、第1の半導体レーザ制御部114と、第1のビームスプリッタ116と、第1の半導体光増幅器120と、関数発生器(FG:Function Generator)122と、を含む。なお、図5及び以降の図において、例えば「半導体レーザ1」や「SOA#1」等の数値を付した表記は、それぞれ第1の半導体レーザ、第1の半導体光増幅器(SOA)を表す。「SOA」は「Semiconductor Optical Amplifier」の略語表記である。
第1の半導体レーザ111は、波長1547.2nm付近でCW(Continuous Wave)発振し、かつ、シングル縦モードで発振する。なお、「CW」は連続波を意味し、CW発振は連続波発振を意味する。第1の半導体レーザ111は、分布帰還型(DFB:Distributed Feedback)半導体レーザであってよい。分布帰還型半導体レーザを「DFBレーザ」という。DFBレーザは、電流制御及び/又は温度制御により、発振波長を変更することができる。
第1のビームスプリッタ116は、第1の半導体レーザ111から出力されたレーザ光の一部を反射して第1の波長モニタ112に入射するように配置される。第1の波長モニタ112は、入射したレーザ光のスペクトルをモニタし、第1の半導体レーザ111の発振波長を検出する。
第1の半導体レーザ制御部114は、第1の波長モニタ112及び固体レーザシステム制御部350と接続され、第1の半導体レーザ111の動作を制御する。
第1の半導体光増幅器120は、第1のビームスプリッタ116を透過したレーザ光の光路に配置される。第1の半導体光増幅器120は、第1の半導体レーザシステム110から出力されたレーザ光をパルス増幅する。
第1のダイクロイックミラー130は、第1の半導体光増幅器120から出力されるレーザ光を高透過し、第1のパルス励起光源132から出力される励起光を高反射する膜がコートされたミラーである。第1のダイクロイックミラー130は、第1の半導体光増幅器120から出力されるパルスレーザ光と第1のパルス励起光源132から出力される励起光とがErファイバ増幅器140に入射するように配置される。
Erファイバ増幅器140は、Er(エルビウム)がドープされた光ファイバを用いる光ファイバ増幅器である。
第1のパルス励起光源132は、Erファイバ増幅器140が励起可能な波長約980nmの半導体レーザであってよい。Erファイバ増幅器140によって増幅されたパルスレーザ光は波長変換システム300に入射する。
波長変換システム300は、複数の非線形結晶を含み、第1の固体レーザ装置100から出力される波長約1547.2nmの基本波光を、複数の非線形結晶を用いて8倍波(高調波)光に波長変換して波長約193.4nmの紫外光を生成する構成である。
波長変換システム300は、第1のLBO結晶301と、第2のLBO結晶302と、第3のLBO結晶303と、第1のCLBO結晶304と、第2のCLBO結晶305と、ダイクロイックミラー311、312、313、314、315と、高反射ミラー321、322、323と、を含む。「LBO」は化学式LiBで表される。「CLBO」は化学式CsLiB10で表される。波長変換システム300におけるそれぞれの光学素子の配置は図5に示すとおりである。
第1のLBO結晶301、第2のLBO結晶302、ダイクロイックミラー311、第3のLBO結晶303、ダイクロイックミラー312及び高反射ミラー321は、第1の固体レーザ装置100から出力される波長約1547.2nmのパルスレーザ光LP1の光路上に、この順で配置される。
第1のLBO結晶301は、パルスレーザ光LP1を第2高調波光(波長約773.6nm)に波長変換するよう配置される。
第2のLBO結晶302は、第1のLBO結晶301で生成された第2高調波光と第1のLBO結晶301を透過した基本波光(パルスレーザ光LP1)との和周波の第3高調波光(波長約515.73nm)を生成するよう配置される。
ダイクロイックミラー311は、第2のLBO結晶302と第3のLBO結晶303との間の光路上に配置される。ダイクロイックミラー311は、第2のLBO結晶302で生成された第3高調波光(波長約515.73nm)を高反射し、第2のLBO結晶302を透過した基本波光(波長約1547.2nm)と第2高調波光(波長約773.6nm)とを高透過する膜がコートされている。
第3のLBO結晶303は、第2高調波光を第4高調波光(波長約386.8nm)に波長変換するように配置される。
ダイクロイックミラー312は、第3のLBO結晶303で生成された第4高調波光(波長約386.8nm)を高反射し、第3のLBO結晶303を透過した基本波光(波長約1547.2nm)を高透過する膜がコートされている。
高反射ミラー321は、ダイクロイックミラー312を透過した基本波光を高反射し、反射した基本波光がダイクロイックミラー314に入射するように配置される。
高反射ミラー322は、ダイクロイックミラー311で反射した第3高調波光を高反射し、ダイクロイックミラー313を介して第1のCLBO結晶304に入射させるように配置される。
ダイクロイックミラー313は、高反射ミラー322で反射された第3高調波光を高透過し、ダイクロイックミラー312で反射された第4高調波光を高反射する膜がコートされている。ダイクロイックミラー313は、第3高調波光と第4高調波光との光路軸を一致させて、第3高調波光と第4高調波光とを第1のCLBO結晶304に入射させるように配置される。
第1のCLBO結晶304は、第3高調波光(波長約515.73nm)と第4高調波光(波長約386.8nm)とから和周波の第7高調波光(波長約221.02nm)を生成するように配置される。
ダイクロイックミラー314は、第1のCLBO結晶304から出力された第7高調波を高透過し、高反射ミラー321で反射された基本波光を高反射する膜がコートされている。ダイクロイックミラー314は、基本波光と第7高調波光との光路軸を一致させて、基本波光と第7高調波光とを第2のCLBO結晶305に入射させるように配置させる。
第2のCLBO結晶305は、基本波光と第7高調波光との和周波の第8高調波光(波長約193.4nm)を生成するように配置される。第3のCLBO結晶320から出力される波長約193.4nmのパルスレーザ光がパルスレーザ光LP2となる。
ダイクロイックミラー315は、第2のCLBO結晶305を透過した基本波光(波長約1547.2nm)及び第7高調波光(波長約221.02nm)を高透過し、波長約193.4nmのパルスレーザ光(パルスレーザ光LP2)を高反射する膜がコートされている。
高反射ミラー323は、ダイクロイックミラー315によって反射した第8高調波光を高反射し、ビームスプリッタ328に入射させるように配置される。高反射ミラー323によって反射された波長約193.4nmのパルスレーザ光が波長変換システム300から出力される。
ビームスプリッタ328は、高反射ミラー323からの反射光の光路上であって、一部反射されたレーザ光が第1のパルスエネルギモニタ330に入射するように配置される。
第1のパルスエネルギモニタ330は、紫外光のパルスエネルギを検出する検出器であり、例えば、フォトダイオードや焦電素子を含むパルスエネルギセンサである。
固体レーザシステム制御部350は、第1の半導体レーザ制御部114、第1のパルス励起光源132、及び第1のパルスエネルギモニタ330の各々と接続されている。
エキシマ増幅器14は、増幅器制御部400と、充電器402と、トリガ補正器404と、スイッチ406を含むパルスパワーモジュール(PPM)408と、チャンバ410と、を含む。
チャンバ410の中には、例えばArガスと、Fガスと、Neガスと、を含むArFレーザガスが入っている。チャンバ410の中には一対の放電電極412、413が配置される。一対の放電電極412、413は、PPM408の出力端子に接続されている。
チャンバ410には、波長193.4nm付近のレーザ光を透過する2枚のウインドウ415、416が配置される。
PPM408は、スイッチ406と図示しないパルストランスと図示しない磁気スイッチとを含む。
モニタモジュール16は、ビームスプリッタ601と、第2のパルスエネルギモニタ602と、を含む。ビームスプリッタ601は、エキシマ増幅器14から出力されたパルスレーザ光(エキシマレーザ光)の光路上に配置され、ビームスプリッタ601で反射されたパルスレーザ光が第2のパルスエネルギモニタ602に入射するように配置される。
第2のパルスエネルギモニタ602は、紫外光のパルスエネルギを検出する検出器であり、例えば、フォトダイオードや焦電素子を含むパルスエネルギセンサである。第2のパルスエネルギモニタ602によって検出された情報はレーザ制御部18に送られる。
レーザ制御部18は、固体レーザシステム制御部350、同期システム17、増幅器制御部400、及び露光装置20の露光制御部22と接続される。レーザ制御部18は内部トリガ発生器19を含む。
図6は、同期システム17の構成例を示すブロック図である。同期システム17は、同期システム制御部170と、第1の遅延回路171と、第2の遅延回路172と、第3の遅延回路173と、第1のワンショット回路181と、を含む。
本開示において、第1の半導体レーザ制御部114、固体レーザシステム制御部350、増幅器制御部400、同期システム制御部170、レーザ制御部18、露光制御部22及びその他の各制御部として機能する制御装置は、1台又は複数台のコンピュータのハードウェア及びソフトウェアの組み合わせによって実現することが可能である。ソフトウェアはプログラムと同義である。プログラマブルコントローラはコンピュータの概念に含まれる。コンピュータは、CPU(Central Processing Unit)及びメモリを含んで構成され得る。コンピュータに含まれるCPUはプロセッサの一例である。
また、制御装置の処理機能の一部又は全部は、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)に代表される集積回路を用いて実現してもよい。
また、複数の制御装置の機能を1台の制御装置で実現することも可能である。さらに本開示において、制御装置は、ローカルエリアネットワークやインターネットといった通信ネットワークを介して互いに接続されてもよい。分散コンピューティング環境において、プログラムユニットは、ローカル及びリモート両方のメモリストレージデバイスに保存されてもよい。
2.2 動作
レーザ制御部18は、露光装置20の露光制御部22から目標パルスエネルギEtと目標中心波長λctとの各データ、並びに発光トリガ信号Trを受信する。また、レーザ制御部18は、必要に応じて露光制御部22との間でデータを送受信し、露光NG信号又は露光OK信号を露光制御部22に通知する。
発光トリガ信号Trは、レーザ制御部18を介して同期システム17に入力される。同期システム17は、露光制御部22から出力された発光トリガ信号Trに同期して、固体レーザシステム10中の第1のパルス励起光源132へのトリガ信号Tr11ampと、第1の半導体光増幅器120(SOA#1)に接続された関数発生器122へのトリガ信号Trsoa#1と、エキシマ増幅器14を同期させて放電させるためのトリガ信号Trexと、を出力する。
図7は、レーザシステム1のタイミングチャートの例である。図6及び図7に示すように、同期システム制御部170は、第1の遅延回路171、第2の遅延回路172、及び第3の遅延回路173の各々に、それぞれの遅延時間Tdex、Td2、及びTd3を設定する。これらの遅延時間Tdex、Td2、及びTd3は、第1の半導体レーザ111から出力されたレーザ光を第1の半導体光増幅器120によってパルス増幅し、パルス増幅されたパルスレーザ光をErファイバ増幅器140でさらに増幅し、波長変換システム300により波長193.4nmに変換されたパルスレーザ光がエキシマ増幅器14に入射したときに同期して、エキシマ増幅器14が放電するように設定されている。
第1の遅延回路171は、発光トリガ信号Trに対して遅延時間Tdexだけ遅延させたトリガ信号Trexを生成する。第1の遅延回路171によって生成されたトリガ信号Trexはエキシマ増幅器14の増幅器制御部400に入力される。
第2の遅延回路172は、発光トリガ信号Trに対して遅延時間Td2だけ遅延させたタイミング信号を生成する。第2の遅延回路172によって生成されたタイミング信号は第1のワンショット回路181に入力される。第1のワンショット回路181は第2の遅延回路172からのタイミング信号に同期したトリガ信号Tr11ampを出力する。
第1のワンショット回路181から出力されるトリガ信号Tr11ampは第1のパルス励起光源132に入力される。第1のワンショット回路181から出力されるトリガ信号Tr11ampのパルス時間幅は、Erファイバ増幅器140が十分励起される時間幅に設定される。
第3の遅延回路173は、発光トリガ信号Trに対して、遅延時間Td3だけ遅延させたトリガ信号Trsoa#1を生成する。第3の遅延回路173によって生成されたトリガ信号Trsoa#1は関数発生器122に入力される。
トリガ信号Trexは、増幅器制御部400を介して、トリガ補正器404に入力され、トリガ補正器404の出力はPPM408のスイッチ406に入力される。トリガ補正器404は、トリガ信号Trexが入力された後、一定の遅延時間Tdexdのタイミングで放電するように、PPM408に充電される充電電圧に応じて、PPM408の中のスイッチ406のON-OFFの遅延時間Tdexsのタイミングを制御する。
固体レーザシステム制御部350は、露光制御部22からレーザ制御部18を介して目標中心波長λctのデータを受信し、第1の半導体レーザ111の目標中心波長λ1ct=8・λctを計算する。
固体レーザシステム制御部350は、第1の半導体レーザ111をシングル縦モードでCW発振させ、第1の半導体レーザ制御部114に目標中心波長λ1ctのデータを送信する。
第1の半導体レーザ制御部114は、第1の波長モニタ112で計測した中心波長λ1cと目標中心波長λ1ctとの差δλ1cが0に近づくように、第1の半導体レーザ111の電流値A1及び/又は温度T1を制御する。
第1の半導体レーザ制御部114は、第1の波長モニタ112によって計測される中心波長と目標中心波長との差δλ1が許容範囲内かどうか判定し、差δλ1が許容範囲内であれば固体レーザシステム制御部350に波長OK信号を通知する。
次に、レーザ制御部18は、内部トリガ発生器19により所定の繰返し周波数(例えば、100Hz~6kHz)の内部トリガ信号を生成する。この内部トリガ信号は、露光制御部22からの発光トリガ信号Trに代わってレーザ制御部18が作り出す発光トリガ信号Trに相当するトリガ信号である。内部トリガ発生器19から出力される内部トリガ信号を「内部発光トリガ信号」と呼ぶ。内部発光トリガ信号は「発光トリガ信号Tr」の概念に含まれる。内部発光トリガ信号についても「Tr」の記号を用いる。レーザ制御部18は、露光制御部22から発光トリガ信号Trを受信していない期間に、内部発光トリガ信号Trを生成することができる。レーザ制御部18から出力された発光トリガ信号Trは同期システム17に入力される。
Erファイバ増幅器140で増幅されたパルスレーザ光LP1は波長変換システム300に入射する。波長変換システム300では、パルスレーザ光LP1が第8高調波光に変換されて、波長約193.4nmのパルスレーザ光LP2が出力される。
波長変換システム300における波長変換を概説する。第1の固体レーザ装置100から出力されたパルスレーザ光LP1(波長約1547.2nm)は、第1のLBO結晶301によって第2高調波光(波長約773.6nm)に波長変換される。
第2のLBO結晶302では、第2高調波光(波長約776.7nm)と基本波光(波長約1547.2nm)の和周波である第3高調波光(波長約515.78nm)を生成する。この第3高調波光はダイクロイックミラー311によって分岐され、一方は第3のLBO結晶303に入射し、他方は高反射ミラー322及びダイクロイックミラー313を介して第1のCLBO結晶304に入射する。
第3のLBO結晶303では、第4高調波光(波長約386.8nm)に波長変換される。第3のLBO結晶303から出力された第4高調波光はダイクロイックミラー312を介して第1のCLBO結晶304及び第2のCLBO結晶305にそれぞれ入射する。
第1のCLBO結晶304では、第4高調波光(波長約386.8nm)と第3高調波光(波長約515.78nm)との和周波である第7高調波光(波長約221.01nm)に波長変換される。
第2のCLBO結晶305では、第7高調波光(波長約221.01nm)と基本波光(波長約1547.2nm)の和周波である第8高調波光(波長約193.4nm)に波長変換される。
波長変換システム300の動作をさらに詳述すると、第1の固体レーザ装置100から出力される波長約1547.2nm(周波数ω)の基本波光は、第1のLBO結晶301を通過する際に、2次高調波発生により周波数2ω(波長約773.6nm)の2倍波光が発生する。なお、基本波光を2倍波に波長変換するための位相整合にLBO結晶の温度調節による方法、NCPM(Non-Critical Phase Matching)が使用される。
第1のLBO結晶301を透過した基本波光と、第1のLBO結晶301の波長変換で発生した2倍波光とは第2のLBO結晶302に入射する。第2のLBO結晶302では第1のLBO結晶301と温度が異なるNCPMが使用される。
第2のLBO結晶302では、基本波光と2倍波光とから和周波発生により3倍波光(波長約515.73nm)が発生する。
第2のLBO結晶302で得られた3倍波光と、第2のLBO結晶302を透過した基本波光及び2倍波光とは、ダイクロイックミラー311により分離される。ダイクロイックミラー311で反射された3倍波光(波長約515.73nm)は高反射ミラー322及びダイクロイックミラー313を介して第1のCLBO結晶304に入射する。
一方、ダイクロイックミラー311を透過した基本波光及び2倍波光は第3のLBO結晶303に入射する。第3のLBO結晶303では、基本波光が波長変換されずに第3のLBO結晶303を透過するとともに、2倍波光が2次高調波発生により4倍波光(波長約386.8nm)に変換される。第3のLBO結晶303から得られた4倍波光と第3のLBO結晶303を透過した基本波光とはダイクロイックミラー312により分離される。
ダイクロイックミラー312で反射された4倍波光は、ダイクロイックミラー313によって3倍波光と同軸に合成されて第1のCLBO結晶304に入射する。
一方、ダイクロイックミラー312を透過した基本波光は、高反射ミラー321で反射され、ダイクロイックミラー314を介して第2のCLBO結晶305に入射する。
第1のCLBO結晶304では、3倍波光と4倍波光とから和周波発生により7倍波光(波長約221.02nm)を得る。第1のCLBO結晶304で得られた7倍波光はダイクロイックミラー314によって基本波光と同軸に合成されて第2のCLBO結晶305に入射する。
第2のCLBO結晶305では基本波光と7倍波光とから和周波発生により8倍波光(波長約193.4nm)を得る。
第2のCLBO結晶305で得られた8倍波光と、第2のCLBO結晶305を透過した基本波光及び7倍波光とはダイクロイックミラー315により分離される。
ダイクロイックミラー315で反射された8倍波光(波長約193.4nm)は高反射ミラー323を介して波長変換システム300から出力される。こうして、波長変換システム300から出力された8倍波光の一部は、ビームスプリッタ328を透過して第1の高反射ミラー11に入射する。ビームスプリッタ328を透過したパルスレーザ光が固体レーザシステム10から出力されるパルスレーザ光LP2であってよい。
ビームスプリッタ328で反射されたパルスレーザ光は、第1のパルスエネルギモニタ330に入射する。第1のパルスエネルギモニタ330は、ビームスプリッタ328で反射されたパルスレーザ光のパルスエネルギEsを計測する。第1のパルスエネルギモニタ330によって得られた情報は固体レーザシステム制御部350に送られる。
固体レーザシステム制御部350は、第1のパルスエネルギモニタ330を介してパルスレーザ光LP2のパルスエネルギEsを検出する。固体レーザシステム制御部350は、波長変換後のパルスエネルギEsと目標パルスエネルギEstとの差ΔEsを計算する。
固体レーザシステム制御部350は、ΔEsが0に近づくように、第1のパルス励起光源132の出力を制御する。
固体レーザシステム制御部350は、ΔEsが許容値の範囲内かどうかを判定して、ΔEsが許容範囲ならば、固体レーザシステム制御OK信号をレーザ制御部18に通知する。
その結果、固体レーザシステム10から出力された中心波長約193.4nmのパルスレーザ光LP2は、第1の高反射ミラー11及び第2の高反射ミラー12を介してエキシマ増幅器14に入射する。
波長193.4nmのパルスレーザ光LP2の入射に同期して、エキシマ増幅器14は放電によって反転分布を生成する。ここで、トリガ補正器404は、このパルスレーザ光LP2がエキシマ増幅器14で効率よく増幅されるように、PPM408のスイッチ406のタイミングを調整する。これにより、エキシマ増幅器14から、増幅されたパルスレーザ光LP6が出力される。
エキシマ増幅器14によって増幅されたパルスレーザ光LP6は、モニタモジュール16に入射し、ビームスプリッタ601によってパルスレーザ光の一部が第2のパルスエネルギモニタ602に入射し、パルスレーザ光LP6のパルスエネルギEが計測される。
レーザ制御部18は、第2のパルスエネルギモニタ602からパルスエネルギEの情報を取得する。レーザ制御部18は、第2のパルスエネルギモニタ602によって計測されたパルスエネルギEと目標パルスエネルギEtとの差ΔEを計算する。
レーザ制御部18は、ΔEが0に近づくように、増幅器制御部400を介して充電器402の充電電圧Vhvを制御する。
レーザ制御部18は、ΔEが許容値の範囲内かどうかを判定して、ΔEsが許容範囲ならば、レーザ制御部18からの内部発光トリガ信号Trの出力を停止して、レーザシステムOK信号(露光OK信号)を露光制御部22に通知する。露光制御部22は、レーザシステムOK信号を受信すると、発光トリガ信号Trをレーザ制御部18に送信する。
その結果、目標中心波長λt=193.4nm及び目標パルスエネルギEtのそれぞれの許容範囲で、レーザシステム1からパルスレーザ光が出力される。レーザシステム1から出力されたパルスレーザ光(エキシマ光)は露光装置20に入射し、露光プロセスが実施される。
また、レーザ制御部18は、露光制御部22から新しい目標中心波長λtのデータを受信すると、これらデータを固体レーザシステム制御部350へ送る。
固体レーザシステム制御部350は、発光トリガ信号Trを受信しなくても、目標中心波長λtとなるように、第1の半導体レーザシステム110を制御する。
2.3 レーザ制御部の処理例
図8は、レーザ制御部18における処理内容の例を示すフローチャートである。図8のフローチャートに示す処理及び動作は、例えば、レーザ制御部18として機能するプロセッサがプログラムを実行することによって実現される。
ステップS11において、レーザ制御部18はレーザシステムの初期設定サブルーチンを実施する。ステップS11の後、レーザ制御部18は固体レーザシステム10の制御サブルーチン(ステップS12)と、レーザシステム1の制御サブルーチン(ステップS13)とを実施する。ステップS12の処理とステップS13の処理とは並列に又は並行して実施されてよい。
ステップS12における固体レーザシステム10の制御は、パルスエネルギのフィードバック制御と波長制御とを含む。第1の半導体レーザシステム110の波長制御は、発光トリガ信号Trの入力に関係なく行われる。一方、ステップS13におけるレーザシステム1の制御は、主に、エキシマ増幅器14によって増幅されたエキシマレーザ光のパルスエネルギのフィードバック制御を行う。
ステップS14において、レーザ制御部18はレーザシステム1の制御を停止するか否かの判定を行う。ステップS14の判定結果がNo判定である場合、レーザ制御部18はステップS12及びステップS13に戻る。ステップS14の判定結果がYes判定である場合、レーザ制御部18はステップS15に進む。
ステップS15において、レーザ制御部18はレーザシステム1の停止を露光制御部22に通知し、図8のフローチャートを終了する。
図9は、レーザシステム1の初期設定サブルーチンの例を示すフローチャートである。図9のフローチャートは図8のステップS11に適用される。
図9のステップS21において、レーザ制御部18はエキシマ光のパルスエネルギNG信号を露光制御部22に送信する。ステップS21の処理は、予め初期設定においてエキシマ光のパルスエネルギがNGであると設定しておき、レーザ制御部18は初期設定に従い露光制御部22にパルスエネルギNG信号を送信する。
ステップS22において、レーザ制御部18はスペクトルNG信号を露光制御部22に送信する。ステップS22の処理は、予め初期設定においてエキシマ光の中心波長がNGであると設定しておき、レーザ制御部18は初期設定に従い露光制御部22にスペクトルNG信号を送信する。
ステップS23において、レーザ制御部18はエキシマ増幅器14の充電電圧Vhvを初期値Vhv0に設定する。
ステップS24において、レーザ制御部18はレーザシステム1の目標パルスエネルギEtを初期値Et0に設定する。レーザ制御部18は、露光装置20から目標パルスエネルギEtのデータを受信する以前に、予め定められた標準的な初期値Et0を設定する。
ステップS25において、レーザ制御部18は、発光トリガ信号Trに対する各トリガ信号Trex、Tr11amp、及びTrsoa#1のそれぞれの遅延時間Tdex、Td2、及びTd3を設定する。レーザ制御部18は、固体レーザシステム10から出力されたパルスレーザ光がエキシマ増幅器14に入射したタイミングで放電するように、それぞれの遅延時間を設定する。なお、それぞれの遅延時間は固定値であってよい。
図10は、固体レーザシステム10の制御サブルーチンの例を示すフローチャートである。図10のフローチャートは図8のステップS12に適用される。
図10のステップS31において、レーザ制御部18は露光制御部22から目標中心波長のデータを新しく受信したか否かを判定する。ステップS31の判定結果がYes判定である場合、レーザ制御部18はステップS32に進む。
ステップS32において、レーザ制御部18は目標中心波長λctのデータを読み込む。次いで、ステップS33において、レーザ制御部18は固体レーザシステム制御部350に目標中心波長λctのデータを送信する。
ステップS33の後、レーザ制御部18はステップS40に進む。また、ステップS31の判定結果がNo判定である場合、レーザ制御部18はステップS32及びステップS33をスキップしてステップS40に進む。
ステップS40において、レーザ制御部18はフラグF1の値を確認し、フラグF1=1を満たすか否かを判定する。フラグF1は第1の半導体レーザシステム110がOKの状態であるかNGの状態であるかを示すフラグである。フラグの値「1」はOKを示し、「0」はNGを示す。つまり、レーザ制御部18は、第1の半導体レーザシステム110がOKの状態であるか否かを判定する。
ステップS40の判定結果がYes判定である場合、レーザ制御部18はステップS41に進む。ステップS41において、レーザ制御部18は露光制御部22にスペクトルOK信号を送信する。
ステップS42において、レーザ制御部18は固体レーザシステム10からエネルギOK信号を受信したか否かを判定する。例えば、レーザ制御部18は、フラグFsの値を確認し、フラグFs=1であるか否かを判定する。フラグFsは、固体レーザシステム10から出力されるパルスエネルギがOKの状態であるかNGの状態であるかを示すフラグである。フラグFsの値「1」はOKを示し、「0」はNGを示す。レーザ制御部18は、フラグFsの値を基に、固体レーザシステム10のパルスエネルギがOKの状態であるか否かを判定する。ステップS42の判定結果がYes判定である場合、レーザ制御部18はステップS43に進む。
ステップS43において、レーザ制御部18は露光制御部22に固体レーザシステム10のエネルギOK信号を送信する。その一方、ステップS42の判定結果がNo判定である場合、レーザ制御部18はステップS44に進む。
ステップS44において、レーザ制御部18は露光制御部22に固体レーザシステム10のエネルギNG信号を送信する。
また、ステップS40の判定結果がNo判定である場合、レーザ制御部18はステップS45に進み、露光制御部22にスペクトルNG信号を送信する。
ステップS43、ステップS44、又はステップS45の後、レーザ制御部18は、図10のフローチャートを終了して、図8のフローチャートに復帰する。
図11は、レーザシステム1の制御サブルーチンの例を示すフローチャートである。図11のフローチャートは図8のステップS13に適用される。
図11のステップS51において、レーザ制御部18は露光制御部22から目標パルスエネルギのデータを新しく受信したか否かを判定する。ステップS51の判定結果がYes判定である場合、レーザ制御部18はステップS52に進む。
ステップS52において、レーザ制御部18は目標パルスエネルギEtのデータを読み込む。ステップS52の後、レーザ制御部18はステップS53に進む。また、ステップS51の判定結果がNo判定である場合、レーザ制御部18はステップS52をスキップしてステップS53に進む。
ステップS53において、レーザ制御部18はエキシマ光の発光パルスを検出したか否かを判定する。レーザ制御部18は、モニタモジュール16から得られる信号を基に、露光装置20へ出力されたパルスレーザ光(エキシマ光)のパルスエネルギを検出したか否かを判定する。ステップS53の判定結果がYes判定である場合、レーザ制御部18はステップS54に進む。
ステップS54において、レーザ制御部18はモニタモジュール16で検出されたエキシマ光のパルスエネルギEのデータを取得する。
ステップS55において、レーザ制御部18はパルスエネルギEと目標パルスエネルギEtとの差ΔEを計算する。
ステップS56において、レーザ制御部18はΔEが0に近づくようにエキシマ増幅器14の充電電圧Vhvを制御する。
その後、ステップS57において、レーザ制御部18はΔEの絶対値が許容範囲を示す許容上限値Etr以下であるか否かを判定する。ステップS57の判定結果がYes判定である場合、レーザ制御部18はステップS58に進み、露光制御部22にエキシマ光のパルスエネルギOK信号を送信する。
ステップS57の判定結果がNo判定である場合、レーザ制御部18はステップS59に進み、露光制御部22にエキシマ光のパルスエネルギNG信号を送信する。
ステップS58又はステップS59の後、レーザ制御部18は図11のフローチャートを終了して、図8のフローチャートに復帰する。
また、図11のステップS53の判定結果がNo判定である場合、レーザ制御部18はステップS54からステップS59をスキップして図11のフローチャートを終了し、図8のフローチャートに復帰する。
2.4 固体レーザシステム制御部の処理例
図12は、固体レーザシステム制御部350における処理内容の例を示すフローチャートである。図12のフローチャートに示す処理及び動作は、例えば、固体レーザシステム制御部350として機能するプロセッサがプログラムを実行することによって実現される。固体レーザシステム制御部350が実施する制御のフローチャートは、第1の半導体レーザシステム110の制御と、固体レーザシステム10のエネルギ制御と、を含む。
ステップS61において、固体レーザシステム制御部350は、固体レーザシステム10の初期設定サブルーチンを実施する。
ステップS61の後、固体レーザシステム制御部350は第1の半導体レーザシステム110の制御サブルーチン(ステップS62)と、固体レーザシステム10のエネルギ制御サブルーチン(ステップS64)と、を実施する。ステップS62、及びステップS64の各サブルーチンの処理は並列に又は並行して実施されてよい。
ステップS65において、固体レーザシステム制御部350は固体レーザシステム10の制御を停止するか否かの判定を行う。
ステップS65の判定結果がNo判定である場合、固体レーザシステム制御部350はステップS62、及びステップS64に戻る。ステップS65の判定結果がYes判定である場合、固体レーザシステム制御部350はステップS66に進む。
ステップS66において、固体レーザシステム制御部350は固体レーザシステム10の停止をレーザ制御部18に通知し、図12のフローチャートを終了する。
図13は、固体レーザシステム10の初期設定サブルーチンの例を示すフローチャートである。図13のフローチャートは図12のステップS61に適用される。
図13のステップS71において、固体レーザシステム制御部350は第1の半導体レーザシステム110の状態をNGに設定する。つまり、固体レーザシステム制御部350は、フラグF1の値を「0」に設定する。
ステップS73において、固体レーザシステム制御部350は固体レーザシステム10のエネルギの状態をNGに設定する。つまり、固体レーザシステム制御部350は、フラグFsの値を「0」に設定する。
ステップS74において、固体レーザシステム制御部350は第1の半導体レーザシステム110の目標中心波長λ1ctを初期値λ1c0に設定する。λ1c0は、例えば、λ1c0=1547.2nmと設定してよい。
ステップS76において、固体レーザシステム制御部350は第1のパルス励起光源132のパルスエネルギの初期値を設定する。
ステップS77において、固体レーザシステム制御部350は、固体レーザシステム10の目標パルスエネルギEstを初期値Es0に設定する。Es0は予め定められた固定値であって、エキシマ増幅器14でASE(Amplified Spontaneous Emission)の発生を抑制可能な値である。
ステップS78において、固体レーザシステム制御部350は、第1の半導体レーザ111の電流値と温度とをそれぞれ初期値に設定する。第1の半導体レーザ111は、発振波長がλ1c0に近い波長となるような電流値と温度を初期値とする。ここでは電流値A1の初期値をA10とし、温度T1の初期値をT10とする。
ステップS79において、固体レーザシステム制御部350は、電流値A1=A10及びT1=T10の設定の下で第1の半導体レーザ111をCW発振させる。
ステップS79の後、固体レーザシステム制御部350は、図13のフローチャートを終了し、図12のフローチャートに復帰する。
図14は、第1の半導体レーザシステム110の制御サブルーチンの例を示すフローチャートである。図13のフローチャートは図12のステップS62に適用される。
図14のステップS91において、固体レーザシステム制御部350は露光制御部22からレーザ制御部18を介して目標中心波長を変更する指令を受信したが否かを判定する。ステップS91の判定結果がYes判定である場合、固体レーザシステム制御部350はステップS92に進む。
ステップS92において、固体レーザシステム制御部350は波長NG信号をレーザ制御部18に送信する。目標中心波長が変更された場合、波長の調整が必要になるため、波長NGの状態(F1=0)となる。
ステップS93において、固体レーザシステム制御部350は新しい目標中心波長λctのデータを読み込む。
ステップS94において、固体レーザシステム制御部350は第1の半導体レーザシステム110の目標中心波長λ1ctを計算する。ステップS94の処理内容については図15を用いて後述する。固体レーザシステム制御部350は、後述する波長変換式に従い、目標中心波長λ1ctを計算する。
図14のステップS95において、固体レーザシステム制御部350は目標中心波長λ1ctのデータを第1の半導体レーザ制御部114に送信する。ステップS95の後、固体レーザシステム制御部350はステップS96に進む。
一方、ステップS91の判定結果がNo判定である場合、つまり、露光制御部22から目標中心波長を変更する指令を受信していない場合、固体レーザシステム制御部350はステップS92からステップS95をスキップしてステップS96に進む。
ステップS96において、固体レーザシステム制御部350は第1の半導体レーザ制御部114から第1の半導体レーザシステム110のOK信号を受信したか否かを判定する。ステップS96の判定結果がYes判定である場合、固体レーザシステム制御部350はステップS97に進む。
ステップS97において、固体レーザシステム制御部350は第1の半導体レーザシステム110のOK信号をレーザ制御部18に送信する。すなわち、固体レーザシステム制御部350からレーザ制御部18にF1=1のフラグ信号が送信される。
その一方、ステップS96の判定結果がNo判定である場合、つまり、フラグF1=0である場合、固体レーザシステム制御部350はステップS98に進む。
ステップS98において、固体レーザシステム制御部350は第1の半導体レーザシステム110のNG信号をレーザ制御部18に送信する。すなわち、固体レーザシステム制御部350からレーザ制御部18にF1=0のフラグ信号が送信される。
ステップS97又はステップS98の後、固体レーザシステム制御部350は、図14のフローチャートを終了し、図12のフローチャートに復帰する。
図15は、第1の半導体レーザシステム110の目標中心波長λ1ctを計算する処理のサブルーチンの例を示すフローチャートである。図15のフローチャートは図14のステップS94に適用される。
図15のステップS101において、固体レーザシステム制御部350は第1の半導体レーザシステム110の目標中心波長λ1ctを、λ1ct=8・λctとする。波長変換システム300によって8倍の高調波光を生成するので、第1の半導体レーザシステム110の目標中心波長λ1ctは、λctの8倍の波長となる。
ArFエキシマレーザの波長可変範囲は、例えば193.2nm~193.5nmなので、基本波光である第1の半導体レーザ111の波長は、1545.6nm~1548.0nmの範囲である。
なお、図15のステップS101で説明した計算の手順に限らず、同様の変換結果が得られるテーブルデータなどを用いて計算してもよい。
ステップS101の後、固体レーザシステム制御部350は図15のフローチャートを終了し、図14のフローチャートに復帰する。
図16は、固体レーザシステム10のエネルギ制御サブルーチンの例を示すフローチャートである。図16のフローチャートは図12のステップS64に適用される。
図16のステップS111において、固体レーザシステム制御部350はフラグF1の値を確認し、フラグF1=1を満たすか否かを判定する。つまり、固体レーザシステム制御部350は、第1の半導体レーザシステム110からOK信号を受信したか否かを判定する。
ステップS111の判定結果がNo判定である場合、固体レーザシステム制御部350はステップS111の処理を繰り返す。ステップS111の判定結果がYes判定である場合、固体レーザシステム制御部350はステップS112に進む。
ステップS112において、固体レーザシステム制御部350は第1のパルスエネルギモニタ330によってパルスレーザ光のパルスエネルギを検出したか否かを判定する。固体レーザシステム制御部350は、第1のパルスエネルギモニタ330から得られる信号を基に判定を行う。
ステップS112の判定結果がNo判定である場合、固体レーザシステム制御部350はステップS112の処理を繰り返す。ステップS112の判定結果がYes判定である場合、固体レーザシステム制御部350はステップS113に進む。
ステップS113において、固体レーザシステム制御部350は第1のパルスエネルギモニタ330によって検出されたパルスエネルギEsの値を読み込む。
ステップS114において、固体レーザシステム制御部350はパルスエネルギEsと目標パルスエネルギEstとの差ΔEsを計算する。
ステップS115において、固体レーザシステム制御部350はΔEsが0に近づくように第1のパルス励起光源132のパルスエネルギを制御する。
その後、ステップS116において、固体レーザシステム制御部350はΔEsの絶対値が許容範囲を示す許容上限値ΔEstr以下であるか否かを判定する。ステップS116の判定結果がYes判定である場合、固体レーザシステム制御部350はステップS117に進む。
ステップS117において、固体レーザシステム制御部350はレーザ制御部18に固体レーザシステム10のパルスエネルギOK信号、すなわちFs=1のフラグ信号を送信する。
その一方、ステップS116の判定結果がNo判定である場合、固体レーザシステム制御部350はステップS118に進み、レーザ制御部18に固体レーザシステム10のパルスエネルギNG信号、すなわちFs=0のフラグ信号を送信する。
ステップS117又はステップS118の後、固体レーザシステム制御部350は図16のフローチャートを終了し、図12のフローチャートに復帰する。
2.5 半導体レーザシステムの例
2.5.1 構成
図17は、第1の半導体レーザシステム110の構成例を概略的に示す図である。第1の半導体レーザシステム110は、シングル縦モードの第1の半導体レーザ111と、第1の波長モニタ112と、第1の半導体レーザ制御部114と、第1のビームスプリッタ116と、第1の半導体光増幅器120と、を含む。
第1の半導体レーザ111は、DFBレーザであり、半導体素子40と、ペルチェ素子50と、温度センサ52と、電流制御部54と、温度制御部56と、を含む。半導体素子40は、第1のクラッド層41、活性層42及び第2のクラッド層43を含み、活性層42と第2のクラッド層43の境界にグレーティング44を含む。
2.5.2 動作
第1の半導体レーザ111の発振波長は、半導体素子40の電流値A及び/又は設定温度Tを変化させることによって変更することができる。ここでの電流値Aは、例えば、直流(DC)電流値であってよい。発振波長を狭い範囲で高速に変化させる場合は、電流値Aを変化させる。発振波長を大きく変化させる場合は、設定温度Tを変更する。
図18は、第1の半導体レーザ111から出力されるレーザ光のスペクトル波形の例を示す。第1の半導体レーザ111から出力されるレーザ光は、図18に示すように、シングル縦モード発振によるスペクトル線幅の狭いシングルラインのスペクトル形状を有する。
2.6 第1の半導体レーザ制御部の処理例
図19は、第1の半導体レーザ制御部114における処理内容の例を示すフローチャートである。図19のフローチャートに示す処理及び動作は、例えば、第1の半導体レーザ制御部114として機能するプロセッサがプログラムを実行することによって実現される。
ステップS121において、第1の半導体レーザ制御部114は第1の半導体レーザ111の電流値と温度とをそれぞれ初期値に設定してCW発振させる。例えば、第1の半導体レーザ制御部114は、図13のステップS78にて初期値に設定した第1の半導体レーザの電流値と温度との各値を読み込んで、第1の半導体レーザ111をCW発振させる。
ステップS122において、第1の半導体レーザ制御部114は目標中心波長λ1ctのデータを読み込む。
ステップS123において、第1の半導体レーザ制御部114は第1の波長モニタ112を用いて発振中心波長λ1cを計測する。
ステップS124において、第1の半導体レーザ制御部114は発振中心波長λ1cと目標中心波長λ1ctとの差δλ1cを計算する。
ステップS125において、第1の半導体レーザ制御部114はδλ1cの絶対値が許容範囲を示す許容上限値δλ1ctr以下であるか否かを判定する。ステップS125の判定結果がNo判定である場合、第1の半導体レーザ制御部114はステップS126に進み、F1=0のフラグ信号を固体レーザシステム制御部350に送信する。
そして、ステップS127において、第1の半導体レーザ制御部114はδλ1cの絶対値が電流制御で波長制御可能な範囲を示す許容上限値δλ1catr以下であるか否かを判定する。ステップS127の判定結果がYes判定である場合、第1の半導体レーザ制御部114はステップS129に進み、δλ1cが0に近づくように第1の半導体レーザ111の電流値A1を制御する。
ステップS127の判定結果がNo判定である場合、第1の半導体レーザ制御部114はステップS130に進み、δλ1cが0に近づくように第1の半導体レーザ111の温度T1を制御する。
また、ステップS125の判定結果がYes判定である場合、第1の半導体レーザ制御部114はステップS128に進み、F1=1のフラグ信号を固体レーザシステム制御部350に送信する。ステップS128の後、第1の半導体レーザ制御部114はステップS129に進む。
ステップS129又はステップS130の後、第1の半導体レーザ制御部114はステップS131に進む。ステップS131において、第1の半導体レーザ制御部114は第1の半導体レーザシステム110の制御を中止するか否かを判定する。ステップS131の判定結果がNo判定である場合、第1の半導体レーザ制御部114はステップS123に戻り、ステップS123からステップS131の処理を繰り返す。
ステップS131の判定結果がYes判定である場合、第1の半導体レーザ制御部114は図19のフローチャートを終了する。
3.課題
図5に示す第1の半導体レーザ111にシングル縦モードで発振する半導体レーザを使用する場合、以下のような課題がある。
[課題1]シードレーザ光を高いパルスエネルギとなるようにファイバ増幅器を用いてパルス増幅すると、スペクトル線幅が狭いため、光ファイバ中の非線形現象である誘導ブリルアン散乱(SBS:Stimulated Brillouin Scattering)の発生によって、固体レーザ装置が破損する恐れがある。そのため、ファイバ増幅器でのパルス増幅によるパルスレーザ光のパルスエネルギを高くすることが難しい。
[課題2]露光装置20にて所望の露光プロセスを実現するために、露光装置20に入射させるパルスレーザ光(エキシマ光)のスペクトル線幅を制御する必要がある。しかし、シングル縦モードで発振する半導体レーザではレーザ光のスペクトル線幅を変更することが困難であるために、波長変換システム300で波長変換して増幅したエキシマ光のスペクトル線幅を制御することが難しい。
[課題3]また、仮に、固体レーザシステム10において図示しないマルチ縦モード発振する半導体レーザを使用する場合は、SBSの発生を抑制できるものの、スペクトル線幅を目標スペクトル線幅に高精度に制御することが難しい。
4.実施形態1
4.1 構成
図20は、実施形態1に係るレーザシステム1Aの構成を概略的に示す。図5との相違点を説明する。図20に示す実施形態1に係るレーザシステム1Aは、図5に示す第1の半導体レーザシステム110に代えて、第1の半導体レーザシステム160を含む。図21は、第1の半導体レーザシステム160の例を示すブロック図である。
第1の半導体レーザシステム160は、図5の第1の波長モニタ112に代えて、第1のスペクトルモニタ166を備え、さらに、第1の半導体レーザ111に流す電流を変調制御するための関数発生器167が追加されている。
また、図20におけるモニタモジュール16は、ビームスプリッタ604と、スペクトルモニタ606と、をさらに含む。スペクトルモニタ606は、例えば、後述する図68に示すような、ArFレーザ光(エキシマ光)のスペクトル線幅を計測するエタロン分光器を含む構成であってよい。
露光制御部22は、レーザ制御部18にエキシマ光の目標スペクトル線幅Δλtのデータを送信する信号ラインを有する。
4.2 動作
図20に示すレーザシステム1Aのレーザ制御部18は、露光制御部22からエキシマ光の目標スペクトル線幅Δλtのデータを受信すると、目標スペクトル線幅Δλtとなるような第1の半導体レーザシステム160の目標スペクトル線幅Δλ1chtを計算する。レーザ制御部18は、目標スペクトル線幅Δλ1chtのデータを固体レーザシステム制御部350に送信する。ここで、レーザ制御部18がエキシマ光の目標スペクトル線幅Δλtから目標スペクトル線幅Δλ1chtを計算するに際し、ΔλtとΔλ1chとの相関関係は、テーブルデータや関数として予めメモリ等の記憶部に保持されていてよい。このような相関関係を特定するデータは、レーザシステム1Aの稼動に伴い更新されてもよい。
さらに、レーザ制御部18は、露光制御部22からエキシマ光の目標中心波長λctのデータを受信すると、目標中心波長λctとなるような、第1の半導体レーザシステム160の目標中心波長λ1cht=8・λctを計算する。レーザ制御部18は、目標中心波長λ1ctのデータを固体レーザシステム制御部350に送信する。
第1の半導体レーザ制御部114は、目標スペクトル線幅Δλ1chtと目標中心波長λ1ctとの各データを受信すると、第1のスペクトルモニタ166で検出されたスペクトル線幅Δλ1chと中心波長λ1cとを計測する。第1の半導体レーザ制御部114は、計測されたスペクトル線幅Δλ1chと目標スペクトル線幅Δλ1chtとの差ΔΔλ1ch(=Δλ1ch-Δλ1cht)を計算する。また、第1の半導体レーザ制御部114は、計測された中心波長λ1chと目標中心波長λ1chtとの差δλ1c(=λ1c-λ1ct)を計算する。第1の半導体レーザ制御部114は、ΔΔλ1chが0に近づくように、第1の半導体レーザ111に流す電流の電流制御パラメータのAC(交流)成分の変動幅A1acを制御する。
また、第1の半導体レーザ制御部114は、δλ1cが0に近づくように、第1の半導体レーザ111に流す電流の電流制御パラメータのDC成分値A1dcを制御する(図33参照)。若しくは、第1の半導体レーザ制御部114は、δλ1cが0に近づくように、第1の半導体レーザ111の温度T1を制御する(図34参照)。
4.3 第1の半導体レーザシステムの動作
分布帰還型半導体レーザの発振中心波長は、半導体素子40の電流値及び/又は半導体設定温度を変化させることによって変更できる。
高速で波長をチャーピングさせて、スペクトル線幅を制御する場合は、第1の半導体レーザ111に流れる電流の電流値を高速に変化させることによって制御が実現可能である。
図21に示すように、第1の半導体レーザ制御部114から関数発生器167に、電流制御パラメータとしてDC成分値A1dcと、AC成分の変動幅A1acと、AC成分の周期A1Tとの各パラメータの値を送信することによって、高速で波長をチャーピングさせて、スペクトル線幅を制御することが可能となる。関数発生器167は、第1の半導体レーザ制御部114から指定された電流制御パラメータに応じた波形の電気信号を電流制御部54に出力する。電流制御部54は関数発生器167からの電気信号に応じた電流を半導体素子40に流すように電流制御を行う。なお、関数発生器167は、第1の半導体レーザ111の外部に設けられてもよい。例えば、関数発生器167は、第1の半導体レーザ制御部114に含まれてもよい。
図22は、チャーピングによって実現されるスペクトル線幅の概念図である。スペクトル線幅Δλ1chは、チャーピングによって生成される最大波長と最小波長との差として計測される。
図23は、第1の半導体レーザに流れる電流とチャーピングによる波長変化とスペクトル波形と光強度との関係を示す説明図である。図23の下段左部に表示したグラフGAは、電流値Aの変化を示すグラフである。図23の下段中央部に表示したグラフGBは、グラフGAの電流によって発生するチャーピングを示すグラフである。図23の上段に表示したグラフGCは、グラフGBのチャーピングによって得られるスペクトル波形の模式図である。図23の下段右部に表示したグラフGDは、グラフGAの電流によって第1の半導体レーザ111から出力されるレーザ光の光強度の変化を示すグラフである。
第1の半導体レーザシステム160の電流制御パラメータは、グラフGAに示すように、次の値を含む。
A1dc:半導体素子に流れる電流のDC成分値
A1ac:半導体素子に流れる電流のAC成分の変動幅(電流の極大値と極小値との差)
A1T:半導体素子に流れる電流のAC成分の周期
図23に示す例では、電流制御パラメータのAC成分の例として、三角波の例が示されており、三角波の電流の変動によって、光強度の変動が少ない場合の例を示す。
ここで、第1の半導体光増幅器120の増幅パルスの時間幅DとAC成分の周期A1Tとの関係は次の式(2)を満足するのが好ましい。
D=n・A1T nは1以上の整数である。 (2)
この式(2)の関係を満足させることによって、第1の半導体光増幅器120で、どのようなタイミングでパルス増幅を行っても、増幅されたパルスレーザ光のスペクトル波形の変化を抑制できる。
また、式(2)を満足しなくても、第1の半導体光増幅器120でのパルス幅の範囲は、例えば10ns~50nsである。半導体素子に流れる電流のAC成分の周期A1Tは、第1の半導体光増幅器120のパルス幅(増幅パルスの時間幅D)よりも十分短い周期である。例えば、この周期は第1の半導体光増幅器120でのパルス幅に対して、1/1000以上1/10以下、であることが好ましい。さらに好ましくは1/1000以上1/100以下であってもよい。
また、第1の半導体光増幅器120の立ち上がり時間は、例えば2ns以下であることが好ましく、さらに好ましくは1ns以下である。ここでいう立ち上がり時間とは、図24に示すように、パルス電流の波形における振幅が、最大振幅の10%から90%まで増加するのに要する時間Rtをいう。
4.3.1 その他
図23に示した例では、電流のAC成分の波形の例として三角波を示したが、この例に限定されることなく、例えば、一定周期で変化する波形であればよい。三角波以外の他の例として、AC成分の波形は、正弦波や矩形波などであってもよい。
4.4 レーザ制御部の処理例
図25は、レーザ制御部18における処理内容の例を示すフローチャートである。図8のフローチャートに代えて、図25のフローチャートを適用することができる。図8との相違点を説明する。
図25に示すフローチャートは、図8のステップS12に代えて、ステップS12Aを含む。ステップS12Aにおいて、レーザ制御部18は固体レーザシステム10の制御サブルーチン(2)の処理を実施する。
図26は、固体レーザシステムの制御サブルーチン(2)の例を示すフローチャートである。図26のフローチャートは図25のステップS12Aに適用される。図26のフローチャートについて図10との相違点を説明する。
図26に示すフローチャートは、ステップS33とステップS40との間に、ステップS34からステップS38を含む。
ステップS31の判定結果がNo判定である場合、又はステップS33の後、レーザ制御部18はステップS34に進む。
ステップS34において、レーザ制御部18は露光制御部22から目標スペクトル線幅のデータを受信したか否かを判定する。
ステップS34の判定結果がYes判定の場合、つまり、露光制御部22から新しい目標スペクトル線幅のデータを受信すると、レーザ制御部18はステップS35に進み、目標スペクトル線幅Δλtのデータを読み込む。
そして、ステップS36において、レーザ制御部18は目標スペクトル線幅Δλtから第1の半導体レーザシステム160の目標スペクトル線幅Δλ1chtを計算する。
その後、ステップS38において、レーザ制御部18は固体レーザシステム制御部350に目標スペクトル線幅Δλ1chtのデータを送信する。
ステップS38の後、レーザ制御部18はステップS40に進む。また、ステップS34の判定結果がNo判定である場合、レーザ制御部18はステップS35からステップS38をスキップしてステップS40に進む。ステップS40以降の処理内容は図10のフローチャートで説明した通りである。
図27は、第1の半導体システム160の目標スペクトル線幅Δλ1chtを計算する処理の例を示すフローチャートである。図27に示すフローチャートは図26のステップS36に適用される。
図27のステップS161において、レーザ制御部18はエキシマ光のスペクトル線幅Δλと第1の半導体レーザシステムのスペクトル線幅Δλ1chとの関係を表す関数Δλ1ch=f(Δλ)を呼び出す。
図28に、関数Δλ1ch=f(Δλ)の例を示す。図28は、エキシマ光のスペクトル線幅Δλと第1の半導体レーザシステム160のスペクトル線幅Δλ1chとの関係を表す関数の例を示すグラフである。このような関数は、例えば、エキシマ増幅器14で増幅されたパルスレーザ光のスペクトル線幅Δλと、第1の半導体レーザシステム160から出力されるパルスレーザ光のスペクトル線幅Δλ1chのデータとを予め測定しておき、その測定結果から近似関数を求めることによって得られる。
レーザ制御部18は、図28のような近似関数をメモリから呼び出して、ΔλtからΔλ1chtを計算することができる。
図27のステップS162において、レーザ制御部18は呼び出した関数を用い、エキシマ光の目標スペクトル線幅Δλtから第1の半導体レーザシステム160の目標スペクトル線幅Δλ1chtを計算する。
ステップS162の後、レーザ制御部18は図27のフローチャートを終了し、図26のフローチャートに復帰する。
なお、図28に示すような関数の代わりに、テーブルデータをメモリに記憶しておき、テーブルデータを呼び出して、ΔλtからΔλ1chtを計算してもよい。
4.5 固体レーザシステム制御部の処理例
図29は、固体レーザシステム制御部350における処理内容の例を示すフローチャートである。図12のフローチャートに代えて、図29のフローチャートを適用することができる。図12との相違点を説明する。
図29に示すフローチャートは、図12のステップS61、及びステップS62の各ステップに代えて、ステップS61A、及びステップS62Aを含む。
ステップS61Aにおいて、固体レーザシステム制御部350は固体レーザシステムの初期設定サブルーチン(2)の処理を実施する。
ステップS62Aにおいて、固体レーザシステム制御部350は第1の半導体レーザシステム160の制御サブルーチンの処理を実施する。
図30は、固体レーザシステムの初期設定サブルーチン(2)の例を示すフローチャートである。図30に示すフローチャートは図29のステップS61Aに適用される。
図30のステップS171において、固体レーザシステム制御部350は第1の半導体レーザシステム160の状態を示すフラグ信号をNGに設定する。つまり、固体レーザシステム制御部350はフラグF1の値を「0」に設定する。
ステップS173において、固体レーザシステム制御部350は固体レーザシステム10のエネルギの状態を示すフラグ信号をNGに設定する。つまり、固体レーザシステム制御部350は、フラグFsの値を「0」に設定する。
ステップS174において、固体レーザシステム制御部350は第1の半導体レーザシステム160の目標中心波長λ1ctを初期値λ1c0に設定する。λ1c0は、例えば、λ1c0=1547.2nmと設定してよい。
ステップS176において、固体レーザシステム制御部350は第1の半導体レーザシステム160のチャーピングによる目標スペクトル線幅Δλ1chtを初期値Δλ1ch0に設定する。ここでは、Erファイバ増幅器140のSBSの発生を抑制可能なスペクトル線幅である初期値Δλ1ch0に設定する。
ステップS180において、固体レーザシステム制御部350は第1のパルス励起光源132のパルスエネルギの初期値を設定する。
ステップS181において、固体レーザシステム制御部350は固体レーザシステム10の目標パルスエネルギEstを初期値Es0に設定する。
ステップS182において、固体レーザシステム制御部350は同期システム17にそれぞれのトリガ信号の遅延時間を設定する。
ステップS183において、固体レーザシステム制御部350は第1の半導体レーザ111の電流制御パラメータと温度とをそれぞれの初期値に設定する。すなわち、電流制御パラメータのDC成分値A1dc、AC成分の変動幅A1ac、及びAC成分の周期A1T、並びに温度T1の各値をそれぞれの初期値、A1dc=A1dc0、A1ac=A1ac0、A1T=A1T0、及びT1=T10に設定する。これらの初期値は、第1の半導体レーザ111の発振波長とスペクトル線幅がそれぞれ、λ1c0とΔλ1ch0に近い値となるような電流制御パラメータの各値と温度の値を初期値とする。
ステップS184において、固体レーザシステム制御部350はステップS183での設定に従い第1の半導体レーザ111をCW発振させる。
ステップS184の後、固体レーザシステム制御部350は図30のフローチャートを終了し、図25のフローチャートに復帰する。
図31は、第1の半導体レーザシステム160の制御サブルーチンの例を示すフローチャートである。図31のフローチャートは、図29のステップS62Aに適用される。
図31のフローチャートにおけるステップS91からステップS95は図14と同様である。図31において、ステップS95の後、又はステップS91の判定結果がNo判定である場合、固体レーザシステム制御部350はステップS191に進む。
ステップS191において、固体レーザシステム制御部350は目標スペクトル線幅が変更されたか否かを判定する。ステップS191の判定結果がYes判定の場合、つまり目標スペクトル線幅が変更された場合、固体レーザシステム制御部350はステップS192に進み、第1の半導体レーザシステム160がNGであることを示すF1=0のフラグ信号をレーザ制御部18に送信する。
そして、ステップS193において、固体レーザシステム制御部350はチャーピングによる目標スペクトル線幅Δλ1chtのデータを読み込む。
ステップS194において、固体レーザシステム制御部350はチャーピングによる目標スペクトル線幅Δλ1chtのデータを第1の半導体レーザ制御部114に送信する。
ステップS194の後、固体レーザシステム制御部350はステップS196に進む。また、ステップS191の判定結果がNo判定である場合、つまり、露光制御部22から目標スペクトル線幅の変更を要求されていない場合、固体レーザシステム制御部350はステップS192からステップS194をスキップしてステップS196に進む。
ステップS196において、固体レーザシステム制御部350は第1の半導体レーザシステム160からOK信号を受信したか否かを判定する。
ステップS196の判定結果がYes判定の場合、固体レーザシステム制御部350はステップS197に進み、レーザ制御部18にF1=1のフラグ信号を送信する。
ステップS196の判定結果がNo判定の場合、固体レーザシステム制御部350はステップS198に進み、レーザ制御部18にF1=0のフラグ信号を送信する。
ステップS197又はステップS198の後、固体レーザシステム制御部350は図31のフローチャートを終了し、図29のフローチャートに復帰する。
4.6 第1の半導体レーザ制御部の処理例
図32は、第1の半導体レーザ制御部114における処理内容の例を示すフローチャートである。図32のフローチャートに示す処理及び動作は、例えば、第1の半導体レーザ制御部114として機能するプロセッサがプログラムを実行することによって実現される。
ステップS201において、第1の半導体レーザ制御部114は第1の半導体レーザシステム160の制御パラメータの初期値を読み込む。制御パラメータには、目標中心波長λ1ct、目標スペクトル線幅Δλ1cht、第1の半導体レーザ111の電流制御パラメータ{A1dc,A1ac,A1T}、及び温度T1が含まれる。ここでは、λ1ct=λ1c0、Δλ1cht=Δλ1ch10、A1dc=A1dc0、A1ac=A1ac0、A1T=A1T0、及びT1=T10に設定される。
ステップS202において、第1の半導体レーザ制御部114は目標中心波長λ1ctのデータを読み込む。
ステップS203において、第1の半導体レーザ制御部114はチャーピングによる目標スペクトル線幅Δλ1chtのデータを読み込む。
ステップS204において、第1の半導体レーザ制御部114は第1の半導体レーザの制御サブルーチン(2)の処理を実施する。ステップS204の処理内容の例は図33を用いて後述する。ステップS204の後、第1の半導体レーザ制御部114はステップS205に進む。
ステップS205において、第1の半導体レーザ制御部114は第1の半導体レーザシステム160のスペクトル線幅Δλ1chと中心波長λ1cとを計算し、それぞれの目標値に対する差が許容範囲内であるか否かを判定する。
その後、ステップS206において、第1の半導体レーザ制御部114は第1の半導体レーザ111の制御を中止するか否かを判定する。ステップS206の判定結果がNo判定である場合、第1の半導体レーザ制御部114はステップS202に戻り、ステップS202からステップS206の処理を繰り返す。
ステップS206の判定結果がYes判定になると、第1の半導体レーザ制御部114は図32のフローチャートを終了する。
図33は、第1の半導体レーザの制御サブルーチン(2)の例1を示すフローチャートである。図33のフローチャートは図32のステップS204に適用される。
図33のフローチャートは、スペクトル線幅を変更する場合には電流制御パラメータのAC成分の変動幅の値(AC成分値)を制御し、中心波長を変更する場合には電流制御パラメータのDC成分値を制御する例である。
図33のステップS211において、第1の半導体レーザ制御部114は第1のスペクトルモニタ166によって第1の半導体レーザ111の中心波長λ1cとスペクトル線幅Δλ1chとを計測する。
ステップS212において、第1の半導体レーザ制御部114は第1のスペクトルモニタ166で計測されたスペクトル線幅と目標スペクトル線幅との差ΔΔλ1chと計算する。
ΔΔλ1ch=Δλ1ch-Δλ1cht (3)
そして、ステップS213において、第1の半導体レーザ制御部114はΔΔλ1chの絶対値が許容範囲を示す許容上限値ΔΔλ1tr以下であるか否かを判定する。ステップS213の判定結果がYes判定である場合、第1の半導体レーザ制御部114はステップS215に進む。
ステップS215において、第1の半導体レーザ制御部114は第1のスペクトルモニタ166で計測された中心波長と目標中心波長との差δλ1cを計算する。
δλ1c=λ1c-λ1ct (4)
次にステップS216において、第1の半導体レーザ制御部114はδλ1cの絶対値が許容範囲を示す許容上限値δλ1tr以下であるか否かを判定する。ステップS216の判定結果がNo判定である場合、第1の半導体レーザ制御部114はステップS217に進む。
ステップS217において、第1の半導体レーザ制御部114はδλ1cが0に近づくように第1の半導体レーザ111の電流制御パラメータのDC成分の電流値、すなわちDC成分値A1dcを制御する。
ステップS213の判定結果がNo判定である場合、第1の半導体レーザ制御部114はステップS219に進む。ステップS219において、第1の半導体レーザ制御部114は△△λ1chが0に近づくように第1の半導体レーザ111の電流制御パラメータのAC成分の変動電流値、すなわちAC成分値A1acを制御する。
ステップS217の後、若しくは、ステップS219の後、又は、ステップS215の判定結果がYes判定である場合、第1の半導体レーザ制御部114は図33のフローチャートを終了し、図32のフローチャートに復帰する。
図34は、第1の半導体レーザの制御サブルーチン(2)の例2を示すフローチャートである。図34のフローチャートは図32のステップS204に適用される。図34のフローチャートは、スペクトル線幅を変更する場合には電流制御パラメータのAC成分値を制御し、中心波長を変更する場合には温度を制御する例である。
図34のフローチャートは、図33のステップS217に代えて、ステップS218を含む。
図34においてステップS216の判定結果がNo判定である場合、第1の半導体レーザ制御部114はステップS218に進む。ステップS218において、第1の半導体レーザ制御部114は、δλ1cが0に近づくように第1の半導体レーザの温度T1を制御する。ステップS218の後、第1の半導体レーザ制御部114は図34のフローチャートを終了し、図32のフローチャートに復帰する。
図35は、中心波長λ1cとスペクトル線幅Δλ1chの計測処理の例を示すフローチャートである。図35のフローチャートは図33のステップS211に適用される。
図35のステップS221において、第1の半導体レーザ制御部114は第1のスペクトルモニタ166によるスペクトル波形の計測を行う。
ステップS222において、第1の半導体レーザ制御部114は第1のスペクトルモニタ166で計測されたスペクトル波形から中心波長λ1cを計算する。
ステップS223において、第1の半導体レーザ制御部114は第1のスペクトルモニタ166で計測されたスペクトル波形からスペクトル線幅Δλ1chを計算する。
ステップS223の後、第1の半導体レーザ制御部114は図35のフローチャートを終了し、図33のフローチャートに復帰する。
図36は、第1のスペクトルモニタ166で計測されたスペクトル波形から中心波長λ1cを計算する処理の例1を示すフローチャートである。ここでは、重心波長を計算する場合の例を示す。図36のフローチャートは図35のステップS222に適用される。
図36のステップS231において、第1の半導体レーザ制御部114は、中心波長λ1cをスペクトル波形の重心から求める計算を行う。
λ1c=∫(I1(λ)・λ)dλ/∫I1(λ)dλ (5)
図37は、第1のスペクトルモニタ166で計測されるスペクトル波形の例であり、スペクトル波形の重心から中心波長λ1cを計算する処理の説明図である。式中のI1(λ)は、波長λの光強度I1を示す関数である。
図36のステップS231の後、第1の半導体レーザ制御部114は図36のフローチャートを終了し、図35のフローチャートに復帰する。
図38は、第1のスペクトルモニタ166で計測されたスペクトル波形から中心波長λ1cを計算する処理の例2を示すフローチャートである。ここでは、スペクトル波形の光強度閾値I1max・aとなる最大波長と最小波長との平均値から中心波長を計算する場合の例を示す。図38のフローチャートは図35のステップS222に適用される。
図39は、第1のスペクトルモニタ166で計測されるスペクトル波形の例であり、スペクトル波形から中心波長λ1cを計算する処理の説明図である。
図38のステップS232において、第1の半導体レーザ制御部114はスペクトル波形の光強度閾値I1max・a以上の光強度となる波長領域(バンド幅)のうち最大の波長λ1Raと最小の波長λ1Laとの平均値から中心波長λ1cを求める計算を行う。aは、例えば0.05以上0.5以下の定数である。
λ1c=(λ1La+λ1Ra)/2 (6)
図39に示すように、スペクトル波形の最大光強度をI1maxとする場合、光強度閾値I1max・aのバンド幅の最大値と最小値との平均値を中心波長λ1cとして計算してもよい。
図38のステップS232の後、第1の半導体レーザ制御部114は図38のフローチャートを終了し、図35のフローチャートに復帰する。
図40は、第1のスペクトルモニタ166で計測されたスペクトル波形からスペクトル線幅Δλ1chを計算する処理の例1を示すフローチャートである。ここでは、スペクトル波形のエネルギ割合からスペクトル線幅を計算する場合の例を示す。図40のフローチャートは図35のステップS223に適用される。
図41は、第1のスペクトルモニタ166で計測されるスペクトル波形の例であり、スペクトル波形から中心波長λ1cを計算する処理の説明図である。
図40のステップS241において、第1の半導体レーザ制御部114はスペクトル波形のエネルギ割合Bからスペクトル線幅Δλ1chを計算する。
Figure 0007175999000002
例えば、B=0.95であってもよい。
図41に示すように、スペクトル波形のエネルギ割合Bのバンド幅をスペクトル線幅Δλ1chとして計算してもよい。
図40のステップS241の後、第1の半導体レーザ制御部114は図40のフローチャートを終了し、図35のフローチャートに復帰する。
図42は、第1のスペクトルモニタ166で計測されたスペクトル波形からスペクトル線幅Δλ1chを計算する処理の例2を示すフローチャートである。ここでは、スペクトル波形の光強度閾値以上の光強度となる波長領域の最大波長と最小波長との差からスペクトル線幅を計算する場合の例を示す。図42のフローチャートは図35のステップS223に適用される。
図43は、第1のスペクトルモニタ166で計測されるスペクトル波形の例であり、スペクトル波形からスペクトル線幅Δλ1chを計算する処理の説明図である。
図42のステップS242において、第1の半導体レーザ制御部114はスペクトル波形の光強度閾値I1max/b以上の光強度となる波長領域の最大波長λ1Rbと最小波長λ1Lbとの差からスペクトル線幅Δλ1chを計算する。
Δλ1ch=(λ1Rb-λ1Lb) (8)
例えば、b=2以上10以下の範囲の定数であってよい。
図43に示すように、スペクトル波形の最大光強度をI1maxとする場合、光強度閾値I1max/bのバンド幅の最大値と最小値との差をスペクトル線幅Δλ1chとして計算してもよい。
図42のステップS242の後、第1の半導体レーザ制御部114は図42のフローチャートを終了し、図35のフローチャートに復帰する。
図44は、第1の半導体レーザシステム160のスペクトル線幅Δλ1chと中心波長λ1cとを計算及び判定する処理の例を示すフローチャートである。図44のフローチャートは図32のステップS205に適用される。
図44のステップS251において、第1の半導体レーザ制御部114は第1のスペクトルモニタ166を用いて計測されたスペクトルから第1の半導体レーザシステム160の中心波長λ1cとスペクトル線幅Δλ1chを計測する。
次に、ステップS252において、第1の半導体レーザ制御部114はステップS251で得られたスペクトル線幅Δλ1chと目標スペクトル線幅Δλ1chtとの差ΔΔλ1chを計算する。
ΔΔλ1ch=Δλ1ch-Δλ1cht (9)
ステップS253において、第1の半導体レーザ制御部114はステップS251で得られた中心波長λ1cと目標中心波長λ1ctとの差δλ1cを計算する。
そして、ステップS254において、第1の半導体レーザ制御部114はΔΔλ1chの絶対値が許容範囲を示す許容上限値ΔΔλ1tr以下であり、かつ、δλ1cの絶対値が許容範囲を示す許容上限値δλ1ctr以下であるか否かを判定する。ステップS254の判定結果がYes判定である場合、第1の半導体レーザ制御部114はステップS255に進み、第1の半導体レーザシステム160がOKの状態であることを示すF1=1のフラグ信号を固体レーザシステム制御部350に送信する。
一方、ステップS254の判定結果がNo判定である場合、第1の半導体レーザ制御部114はステップS256に進み、第1の半導体レーザシステム160がNGの状態であることを示すF1=0のフラグ信号を固体レーザシステム制御部350に送信する。
ステップS255又はステップS256の後、第1の半導体レーザ制御部114は図44のフローチャートを終了し、図32のフローチャートに復帰する。
4.7 作用・効果
実施形態1に係るレーザシステム1Aによれば、次のような効果が得られる。
[1]第1の半導体レーザシステム160に用いられている第1の半導体レーザ111から出力されるレーザ光の波長をチャーピングさせ、そのチャーピングによるスペクトル線幅(チャーピング量)を制御することによって、パルス増幅後のエキシマレーザ光のスペクトル線幅を高精度に制御できる。
[2]レーザ制御部18が露光制御部22から目標スペクトル線幅Δλtのデータを受信すると、パルス増幅を行う前にフィードバック制御を行うことができるので、スペクトル線幅の制御スピードが改善される。
[3]第1の半導体レーザシステム160に用いられている第1の半導体レーザ111から出力されるレーザ光の波長をチャーピングさせることによってErファイバ増幅器140でSBSの発生を抑制するように制御しているので、Erファイバ増幅器140や第1の半導体レーザシステム160の破損を抑制できる。
実施形態1において、第1の半導体レーザ111から出力されるCWのレーザ光は本開示における「第1のレーザ光」の一例である。第1の半導体光増幅器120から出力されるパルスレーザ光は本開示における「第1のパルスレーザ光」の一例である。電流制御部54と関数発生器167との組み合わせは本開示における「第1の電流制御器」の一例である。Erファイバ増幅器140は本開示における「第1の増幅器」の一例である。Erファイバ増幅器140によって増幅されて第1の固体レーザ装置100から出力されるパルスレーザ光は本開示における「第2のパルスレーザ光」の一例である。波長変換システム300から出力される紫外線の波長約193.4nmのパルスレーザ光は本開示における「第3のパルスレーザ光」の一例である。レーザ制御部18と固体レーザシステム制御部350と第1の半導体レーザ制御部114との組み合わせは本開示における「制御部」の一例である。露光装置20は本開示における「外部装置」の一例である。露光制御部22から指令される目標スペクトル線幅Δλtに応じてチャーピングによるスペクトル線幅Δλ1chを可変制御する構成は本開示における「チャーピング量を制御する」ことの一例である。
4.8 変形例1
実施形態1の例では、第1の半導体レーザ111から出力されたレーザ光を第1のスペクトルモニタ166によってモニタしてフィードバック制御をしているが、この例に限定されない。例えば、スペクトルモニタ606で計測されたエキシマレーザ光のスペクトル線幅Δλと中心波長λcとを計測して直接フィードバック制御してもよい。
例えば、スペクトルモニタ606で計測されたエキシマレーザ光のスペクトル線幅Δλと目標スペクトル線幅Δλtとの差ΔΔλが小さくなるように、第1の半導体レーザ111から出力されるレーザ光の波長のチャーピングを制御してもよい。具体的には、ΔΔλが0に近づくように、第1の半導体レーザ111に流す電流の電流制御パラメータのAC成分値A1acを制御してもよい。
また、例えば、スペクトルモニタ606で計測されたエキシマレーザ光の中心波長λcと目標中心波長λctとの差δλcが小さくなるように、第1の半導体レーザ111から出力されるレーザ光のチャーピングを制御してもよい。具体的には、δλcが0に近づくように、第1の半導体レーザ111に流す電流の電流制御パラメータのDC成分値A1dcを制御してもよい。
4.9 変形例2
4.9.1 構成
図45に、第1の半導体レーザシステムの変形例を示す。図21で説明した第1の半導体レーザシステム160に代えて、図45に示す第1の半導体レーザシステム160Aを採用してもよい。図21との相違点を説明する。
図45に示す第1の半導体レーザシステム160Aは、第1の半導体レーザ111と第1のビームスプリッタ116との間の光路上に、半導体光増幅器124が配置されている。また、第1の半導体レーザシステム160Aは、半導体光増幅器124に流す電流を変調制御するための関数発生器126を含む。関数発生器126は、半導体光増幅器124の電流制御パラメータに基づいて様々な波形の信号を生成する。
図45において、第1の半導体レーザ111から出力されたレーザ光の半導体光増幅器124による増幅前の光強度を「I1」と表記し、半導体増幅器124によって増幅された増増幅後のレーザ光の光強度を「I11」と表記する。
4.9.2 動作
図45に示す構成において、第1の半導体レーザ制御部114は、中心波長に対して対称なスペクトル波形が生成するように、半導体光増幅器124の電流を高精度に制御する。
図46は、第1の半導体レーザ111に流れる電流値とスペクトル波形とチャーピングと光強度との関係を示す説明図である。図46は、図23の例と比較して、目標スペクトル線幅が大きく、第1の半導体レーザ111における波長のチャーピング量が大きくなるように制御する場合の例である。この場合、図46の下段最左のグラフに示すように、電流制御パラメータであるAC成分の変動量を示すAC成分値A1acも大きくなるため、第1の半導体レーザ111から出力されるレーザ光の光強度I1の変動幅も大きくなる(図46の下段左から3番目のグラフ参照)。その結果、図46の上段のグラフに示すように、スペクトルの光強度分布がチャーピングの中心波長λ1chcに対して非対称となる場合がある。図46の上段に示すグラフでは、波長λ1chminから波長λ1chmaxまでの波長領域のスペクトル形状において光強度が一定ではなく、波長が短いほど光強度が小さくなっている例が示されている。
このようなスペクトル形状の非対称性を補正すべく、スペクトル線幅Δλ1chの範囲で光強度が一定値になるように、図46の下段右から2番目のグラフに示すように、半導体光増幅器124に流れる電流を制御する。これにより、半導体光増幅器124による増幅後の光強度I11が一定化され、スペクトル波形の対称性が改善される。
図46の上段に示すスペクトル波形における破線で囲んだ領域は、半導体光増幅器124を用いて光強度分布を補正した部分を表している。半導体光増幅器124の電流制御パラメータは、次の値を含む。
A11dc:半導体素子に流れる電流のDC成分値
A11ac:半導体素子に流れる電流のAC成分の変動幅(電流の極大値と極小値との差)
A11T:半導体素子に流れる電流のAC成分の周期
第1の半導体レーザ制御部114は関数発生器126に電流制御パラメータを送信することによって、光強度分布を制御することが可能である。
このように半導体光増幅器124を用いてスペクトル波形の補正を行うことで、図46の下段の最右のグラフに示すように、光強度I11を一定化することができる。
半導体光増幅器124は本開示における「第3の半導体光増幅器」の一例である。
5.実施形態2
5.1 構成
図47は、実施形態2に係るレーザシステム1Bの要部構成を概略的に示す図である。図20で説明した第1の半導体レーザシステム160に代えて、図47に示す第1の半導体レーザシステム160Bを採用してもよい。ここでは、第1の固体レーザ装置100とその制御系の部分を示す。図47に示されていない他の要素は図20に示した実施形態1の構成と同様である。実施形態1との相違点を説明する。
実施形態2に係るレーザシステム1Bは、図20で説明した実施形態1の構成と比較して、第1の半導体レーザシステム160Bと同期システム17Bとが変更されている。第1の半導体レーザシステム160Bは、第1の半導体レーザ111をパルス発振させる構成であり、第1の半導体レーザ111からパルスレーザ光LP01が出力される。また、第1の半導体レーザシステム160Bは、光シャッタ169を含む。光シャッタ169は、第1の半導体光増幅器120から出力されるパルスレーザ光LP02の光路上に配置される。光シャッタ169は、例えば、EO(Electro-Optic)ポッケルスセルと2つの偏光子とを組み合わせた光シャッタであってもよい。
第1の半導体光増幅器120と光シャッタ169との間の光路上にビームスプリッタ164Bが配置される。ビームスプリッタ164Bは、その反射光が第1のスペクトルモニタ166に入射するように配置される。
図48は、同期システム17Bの構成の例を概略的に示すブロック図である。図6との相違点を説明する。図48に示す同期システム17Bは、図6の構成に対して、さらに、基準クロック発生器176と、第1のカウンタ178と、第2のワンショット回路182と、第4の遅延回路174と、が追加されている。
基準クロック発生器176は、例えば1MHz~10MHz以上の周波数で基準クロック(CL)信号を生成するように構成される。基準クロック信号の周波数は、露光装置20が許容するジッタ(Jitter)よりも高い周波数である。基準クロック信号の周波数は、露光制御部22から出力される発光トリガ信号の最大周波数以上とする。好ましくは、基準クロック信号の周波数は発光トリガ信号の最大周波数の10倍以上である。さらに好ましくは、基準クロック信号の周波数は発光トリガ信号の最大周波数の100倍以上である。
基準クロック発生器176の基準クロック信号の出力端子は関数発生器167と第4の遅延回路174の各々の入力端子に接続される。
第4の遅延回路174の出力端子は、関数発生器122と第1のカウンタ178の各々の入力端子に接続される。
第1のカウンタ178は、第4の遅延回路174から出力される第1のカウントパルスが入力されると、この第1のカウントパルスに同期してパルス信号を出力するよう構成される。
第1のカウンタ178の出力端子は、第1の遅延回路171、第2の遅延回路172、及び第3の遅延回路173の各々の入力端子に接続される。
第3の遅延回路173の出力端子は、第2のワンショット回路182の入力端子に接続される。
第2のワンショット回路182から出力される信号の出力波形は、基準クロック信号の周期と同じ時間幅に設定される。
第2のワンショット回路182の出力端子は、光シャッタ169に接続される。
第1の半導体レーザ制御部114は、同期システム制御部170に遅延時間Td4を設定する。同期システム制御部170は、第1の半導体レーザ制御部114から設定された遅延時間td4を第4の遅延回路174に設定することができる。ここで、遅延時間Td4は、第1の半導体レーザ111に流すパルス電流の流すタイミングと第1の半導体光増幅器120に流すパルス電流を流すタイミングとの差となるように設定される。
5.2 動作
図49は、実施形態2に係るレーザシステム1Bのタイミングチャートである。第4の遅延回路174は、基準クロック発生器176からの基準クロック信号Tr1scに同期して、遅延時間Td4だけ遅れて第1の半導体光増幅器120にトリガ信号Trsoa#1信号を送信する。なお、図49において基準クロック信号Tr1scの周波数は「Fcl」であり、周期は「Tcl」である。図中の「Tdc」は、発光トリガ信号Trの入力後、第1の半導体光増幅器120に最初の電流パルス(トリガ信号Trsoa#1)が入力されるまでの時間である。
基準クロック信号Tr1scが関数発生器167に入力されると、これに同期して、関数発生器167から第1の半導体レーザ111のパルス電流制御パラメータであるパルス電流値A1p及びパルス幅D1に応じたパルス電流が第1の半導体レーザ制御部114を介して第1の半導体レーザ111の電流制御部54に入力される。
電流制御部54を介して第1の半導体レーザ111にパルス電流が流れることにより、第1の半導体レーザ111から出力されるパルスレーザ光LP01は光パルスの開始から終了までの期間、発振波長が時間的に変動するチャーピングが起こる。
ここで、基準クロック信号Tr1scから遅延時間Td4だけ遅延して第1の半導体光増幅器120のトリガ信号Trsoa#1が関数発生器122に入力されると、第1の半導体光増幅器120のパルス電流制御パラメータであるパルス電流値A11p及びパルス幅D11に応じたパルスの電流が、トリガ信号Trsoa#1信号に同期して第1の半導体光増幅器120に流れる。これにより、パルスレーザ光LP01の一部の光が第1の半導体光増幅器120によって増幅されて、パルスレーザ光LP02が出力される(図47参照)。
図50は、第1の半導体レーザ111から出力されるパルスレーザ光のチャーピングと第1の半導体光増幅器120による増幅との関係を示すグラフである。図50において破線で示すパルス幅D1の矩形のグラフIg1(t)は、第1の半導体レーザ111から出力されるパルスレーザ光の光強度を表す。
図50において一点鎖線で示す曲線のグラフλg1(t)は、第1の半導体レーザ111から出力されるパルスレーザ光のチャーピングによる波長変化を表す。
図50において実線で示すパルス幅D11の矩形の領域AIs1(t)は、第1の半導体光増幅器120によって増幅されるパルス領域である。
図50において二点鎖線で示す曲線の部分CA1(t)は、第1の半導体光増幅器120によって増幅されるチャーピング領域である。このチャーピング領域の波長範囲の概ね中央の波長が中心波長λ1cに相当し、チャーピング領域の波長範囲の幅がスペクトル線幅Δλ1chに相当する。
パルス幅D1、遅延時間Td4、及びパルス幅D11が、D1>Td4+D11の関係を満たすように設定されており、第1の半導体光増幅器120によるパルス増幅は、第1の半導体レーザ111から出力された一部のレーザ光を増幅する。
パルス幅D1の典型値は、例えば50ns以上100ns以下である。遅延時間Td4の典型値は、例えば2ns以上30ns以下である。パルス幅D11の典型値は、例えば5ns以上20ns以下である。
第1の半導体光増幅器120によって増幅されたパルスレーザ光の一部はビームスプリッタ164Bによって反射され、第1のスペクトルモニタ166に入射する。第1のスペクトルモニタ166は、ビームスプリッタ164Bを介して入射するパルスレーザ光のスペクトル形状から中心波長λ1cとスペクトル線幅Δλ1chとを計測する。
第1の半導体レーザ制御部114は、目標スペクトル線幅Δλ1chtと目標中心波長λ1ctの各データを受信すると、第1のスペクトルモニタ166によって計測されたスペクトルのスペクトル線幅Δλ1chと中心波長λ1cとを計算し、それぞれの目標値との差を計算する。すなわち、第1の半導体レーザ制御部114は、第1のスペクトルモニタ166を用いて計測されたスペクトル線幅Δλ1chと目標スペクトル線幅Δλ1chtとの差ΔΔλ1ch(=Δλ1ch-Δλcht)を計算する。また、第1の半導体レーザ制御部114は、第1のスペクトルモニタ166を用いて計測された中心波長λ1cと目標中心波長λ1chtとの差δλ1c(=λ1c-λ1ct)を計算する。
その後例えば、第1の半導体レーザ制御部1はΔΔλ1chが0に近づくように、第1の半導体レーザ111に流す電流のパルス電流制御パラメータであるパルス電流値A1pを制御する。そして、第1の半導体レーザ制御部1はδλ1cが0に近づくように、温度T1を制御する(図54参照)。
固体レーザシステム制御部350を介して発光トリガ信号Trが同期システム17Bの第1のカウンタ178に入力されると、パルスカウントがセットされ、第4の遅延回路174から出力されたパルスが1つカウントされると、第1のカウンタ178からパルスが出力され、パルスカウントがリセットされる。
第1のカウンタ178からの出力パルスは、第1の遅延回路171、第2の遅延回路172、及び第3の遅延回路173に入力され、それぞれの遅延回路から遅延時間がそれぞれ、Tdex、Td2、及びTd3だけ遅延させたパルス信号が出力される。
第1の遅延回路171は、入力されたパルスに対して遅延時間Tdexだけ遅延させたパルス信号Trexを出力する。第1の遅延回路171から出力されるパルス信号Trexは、エキシマ増幅器14の放電のトリガパルスとして用いられる信号であり、パルス信号Trexはエキシマ増幅器14の増幅器制御部400に入力される。
第2の遅延回路172は、入力されたパルスに対して遅延時間Td2だけ遅延させたパルス信号を第1のワンショット回路181に出力する。第1のワンショット回路181は第2の遅延回路172からのパルス信号に同期してワンショットのパルス信号Tr11ampを出力する。第1のワンショット回路181から出力されるパルス信号Tr11ampは、第1のパルス励起光源132の発光制御パルスとして第1のパルス励起光源132に入力される。
第3の遅延回路173は、入力されたパルスに対して遅延時間Td3だけ遅延させたパルス信号を第2のワンショット回路182に出力する。第2のワンショット回路182は第3の遅延回路173からのパルス信号に同期してワンショットのパルス信号であるトリガ信号Tr11shutを出力する。第2のワンショット回路182から出力されるトリガ信号Tr11shutは、光シャッタ169の開閉の制御パルスとして光シャッタ169に入力される。
この同期システム17Bによって、第1の半導体レーザ111と第1の半導体光増幅器120とは、発光トリガ信号Trの繰り返し周波数よりも高い周波数のトリガ信号を発生させる基準クロック信号の周波数と同じ周波数で動作し、第1のスペクトルモニタ166において、中心波長λ1cとスペクトル線幅Δλ1chとを検出して、フィードバック制御させる。
また、同期システム17Bでは、発光トリガ信号Trに応じて、光シャッタ169を開閉し、光シャッタ169を通過したパルスレーザ光をErファイバ増幅器140でパルス増幅し、波長変換システム300で波長約193.4nmのパルスレーザ光に変換される。
固体レーザシステム10から出力された波長約193.4nmのパルスレーザ光は、エキシマ増幅器14の放電空間に入射するのと同期して、放電が発生して、さらに、増幅される。
5.2.1 固体レーザシステム制御部の処理例
図51は、固体レーザシステム制御部350における処理内容の例を示すフローチャートである。図29のフローチャートに代えて、図51のフローチャートを適用することができる。図29との相違点を説明する。
図51に示すフローチャートは、図29のステップS61Aに代えて、ステップS61Bを含む。
図51のステップS61Bにおいて、固体レーザシステム制御部350は固体レーザシステムの初期設定サブルーチン(3)の処理を実施する。
図52は、固体レーザシステムの初期設定サブルーチン(3)の例を示すフローチャートである。図52に示すフローチャートは図51のステップS61Bに適用される。
図52において、図30のフローチャートと同一のステップには同一のステップ番号を付し、重複する説明は省略する。図30との相違点を説明する。
図52に示すフローチャートは、図30のステップS183及びステップS184に代えて、ステップS185~ステップS187を含む。
ステップS185において、固体レーザシステム制御部350は第1の半導体レーザ111に流すパルス電流のパルス電流制御パラメータと温度をそれぞれ初期値に設定する。すなわち、固体レーザシステム制御部350は、第1の半導体レーザ111のパルス電流制御パラメータであるパルス電流値A1p及びパルス幅D1、並びに温度T1の各値をそれぞれの初期値、A1p=A1p0、D1=D10、及びT1=T10に設定する。
これらの初期値は、第1の半導体レーザ111から出力されるレーザ光の中心波長とスペクトル線幅とがそれぞれ、λ1c0とΔλ1ch0に近い値となるようなパルス電流制御パラメータの各値と温度の値とする。
ステップS186において、固体レーザシステム制御部350は第1の半導体光増幅器120の半導体素子に流すパルス電流のパルス電流制御パラメータを初期値に設定する。すなわち、固体レーザシステム制御部350は、第1の半導体光増幅器120のパルス電流制御パラメータである遅延時間Td4、パルス電流値A11p、及びパルス幅D11の各値をそれぞれの初期値、Td4=Td40、A11p=A11p0、及びD11=D110に設定する。
その後ステップS187において、第1の半導体レーザ制御部114を介して基準クロック(CL)信号を関数発生器122に入力することによって、第1の半導体レーザ111にパルス電流が流れる。その結果、基準クロック信号に同期して、第1の半導体レーザ111からパルス発振によりパルスレーザ光が出力される。
ステップS187の後、固体レーザシステム制御部350は図52のフローチャートを終了し、図51のフローチャートに復帰する。
5.2.2 第1の半導体レーザ制御部の処理例
図53は、実施形態2に係るレーザシステム1Bの第1の半導体レーザ制御部114における処理内容の例を示すフローチャートである。図32のフローチャートとの相違点を説明する。
図53に示すフローチャートは、図32のステップS201に代えて、ステップS201A及びステップS201Bを含む。また、図53に示すフローチャートは、図32のステップS204に代えて、ステップS204Aを含む。
図53のステップS201Aにおいて、第1の半導体レーザ制御部114は、第1の半導体レーザ111の制御パラメータの初期値を読み込む。第1の半導体レーザ111の制御パラメータには、パルス電流制御パラメータであるパルス電流値Ap1及びパルス幅D1、並びに設定温度である温度T1が含まれる。第1の半導体レーザ制御部114は、パルス電流値Ap1、パルス幅D1、及び温度T1の各々をそれぞれの初期値、A1p=A1p0、D1=D10、及びT1=T10に設定する。
ステップS201Bにおいて、第1の半導体レーザ制御部114は、第1の半導体光増幅器120のパルス電流制御パラメータの初期値を読み込む。第1の半導体レーザ制御部114は、第1の半導体光増幅器120のパルス電流制御パラメータである遅延時間Td4、パルス電流値A11p、及びパルス幅D11の各値をそれぞれの初期値、Td4=Td40、A11p=A11p0、及びD11=D110に設定する。
ステップS204Aにおいて、第1の半導体レーザ制御部114は第1の半導体レーザの制御サブルーチン(3)の処理を実施する。
5.2.3 第1の半導体レーザの制御サブルーチン(3)の例1
図54は、第1の半導体レーザの制御サブルーチン(3)の例1を示すフローチャートである。図54のフローチャートは図53のステップS204Aに適用される。図54のフローチャートは、スペクトル線幅を変更する場合にはパルス電流制御パラメータのパルス電流値A1pを制御し、中心波長を変更する場合には温度T1を制御する場合の例である。図54のフローチャートについて、図34のフローチャートとの相違点を説明する。
図54のフローチャートは、図34のステップS219に代えて、ステップS219Bを含む。
図54のステップS213の判定結果がNo判定である場合、第1の半導体レーザ制御部114はステップS219Bに進む。
ステップS219Bにおいて、第1の半導体レーザ制御部114は、ΔΔλ1chが0に近づくように第1の半導体レーザ111のパルス電流制御パラメータのパルス電流値A1pを制御する。ステップS219Bの後、第1の半導体レーザ制御部114は図54のフローチャートを終了し、図53のフローチャートに復帰する。
図55は、第1の半導体レーザ111から出力されるパルスレーザ光のチャーピングと第1の半導体光増幅器120による増幅との関係を示すグラフであり、第1の半導体レーザ111に流れるパルス電流の電流値(パルス電流値Ap1)を変化させる前と後の状態の変化を示す。すなわち、図55には、パルス電流値Ap1を増加させる前の状態のグラフと、パルス電流値をAp1aに増加させた後の状態のグラフとが表示されている。パルス電流値Ap1を増加させる前の状態のグラフは、図50に示したものと同じグラフである。
図55において破線で示すパルス幅D1の矩形のグラフIg1a(t)は、パルス電流値Ap1を増加させた後の第1の半導体レーザ111から出力されるパルスレーザ光LP01の光強度を表す。
図55において一点鎖線で示す曲線のグラフλg1a(t)は、パルス電流値Ap1を増加させた後の第1の半導体レーザ111から出力されるパルスレーザ光のチャーピングによる波長変化を表す。
図55において実線で示すパルス幅D11の矩形の領域AIs1a(t)は、パルス電流値Ap1を増加させた後の第1の半導体光増幅器120によって増幅されるパルス領域である。
図55において二点鎖線で示す曲線の部分CA1a(t)は、パルス電流値Ap1を増加させた後の第1の半導体光増幅器120によって増幅されるチャーピング領域である。パルス電流値A1pの変更によって、スペクトル線幅はΔλ1chからΔλ1chaに変化し、中心波長はλ1cからλ1caに変化する。
5.3 作用・効果
実施形態2に係るレーザシステム1Bによれば、発光トリガ信号Trが入力されなくても、目標中心波長λctと目標スペクトル線幅Δλctとに基づいて、高繰り返し周波数である基準クロック(CL)信号に同期して常に第1の半導体レーザ111と第1の半導体光増幅器120とをパルス動作させて、第1の半導体レーザ111の発振波長及びスペクトル線幅のフィードバック制御が可能なので、高速で高精度にスペクトル線幅と波長を安定化できる。
また、実施形態2に係るレーザシステム1Bによれば、第1の半導体光増幅器120のトリガ信号Trsoa#1に同期させて、光シャッタ169の開閉タイミングを制御するトリガ信号Tr11shut、第1のパルス励起光源132の発光タイミングを制御するトリガ信号Tr11amp及びエキシマ増幅器14の放電タイミングを制御するトリガ信号Trexが出力されるため、高精度な同期が可能となり、エキシマ増幅されたパルスレーザ光のパルスエネルギが安定する。トリガ信号Trsoa#1は、第1の半導体光増幅器120に電流を流すタイミングを制御するトリガ信号であり、本開示における「電流トリガ信号」の一例である。
5.4 変形例
5.4.1 第1の半導体レーザの制御サブルーチン(3)の例2
実施形態2では、第1の半導体レーザ111に流すパルス電流のパルス電流値Ap1を制御してスペクトル線幅を制御する例を説明したが、第1の半導体光増幅器120にパルス電流を流すタイミングの遅延時間Td4を変化させることによってスペクトル線幅を制御してもよい。遅延時間Td4は第1の半導体光増幅器120による増幅の開始タイミングを規定する。
図56は、第1の半導体レーザの制御サブルーチン(3)の例2を示すフローチャートである。図56のフローチャートは図53のステップS204Aに適用される。図56のフローチャートは、スペクトル線幅を変更する場合には第1の半導体光増幅器120のパルス電流制御パラメータの遅延時間Td4を制御し、中心波長を変更する場合には温度T1を制御する場合の例である。図54のフローチャートに代えて、図56のフローチャートを採用してもよい。図56のフローチャートについて、図54のフローチャートとの相違点を説明する。
図56のフローチャートは、図54のステップS219Bに代えて、ステップS219Cを含む。図56のステップS213の判定結果がNo判定である場合、第1の半導体レーザ制御部114はステップS219Cに進む。
ステップS219Cにおいて、第1の半導体レーザ制御部114はΔΔλ1chが0に近づくように第1の半導体光増幅器120のパルス電流制御パラメータの遅延時間Td4を制御する。ステップS219Cの後、第1の半導体レーザ制御部114は図56のフローチャートを終了し、図53のフローチャートに復帰する。
図57は、第1の半導体レーザ111から出力されるパルスレーザ光のチャーピングと第1の半導体光増幅器120による増幅との関係を示すグラフであり、第1の半導体光増幅器120にパルス電流を流すタイミングの遅延時間Td4を変化させる前と後の状態を示す。すなわち、図57には、遅延時間Td4を変更する前の状態のグラフと、遅延時間をTd4aに変更した後の状態のグラフとが表示されている。遅延時間Td4を変更する前の状態のグラフは、図50に示したものと同じグラフである。図57ではTd4a<Td4の例が示されている。
図57に示すように、遅延時間をTd4aに変更すると、第1の半導体光増幅器120によって増幅されるパルス領域が変更される。第1の半導体光増幅器120によって増幅されるチャーピング領域が変更され、スペクトル線幅はΔλ1chからΔλ1chaに変化し、中心波長はλ1cからλ1caに変化する。
図57に示すような動作原理に従い、遅延時間Td4の値を制御することにより、目標スペクトル線幅を実現できる。
5.4.2 第1の半導体レーザの制御サブルーチン(3)の例3
遅延時間Td4を制御する例に限らず、第1の半導体光増幅器120に流すパルス電流のパルス幅D11を変化させることによってスペクトル線幅を制御してもよい。
図58は、第1の半導体レーザの制御サブルーチン(3)の例3を示すフローチャートである。図58のフローチャートは図53のステップS204Aに適用される。図58のフローチャートは、スペクトル線幅を変更する場合には第1の半導体光増幅器120のパルス電流制御パラメータのパルス幅D11を制御し、中心波長を変更する場合には温度T1を制御する場合の例である。図54のフローチャートに代えて、図58のフローチャートを採用してもよい。図58のフローチャートについて、図54のフローチャートとの相違点を説明する。
図58のフローチャートは、図54のステップS219Bに代えて、ステップS219Dを含む。図58のステップS213の判定結果がNo判定である場合、第1の半導体レーザ制御部114はステップS219Dに進む。
ステップS219Dにおいて、第1の半導体レーザ制御部114はΔΔλ1chが0に近づくように第1の半導体光増幅器120のパルス電流制御パラメータのパルス幅D11を制御する。ステップS219Dの後、第1の半導体レーザ制御部114は図58のフローチャートを終了し、図53のフローチャートに復帰する。
図59は、第1の半導体レーザ111から出力されるパルスレーザ光のチャーピングと第1の半導体光増幅器120による増幅との関係を示すグラフであり、第1の半導体光増幅器120に流すパルス電流のパルス幅D11を変化させる前と後の状態を示す。すなわち、図59には、パルス幅D11を変更する前の状態のグラフと、パルス幅をD11aに変更した後の状態のグラフとが示されている。パルス幅D11を変更する前の状態のグラフは、図50に示したものと同じグラフである。図59ではD11<D11aの例が示されている。
図59に示すように、パルス幅をD11からD11aに変更すると、第1の半導体光増幅器120によって増幅されるパルス領域が変更される。これより第1の半導体光増幅器120によって増幅されるチャーピング領域が変更され、スペクトル線幅はΔλ1chからΔλ1chaに変化し、中心波長はλ1cからλ1caに変化する。
このような動作原理に従い、パルス幅D11の値を制御することにより、目標スペクトル線幅を実現できる。
5.4.3 第1の半導体レーザの制御サブルーチン(3)の例4
第1の半導体光増幅器120にパルス電流を流すタイミングの遅延時間Td4と、パルス電流のパルス幅D11との両方を変化させることによってスペクトル線幅と中心波長とを制御してもよい。
図60は、第1の半導体レーザの制御サブルーチン(3)の例4を示すフローチャートである。図60のフローチャートは図53のステップS204Aに適用される。図60のフローチャートは、スペクトル線幅を変更する場合には第1の半導体光増幅器120のパルス電流制御パラメータのパルス幅D11を制御し、中心波長を変更する場合には遅延時間Td4を制御する場合の例である。図58のフローチャートに代えて、図60のフローチャートを採用してもよい。図60のフローチャートについて、図58のフローチャートとの相違点を説明する。
図60のフローチャートは、図58のステップS218に代えて、ステップS218Dを含む。図59のステップS216の判定結果がNo判定である場合、第1の半導体レーザ制御部114はステップS218Dに進む。
ステップS218Dにおいて、第1の半導体レーザ制御部114はδλ1cが0に近づくように、第1の半導体光増幅器120のパルス電流制御パラメータの遅延時間Td4を制御する。ステップS218Dの後、第1の半導体レーザ制御部114は図60のフローチャートを終了し、図53のフローチャートに復帰する。
図61は、第1の半導体レーザ111から出力されるパルスレーザ光のチャーピングと第1の半導体光増幅器120による増幅との関係を示すグラフであり、第1の半導体光増幅器120にパルス電流を流すタイミングの遅延時間Td4とパルス電流のパルス幅D11の両方を変更する場合の変更前と変更後の状態の変化を示す。すなわち、図61には、遅延時間Td4とパルス幅D11を変更する前の状態のグラフと、遅延時間とパルス幅をTd4aとD11aにそれぞれ変更した後の状態のグラフとが示されている。遅延時間Td4とパルス幅D11を変更する前の状態のグラフは、図50に示したものと同じグラフである。図61ではTd4a<Td4、かつ、D11<D11aの例が示されている。
図60に示すように、遅延時間をTd4からTd4aに変更し、かつ、パルス幅をD11からD11aに変更すると、第1の半導体光増幅器120によって増幅されるパルス領域が変更される。これより第1の半導体光増幅器120によって増幅されるチャーピング領域が変更され、スペクトル線幅はΔλ1chからΔλ1chaに変化し、中心波長はλ1cからλ1caに変化する。
このような動作原理に従い、遅延時間Td4及びパルス幅D11の各値を制御することにより、目標スペクトル線幅と目標中心波長を実現できる。この方式では、第1の半導体レーザ111の制御パラメータを変更せずに、第1の半導体光増幅器120のパルス電流制御パラメータの変更で対処できるため、制御スピードがより一層速くなる。
6.実施形態3
6.1 構成
図62は、実施形態3に係るレーザシステム1Cの構成を概略的に示す。図20との相違点を説明する。図62に示すレーザシステム1Cは、図20における固体レーザシステム10及び同期システム17に代えて、固体レーザシステム10C及び同期システム17Cを含む。
固体レーザシステム10Cは、第1の固体レーザ装置100と、第2の固体レーザ装置200と、波長変換システム360と、を含む。第1の固体レーザ装置100の構成は、図20で説明した構成と同様である。ただし、図20における第1の固体レーザ装置100は、発振波長が約1547.2nmであるのに対し、図62に示す第1の固体レーザ装置100の発振波長は約1554.0nmである点で相違する。
第2の固体レーザ装置200は、波長約1030nmのレーザ光を出力する第2の半導体レーザシステム210と、第2のダイクロイックミラー230と、第2のパルス励起光源232と、Ybファイバ増幅器240と、第3のダイクロイックミラー242と、第3のパルス励起光源244と、固体増幅器250と、を含む。
第2の半導体レーザシステム210は、第1の半導体レーザシステム160と同様の構成であり、シングル縦モードでCW発振して波長約1030nmのレーザ光を出力する第2の半導体レーザ211と、第2のビームスプリッタ216と、第2の半導体光増幅器220と、第2のスペクトルモニタ266と、関数発生器222と、関数発生器267と、第2の半導体レーザ制御部214と、を含む。
第2の半導体レーザ211は、例えば、DFBレーザであってよく、電流制御及び/又は温度制御により、波長1030nm付近で発振波長を変更することができる。第2の半導体レーザ211の構成は、図21と同様の構成であってよい。
第2のビームスプリッタ216は、第2の半導体レーザ211から出力されたレーザ光の一部を反射して第2のスペクトルモニタ266に入射するように配置される。第2のスペクトルモニタ266は、入射したレーザ光のスペクトルをモニタし、第2の半導体レーザ211の発振波長及びスペクトル線幅を検出する。
第2の半導体レーザ制御部214は、第2のスペクトルモニタ266及び固体レーザシステム制御部350と接続され、第2の半導体レーザ211の動作を制御する。
第2の半導体光増幅器220は、第2のビームスプリッタ216を透過したレーザ光の光路に配置される。第2の半導体光増幅器220は、第2の半導体レーザ211から出力されたレーザ光をパルス増幅する。
第2のダイクロイックミラー230は、第2の半導体光増幅器220から出力されるレーザ光を高透過し、第2のパルス励起光源232から出力される励起光を高反射する膜がコートされたミラーである。第2のダイクロイックミラー230は、第2の半導体光増幅器220から出力されるパルスレーザ光と第2のパルス励起光源232から出力される励起光とがYbファイバ増幅器240に入射するように配置される。
Ybファイバ増幅器240は、Yb(イッテルビウム)がドープされた光ファイバを用いる光ファイバ増幅器である。第3のダイクロイックミラー242は、Ybファイバ増幅器240から出力されるレーザ光を高透過し、第3のパルス励起光源244から出力される励起光を高反射する膜がコートされたミラーである。第3のダイクロイックミラー242は、Ybファイバ増幅器240から出力されるパルスレーザ光と第3のパルス励起光源244から出力される励起光とが固体増幅器250に入射するように配置される。
固体増幅器250は、例えば、Ybがドープされた結晶又はセラミックスを含んでもよい。固体増幅器250によって増幅されたパルスレーザ光は、波長変換システム360に入射する。第2の固体レーザ装置200から出力されるパルスレーザ光LP3は、固体増幅器250によって増幅されたパルスレーザ光であってよい。
波長変換システム360は、第2の固体レーザ装置200から出力されるパルスレーザ光LP3の第4高調波光(波長約267.5nm)と第1の固体レーザ装置100から出力されるパルスレーザ光LP1(波長約1554nm)との和周波のパルスレーザ光LP5(波長約220.9nm)を生成し、この和周波のパルスレーザ光LP5(波長約220.9nm)とパルスレーザ光LP1(波長約1554nm)との和周波から波長約193.4nmに波長変換するシステムである。
波長変換システム360は、非線形結晶であるLBO(LiB)結晶1310及び第1のCLBO(CsLiB10)結晶1312と、第4のダイクロイックミラー1314と、第2のCLBO結晶1316と、第5のダイクロイックミラー1318と、第3のCLBO結晶1320と、第6のダイクロイックミラー1322と、第3の高反射ミラー1324と、第4の高反射ミラー1326と、ビームスプリッタ1328と、を含む。
LBO結晶1310及び第1のCLBO結晶1312は、波長約1030nmのパルスレーザ光LP3の光路上であって、パルスレーザ光LP3を第4高調波であるパルスレーザ光LP4(波長約257.5nm)に波長変換するように配置される。
第3の高反射ミラー1324は、第1の固体レーザ装置100から出力されるパルスレーザ光LP1(波長約1554nm)を高反射し、第4のダイクロイックミラー1314に入射するように配置される。
第4のダイクロイックミラー1314は、第1のCLBO結晶1312から出力されたパルスレーザ光LP4を高透過し、第1の固体レーザ装置100から出力されたパルスレーザ光LP1を高反射する膜がコートされている。第4のダイクロイックミラー1314は、第1のCLBO結晶1312と第2のCLBO結晶1316の間の光路上に配置され、パルスレーザ光LP1及びパルスレーザ光LP4の光路軸が一致して、第2のCLBO結晶1316に入射するように配置される。
第2のCLBO結晶1316と第5のダイクロイックミラー1318と第3のCLBO結晶1320と第6のダイクロイックミラー1322は、この順序でパルスレーザ光LP4を含むパルスレーザ光の光路上に配置される。
第2のCLBO結晶1316は、パルスレーザ光LP3とパルスレーザ光LP4との和周波のパルスレーザ光LP5(波長約220.9nm)を生成する。第5のダイクロイックミラー1318は、第2のCLBO結晶1316を透過したパルスレーザ光LP4(波長約257.5nm)を高反射し、パルスレーザ光LP1(波長約1554nm)とパルスレーザ光LP5(波長約220.9nm)とを高透過する膜がコートされている。
第3のCLBO結晶1320は、パルスレーザ光LP1とパルスレーザ光LP5との和周波のパルスレーザ光(波長約193.4nm)を生成する。第3のCLBO結晶1320から出力される波長約193.4nmのパルスレーザ光が固体レーザシステム10Cから出力されるパルスレーザ光LP2となる。
第6のダイクロイックミラー1322は、第3のCLBO結晶1320を透過したパルスレーザ光LP1(波長約1554nm)及びパルスレーザ光LP5(波長約220.9nm)を高透過し、波長約193.4nmのパルスレーザ光LP2を高反射する膜がコートされている。
第4の高反射ミラー326は、波長約193.4nmのパルスレーザ光LP2が波長変換システム300から出力されるように配置される。
ビームスプリッタ328は、第4の高反射ミラー326からの反射光の光路上であって、一部反射されたレーザ光が第1のパルスエネルギモニタ330に入射するように配置される。
同期システム17Cは、固体レーザシステム10Cにおける第2の固体レーザ装置200の追加に伴って、この第2の固体レーザ装置200を同期させるための構成が追加されている。
図63は、同期システム17Cの構成を概略的に示すブロック図である。同期システム17Cは、第1の同期回路1711と、第2の同期回路1712と、同期システム制御部170と、を含む。図63において「同期回路1」及び「同期回路2」の表記はそれぞれ第1の同期回路1711及び第2の同期回路1712を表す。第1の同期回路1711の構成は図6で説明した構成と同様である。
第2の同期回路1712は、第2の固体レーザ装置200を動作させる各トリガ信号Trsoa#2、Tr21amp及びTr22ampを生成する回路である。トリガ信号Trsoa#2は、第2の半導体光増幅器220の増幅タイミングを制御する信号である。トリガ信号Tr21ampは、第2のパルス励起光源232の発光タイミングを制御する信号である。トリガ信号Tr22ampは第3のパルス励起光源244の発光タイミングを制御する信号である。
第2の同期回路1712は、第4の遅延回路1720、第5の遅延回路1721、第6の遅延回路1722、第2のワンショット回路1821及び第3のワンショット回路1822を含む。
第4の遅延回路1720は、発光トリガ信号Trに対して遅延時間Td2#2の遅延時間でトリガ信号Trsoa#2を出力する。トリガ信号Trsoa#2は関数発生器222に入力される。
第5の遅延回路1721は、発光トリガ信号Trに対して遅延時間Td21の遅延時間でパルス信号を出力する。第2のワンショット回路1821は第5の遅延回路1721からのパルス信号に同期したトリガ信号Tr21ampを出力する。トリガ信号Tr21ampは第2のパルス励起光源232に入力される。
第6の遅延回路1722は、発光トリガ信号Trに対して遅延時間Td22の遅延時間でパルス信号を出力する。第3のワンショット回路1822は第6の遅延回路1722からのパルス信号に同期したトリガ信号Tr22ampを出力する。トリガ信号Tr22ampは第3のパルス励起光源244に入力される。
それぞれの遅延時間Td2#2、Td21、及びTd22は、第2の半導体光増幅器220で増幅されたパルスレーザ光がYbファイバ増幅器240と固体増幅器250とで増幅されるように設定され、さらに、波長変換システム360において、第4高調波光(257.5nm)と第1の固体レーザ装置から出力されるパルスレーザ光(1554nm)とが時間的に一致するように調整される。
同期システム制御部170は、第4の遅延回路1720、第5の遅延回路1721、及び第6の遅延回路1722にそれぞれの遅延時間Td2#2、Td21、及びTd22を設定する。
6.2 動作
レーザ制御部18は、固体レーザシステム制御部350を介して第2の固体レーザ装置200の第2の半導体レーザ制御部214に目標中心波長λ2ct及び目標スペクトル線幅Δλ2chtのデータを送信する。目標中心波長λ2ctは例えば、1030nmである。目標スペクトル線幅Δλ2chtは例えば、Ybファイバ増幅器240でのSBSの発生が抑制されるスペクトル線幅Δλ2ch0であってよい。
第2の半導体レーザ制御部214は、第2のスペクトルモニタ266で検出された中心波長及びスペクトル線幅の値に基づいて、中心波長及びスペクトル線幅の両方がそれぞれの目標値となるように関数発生器222に送る電流制御パラメータの値を制御する。
固体レーザシステム制御部350は、露光制御部22からレーザ制御部18を介して目標中心波長λctのデータを受信すると、目標中心波長λctとなるような、第1の半導体レーザシステム160の目標中心波長λ1ctを以下の計算式で計算する。
ft=4・f2t+2・f1t (10)
ft:和周波によって波長変換されたレーザ光の周波数
f1t:第1の固体レーザ装置のレーザ光の周波数
f2t:第2の固体レーザ装置のレーザ光の周波数
式(10)を変形すると、次式(11)となる。
f1t=(ft-4・f2t)/2 (11)
ここで、f1t=C/λ1ct、ft=C/λctを式(11)に代入してf1tを計算し、得られたf1tを波長に変換すると、第1の固体レーザ装置100の目標中心波長が計算できる。なお、周波数から波長への変換は、次の式(12)で表される。
λ1ct=C/f1t (12)
なお、式中のCは光速である。
レーザ制御部18は、固体レーザシステム制御部350に目標中心波長λ1ctのデータを送信する。
レーザ制御部18は、露光制御部22から目標スペクトル線幅Δλctのデータを受信すると、目標スペクトル線幅Δλctとなるような、第1の半導体レーザシステム160の目標スペクトル線幅Δλ1chtを計算し、固体レーザシステム制御部350に第1の固体レーザ装置100の目標スペクトル線幅Δλ1chtのデータを送信する。ここで、ΔλtとΔλ1chの相関関係は、テーブルデータや関数として予め保存してもよい。
第1の半導体レーザ制御部114は、目標スペクトル線幅Δλ1chtと目標中心波長λ1ctのデータを受信すると、第1のスペクトルモニタ166で検出されたスペクトル線幅Δλ1chと中心波長λ1cを計測し、それぞれの目標値との差ΔΔλ1ch(=Δλ1ch-Δλcht)及び差δλ1c(=λ1c-λ1ct)を計算する。
そして、ΔΔλ1chが0に近づくように、第1の半導体レーザ111に流す電流の電流制御パラメータであるAC成分の変動量を示すAC成分値A1acを制御する。
また、第1の半導体レーザ制御部114は、δλ1cが0に近づくように、第1の半導体レーザ111に流す電流の電流制御パラメータであるDC成分値A1dcを制御する(図33参照)。若しくは、第1の半導体レーザ制御部114は、δλ1cが0に近づくように、第1の半導体レーザ111の温度T1を制御する(図34参照)。
6.3 作用・効果
実施形態3に係るレーザシステム1Cによれば、次のような効果が得られる。
[1]第1の半導体レーザシステム160における第1の半導体レーザ111から出力されるレーザ光をチャーピングさせることによって、パルス増幅後のエキシマレーザ光のスペクトル線幅を高精度に制御できる。
[2]レーザシステム1Cでは、露光制御部22から目標スペクトル線幅のデータを受信するとパルス増幅を行う前に、第1の半導体レーザシステム160においてフィードバック制御を行うことができるので、スペクトル線幅の制御スピードが改善される。
[3]レーザシステム1Cでは、第1の半導体レーザシステム160における第1の半導体レーザ111及び第2の半導体レーザシステム210における第2の半導体レーザ211の各々をチャーピングさせることによってErファイバ増幅器140とYbファイバ増幅器240とでそれぞれのSBSの発生を抑制するように制御している。このため、Erファイバ増幅器140及びYbファイバ増幅器240、並びに第1の半導体レーザシステム160及び第2の半導体レーザシステム210の破損を抑制できる。
実施形態3において、第2の半導体レーザ211から出力されるレーザ光は本開示における「第2のレーザ光」の一例である。第2の半導体光増幅器220から出力されるパルスレーザ光は本開示における「第4のパルスレーザ光」の一例である。Ybファイバ増幅器240は本開示における「第2の増幅器」の一例である。Ybファイバ増幅器240から出力されるパルスレーザ光は本開示における「第5のパルスレーザ光」の一例である。固体増幅器250から出力されるパルスレーザ光は本開示における「第6のパルスレーザ光」の一例である。第2の半導体レーザ211に用いられる電流制御部54と関数発生器267との組み合わせは本開示における「第2の電流制御器」の一例である。
6.4 変形例
6.4.1 マルチ縦モードで発振する半導体レーザの利用
実施形態3の例では、第2の固体レーザ装置200の第2の半導体レーザ211をチャーピングさせることによってSBSを抑制しているが、この例に限定されることなく、第2の半導体レーザとして、SBSを抑制可能なマルチ縦モードで発振するCW発振の半導体レーザを適用してもよい。
6.4.2 実施形態2で説明した構成との組み合わせ
実施形態3の例では、第1の半導体レーザ111の電流制御パラメータであるAC成分値A1acとDC成分値A1dcを制御してチャーピングを制御する場合を示したが、この例に限定されることなく、実施形態2で説明したように、第1の半導体レーザ111のパルス電流制御パラメータの値と第1の半導体光増幅器120のパルス電流制御パラメータの値とを制御することによって、チャーピングを制御してもよい。また、図45及び図46で説明した構成を実施形態3の構成に適用してもよい。
6.4.3 第2の固体レーザ装置のチャーピング制御
実施形態3の例では、第1の固体レーザ装置100から出力されるパルスレーザ光の中心波長とスペクトル線幅を変更することによって、波長変換システム360にて波長変換されるパルスレーザ光の中心波長とスペクトル線幅を制御しているが、この例に限定されることなく、第1の固体レーザ装置100と第2の固体レーザ装置200から出力されるパルスレーザ光の少なくとも一方のパルスレーザ光のチャーピングを制御することにより、中心波長とスペクトル線幅を制御する。これにより、エキシマ増幅後のパルスレーザ光のスペクトル線幅を高精度に制御可能である。
7.スペクトルモニタの具体例
7.1 分光器と基準レーザ光源とを用いるスペクトルモニタの例
7.1.1 構成
図64は、スペクトルモニタの構成例を概略的に示す図である。なお、図64では第1のスペクトルモニタ166の例を示すが、第2のスペクトルモニタ266についても、図64と同様の構成を適用してもよい。
図64に示す第1のスペクトルモニタ166は、グレーティング700を含む分光器702と、ラインセンサ703と、スペクトル解析部704と、CW発振基準レーザ光源706と、ビームスプリッタ708と、を含む。
分光器702は、入射スリット710と、コリメータレンズ712と、高反射ミラー714とを含む。CW発振基準レーザ光源706はCW発振により基準波長のレーザ光を出力する基準光源である。ここでは、CW発振基準レーザ光源706から出力される基準波長のレーザ光を「基準レーザ光」という。第1の半導体レーザ111から出力されるレーザ光を「第1の半導体レーザ光」という。図64において「λ1」は第1の半導体レーザ光の波長を表す。
7.1.2 動作
図64において、第1の半導体レーザ111から出力されたレーザ光(第1の半導体レーザ光)の一部は第1のビームスプリッタ116で反射される。第1のビームスプリッタ116で反射されたレーザ光はビームスプリッタ708を透過する。また、CW発振基準レーザ光源706から出力された基準レーザ光は、ビームスプリッタ708で反射され、ビームスプリッタ708を透過した第1の半導体レーザ光と重ね合わされる。
ビームスプリッタ708にて基準レーザ光と重ね合わされたレーザ光は、入射スリット710から分光器702に入射する。入射スリット710を透過したレーザ光は、コリメータレンズ712を介してグレーティング700に入射し、グレーティング700によって分光される。コリメータレンズ712及び高反射ミラー714を介してラインセンサ703に結像する第1の半導体レーザ光と基準レーザ光とのスリット像を計測することによって、第1の半導体レーザ111の中心波長とスペクトル線幅を計測することができる。
なお、図64ではグレーティング700を含む分光器702の例を示したが、後述する図68に示すようなエタロン分光器を用いてもよい。
7.2 ヘテロダイン干渉計を用いるスペクトルモニタの例
7.2.1 構成
図65は、スペクトルモニタの他の構成例を概略的に示す。なお、図65では第1のスペクトルモニタ166の例を示す。第1のスペクトルモニタ166として、図65に示すように、ヘテロダイン干渉計を含む構成を採用してもよい。図65に示す第1のスペクトルモニタ166は、CW発振基準レーザ光源706と、ビームスプリッタ708と、光強度センサ720と、スペクトル解析部704と、を含む。
図65に示すように、第1のビームスプリッタ116と光強度センサ720との間の光路にビームスプリッタ708が配置される。ビームスプリッタ708は、CW発振基準レーザ光源706からの基準レーザ光と、第1の半導体レーザ111から出力された第1の半導体レーザ光の一部とを重ね合わせた光を光強度センサ720に入射させるように配置される。
7.2.2 動作
図65に示す第1のスペクトルモニタ166は、CW発振基準レーザ光源706から出力された基準レーザ光と、第1の半導体レーザ111から出力されたレーザ光の一部とを重ね合わせた光の光強度の変化を光強度センサ720によって計測する。
光強度センサ720によって検出されるビート信号をスペクトル解析部704において解析することによって、第1の半導体レーザ111のレーザ光と基準レーザ光との周波数差と光強度とを計測できる。また周波数差から波長差を求めることができる。
ビート信号は、次の式(13)で表される。
Figure 0007175999000003
PD:センサ出力信号(ビート信号)
R:受光感度
t:時間
:基準光源の光強度
:検出光の光強度
:基準光源の周波数
:被検出光の周波数
チャーピングによるスペクトル線幅を計測する場合は、ビート信号に高速フーリエ変換(FFT:fast Fourier transform)処理を施して、スペクトル線幅Δλ1chを求めてもよい。
第1のスペクトルモニタ166に限らず、第2のスペクトルモニタ266(図20参照)についても、図65と同様の構成を適用することができる。
8.エキシマ増幅器の例
8.1 マルチパスで増幅する形態
図66は、エキシマ増幅器14の構成例を概略的に示す図である。図66に示すエキシマ増幅器14は、一対の放電電極412、413の間の放電空間に、波長193.4nmのシード光を3回通して増幅を行う例である。ここで、波長193.4nmのシード光は固体レーザシステム10から出力されたパルスレーザ光LP2である。
図66において、エキシマ増幅器14は、チャンバ410の外側におけるシード光の光路に凸面ミラー420と凹面ミラー422とを備えている。凸面ミラー420と凹面ミラー422とは、それぞれの焦点の位置FPが略一致するように配置される。
エキシマ増幅器14に入射した波長193.4nmのシード光は、凸面ミラー420及び凹面ミラー422で反射することにより、一対の放電電極412、413の間の放電空間を3回通過する。これにより、シード光のビームが拡大されて増幅され、露光装置20に向けて出力される。
8.2 リング共振器で増幅する形態
図67は、エキシマ増幅器14として、リング共振器を採用した例を示す。リング共振器は、出力結合ミラー430と、高反射ミラー431~433とを含む。なお、エキシマ増幅器14は、さらに、波長193.4nmのシード光をリング共振器に導く図示しない高反射ミラーを含んでもよいし、リング共振器から出力されたパルスレーザ光を露光装置20に導く図示しない高反射ミラーを含んでもよい。
チャンバ410には、ウインドウ415、416が設けられている。チャンバ410の中には、一対の放電電極412、413が配置されている。一対の放電電極412、413は、図67において、紙面に直交する方向に対向して配置される。放電方向は紙面に直交する方向である。
エキシマ増幅器14では、出力結合ミラー430、高反射ミラー431、一対の放電電極412、413の間の放電空間、高反射ミラー432、高反射ミラー433、一対の放電電極412、413の間の放電空間の順にシード光が繰り返し進行して増幅される。
9.エタロン分光器を用いるスペクトルモニタの例
図68は、エタロン分光器を用いるスペクトルモニタの構成例を概略的に示す図である。図68に示すエタロン分光器606Aは、エキシマレーザ光のスペクトルを計測するスペクトルモニタ606(図20参照)に適用できる。
図68に示すように、エタロン分光器606Aは、拡散素子610と、エタロン612と、集光レンズ614と、イメージセンサ616とを備える。イメージセンサ616の例としては、1次元又は2次元のフォトダイオードアレイでもよい。
レーザ光は、まず、拡散素子610に入射する。拡散素子610は、表面に多数の凹凸を有する透過型の光学素子であってよい。拡散素子610は、拡散素子610に入射したレーザ光を散乱光として透過させる。この散乱光はエタロン612に入射する。エタロン612は、所定の反射率を有する2枚の部分反射ミラーを含むエアギャップエタロンであってよい。このエアギャップエタロンにおいては、2枚の部分反射ミラーが、所定距離のエアギャップを有して対向し、スペーサを介して貼り合わせられた構成である。
エタロン612に入射した光の入射角度θに応じて、2枚の部分反射ミラーの間で往復せずにエタロン612を透過する光と、2枚の部分反射ミラーの間で1回往復した後でエタロン612を透過する光と、の光路差が異なる。この光路差が波長の整数倍である場合に、エタロン612に入射した光は、高い透過率でエタロン612を透過する。
エタロン612を透過した光は、集光レンズ614に入射する。集光レンズ614を透過したレーザ光は、集光レンズ614から集光レンズ614の焦点距離fに相当する位置に配置されたイメージセンサ616に入射する。すなわち、集光レンズ614によって集光された透過光は、集光レンズ614の焦点面上に干渉縞を形成する。
イメージセンサ616は、集光レンズ614の焦点面に配置されている。イメージセンサ616は、集光レンズ614を透過した光を受光し、干渉縞を検出する。この干渉縞の半径の2乗は、レーザ光の波長と比例関係にあり得る。そのため、検出した干渉縞からレーザ光全体のスペクトル線幅(スペクトルプロファイル)と中心波長とを検出する。
スペクトル線幅と中心波長は、検出した干渉縞から図示せぬ情報処理装置によって求めてもよいし、レーザ制御部18で算出してもよい。
干渉縞の半径rと波長λの関係は、次の式(14)で近似される。
波長λ=λc+α・r (14)
α:比例定数
r:干渉縞の半径、
λc:干渉縞の中央の光強度が最大となった時の波長
式(14)から、図69に示すように、光強度と波長との関係を示すスペクトル波形に変換した後、スペクトル線幅Δλを計算してもよい。スペクトル線幅Δλは、全エネルギの95%を含む幅(E95)であってよい。
10.CW発振基準レーザ光源の例
10.1 1547.2nm又は1554nmの波長領域のCW発振基準レーザ光源
図70は、CW発振基準レーザ光源の例を示すブロック図である。CW発振基準レーザ光源770は、第1の基準半導体レーザ772と、ビームスプリッタ774と、高反射ミラー775と、シアン化水素同位体の吸収セル777と、第1の光強度センサ778と、第1の基準レーザ制御部782と、を含む。
第1の基準半導体レーザ772は、1554nmの波長領域のレーザ光をCW発振する。ビームスプリッタ774で反射されたレーザ光は高反射ミラー775を介してシアン化水素同位体の吸収セル777に入射する。
吸収セル777は、同位体のシアン化水素ガスを含む。シアン化水素同位体の具体的な吸収ラインとしては、例えば、1553.756nmの吸収ラインが挙げられる。
また、この波長領域の吸収セルとして、アセチレン同位体の吸収セルを用いてもよい。すなわち、シアン化水素同位体の吸収セル777に代えて、同位体のアセチレンガスを含む吸収セルを採用してもよい。
シアン化水素同位体の吸収セル777を透過したレーザ光は第1の光強度センサ778に受光される。
第1の基準レーザ制御部782は、第1の光強度センサ778からの検出信号を基に、シアン化水素同位体の吸収セル777の吸収ラインと、第1の基準半導体レーザ772のレーザ光の波長とを一致させるように、第1の基準半導体レーザ772の発振波長を制御する。
CW発振基準レーザ光源770は、図20、図47及び図62に示した第1のスペクトルモニタ166のCW発振基準レーザ光源706として適用できる。
10.2 1030nmの波長領域のCW発振基準レーザ光源
図71は、CW発振基準レーザ光源の他の一例を示すブロック図である。CW発振基準レーザ光源750は、第2の基準半導体レーザ751と、ビームスプリッタ754と、高反射ミラー755と、非線形結晶756と、ヨウ素吸収セル757と、第2の光強度センサ758と、第2の基準レーザ制御部761と、を含む。
第2の基準半導体レーザ751は、1030nmの波長領域のレーザ光をCW発振する。ビームスプリッタ754で反射されたレーザ光は高反射ミラー755を介して非線形結晶756に入射する。非線形結晶756によって第2高調波光が発生し、波長約515nmのレーザ光が得られる。波長約515nmのレーザ光はヨウ素吸収セル757に入射する。
ヨウ素吸収セル757は、ヨウ素ガスを含む。ヨウ素吸収セル757における具体的なヨウ素の吸収ラインとしては、例えば、514.581nmの吸収ラインが挙げられる。ヨウ素吸収セル757を透過したレーザ光は第2の光強度センサ758に受光される。
第2の基準レーザ制御部761は、第2の光強度センサ758からの検出信号を基に、ヨウ素吸収セル757の吸収ラインと第2高調波光の波長とを一致させるように、第2の基準半導体レーザ751の発振波長を制御する。
CW発振基準レーザ光源750は、図62に示した第2のスペクトルモニタ266のCW発振基準レーザ光源として適用することができる。
11.半導体光増幅器の例
11.1 構成
図72は、半導体光増幅器の構成例を概略的に示す図である。ここでは、第1の半導体光増幅器120を例に説明するが、図45における半導体光増幅器124及び図62における第2の半導体光増幅器220など、他の半導体光増幅器についても図72と同様の構成を適用することができる。
第1の半導体光増幅器120は、半導体素子500と、電流制御部520と、を含む。半導体素子500は、P型半導体素子501と、活性層502と、N型半導体素子503と、第1の電極511と、第2の電極512と、を含む。電流制御部520は、第1の電極511と第2の電極512とに接続される。
11.2 動作
第1の電極511から第2の電極512に電流を流すと、活性層502が励起される。この励起された活性層502にシード光が入射して、活性層502を通過すると、シード光は増幅される。
ここで、CWのシード光を活性層502に入射させた状態で、パルス状の電流を流すことによって、活性層502を通過したシード光は、パルスレーザ光として出力される。
その結果、例えば、関数発生器122からの電気信号に基づいて電流制御部520が半導体素子500を流れる電流値を制御することによって、シード光は電流値に応じたレーザ光の光強度に増幅される。
図20における第1の半導体光増幅器120及び図62における第2の半導体光増幅器220の各々は、パルス電流を流すことによってCWのシード光がパルス状に増幅される。
また、図45に示した半導体光増幅器124の場合のように、電流を変調制御してシード光を増幅してもよい。
12.実施形態4
12.1 構成
図73は、実施形態4に係るレーザシステムの例を概略的に示す図である。ここでは、固体レーザシステム10Dの部分のみが示されている。図20で説明した実施形態1及び実施形態2の固体レーザシステム10に代えて、図72に示す固体レーザシステム10Dを適用してもよい。図20との相違点を説明する。
図73に示す固体レーザシステム10Dは、図20における第1の固体レーザ装置100及び波長変換システム300に代えて、第1の固体レーザ装置100D及び波長変換システム370を含む。
固体レーザシステム10Dは、第1の固体レーザ装置100Dから波長約773.6nmのパルスレーザ光を出力し、波長変換システム370で第4高調波光(4倍高調波光)に波長変換して波長約193.4nmのパルスレーザ光を得る。
第1の固体レーザ装置100Dの構成は、図20における第1の固体レーザ装置100と同様である。ただし、図20における第1の固体レーザ装置100は発振波長が約1547.2nmであるのに対し、図72に示す第1の固体レーザ装置100Dの発振波長は約773.6nmである点で相違する。
また、第1の固体レーザ装置100Dでは、図20のErファイバ増幅器140からチタンサファイヤ増幅器141に変更されており、第1のパルス励起光源132として、YFLレーザの第2高調波光であるパルスレーザ光を出力するレーザ装置が用いられる。チタンサファイヤ増幅器141はゲイン媒質としてチタンサファイヤ結晶を含む。YFL(イットリウムリチウムフルオライド)は、化学式LiYFで表される固体レーザ結晶である。
波長変換システム370は、複数の非線形結晶を含み、入射したパルスレーザ光を波長変換して4倍高調波のパルスレーザ光を出力する。例えば、波長変換システム370は、BBO結晶371と、KBBF結晶372と、を含む。「BBO」は化学式β-BaBで表される。「KBBF」は化学式KBeBOで表される。
12.2 動作
第1の固体レーザ装置100Dから出力されたパルスレーザ光は、波長変換システム370のBBO結晶371に入射する。BBO結晶371は、波長約773.6nmのパルスレーザ光を第2高調波光である波長約386.8nmのパルスレーザ光に変換する。
KBBF結晶372は、BBO結晶371から出力された波長約386.8nmのパルスレーザ光を第2高調波光である波長約193.4nmのパルスレーザ光に変換する。
波長変換システム370から出力されたパルスレーザ光は、ビームスプリッタ328を介して固体レーザシステム10Dから出力される。中心波長及びスペクトル線幅の制御方法については、実施形態1~3で説明した例を適用できる。
固体レーザシステム10Dを含むレーザシステムから出力されるパルスレーザ光の波長の可変範囲が例えば193.2nm~193.5nmである場合、第1の半導体レーザ111の波長可変範囲は、772.8nm~774.0nmとなる。
実施形態4において、チタンサファイヤ増幅器141は本開示における「第1の増幅器」の一例である。
13.実施形態5
13.1 構成
実施形態5に係るレーザシステムの構成は、図20に示す実施形態1と同様の構成であってよい。
13.2 動作
実施形態5に係るレーザシステム1は、実施形態1で説明した動作に加え、さらに、エキシマ増幅器14によって増幅されたエキシマ光をスペクトルモニタ606によって検出して、エキシマ光のスペクトル線幅から固体レーザシステム10をフィードバック制御する。
図74は、レーザ制御部18の処理例を示すフローチャートである。図74のフローチャートについて、図8との相違点を説明する。
図74のフローチャートは、ステップS12及びステップS13の後に、ステップS300を含む。ステップS300において、レーザ制御部18はエキシマレーザ光のスペクトル線幅確認サブルーチンを実施し、ステップS300の後にステップS14に進む。
図75は、エキシマレーザ光のスペクトル線幅確認サブルーチンの例を示すフローチャートである。図75のフローチャートは図74のステップS300に適用される。
図75のステップS311において、レーザ制御部18はスペクトルモニタ606によってエキシマ光の発光パルスが検出されたか否かを判定する。
ステップS311の判定結果がYes判定である場合、レーザ制御部18はステップS312に進み、スペクトルモニタ606においてエキシマ光のスペクトル線幅Δλexを計測する。例えば、レーザ制御部18は、スペクトルモニタ606によって検出されたスペクトル形状から全エネルギの95%幅をスペクトル線幅Δλexとして計測する。
ステップS313において、レーザ制御部18は計測されたスペクトル線幅Δλexと目標スペクトル線幅Δλextとの差ΔΔλexを計算する。
ΔΔλex=Δλex-Δλext (15)
なお、目標スペクトル線幅Δλextは、露光制御部22から指令される目標スペクトル線幅Δλtであってよい。
そして、ステップS314において、レーザ制御部18はΔΔλexの絶対値が許容範囲を示す許容上限値ΔΔλextr以下であるか否かを判定する。ステップS314の判定結果がYes判定である場合、レーザ制御部18はステップS315に進む。
ステップS315において、レーザ制御部18は露光制御部22にエキシマ光のスペクトル線幅OK信号を送信する。
一方、ステップS314の判定結果がNo判定である場合、レーザ制御部18はステップS316に進む。ステップS316においてレーザ制御部18は露光制御部22にエキシマ光のスペクトル線幅NG信号を送信する。
ステップS316の後、レーザ制御部18はステップS317に進み、ΔΔλexが0に近づくように目標スペクトル線幅Δλ1chtを補正する処理を行う。
図76は、ΔΔλexが0に近づくように目標スペクトル線幅Δλ1chtを補正する処理の例を示すフローチャートである。図76のフローチャートは図75のステップS317に適用される。
図76のステップS321において、レーザ制御部18は、エキシマ光のスペクトル線幅Δλと第1の半導体レーザシステム160のスペクトル線幅Δλ1との関係を再計測し、新しいテーブルデータ又は近似関数を求めて、相関関係のデータを記憶する。これは、図27で説明した関係データを補正して、新しい関係データに更新することを意味する。
ΔΔλexが許容範囲を超える場合は、エキシマ光のスペクトル線幅Δλと第1の半導体レーザシステム160のスペクトル線幅Δλ1との関係がずれていると考えられる。このため、レーザ制御部18は、所定の間隔で、第1の半導体レーザ111のスペクトル線幅Δλchtを変化させ、エキシマ光のスペクトルモニタ606によって計測されたそれぞれのスペクトル線幅Δλexから、エキシマ光のスペクトル線幅Δλと第1の半導体レーザシステム160のスペクトル線幅Δλ1との関係を示すテーブルデータ又は近似曲線を更新する。
ステップS321の後、レーザ制御部18は図76のフローチャートを終了し、図75のフローチャートに復帰する。
図75のステップS315又はステップS117の後、図75のフローチャートを終了し、図74のフローチャートに復帰する。また、図75のステップS311の判定結果がNo判定である場合、レーザ制御部18はステップS312~ステップS317をスキップして、図75のフローチャートを終了し、図74のフローチャートに復帰する。
13.3 作用・効果
実施形態5によれば、実施形態1と同様の効果が得られることに加え、エキシマ光のスペクトル線幅を一層高精度に制御することができる。
14.電子デバイスの製造方法
図77は、露光装置20の構成例を概略的に示す図である。図77において、露光装置20は、照明光学系24と投影光学系25とを含む。照明光学系24は、レーザシステム1から入射したレーザ光によって、レチクルステージRTのレチクルパターンを照明する。投影光学系25は、レチクルを透過したレーザ光を、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。露光装置20は、レチクルステージRTとワークピーステーブルWTとを同期して平行移動させることにより、レチクルパターンを反映したレーザ光をワークピースに露光する。以上のような露光工程によって半導体ウエハにデバイスパターンを転写することで半導体デバイスを製造することができる。レーザシステム1は、各実施形態で説明したレーザシステム1A~1Cであってもよい。
15.外部装置の他の例
外部装置の実施形態として、半導体製造に用いる露光装置20の例を説明したが、外部装置はこの例に限定されることなく、例えば、以下のような外部装置の例がある。
[1]被加工材料にレーザ光を照射して材料を加工するレーザ加工装置。
[2]半導体材料にパルスレーザ光を照射することによって、レーザアニールするレーザアニール装置。
[3]半導体材料にパルスレーザ光を照射することによって、レーザドーピングするレーザドーピング装置。
[4]処理材料にレーザ光を照射して材料の表面を処理するレーザ照射処理装置。
16.その他
上記の説明は、制限ではなく単なる例示を意図している。したがって、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (20)

  1. 第1のパルスレーザ光を出力する第1の半導体レーザシステムであって、
    シングル縦モードで発振する第1の半導体レーザと、
    前記第1の半導体レーザから出力される第1のレーザ光にチャーピングを発生させるように前記第1の半導体レーザに流す電流を制御する第1の電流制御器と、
    前記第1のレーザ光をパルス増幅する第1の半導体光増幅器と、を含む前記第1の半導体レーザシステムと、
    前記第1の半導体光増幅器によって増幅されて前記第1の半導体レーザシステムから出力された前記第1のパルスレーザ光を増幅する第1の増幅器と、
    前記第1の増幅器によって増幅された第2のパルスレーザ光を紫外線の第3のパルスレーザ光に波長変換する波長変換システムと、
    前記第3のパルスレーザ光を増幅するエキシマ増幅器と、
    外部装置から指令された目標スペクトル線幅のエキシマレーザ光が得られるように、前記第1の半導体レーザシステムから出力される前記第1のパルスレーザ光のチャーピング量を制御する制御部と、
    を備えるレーザシステム。
  2. 請求項1に記載のレーザシステムであって、
    前記第1の半導体レーザは、分布帰還型半導体レーザである、
    レーザシステム。
  3. 請求項2に記載のレーザシステムであって、
    前記第1の電流制御器は、前記第1の半導体レーザに流す電流のAC成分とDC成分とを制御するように構成され、
    前記制御部は、前記外部装置から指令された前記目標スペクトル線幅の前記エキシマレーザ光が得られるように、前記第1の電流制御器を介して前記第1の半導体レーザに流す電流の前記AC成分を制御する、
    レーザシステム。
  4. 請求項3に記載のレーザシステムであって、さらに、
    前記第1のレーザ光の一部を受光することにより、前記第1のレーザ光のスペクトル線幅を検出する第1のスペクトルモニタを備え、
    前記制御部は、前記第1のスペクトルモニタによって検出されたスペクトル線幅に基づいて、前記AC成分の電流制御パラメータの値を制御する、
    レーザシステム。
  5. 請求項4に記載のレーザシステムであって、さらに、
    前記エキシマ増幅器によって増幅されたパルスレーザ光である前記エキシマレーザ光の一部を受光することにより、前記エキシマレーザ光のスペクトル線幅を検出するスペクトルモニタと、を備え、
    前記制御部は、前記スペクトルモニタによって検出された前記エキシマレーザ光のスペクトル線幅に基づいて、前記AC成分の電流制御パラメータの値を制御する、
    レーザシステム。
  6. 請求項3に記載のレーザシステムであって、
    前記第1の半導体光増幅器に流す電流のパルス幅は、前記第1の半導体レーザに流す電流の前記AC成分の周期の1以上の整数倍である、
    レーザシステム。
  7. 請求項3に記載のレーザシステムであって、さらに、
    前記外部装置から入力される発光トリガ信号に応じて、前記波長変換システムから出力された前記第3のパルスレーザ光が前記エキシマ増幅器に入射するタイミングで前記エキシマ増幅器を放電させる同期システムを備える、
    レーザシステム。
  8. 請求項7に記載のレーザシステムであって、
    前記同期システムは、前記発光トリガ信号と同期して、かつ、前記第1の半導体光増幅器に流れるパルス電流のタイミングと同期して、前記エキシマ増幅器の放電タイミングを制御する、
    レーザシステム。
  9. 請求項2に記載のレーザシステムであって、
    前記第1の電流制御器は、前記第1の半導体レーザに流すパルス電流を制御するように構成され、
    前記制御部は、前記外部装置から指令された前記目標スペクトル線幅の前記エキシマレーザ光が得られるように、前記第1の電流制御器を介して前記第1の半導体レーザに流す前記パルス電流のパルス電流値を制御する、
    レーザシステム。
  10. 請求項9に記載のレーザシステムであって、
    前記第1の半導体光増幅器は、前記第1の半導体レーザから出力されたパルスレーザ光である前記第1のレーザ光の一部をパルス増幅するように構成され、
    前記制御部は、前記第1の半導体光増幅器による増幅の開始タイミングと増幅パルスの時間幅のうち少なくとも1つを制御する、
    レーザシステム。
  11. 請求項9に記載のレーザシステムであって、さらに、
    前記第1の半導体光増幅器によって増幅された前記第1のパルスレーザ光の通過を制御する光シャッタと、
    前記第1の半導体レーザ及び前記第1の半導体光増幅器の両方を動作させる基準クロック発生器と、
    を備えるレーザシステム。
  12. 請求項11に記載のレーザシステムであって、
    前記第1の半導体レーザと前記第1の半導体光増幅器とは、前記基準クロック発生器から出力される基準クロック信号に同期して、それぞれにパルス電流が流れるように構成されている、
    レーザシステム。
  13. 請求項11に記載のレーザシステムであって、さらに、
    前記外部装置から入力される発光トリガ信号に応じて、前記波長変換システムから出力された前記第3のパルスレーザ光が前記エキシマ増幅器に入射するタイミングで前記エキシマ増幅器を放電させる同期システムを備え、
    前記同期システムは、前記発光トリガ信号の入力後、前記第1の半導体光増幅器に電流トリガ信号が入力されるタイミングに同期して、前記光シャッタの開閉タイミングと前記エキシマ増幅器の放電タイミングとを制御する、
    レーザシステム。
  14. 請求項13に記載のレーザシステムであって、
    前記同期システムに用いられる基準クロック信号の周波数は、
    前記発光トリガ信号の最大周波数以上である、
    レーザシステム。
  15. 請求項13に記載のレーザシステムであって、
    前記同期システムに用いられる基準クロック信号の周波数は、
    前記発光トリガ信号の最大周波数の10倍以上である、
    レーザシステム。
  16. 請求項13に記載のレーザシステムであって、
    前記同期システムに用いられる基準クロック信号の周波数は、
    前記発光トリガ信号の最大周波数の100倍以上である、
    レーザシステム。
  17. 請求項1に記載のレーザシステムであって、さらに、
    シングル縦モードで発振する第2の半導体レーザと、
    前記第2の半導体レーザから出力される第2のレーザ光にチャーピングを発生させるように前記第2の半導体レーザに流す電流を制御する第2の電流制御器と、
    前記第2のレーザ光をパルス増幅する第2の半導体光増幅器と、
    を含む第2の半導体レーザシステムと、
    前記第2の半導体レーザシステムから出力された第4のパルスレーザ光を増幅する第2の増幅器と、
    前記第2の増幅器により増幅された第5のパルスレーザ光を増幅する固体増幅器と、
    を備え、
    前記固体増幅器により増幅された第6のパルスレーザ光が前記波長変換システムに入射される、
    レーザシステム。
  18. 請求項17に記載のレーザシステムであって、
    前記波長変換システムは、非線形結晶を含み、前記第2のパルスレーザ光と第6のパルスレーザ光とから前記第3のパルスレーザ光を生成する、
    レーザシステム。
  19. 請求項1に記載のレーザシステムであって、さらに、
    前記第1の半導体レーザシステムは、
    前記第1の半導体レーザと前記第1の半導体光増幅器との間の光路上に配置された第3の半導体光増幅器を含み、
    前記制御部は、前記第1の半導体光増幅器に入射するレーザ光のスペクトル形状が中心波長に対して対称なスペクトル形状となるように前記第3の半導体光増幅器に流す電流を制御する、
    レーザシステム。
  20. 電子デバイスの製造方法であって、
    シングル縦モードで発振する第1の半導体レーザと、
    前記第1の半導体レーザから出力される第1のレーザ光にチャーピングを発生させるように前記第1の半導体レーザに流す電流を制御する第1の電流制御器と、
    前記第1のレーザ光をパルス増幅する第1の半導体光増幅器と、
    を含む第1の半導体レーザシステムと、
    前記第1の半導体光増幅器によって増幅されて前記第1の半導体レーザシステムから出力された第1のパルスレーザ光を増幅する第1の増幅器と、
    前記第1の増幅器によって増幅された第2のパルスレーザ光を紫外線の第3のパルスレーザ光に波長変換する波長変換システムと、
    前記第3のパルスレーザ光を増幅するエキシマ増幅器と、
    外部装置から指令された目標スペクトル線幅のエキシマレーザ光が得られるように、前記第1の半導体レーザシステムから出力される前記第1のパルスレーザ光のチャーピング量を制御する制御部と、
    を備えるレーザシステムによって前記エキシマレーザ光を生成し、
    前記エキシマレーザ光を露光装置に出力し、
    電子デバイスを製造するために、前記露光装置内で感光基板上に前記エキシマレーザ光を露光すること
    を含む電子デバイスの製造方法。
JP2020556433A 2018-11-08 2018-11-08 レーザシステム、及び電子デバイスの製造方法 Active JP7175999B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041530 WO2020095418A1 (ja) 2018-11-08 2018-11-08 レーザシステム、及び電子デバイスの製造方法

Publications (2)

Publication Number Publication Date
JPWO2020095418A1 JPWO2020095418A1 (ja) 2021-10-07
JP7175999B2 true JP7175999B2 (ja) 2022-11-21

Family

ID=70611657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020556433A Active JP7175999B2 (ja) 2018-11-08 2018-11-08 レーザシステム、及び電子デバイスの製造方法

Country Status (4)

Country Link
US (1) US11764541B2 (ja)
JP (1) JP7175999B2 (ja)
CN (1) CN112771737B (ja)
WO (1) WO2020095418A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022058969A1 (en) * 2020-09-20 2022-03-24 Uvl A/S Method to generate coherent ultraviolet radiation from laser beams
CN115997169A (zh) * 2020-10-22 2023-04-21 极光先进雷射株式会社 激光装置和电子器件的制造方法
CN113466614B (zh) * 2021-06-17 2023-03-21 广西电网有限责任公司梧州供电局 基于三光路手持紫外仪标定绝缘子放电位置的方法及装置
WO2023112308A1 (ja) * 2021-12-17 2023-06-22 ギガフォトン株式会社 レーザシステム、パルスレーザ光の生成方法、及び電子デバイスの製造方法
WO2023199514A1 (ja) * 2022-04-15 2023-10-19 ギガフォトン株式会社 レーザ装置及び電子デバイスの製造方法
WO2023199513A1 (ja) * 2022-04-15 2023-10-19 ギガフォトン株式会社 レーザ装置、レーザ装置の波長制御方法、及び電子デバイスの製造方法
CN116819908B (zh) * 2023-08-31 2023-11-21 光科芯图(北京)科技有限公司 一种激光系统及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122452A1 (en) 1999-11-18 2002-09-05 Lambda Physik Ag., Narrow band excimer or molecular fluorine laser having an output coupling interferometer
WO2006006499A1 (ja) 2004-07-09 2006-01-19 Komatsu Ltd. 狭帯域化レーザ装置
JP2008016544A (ja) 2006-07-04 2008-01-24 Komatsu Ltd 狭帯域化レーザのスペクトル幅調整方法
JP2011171521A (ja) 2010-02-18 2011-09-01 Nikon Corp レーザ光源の評価方法、並びに露光方法及び装置
JP2013179247A (ja) 2011-09-08 2013-09-09 Gigaphoton Inc マスタオシレータシステムおよびレーザ装置
WO2017064789A1 (ja) 2015-10-15 2017-04-20 国立大学法人 東京大学 固体レーザシステムおよびエキシマレーザシステム
WO2017068619A1 (ja) 2015-10-19 2017-04-27 ギガフォトン株式会社 レーザ装置管理システム
WO2017098625A1 (ja) 2015-12-10 2017-06-15 ギガフォトン株式会社 狭帯域化レーザ装置及びスペクトル線幅計測装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086078A (ja) 1994-06-22 1996-01-12 Matsushita Electric Ind Co Ltd 外部変調光送信装置
EP1139521A4 (en) 1999-09-10 2006-03-22 Nikon Corp LIGHT SOURCE AND WAVELENGTH STABILIZATION CONTROL METHOD, EXPOSURE APPARATUS AND METHOD, METHOD FOR PRODUCING EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD, AND DEVICE THEREOF
JP5557601B2 (ja) 2010-05-24 2014-07-23 株式会社ミツトヨ レーザ光源の調整システム
CN107210576B (zh) * 2015-03-06 2019-08-16 极光先进雷射株式会社 固体激光系统和曝光装置用激光装置
WO2016143071A1 (ja) 2015-03-10 2016-09-15 国立大学法人 東京大学 固体レーザ装置、ファイバ増幅器システム、および固体レーザシステム
WO2016170643A1 (ja) 2015-04-23 2016-10-27 ギガフォトン株式会社 レーザ装置、及び計測装置
WO2017175344A1 (ja) * 2016-04-07 2017-10-12 ギガフォトン株式会社 固体レーザ装置、固体レーザシステム、及び露光装置用レーザ装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020122452A1 (en) 1999-11-18 2002-09-05 Lambda Physik Ag., Narrow band excimer or molecular fluorine laser having an output coupling interferometer
WO2006006499A1 (ja) 2004-07-09 2006-01-19 Komatsu Ltd. 狭帯域化レーザ装置
JP2008016544A (ja) 2006-07-04 2008-01-24 Komatsu Ltd 狭帯域化レーザのスペクトル幅調整方法
JP2011171521A (ja) 2010-02-18 2011-09-01 Nikon Corp レーザ光源の評価方法、並びに露光方法及び装置
JP2013179247A (ja) 2011-09-08 2013-09-09 Gigaphoton Inc マスタオシレータシステムおよびレーザ装置
WO2017064789A1 (ja) 2015-10-15 2017-04-20 国立大学法人 東京大学 固体レーザシステムおよびエキシマレーザシステム
WO2017068619A1 (ja) 2015-10-19 2017-04-27 ギガフォトン株式会社 レーザ装置管理システム
WO2017098625A1 (ja) 2015-12-10 2017-06-15 ギガフォトン株式会社 狭帯域化レーザ装置及びスペクトル線幅計測装置

Also Published As

Publication number Publication date
US11764541B2 (en) 2023-09-19
JPWO2020095418A1 (ja) 2021-10-07
CN112771737A (zh) 2021-05-07
WO2020095418A1 (ja) 2020-05-14
US20210226414A1 (en) 2021-07-22
CN112771737B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
JP7175999B2 (ja) レーザシステム、及び電子デバイスの製造方法
JP6444489B2 (ja) 固体レーザシステム、及び露光装置用レーザ装置
CN112771444B (zh) 激光系统和电子器件的制造方法
JP7104828B2 (ja) エキシマ光源におけるスペックルの低減
EP3553902A1 (en) Laser device and laser processing system
WO2015140901A1 (ja) レーザシステム
US20220373893A1 (en) Exposure system, laser control parameter production method, and electronic device manufacturing method
US11804697B2 (en) Laser system and electronic device manufacturing method
US20150340837A1 (en) Method of controlling wavelength of laser beam and laser apparatus
WO2023112308A1 (ja) レーザシステム、パルスレーザ光の生成方法、及び電子デバイスの製造方法
US20220373896A1 (en) Exposure system and method for manufacturing electronic devices
US20220371121A1 (en) Exposure system, laser control parameter production method, and electronic device manufacturing method
US20220131335A1 (en) Laser apparatus, laser processing system, and method for manufacturing electronic device
WO2023199513A1 (ja) レーザ装置、レーザ装置の波長制御方法、及び電子デバイスの製造方法
WO2023199514A1 (ja) レーザ装置及び電子デバイスの製造方法
US20230187286A1 (en) Electronic device manufacturing method
WO2024057458A1 (ja) レーザ装置及び電子デバイスの製造方法
WO2017046860A1 (ja) レーザシステム
JPH01276684A (ja) 狭帯域発振エキシマレーザの波長異常検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221109

R150 Certificate of patent or registration of utility model

Ref document number: 7175999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150