JP7030418B2 - Polyimide resin laminate and its manufacturing method - Google Patents

Polyimide resin laminate and its manufacturing method Download PDF

Info

Publication number
JP7030418B2
JP7030418B2 JP2017068868A JP2017068868A JP7030418B2 JP 7030418 B2 JP7030418 B2 JP 7030418B2 JP 2017068868 A JP2017068868 A JP 2017068868A JP 2017068868 A JP2017068868 A JP 2017068868A JP 7030418 B2 JP7030418 B2 JP 7030418B2
Authority
JP
Japan
Prior art keywords
layer
base material
polyimide resin
material layer
curl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017068868A
Other languages
Japanese (ja)
Other versions
JP2017185806A (en
Inventor
信行 林
克文 平石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Publication of JP2017185806A publication Critical patent/JP2017185806A/en
Application granted granted Critical
Publication of JP7030418B2 publication Critical patent/JP7030418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • B32B37/0053Constructional details of laminating machines comprising rollers; Constructional features of the rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、ポリイミド基板上に液晶表示装置、有機ELディスプレイ、有機EL照明、電子ペーパー、タッチパネル、カラーフィルター等の機能層が形成されたポリイミド樹脂積層体及びその製造方法に関する。 The present invention relates to a polyimide resin laminate in which functional layers such as a liquid crystal display device, an organic EL display, an organic EL lighting, electronic paper, a touch panel, and a color filter are formed on a polyimide substrate, and a method for manufacturing the same.

液晶表示装置や有機EL表示装置等の表示装置は、テレビのような大型ディスプレイから、携帯電話、パソコン、スマートフォンなどの小型ディスプレイに至るまで、幅広く使用されている。例えば、有機EL表示装置では、ガラス基板上に薄膜トランジスタ(TFT)を形成し、電極、発光層、電極等を順次形成し、最後に別途ガラス基板や多層薄膜等で気密封止して作られる。 Display devices such as liquid crystal displays and organic EL display devices are widely used from large displays such as televisions to small displays such as mobile phones, personal computers, and smartphones. For example, in an organic EL display device, a thin film transistor (TFT) is formed on a glass substrate, an electrode, a light emitting layer, an electrode, and the like are sequentially formed, and finally, the electrode, a light emitting layer, an electrode, and the like are separately hermetically sealed with a glass substrate, a multilayer thin film, and the like.

ここで、表示装置の種類は特に制限しないが、液晶表示装置、有機EL表示装置、電子ペーパーをはじめとする表示装置、及びカラーフィルター等の表示装置の構成部品も含んでいる。また、有機EL照明装置、タッチパネル装置、ITO等が積層された導電性フィルム、水分や酸素等の浸透を防止するガスバリアフィルム、フレキシブル回路基板の構成部品などを含めた、前記表示装置に付随して使用される各種機能装置も包含される。すなわち、本発明で言うフレキシブルデバイスとは、液晶表示装置、有機EL表示装置、及びカラーフィルター等の構成部品のみならず、有機EL照明装置、タッチパネル装置、有機EL表示装置の電極層もしくは発光層、ガスバリアフィルム、接着フィルム、薄膜トランジスタ(TFT)、液晶表示装置の配線層もしくは透明導電層等の1種又は2種以上を組み合わせたものも含めている。 Here, the type of display device is not particularly limited, but includes components of a display device such as a liquid crystal display device, an organic EL display device, a display device such as electronic paper, and a color filter. In addition, it accompanies the display device including an organic EL lighting device, a touch panel device, a conductive film on which ITO and the like are laminated, a gas barrier film that prevents permeation of moisture, oxygen, and the like, and components of a flexible circuit board. Various functional devices used are also included. That is, the flexible device referred to in the present invention is not only a component such as a liquid crystal display device, an organic EL display device, and a color filter, but also an organic EL lighting device, a touch panel device, an electrode layer or a light emitting layer of an organic EL display device, and the like. It also includes one type or a combination of two or more types such as a gas barrier film, an adhesive film, a thin film transistor (TFT), a wiring layer of a liquid crystal display device, or a transparent conductive layer.

ガラス基板を樹脂基材に置き換えることで、薄型化、軽量化、フレキシブル化が実現でき、表示装置の用途を更に広げることが可能になる。ところが、樹脂はガラスと比較して寸法安定性、透明性、耐熱性、耐湿性、ガスバリア性等に劣るといった問題がある。 By replacing the glass substrate with a resin base material, it is possible to realize thinning, weight reduction, and flexibility, and it becomes possible to further expand the use of the display device. However, the resin has a problem that it is inferior in dimensional stability, transparency, heat resistance, moisture resistance, gas barrier property, etc. as compared with glass.

例えば、特許文献1は、フレキシブルディスプレイ用プラスチック基板として有用なポリイミド、及びその前駆体に係る発明に関し、シクロへキシルフェニルテトラカルボン酸等のような脂環式構造を含んだテトラカルボン酸類を用いて、各種ジアミンと反応させたポリイミドが、透明性に優れることを開示している。この他にも、ガラス基板の替わりにフレキシブルな樹脂基材を用いて軽量化を図る試みがなされており、例えば、非特許文献1及び2では、透明性の高いポリイミドを利用した有機EL表示装置が提案されている。 For example, Patent Document 1 relates to a polyimide useful as a plastic substrate for a flexible display and an invention relating to a precursor thereof, using tetracarboxylic acids containing an alicyclic structure such as cyclohexylphenyltetracarboxylic acid. , It is disclosed that the polyimide reacted with various diamines has excellent transparency. In addition to this, attempts have been made to reduce the weight by using a flexible resin base material instead of the glass substrate. For example, in Non-Patent Documents 1 and 2, an organic EL display device using highly transparent polyimide is used. Has been proposed.

このように、ポリイミド等の樹脂フィルムがフレキシブルディスプレイ用の支持基材に有用であることは知られているが、表示装置の製造工程は、既にガラス基板を用いて行なわれており、その生産設備の大半はガラス基板を使用することを前提に設計されている。したがって、既存の生産設備を有効活用しながら、表示装置を生産できることが望ましい。 As described above, it is known that a resin film such as polyimide is useful as a supporting base material for a flexible display, but the manufacturing process of a display device has already been performed using a glass substrate, and the production equipment thereof. Most of them are designed on the assumption that a glass substrate is used. Therefore, it is desirable to be able to produce display devices while effectively utilizing existing production equipment.

その検討例の一つとして、ガラス基板上に樹脂を積層した状態で所定の表示装置の製造工程を完了させ、その後にガラス基板を取り除くことで、樹脂の基材の上に表示部を備えた表示装置を製造する方法がある(特許文献2~3、非特許文献3~4参照)。このような方法の場合、樹脂基材上に形成された表示部に損傷を与えずに樹脂基材とガラスとを分離することが重要となる。 As one of the study examples, a display unit is provided on the resin base material by completing the manufacturing process of a predetermined display device in a state where the resin is laminated on the glass substrate and then removing the glass substrate. There is a method of manufacturing a display device (see Patent Documents 2 to 3 and Non-Patent Documents 3 to 4). In the case of such a method, it is important to separate the resin base material and the glass without damaging the display portion formed on the resin base material.

すなわち、特許文献3や非特許文献3では、ガラス基板上に塗布して固着した樹脂基材に対して所定の表示部を形成した後、EPLaR(Electronics on Plastic by Laser Release)プロセスと呼ばれる方法によりガラス側からレーザーを照射して、表示部を備えた樹脂基材をガラス基板から強制分離している。また、特許文献2や非特許文献4では、ガラス基板に剥離層を形成した上で、剥離層よりも一回り大きくポリイミド樹脂を塗布してポリイミド層を形成し、剥離層に達する切断線を入れて、剥離層から一回り小さいポリイミドフィルムを剥離するようにしている。 That is, in Patent Document 3 and Non-Patent Document 3, after forming a predetermined display portion on a resin base material coated and fixed on a glass substrate, a method called EPLaR (Electronics on Plastic by Laser Release) process is used. A laser is irradiated from the glass side to forcibly separate the resin base material provided with the display unit from the glass substrate. Further, in Patent Document 2 and Non-Patent Document 4, after forming a release layer on a glass substrate, a polyimide resin is applied one size larger than the release layer to form a polyimide layer, and a cutting line reaching the release layer is inserted. Therefore, the polyimide film, which is one size smaller, is peeled off from the peeling layer.

一方、ガラス基板上に樹脂を積層させた場合には、反りが大きな問題になる。すなわち、ガラス基板の熱膨張係数は数ppm/Kであるのに対し、一般に樹脂は数十ppm/K以上の熱膨張係数を有することから、例えば、ガラス基板上に樹脂溶液を塗布し、加熱処理等により硬化させて樹脂層を形成して、室温まで放冷すると、反りが発生してしまう。このような反りを抑制できなければ、その後の表示部の形成等に悪影響を与えてしまう。 On the other hand, when the resin is laminated on the glass substrate, warpage becomes a big problem. That is, the coefficient of thermal expansion of a glass substrate is several ppm / K, whereas the coefficient of thermal expansion of a resin is generally several tens of ppm / K or more. Therefore, for example, a resin solution is applied onto a glass substrate and heated. When it is cured by a treatment or the like to form a resin layer and allowed to cool to room temperature, warpage occurs. If such warpage cannot be suppressed, it will adversely affect the subsequent formation of the display unit and the like.

ポリイミド積層体を使用する工程において、フレキシブルディスプレイTFT基板工程は、通常、In-Ga-Zn-O半導体(IGZO)又は低温ポリシリコン(LTPS)工法が使われており、350℃以上の熱をかける。その際、ガラス基板の熱膨張係数は数ppm/Kであることに対し、一般に樹脂は数十ppm/K以上の熱膨張係数を有することから、積層体は反りが発生してしまい、表示部の微細化ができなくなる恐れがある。 In the process of using the polyimide laminate, the flexible display TFT substrate process usually uses the In-Ga-Zn-O semiconductor (IGZO) or low temperature polysilicon (LTPS) method, and applies heat of 350 ° C or higher. .. At that time, the coefficient of thermal expansion of the glass substrate is several ppm / K, whereas the resin generally has a coefficient of thermal expansion of several tens of ppm / K or more, so that the laminated body is warped and the display unit is displayed. There is a risk that it will not be possible to miniaturize.

この点について、特許文献3では、支持基板と樹脂フィルム(a)との間に、熱膨張係数が支持基板と樹脂フィルム(a)との間にあるような樹脂層(b)を設けることを開示しているが、反りの抑制効果は十分ではない。 Regarding this point, in Patent Document 3, a resin layer (b) is provided between the support substrate and the resin film (a) so that the coefficient of thermal expansion is between the support substrate and the resin film (a). Although disclosed, the effect of suppressing warpage is not sufficient.

ところで、ディスプレイやタッチパネルなどをロール・ツー・ロール(Roll to Roll;以下「RTR」ともいう。)方式で製造する場合、支持基材となるフィルムにはプロセス中において300℃を超える高温処理に耐えられるため、耐熱性に優れた材料であることが要求される。また、光透過率を考えると薄いフィルムが好ましい。しかし、薄いフィルムをハンドリングすることは困難であり、製造も難しいため、現状、透明フィルムとしては、50μm以上の厚さのものが使われている。
また、ハンドリングや製造の容易さと薄さを両立させる方法として、キャリア付の透明フィルムが提案されている。このキャリア付積層フィルムは、接着剤を用いることなくキャリアフィルムと透明基材フィルムが積層されており、透明基材の上に薄膜トランジスタなどの機能層を成形した後、更に前面板と貼りあわせた後、キャリアフィルムを剥がすことで、製造工程におけるハンドリング性と、ディスプレイやタッチパネルにおける透明支持基材としての薄さを両立できる。
しかし、従来のキャリア付積層フィルムでは、反り(カール)が発生し易く、製造工程におけるハンドリング性が非常に悪いものであった。
By the way, when a display, a touch panel, or the like is manufactured by a roll-to-roll (hereinafter also referred to as "RTR") method, the film used as a supporting base material can withstand high temperature treatment exceeding 300 ° C. during the process. Therefore, it is required to be a material having excellent heat resistance. Further, considering the light transmittance, a thin film is preferable. However, since it is difficult to handle a thin film and it is also difficult to manufacture it, a transparent film having a thickness of 50 μm or more is currently used.
Further, a transparent film with a carrier has been proposed as a method of achieving both ease of handling and manufacturing and thinness. In this laminated film with a carrier, a carrier film and a transparent base film are laminated without using an adhesive, and after forming a functional layer such as a thin film transistor on the transparent base material, the film is further bonded to the front plate. By peeling off the carrier film, it is possible to achieve both handleability in the manufacturing process and thinness as a transparent support base material in displays and touch panels.
However, in the conventional laminated film with a carrier, warpage (curl) is likely to occur, and the handleability in the manufacturing process is very poor.

特許文献4では、反りの発生を抑制するために、ガラス基板等の支持体に対して、それよりも熱膨張係数が小さい第1のポリイミド層を設け、その上に、熱膨張係数が支持体よりも大きい第2のポリイミド層を設けることを開示しているが、ガラス基板ではない耐熱性樹脂からなる支持体についての検討は開示されていない。 In Patent Document 4, in order to suppress the occurrence of warpage, a first polyimide layer having a smaller coefficient of thermal expansion is provided on a support such as a glass substrate, and a support having a coefficient of thermal expansion is provided on the first polyimide layer. Although it is disclosed that a second polyimide layer larger than that is provided, a study on a support made of a heat-resistant resin other than a glass substrate is not disclosed.

特開2008-231327号公報Japanese Unexamined Patent Publication No. 2008-231327 特許4834758号公報Japanese Patent No. 4834758 特許5408848号公報Japanese Patent No. 5488848 特開2015-182393号公報JP-A-2015-182393

S. An et.al.,"2.8-inch WQVGA Flexible AMOLED Using High Performance Low Temperature Polysilicon TFT on Plastic Substrates", SID2010 DIGEST, p706(2010)S. An et. al., "2.8-inch WQVGA Flexible AMOLED Using High Performance Low Temperature Polysilicon TFT on Plastic Substrates", SID2010 DIGEST, p706 (2010) Oishi et.al.,"Transparent PI for flexible display",IDW'11 FLX2/FMC4-1Oishi et. al., "Transparent PI for flexible display", IDW'11 FLX2 / FMC4-1 E.I. Haskal et. al. "Flexible OLED Displays Made with the EPLaR Process",Proc.Eurodisplay '07,pp.36-39 (2007)E.I. Haskal et. Al. "Flexible OLED Displays Made with the EPLaR Process", Proc.Eurodisplay '07, pp.36-39 (2007) Cheng-Chung Lee et. al. "A Novel Approach to Make Flexible Active Matrix Displays",SID10 Digest,pp.810-813(2010)Cheng-Chung Lee et. Al. "A Novel Approach to Make Flexible Active Matrix Displays", SID10 Digest, pp.810-813 (2010)

従って、本発明の目的は、ディスプレイやタッチパネルにガラス代替基板として利用されるキャリア付ポリイミド樹脂積層体であって、キャリア材としてRTRプロセスに適用できる耐熱性樹脂を使用した場合においても、製造工程におけるハンドリング性とディスプレイやタッチパネルにおける支持基材としての薄さを維持しつつ、反り(カール)を極力抑制でき、かつ、キャリア材から支持基材を容易かつ簡便に分離できるポリイミド樹脂積層体及びその製造方法を提供することである。 Therefore, an object of the present invention is a polyimide resin laminate with a carrier used as a glass substitute substrate for a display or a touch panel, and even when a heat-resistant resin applicable to the RTR process is used as the carrier material in the manufacturing process. Manufacture of a polyimide resin laminate that can suppress warpage (curl) as much as possible while maintaining handleability and thinness as a support base material in displays and touch panels, and can easily and easily separate the support base material from the carrier material. Is to provide a method.

そこで、本発明者らは、これらの課題を解決するために鋭意検討した結果、驚くべきことには、所定のポリイミド樹脂からなる基材層の一面側に、所定のポリイミド樹脂からなるカール抑制層及び所定のポリイミド樹脂からなるキャリア層を積層することにより、ハンドリング性や基材としての薄さを維持しつつ、反り(カール)を改善できることを見出し、本発明を完成するに至った。 Therefore, as a result of diligent studies to solve these problems, the present inventors have surprisingly found that a curl-suppressing layer made of a predetermined polyimide resin is on one side of a base material layer made of a predetermined polyimide resin. Further, they have found that warpage (curl) can be improved while maintaining handleability and thinness as a base material by laminating a carrier layer made of a predetermined polyimide resin, and have completed the present invention.

すなわち、本発明は、ポリイミド樹脂からなるカール抑制層、ポリイミド樹脂からなるキャリア層、及び、ポリイミド樹脂からなる基材層が積層されたポリイミド樹脂積層体であって、該基材層の一面側に、カール抑制層及びキャリア層が剥離可能に接着され、該基材層に接している層の熱膨張係数(CTE)が、他の層のCTEのいずれよりも小さい又は大きいことを特徴とするポリイミド樹脂積層体である。 That is, the present invention is a polyimide resin laminated body in which a curl suppressing layer made of a polyimide resin, a carrier layer made of a polyimide resin, and a base material layer made of a polyimide resin are laminated, and the present invention is on one surface side of the base material layer. , The curl-suppressing layer and the carrier layer are detachably adhered to each other, and the thermal expansion coefficient (CTE) of the layer in contact with the base material layer is smaller or larger than any of the CTEs of the other layers. It is a resin laminate.

本発明のポリイミド樹脂積層体は、次のいずれかの態様であることが好ましい。
1)キャリア層の一面側にカール抑制層を有し、さらに該カール抑制層に剥離可能に接着した基材層を有し、カール抑制層のCTEが支持層及び基材層のCTEのいずれよりも小さい又は大きいこと、
2)キャリア層の一面側に剥離可能に接着した基材層を有し、前記キャリア層の反対面側にカール抑制層を有し、キャリア層のCTEが基材層及びカール抑制層のCTEのいずれよりも小さい又は大きいこと。
The polyimide resin laminate of the present invention preferably has any of the following aspects.
1) A curl-suppressing layer is provided on one surface side of the carrier layer, and a base material layer that is peelably adhered to the curl-suppressing layer is provided. Also small or large,
2) A peelable base material layer is provided on one surface side of the carrier layer, a curl suppression layer is provided on the opposite surface side of the carrier layer, and the CTE of the carrier layer is the CTE of the base material layer and the curl suppression layer. Smaller or larger than either.

本発明のポリイミド樹脂積層体は、基材層とキャリア層のCTE差、または、基材層とカール抑制層のCTE差が±40ppm/K以下であることが好ましい。
本発明のポリイミド樹脂積層体は、キャリア層の一面側にカール抑制層及び基材層を介在してさらに機能層が形成されてなるポリイミド樹脂積層体、または、キャリア層の一面側に基材層を介在してさらに機能層が形成されてなる機能層付きポリイミド樹脂積層体として、好ましく使用できる。
また、本発明のポリイミド樹脂積層体は、基材層の全光線透過率が80%以上、かつ、厚みが50μm以下であることが好ましく、基材層を形成するポリイミド樹脂のTgが300℃以上であることが好ましい。
In the polyimide resin laminate of the present invention, the CTE difference between the base material layer and the carrier layer or the CTE difference between the base material layer and the curl suppressing layer is preferably ± 40 ppm / K or less.
The polyimide resin laminate of the present invention is a polyimide resin laminate in which a curl suppressing layer and a base material layer are interposed on one side of a carrier layer to further form a functional layer, or a base material layer on one side of a carrier layer. It can be preferably used as a polyimide resin laminate with a functional layer in which a functional layer is further formed via the above.
Further, in the polyimide resin laminate of the present invention, the total light transmittance of the base material layer is preferably 80% or more and the thickness is preferably 50 μm or less, and the Tg of the polyimide resin forming the base material layer is 300 ° C. or more. Is preferable.

本発明の他の態様として、前記機能層付ポリイミド樹脂積層体を使用し、カール抑制層と基材層との界面、または、キャリア層と基材層との界面で剥離してキャリア層及びカール抑制層を除去してなる機能層付ポリイミドフィルムである。
また、本発明は、上記ポリイミド樹脂積層体を製造する方法であって、キャリア層にカール抑制層及び基材層をキャスト法にて形成することを特徴とするポリイミド樹脂積層体の製造方法である。
この製造方法は、キャリア層に塗工されたカール抑制層及び基材層を一体硬化すること
が好ましく、キャスト法が多層ダイ又は連続ダイによる塗工であることが好ましい。
As another aspect of the present invention, the polyimide resin laminate with the functional layer is used and peeled off at the interface between the curl suppressing layer and the base material layer or the interface between the carrier layer and the base material layer to cause the carrier layer and curl. It is a polyimide film with a functional layer obtained by removing the inhibitory layer.
Further, the present invention is a method for producing the above-mentioned polyimide resin laminate, which comprises forming a curl suppressing layer and a base material layer on a carrier layer by a casting method. ..
In this manufacturing method, it is preferable to integrally cure the curl suppressing layer and the base material layer coated on the carrier layer, and it is preferable that the casting method is coating with a multilayer die or a continuous die.

本発明によれば、製造工程におけるハンドリング性とディスプレイやタッチパネルにおける支持基材としての薄さを維持しつつ、反り(カール)を極力抑制でき、ディスプレイやタッチパネル用途におけるポリイミド樹脂積層体の要求特性を満たすことができる。 According to the present invention, warpage (curl) can be suppressed as much as possible while maintaining handleability in the manufacturing process and thinness as a supporting base material in displays and touch panels, and the required characteristics of polyimide resin laminates for displays and touch panels can be obtained. Can be met.

本発明の積層体について、各層構成を示す断面図である。It is sectional drawing which shows each layer structure about the laminated body of this invention. 積層体について、機能層を形成するための装置の模式図である。It is a schematic diagram of the apparatus for forming a functional layer about a laminated body. 積層体に反りが発生する様子を示すシミュレーション図である。It is a simulation figure which shows the state that the warp occurs in a laminated body.

先ず、本発明のポリイミド樹脂積層体は、ポリイミド樹脂からなるキャリア層を備える。キャリア層は、薄膜の基材層をRTRプロセスにおいて所定形状に維持するものであり、基材層を介在してITO膜などの機能層が形成された後においては、基材層から剥離除去されるものである。そのため、RTRプロセスに適応するためにフレキシブル性、及び基材層を補強して強度を維持することが要求されるが、透明性は必ずしも必要としない。そのため、キャリア層の厚みは、薄膜の基材層に比べて大きく、好ましくは10~100μm、より好ましくは30~75μmである。また、RTRの高温プロセスに適用できる耐熱性が要求されることから、ガラス転移温度(Tg)は、好ましくは300℃以上、より好ましくは300~450℃である。 First, the polyimide resin laminate of the present invention includes a carrier layer made of a polyimide resin. The carrier layer maintains a thin base material layer in a predetermined shape in the RTR process, and is peeled off and removed from the base material layer after a functional layer such as an ITO film is formed via the base material layer. It is a thing. Therefore, flexibility and reinforcement of the substrate layer to maintain strength are required to adapt to the RTR process, but transparency is not always required. Therefore, the thickness of the carrier layer is larger than that of the thin film base material layer, preferably 10 to 100 μm, and more preferably 30 to 75 μm. Further, since heat resistance applicable to the high temperature process of RTR is required, the glass transition temperature (Tg) is preferably 300 ° C. or higher, more preferably 300 to 450 ° C.

本発明のポリイミド樹脂積層体は、ポリイミド樹脂からなるカール抑制層(以下、単にカール抑制層ともいう。)、ポリイミド樹脂からなるキャリア層(以下、単にキャリア層ともいう。)、及び、ポリイミド樹脂からなる基材層(以下、単に基材層ともいう。)が積層されたポリイミド積層体であって、基材層の一面側に、カール抑制層及びキャリア層の積層体が剥離可能に接着されていることを特徴とする。さらに、前記ポリイミド樹脂積層体において、基材層に接している層のCTEが、他の層のCTEのいずれよりも小さい又は大きいことを特徴とする。
ここで、基材層に接している層とは、カール抑制層又はキャリア層のいずれか二態様があり、他の層とは、基材層に接している層がカール抑制層の場合、基材層及びキャリア層をいい、基材層に接している層がキャリア層の場合、基材層及びカール抑制層をいう。
なお、前記ポリイミド樹脂積層体の形態は2種類ある(形態1及び形態2)。以下に、各形態について、具体的に説明する。
The polyimide resin laminate of the present invention is made of a curl-suppressing layer made of a polyimide resin (hereinafter, also simply referred to as a curl-suppressing layer), a carrier layer made of a polyimide resin (hereinafter, also simply referred to as a carrier layer), and a polyimide resin. It is a polyimide laminated body in which a base material layer (hereinafter, also simply referred to as a base material layer) is laminated, and a laminated body of a curl suppressing layer and a carrier layer is detachably adhered to one surface side of the base material layer. It is characterized by being. Further, in the polyimide resin laminate, the CTE of the layer in contact with the base material layer is smaller or larger than any of the CTEs of the other layers.
Here, the layer in contact with the base material layer has either a curl-suppressing layer or a carrier layer, and the other layer is a base when the layer in contact with the base material layer is a curl-suppressing layer. It refers to a material layer and a carrier layer, and when the layer in contact with the base material layer is a carrier layer, it means a base material layer and a curl suppressing layer.
There are two types of the polyimide resin laminate (form 1 and form 2). Hereinafter, each form will be specifically described.

[形態1]
形態1のポリイミド樹脂積層体は、キャリア層の一面側にカール抑制層を有し、さらに該カール抑制層に剥離可能に接着した基材層を有し、カール抑制層のCTEがキャリア層及び基材層のCTEのいずれよりも小さいか又は大きい。
[Form 1]
The polyimide resin laminate of Form 1 has a curl-suppressing layer on one surface side of the carrier layer, and further has a base material layer removably adhered to the curl-suppressing layer, and the CTE of the curl-suppressing layer is the carrier layer and the base. Less than or greater than any of the CTEs of the material layer.

また、反り抑制の観点から、キャリア層のCTEは、基材層のCTEに近似することがよく、両者のCTE差(ΔCTE)は、好ましくは、±15ppm/K以内、より好ましくは、基材層のCTEがキャリア層のCTEに比べて+15ppm/K以内の差、つまり、CTE差が0~+15ppm/Kである。なお、例えば、キャリア層のCTEは、好ましくは10~85ppm/Kである。ここで、CTE差が±15ppm/K以内とは、基材層のCTEがキャリア層のCTEに比べて-15~+15ppm/Kの差であることを意味する。 Further, from the viewpoint of suppressing warpage, the CTE of the carrier layer is often close to the CTE of the base material layer, and the CTE difference (ΔCTE) between the two is preferably within ± 15 ppm / K, more preferably the base material. The difference between the CTE of the layer and the CTE of the carrier layer is within +15 ppm / K, that is, the CTE difference is 0 to +15 ppm / K. For example, the CTE of the carrier layer is preferably 10 to 85 ppm / K. Here, the CTE difference within ± 15 ppm / K means that the CTE of the base material layer has a difference of -15 to +15 ppm / K as compared with the CTE of the carrier layer.

キャリア層の一面側には、後記カール抑制層を介在して、基材層を有する。基材層は、その上にITO膜などの機能層が形成され、RTRプロセス終了後において、キャリア層を剥離除去した後、機能層を支持するガラス代替の透明基材となるものである。よって、基材層は、その全光線透過率が好ましくは80%以上、より好ましくは90%以上である。基材層の厚みは、薄型化、軽量化、フレキシブル化の要求特性から、極力薄いものがよく、好ましくは50μm以下、より好ましくは5~25μmである。基材層のCTEは、上述のとおり、キャリア層のCTEに近似することがよく、好ましくは10~80ppm/Kである。また、RTRの高温プロセスに適用できる耐熱性が要求されることから、基材層のガラス転移温度(Tg)は、好ましくは300℃以上、より好ましくは300~450℃である。ガラス代替の樹脂基材として利用されることから、基材層の弾性率は、例えば2~15GPaであるのがよい。 A base material layer is provided on one surface side of the carrier layer with a curl suppressing layer, which will be described later, interposed therebetween. The base material layer is a transparent base material that is a glass substitute that supports the functional layer after a functional layer such as an ITO film is formed on the base material layer and the carrier layer is peeled off and removed after the completion of the RTR process. Therefore, the total light transmittance of the base material layer is preferably 80% or more, more preferably 90% or more. The thickness of the base material layer is preferably as thin as possible, preferably 50 μm or less, and more preferably 5 to 25 μm, in view of the required characteristics of thinning, weight reduction, and flexibility. As described above, the CTE of the base material layer is often close to the CTE of the carrier layer, and is preferably 10 to 80 ppm / K. Further, since heat resistance applicable to the high temperature process of RTR is required, the glass transition temperature (Tg) of the base material layer is preferably 300 ° C. or higher, more preferably 300 to 450 ° C. Since it is used as a resin base material as a substitute for glass, the elastic modulus of the base material layer is preferably, for example, 2 to 15 GPa.

キャリア層の一面側において、キャリア層と基材層との間には、ポリイミド樹脂からなるカール抑制層を有する。カール抑制層は、RTRプロセスに適応する観点から、キャリア付基材層の反りを極力抑制するために、キャリア層と基材層との間に形成され、キャリア層及びカール抑制層が基材層を介在させてITO膜などの機能層が形成され、RTRプロセス終了後において、キャリア層が剥離除去される際、キャリア層と共に除去されるものである。そのため、RTRプロセスにおいて反りを極力抑制するために、厚みや熱膨張係数が選択される。よって、カール抑制層の厚みは、好ましくは50μm以下、より好ましくは5~30μmである。また、RTRの高温プロセスに適用できる耐熱性が要求されることから、Tgは、好ましくは300℃以上、より好ましくは300~450℃である。
カール抑制層のCTEは、キャリア層及び基材層とのCTE差が相対的に大きくなるように選定する。例えば、キャリア層及び基材層のCTEが必ずしも同一でなくてもかまわないが、これら双方のCTEに対してカール抑制層のCTEが一定以上の差を有するように選定することがよい。
そのため、カール抑制層のCTEについて、キャリア層とのCTE差、及び基材層とのCTE差は、好ましくは、±15ppm/K以上、より好ましくは、-15~-60ppm/Kの範囲のCTE差である。なお、カール抑制層のCTEは、好ましくは、-10~20ppm/Kである。ここで、CTE差が±15ppm/K以上とは、カール抑制層のCTEが、キャリア層のCTE及び基材層のCTEに比べて、-15ppm/Kよりも差が大きい、または、+15ppm/Kよりも差が大きいことを意味する。
On one side of the carrier layer, a curl suppressing layer made of a polyimide resin is provided between the carrier layer and the base material layer. The curl suppressing layer is formed between the carrier layer and the base material layer in order to suppress the warp of the base material layer with a carrier as much as possible from the viewpoint of adapting to the RTR process, and the carrier layer and the curl suppressing layer are the base material layer. A functional layer such as an ITO film is formed by interposing the above, and when the carrier layer is peeled off and removed after the completion of the RTR process, it is removed together with the carrier layer. Therefore, in order to suppress warpage as much as possible in the RTR process, the thickness and the coefficient of thermal expansion are selected. Therefore, the thickness of the curl suppressing layer is preferably 50 μm or less, more preferably 5 to 30 μm. Further, since heat resistance applicable to the high temperature process of RTR is required, Tg is preferably 300 ° C. or higher, more preferably 300 to 450 ° C.
The CTE of the curl suppressing layer is selected so that the CTE difference between the carrier layer and the base material layer is relatively large. For example, the CTEs of the carrier layer and the base material layer do not necessarily have to be the same, but it is preferable to select so that the CTE of the curl suppressing layer has a certain difference or more with respect to both CTEs.
Therefore, regarding the CTE of the curl suppressing layer, the CTE difference from the carrier layer and the CTE difference from the base material layer are preferably ± 15 ppm / K or more, and more preferably CTE in the range of -15 to -60 ppm / K. It's a difference. The CTE of the curl suppressing layer is preferably −10 to 20 ppm / K. Here, when the CTE difference is ± 15 ppm / K or more, the CTE of the curl suppressing layer has a larger difference than -15 ppm / K or +15 ppm / K as compared with the CTE of the carrier layer and the CTE of the base material layer. Means that the difference is greater than.

キャリア層及び基材層によってなるキャリア付基材が、カール抑制層を、キャリア層及び基材層との間に存在することにより、特に、いわゆるガラス基板の第四世代(680×880mm~730×920mm)以降に相当する比較的大きな積層体にした場合でも、反りの抑制効果を十分に得ることができる。加えて、カール抑制層の存在により、基材層の設計自由度を高めることができる。さらに、キャリア層に付着した異物が基材層に混入しにくい。また、キャリア層の表面状態が基材層に影響しにくいため、安価なポリイミドフィルムを選択できる等、キャリア層の設計自由度を高めることができる。 The carrier-attached substrate made of the carrier layer and the substrate layer has a curl-suppressing layer between the carrier layer and the substrate layer, so that the fourth generation of the so-called glass substrate (680 × 880 mm to 730 ×) is particularly present. Even when a relatively large laminated body corresponding to 920 mm) or later is formed, the effect of suppressing warpage can be sufficiently obtained. In addition, the presence of the curl suppressing layer can increase the degree of freedom in designing the base material layer. Further, foreign matter adhering to the carrier layer is less likely to be mixed into the base material layer. Further, since the surface state of the carrier layer does not easily affect the base material layer, it is possible to select an inexpensive polyimide film and increase the degree of freedom in designing the carrier layer.

[形態2]
形態2のポリイミド樹脂積層体は、キャリア層の一面側に剥離可能に接着した基材層を有し、さらに該キャリア層の反対面側にカール抑制層を有し、該キャリア層のCTEが該基材層及び該カール抑制層のCTEのいずれよりも小さいか又は大きい。
つまり、キャリア層は、基材層とカール抑制層との間に位置している。この構成であれば、反り抑制の観点から好ましい。なお、例えば、キャリア層のCTEは、好ましくは10~70ppm/Kである。
[Form 2]
The polyimide resin laminate of Form 2 has a peelably adhered base material layer on one surface side of the carrier layer, and further has a curl suppressing layer on the opposite surface side of the carrier layer, and the CTE of the carrier layer is the said. It is smaller or larger than either the substrate layer or the CTE of the curl suppressing layer.
That is, the carrier layer is located between the base material layer and the curl suppressing layer. This configuration is preferable from the viewpoint of suppressing warpage. For example, the CTE of the carrier layer is preferably 10 to 70 ppm / K.

基材層は、その上にITO膜などの機能層が形成され、RTRプロセス終了後において、キャリア層を剥離除去した後、機能層を支持するガラス代替の透明基材となるものである。よって、基材層は、その全光線透過率が好ましくは80%以上、より好ましくは90%以上である。基材層の厚みは、薄型化、軽量化、フレキシブル化の要求特性から、加工性が損なわれない範囲で、薄いものほどよく、好ましくは50μm以下、より好ましくは5~25μmである。基材層のCTEは、好ましくは1~80ppm/Kである。
また、RTRの高温プロセスに適用できる耐熱性が要求されることから、ガラス転移温度(Tg)は、好ましくは300℃以上、より好ましくは300~450℃である。ガラス代替の樹脂基材として利用されることから、基材層の弾性率は、例えば2~15GPaであるのがよい。
The base material layer is a transparent base material that is a glass substitute that supports the functional layer after a functional layer such as an ITO film is formed on the base material layer and the carrier layer is peeled off and removed after the completion of the RTR process. Therefore, the total light transmittance of the base material layer is preferably 80% or more, more preferably 90% or more. The thickness of the base material layer is preferably as thin as possible, preferably 50 μm or less, and more preferably 5 to 25 μm, as long as the workability is not impaired, from the required characteristics of thinning, weight reduction, and flexibility. The CTE of the substrate layer is preferably 1 to 80 ppm / K.
Further, since heat resistance applicable to the high temperature process of RTR is required, the glass transition temperature (Tg) is preferably 300 ° C. or higher, more preferably 300 to 450 ° C. Since it is used as a resin base material as a substitute for glass, the elastic modulus of the base material layer is preferably, for example, 2 to 15 GPa.

キャリア層の反対面側には、ポリイミド樹脂からなるカール抑制層を有する。カール抑制層は、RTRプロセスに適応する観点から、キャリア付基材層の反りを極力抑制するために、基材層とは反対側に形成され、キャリア層が基材層を介在させてITO膜などの機能層が形成され、RTRプロセス終了後において、キャリア層が剥離除去される際、キャリア層と共に除去されるものである。そのため、RTRプロセスにおいて反り(カール)を極力抑制するために、厚みや熱膨張係数が選択される。よって、カール抑制層の厚みは、好ましくは50μm以下、より好ましくは6~30μmである。また、RTRの高温プロセスに適用できる耐熱性が要求されることから、ガラス転移温度(Tg)は、好ましくは300℃以上、より好ましくは300~450℃である。
カール抑制層のCTEは、基材層のCTEに近似することがよく、かつ、キャリア層と基材層とのCTE差を打ち消すように選定することがよい。そのため、基材層とのCTE差は、±40ppm/K以内、好ましくは±15ppm/K以内である。例えば、カール抑制層のCTEは、好ましくは1~90ppm/Kである。
On the opposite side of the carrier layer, there is a curl suppressing layer made of a polyimide resin. The curl suppressing layer is formed on the opposite side of the base material layer in order to suppress the warp of the base material layer with a carrier as much as possible from the viewpoint of adapting to the RTR process, and the carrier layer intervenes the base material layer to form an ITO film. When the carrier layer is peeled off and removed after the RTR process is completed, the functional layer is removed together with the carrier layer. Therefore, the thickness and the coefficient of thermal expansion are selected in order to suppress the warp (curl) as much as possible in the RTR process. Therefore, the thickness of the curl suppressing layer is preferably 50 μm or less, more preferably 6 to 30 μm. Further, since heat resistance applicable to the high temperature process of RTR is required, the glass transition temperature (Tg) is preferably 300 ° C. or higher, more preferably 300 to 450 ° C.
The CTE of the curl-suppressing layer is often close to the CTE of the base material layer, and may be selected so as to cancel the CTE difference between the carrier layer and the base material layer. Therefore, the CTE difference from the base material layer is within ± 40 ppm / K, preferably within ± 15 ppm / K. For example, the CTE of the curl-suppressing layer is preferably 1 to 90 ppm / K.

キャリア層及び基材層によってなるキャリア付基材が、カール抑制層を、基材とは反対側に存在することにより、特に、いわゆるガラス基板の第四世代(680×880mm~730×920mm)以降に相当する比較的大きな積層体にした場合でも、反りの抑制効果を十分に得ることができる。加えて、カール抑制層の存在により、基材層の設計自由度を高めることができる。 The carrier-attached substrate composed of the carrier layer and the substrate layer has the curl-suppressing layer on the opposite side of the substrate, so that the so-called fourth generation of glass substrate (680 × 880 mm to 730 × 920 mm) or later is particularly present. Even when a relatively large laminated body corresponding to the above is formed, the effect of suppressing warpage can be sufficiently obtained. In addition, the presence of the curl suppressing layer can increase the degree of freedom in designing the base material layer.

以下に、形態1及び形態2に共通する内容について、具体的に説明する。 Hereinafter, the contents common to the first and second forms will be specifically described.

カール抑制層として使用されるポリイミド樹脂は、上記特性を満たせば特に制限されないが、例えば、下記一般式(1)で表される構造単位を有するポリイミドにより形成することが挙げられる。好ましくは、下記一般式(1)で表される構造単位を50モル%以上含有するポリイミドであるのがよい。

Figure 0007030418000001
The polyimide resin used as the curl suppressing layer is not particularly limited as long as it satisfies the above characteristics, and for example, it may be formed of a polyimide having a structural unit represented by the following general formula (1). It is preferable that the polyimide contains 50 mol% or more of the structural unit represented by the following general formula (1).
Figure 0007030418000001

ここで、上記一般式(1)におけるXは、芳香族基又は脂環式基であって、芳香環又は脂環を1個以上有する4価の有機基であり、Rは炭素数1~6の置換基である。このうち、基Xを形成するための原料となる好適な具体例としては、例えば、ピロメリット酸二無水物(PMDA)、ナフタレン-2,3,6,7-テトラカルボン酸二無水物(NTCDA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)等が挙げられる。また、Rの好適な具体例としては、例えば、-CH、-CF等が挙げられる。 Here, X in the general formula (1) is an aromatic group or an alicyclic group, and is a tetravalent organic group having one or more aromatic rings or alicyclics, and R is a tetravalent organic group having 1 to 6 carbon atoms. It is a substituent of. Among these, suitable specific examples of raw materials for forming the group X include, for example, pyromellitic dianhydride (PMDA) and naphthalene-2,3,6,7-tetracarboxylic dianhydride (NTCDA). ), 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA) and the like. Moreover, as a preferable specific example of R, for example, -CH 3 , -CF 3 , and the like can be mentioned.

なかでも、Rが-CFであると、基材層との界面での剥離性を高めることができて、これらの分離を容易にすることができる。 In particular, when R is -CF 3 , the peelability at the interface with the base material layer can be enhanced, and the separation of these can be facilitated.

なお、上記一般式(1)で表される構造単位以外に含めることができるもの、好適には最大で50モル%未満含むことができるものについては、一般的な酸無水物とジアミンとを用いた構造単位が挙げられる。なかでも好適に用いられる酸無水物としては、ピロメリット酸二無水物(PMDA)、ナフタレン-2,3,6,7-テトラカルボン酸二無水物(NTCDA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)、シクロヘキサンテトラカルボン酸二無水物、フェニレンビス(トリメリット酸モノエステル無水物)、4,4'-オキシジフタル酸二無水物、ベンゾフェノン‐3,4,3',4'‐テトラカルボン酸二無水物、ジフェニルスルホン‐3,4,3',4'-テトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、4,4'-(2,2'-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物等である。一方、ジアミンとしては、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、4,4'-ジアミノジフェニルエーテル、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4'-ジアミノジフェニルスルホン、2,2-ビス(4-アミノベンジルオキシフェニル)プロパン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、4,4'-ジアミノベンズアニリド、9,9-ビス(4-アミノフェニル)フルオレン等である。 In addition, for those which can be contained other than the structural unit represented by the above general formula (1), preferably those which can contain less than 50 mol% at the maximum, general acid anhydride and diamine are used. The structural unit that was there can be mentioned. Among them, the acid anhydrides preferably used are pyromellitic acid dianhydride (PMDA), naphthalene-2,3,6,7-tetracarboxylic acid dianhydride (NTCDA), 3,3', 4,4. '-Biphenyltetracarboxylic acid dianhydride (BPDA), cyclohexanetetracarboxylic acid dianhydride, phenylenebis (trimellitic acid monoester anhydride), 4,4'-oxydiphthalic acid dianhydride, benzophenone-3,4, 3', 4'-Tetracarboxylic acid dianhydride, Diphenylsulfone-3,4,3', 4'-Tetracarboxylic acid dianhydride, 2,3,6,7-Naphthalenetetracarboxylic dianhydride, 4 , 4'-(2,2'-hexafluoroisopropyridene) diphthalic acid dianhydride and the like. On the other hand, as diamines, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 4,4'-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene, 4,4'-diamino Diphenyl sulfone, 2,2-bis (4-aminobenzyloxyphenyl) propane, bis [4- (4-aminophenoxy) phenyl] sulfone, 4,4'-diaminobenzanilide, 9,9-bis (4-amino) Phenyl) Fluorene, etc.

一般に、ポリイミドの熱膨張係数が小さくなると透明性が低下すると共に、厚み方向のリタデーション(複屈折の差による位相差)が高くなってしまう。そのため、RTRプロセス終了後、キャリア層から分離した基材層を、例えば表示装置の樹脂基材として利用したり、ガスバリアフィルム、タッチパネル基板に用いる場合には不向きになる。それに対して、本発明では、反対側のカール抑制層の存在によって、キャリア層に比べて大きな熱膨張係数を有した基材層の使用が許容される。 Generally, when the coefficient of thermal expansion of polyimide becomes small, the transparency decreases and the retardation in the thickness direction (phase difference due to the difference in birefringence) increases. Therefore, it is not suitable when the base material layer separated from the carrier layer after the completion of the RTR process is used as a resin base material of a display device, for example, or used as a gas barrier film or a touch panel substrate. On the other hand, in the present invention, the presence of the curl suppressing layer on the opposite side allows the use of a base material layer having a larger coefficient of thermal expansion than the carrier layer.

基材層を形成するポリイミドは、ポリイミド樹脂積層体の用途に応じて適宜選択することができる。なかでも、液晶表示装置、有機EL表示装置、電子ペーパー、カラーフィルター、タッチパネル等の表示装置における可撓性を有した樹脂基材として利用する場合には、下記一般式(2)で表される構造単位を有するポリイミドが挙げられ、好ましくは、この一般式(2)で表される構造単位を50モル%以上含有するポリイミドである。なお、この一般式(2)で表される構造単位以外に含めることができるもの(好適には最大で50モル%未満含有するもの)については、透明性を阻害しない限り、一般式(1)で説明したものと同様のものが挙げられる。好適に用いられる酸無水物としては、ピロメリット酸二無水物(PMDA)、ナフタレン-2,3,6,7-テトラカルボン酸二無水物(NTCDA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)、シクロヘキサンテトラカルボン酸二無水物、フェニレンビス(トリメリット酸モノエステル無水物)、4,4'-オキシジフタル酸二無水物、ベンゾフェノン‐3,4,3',4'‐テトラカルボン酸二無水物、ジフェニルスルホン‐3,4,3',4'-テトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、4,4'-(2,2'-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物等である。一方、ジアミンとしては、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、4,4'-ジアミノジフェニルエーテル、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4'-ジアミノジフェニルスルホン、2,2-ビス(4-アミノベンジルオキシフェニル)プロパン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、4,4'-ジアミノベンズアニリド、9,9-ビス(4-アミノフェニル)フルオレン等である。

Figure 0007030418000002
The polyimide for forming the base material layer can be appropriately selected depending on the use of the polyimide resin laminate. In particular, when it is used as a flexible resin base material in a display device such as a liquid crystal display device, an organic EL display device, an electronic paper, a color filter, and a touch panel, it is represented by the following general formula (2). A polyimide having a structural unit can be mentioned, and a polyimide containing 50 mol% or more of the structural unit represented by the general formula (2) is preferable. For those that can be included in addition to the structural units represented by the general formula (2) (preferably containing less than 50 mol% at the maximum), the general formula (1) does not impair transparency. Examples are similar to those described in. Suitable acid anhydrides include pyromellitic acid dianhydride (PMDA), naphthalene-2,3,6,7-tetracarboxylic acid dianhydride (NTCDA), 3,3', 4,4'-. Biphenyltetracarboxylic acid dianhydride (BPDA), cyclohexanetetracarboxylic acid dianhydride, phenylenebis (trimellitic acid monoester anhydride), 4,4'-oxydiphthalic acid dianhydride, benzophenone-3,4,3' , 4'-Tetracarboxylic acid dianhydride, Diphenylsulfone-3,4,3', 4'-Tetracarboxylic acid dianhydride, 2,3,6,7-Naphthalenetetracarboxylic dianhydride, 4,4 '-(2,2'-Hexafluoroisopropylidene) diphthalic acid dianhydride and the like. On the other hand, as diamines, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 4,4'-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene, 4,4'-diamino Diphenyl sulfone, 2,2-bis (4-aminobenzyloxyphenyl) propane, bis [4- (4-aminophenoxy) phenyl] sulfone, 4,4'-diaminobenzanilide, 9,9-bis (4-amino) Phenyl) Fluorene, etc.
Figure 0007030418000002

上記一般式(2)において、Yは、芳香族又は脂環式の4価の有機基であるが、好ましくは、下記式(3)で示したいずれかである。

Figure 0007030418000003
In the above general formula (2), Y is an aromatic or alicyclic tetravalent organic group, preferably any of the following formulas (3).
Figure 0007030418000003

なかでも、基材層として、440nmから780nmの波長領域での500nmにおける透過率が80%以上であり、かつ、厚さ方向のリタデーションが200nm以下のポリイミド樹脂を得る観点から、より好ましくは、下記式(4)で示したいずれかである。

Figure 0007030418000004
Among them, the following is more preferable from the viewpoint of obtaining a polyimide resin having a transmittance of 80% or more at 500 nm in the wavelength region of 440 nm to 780 nm and a retardation in the thickness direction of 200 nm or less as the base material layer. It is one of the formulas (4).
Figure 0007030418000004

好適には、下記式(5)で表されるポリイミド樹脂である。

Figure 0007030418000005
A polyimide resin represented by the following formula (5) is preferable.
Figure 0007030418000005

キャリア層として使用されるポリイミド樹脂は、上述した特性を満たせば特に制限されないが、例えば、一般に入手可能なものとしてカプトン(東レ・デュポン社製)、ユーピレックス(宇部興産社製)、アピカル(カネカ社製)或いはこれらに類する構造を有する市販のポリイミドを使用してもよいし、以下に詳述するようにジアミンと酸二無水物から合成して得ることができる。 The polyimide resin used as the carrier layer is not particularly limited as long as it satisfies the above-mentioned characteristics, but for example, Kapton (manufactured by Toray DuPont), Upirex (manufactured by Ube Industries), and Apical (manufactured by Kaneka) are generally available. (Manufactured by) or a commercially available polyimide having a structure similar to these may be used, or it can be obtained by synthesizing from diamine and acid dianhydride as described in detail below.

上述した各種ポリイミドは、ポリイミド前駆体(以下、ポリアミド酸ともいう)をイミド化して得られるが、ポリアミド酸の樹脂溶液は、原料であるジアミンと酸二無水物とを実質的に等モル使用し、有機溶媒中で反応させることによって得ることができる。詳しくは、例えば、窒素気流下にN,N-ジメチルアセトアミド等の有機極性溶媒にジアミンを溶解させた後、テトラカルボン酸二無水物を加えて、室温で5時間程度反応させることにより得ることができる。ここで、塗工時の膜厚均一化や、得られるポリイミドの機械強度の観点から、ポリアミド酸の重量平均分子量(Mw)は1万から30万程度が好ましい。ポリイミド樹脂の好適な分子量範囲もポリアミド酸と同じ分子量範囲である。 The various polyimides described above are obtained by imidizing a polyimide precursor (hereinafter, also referred to as polyamic acid), but the resin solution of polyamic acid uses substantially equal molars of the raw materials diamine and acid dianhydride. , Can be obtained by reacting in an organic solvent. Specifically, for example, it can be obtained by dissolving diamine in an organic polar solvent such as N, N-dimethylacetamide under a nitrogen stream, adding tetracarboxylic dianhydride, and reacting at room temperature for about 5 hours. can. Here, from the viewpoint of uniform film thickness at the time of coating and the mechanical strength of the obtained polyimide, the weight average molecular weight (Mw) of the polyamic acid is preferably about 10,000 to 300,000. The preferred molecular weight range of the polyimide resin is also the same molecular weight range as that of the polyamic acid.

本発明における基材層及びカール抑制層は、好ましくは、それぞれポリイミド又はポリイミド前駆体の樹脂溶液を塗布・乾燥し、加熱処理する、いわゆるキャスト法により得られたものであるのがよい。すなわち、本発明のポリイミド樹脂積層体を得るにあたって、好適には、キャリア層の一面側または両面に、それぞれ、ポリイミド又はポリイミド前駆体の樹脂溶液を塗布・乾燥し、加熱処理することにより、基材層及びカール抑制層を形成することができる。例えば、乾燥などのために90~130℃にて5~30分程度の予備加熱処理を行った後、さらにイミド化のため130~360℃にて10~240分程度の高温加熱処理を行うことが好ましい。 The base material layer and the curl-suppressing layer in the present invention are preferably obtained by a so-called casting method in which a resin solution of polyimide or a polyimide precursor is applied, dried, and heat-treated, respectively. That is, in obtaining the polyimide resin laminate of the present invention, preferably, a resin solution of polyimide or a polyimide precursor is applied to one side or both sides of a carrier layer, dried, and heat-treated to treat a base material. A layer and a curl suppressing layer can be formed. For example, a preliminary heat treatment at 90 to 130 ° C. for about 5 to 30 minutes is performed for drying, and then a high temperature heat treatment is performed at 130 to 360 ° C. for about 10 to 240 minutes for imidization. Is preferable.

このようにして得られたポリイミド樹脂積層体は、基材層と該基材層に接している層(キャリア層またはカール抑制層)との界面で分離可能になるが、これらの界面での分離を容易にするには、好ましくは、基材層が、ポリイミド構造中にフッ素原子を有した含フッ素ポリイミドから形成されるようにするのがよい。このような含フッ素ポリイミドを用いることで、基材層と該基材層に接している層との剥離強度を好適には1~200N/m、より好適には1~100N/mにすることができるため、例えば人の手で容易に剥離できる程度の分離性を備える。また、基材層の分離面は、キャスト法によって得られる表面粗さ(一般に表面粗さRa=1~80nm程度)がそのまま維持されるため、表示装置の視認性等に悪影響を及ぼすようなこともない。 The polyimide resin laminate thus obtained can be separated at the interface between the base material layer and the layer (carrier layer or curl suppressing layer) in contact with the base material layer, and can be separated at these interfaces. It is preferable that the base material layer is formed of a fluorine-containing polyimide having a fluorine atom in the polyimide structure. By using such a fluorine-containing polyimide, the peel strength between the base material layer and the layer in contact with the base material layer is preferably 1 to 200 N / m, more preferably 1 to 100 N / m. Therefore, for example, it has a separability that can be easily peeled off by human hands. Further, since the surface roughness obtained by the casting method (generally, the surface roughness Ra = about 1 to 80 nm) is maintained as it is on the separated surface of the base material layer, the visibility of the display device may be adversely affected. Nor.

本発明においては、異なる材料が積層されたポリイミド樹脂積層体について、以下のような考えのもと、反り変形(反り量)を計算により求めて、ポリイミド樹脂積層体の最適化を図ることができる。すなわち、簡便な材料力学計算をベースに、自重の影響を三次元的材料力学計算によって算出したうえで反り変形(反り量)に加味し最終的な反り量を求めた。計算方法としては、熱変形と自重が釣り合った状態の最終的な反り変形について、積層シェル要素を用いて離散化し数値計算的にコンピューターで演算を実施する有限要素法を用いた。(図3参照) In the present invention, it is possible to optimize the polyimide resin laminate by calculating the warp deformation (warp amount) of the polyimide resin laminate in which different materials are laminated, based on the following ideas. .. That is, based on a simple strength of materials calculation, the effect of its own weight was calculated by a three-dimensional strength of materials calculation, and then the warp deformation (warp amount) was added to obtain the final warp amount. As a calculation method, we used a finite element method in which the final warp deformation in a state where the thermal deformation and its own weight are balanced is discreteized using laminated shell elements and numerically calculated by a computer. (See Fig. 3)

本発明のポリイミド樹脂積層体は、上述したように、基材層上に機能部材を備えた表示装置を得るのに好適に用いることができる。すなわち、基材層上に所定の機能層を形成した後、カール抑制層と基材層との界面で、または、基材層とキャリア層との界面で、分離すればよい。ここで、キャリア層は、基材層側に表示部を形成する際の台座の役割をするものであり、表示部の製造過程で基材層の取扱性や寸法安定性等を担保することはあっても、最終的には除去されて表示装置を構成するものではない。同様に、カール抑制層についても、キャリア層に同伴して分離され、同様に最終的に除去されて表示装置を構成するものではなく、仮に透明性に劣るものであっても何ら構わない。このようなポリイミド樹脂積層体を利用することにより、所定の機能層を基材層上に精度良くかつ確実に形成することができると共に、薄型・軽量・フレキシブル化を実現した表示装置を得ることができる。 As described above, the polyimide resin laminate of the present invention can be suitably used for obtaining a display device having a functional member on the base material layer. That is, after forming a predetermined functional layer on the base material layer, it may be separated at the interface between the curl suppressing layer and the base material layer or at the interface between the base material layer and the carrier layer. Here, the carrier layer serves as a pedestal when forming the display unit on the base material layer side, and it is not possible to ensure the handleability, dimensional stability, etc. of the base material layer in the manufacturing process of the display unit. Even if it exists, it is not finally removed to form a display device. Similarly, the curl-suppressing layer is not one that is separated along with the carrier layer and is finally removed to form a display device, and may be inferior in transparency. By using such a polyimide resin laminate, it is possible to obtain a display device that is thin, lightweight, and flexible while being able to accurately and reliably form a predetermined functional layer on the base material layer. can.

基材層上に形成される機能層については、特に制限されない。例えば、有機EL表示装置の場合には、代表的には、TFT、電極、発光層を含む有機EL素子等が表示部に相当する。また、液晶表示装置の場合には、TFT、駆動回路、必要に応じてカラーフィルター等である。これらのほか、電子ペーパーやMEMSディスプレイ等のような各種表示装置を含めて、従来、ガラス基板上に形成している種々の機能層であって、所定の映像(動画又は画像)を映し出すのに必要な部品が表示部に相当する。このうち、例えば、TFTの形成には、一般に400℃程度のアニール工程が必要になるが、本発明におけるポリイミド樹脂積層体は、このようなアニール工程にも耐え得る耐熱性を有する。 The functional layer formed on the base material layer is not particularly limited. For example, in the case of an organic EL display device, a TFT, an electrode, an organic EL element including a light emitting layer, or the like typically corresponds to a display unit. Further, in the case of a liquid crystal display device, it is a TFT, a drive circuit, a color filter or the like if necessary. In addition to these, various functional layers conventionally formed on a glass substrate, including various display devices such as electronic paper and MEMS displays, are used to project a predetermined image (moving image or image). The necessary parts correspond to the display unit. Of these, for example, the formation of a TFT generally requires an annealing step of about 400 ° C., and the polyimide resin laminate in the present invention has heat resistance that can withstand such an annealing step.

以下、実施例及び比較例に基づき、本発明を具体的に説明する。なお、本発明はこれらの内容に限定されるものではない。 Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples. The present invention is not limited to these contents.

1.各種物性測定および性能試験方法 1. 1. Various physical property measurement and performance test methods

[剥離強度]
基材層-(カール抑制層)-キャリア層間の剥離強度は、積層体を、幅が1mm~10mm、長さが10mm~25mmの短冊状に加工し、東洋精機株式会社製引張試験機(ストログラフ-M1)を用いて、キャリア層を180°方向に引き剥がし、剥離強度を測定した。なお、剥離強度が強固であり、剥離が困難であるものは「剥離不可」とした。
[Peeling strength]
For the peel strength between the base material layer- (curl suppression layer) -carrier layer, the laminate is processed into strips with a width of 1 mm to 10 mm and a length of 10 mm to 25 mm, and a tensile tester manufactured by Toyo Seiki Co., Ltd. (Stro). Using Graph-M1), the carrier layer was peeled off in the 180 ° direction, and the peeling strength was measured. Those with strong peeling strength and difficult peeling were classified as "non-peeling".

[透過率]
20μm厚の基材層を5cm角に切り出し、これを日本電色工業製のHAZE METER NDH-5000を用いて、380nmから780nmの透過率の測定を行った。
[Transmittance]
A 20 μm-thick substrate layer was cut into 5 cm squares, and the transmittance was measured from 380 nm to 780 nm using HAZE METER NDH-5000 manufactured by Nippon Denshoku Kogyo.

[Ra]
基材層、キャリア層及びカール抑制層を、それぞれ単独で3cm角に切り出し、これをブルカー・エイエックスエス製のAFMを用いて、Raの測定を行った。
[Ra]
The base material layer, the carrier layer, and the curl suppressing layer were individually cut into 3 cm squares, and Ra was measured using an AFM manufactured by Bruker AXS.

[CTE]
基材層、キャリア層及びカール抑制層のCTEは、それぞれを3mm×15mm角に切り出し、これをセイコーインスツルメント製の熱機械分析(TMA)装置にて5.0gの荷重を加えながら一定の昇温速度(10℃/min)で30℃から260℃の温度範囲で引張り試験を行い、100℃~250℃での温度に対するボリイミドフィルムの伸び量からCTE(×10-6/K)を測定した。
[CTE]
The CTE of the base material layer, carrier layer and curl suppression layer is cut into 3 mm × 15 mm squares, and this is constant while applying a load of 5.0 g using a thermomechanical analysis (TMA) device manufactured by Seiko Instruments Inc. A tensile test was conducted in the temperature range of 30 ° C to 260 ° C at a temperature rise rate (10 ° C / min), and CTE (× 10-6 / K) was calculated from the elongation of the boliimide film with respect to the temperature at 100 ° C to 250 ° C. It was measured.

[反り]
積層フィルムから1辺が100mmの正方形サンプルをカッターナイフで切り出し、23℃50%で24時間調湿した後、定盤にのせ4角の浮き上がり高さをノギスで測定し、その平均値を反り(カール)とした。
[warp]
Cut out a square sample with a side of 100 mm from the laminated film with a cutter knife, adjust the humidity at 23 ° C and 50% for 24 hours, place it on a surface plate, measure the height of the four corners with a caliper, and warp the average value ( Carl).

2.ポリアミド酸(ポリイミド前駆体)溶液の合成
以下の合成例や実施例等に用いた原料を以下に示す。
2. 2. Synthesis of Polyamic Acid (Polyimide Precursor) Solution The raw materials used in the following synthesis examples and examples are shown below.

〔芳香族ジアミノ化合物〕
・4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB)
・2,2’-ジメチル-4,4’-ジアミノビフェニル(mTB)
・1,3-ビス(4-アミノフェノキシ)ベンゼン(TPER)
・2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)
・1,4-フェニレンジアミン(PPD)
〔芳香族テトラカルボン酸の酸無水物〕
・無水ピロメリット酸(PMDA)
・2,2-ビス(3,4-アンヒドロジカルボキシフェニル)ヘキサフルオロプロパン(6FDA)
・2,3,2’,3’-ビフェニルテトラカルボン酸二無水物(BPDA)
〔溶剤〕
・N,N―ジメチルアセトアミド(DMAc)
[Aromatic diamino compound]
・ 4,4'-Diamino-2,2'-bis (trifluoromethyl) biphenyl (TFMB)
・ 2,2'-dimethyl-4,4'-diaminobiphenyl (mTB)
・ 1,3-Bis (4-aminophenoxy) benzene (TPER)
-2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP)
・ 1,4-Phenylenediamine (PPD)
[Acid anhydride of aromatic tetracarboxylic acid]
-Pyromellitic anhydride (PMDA)
・ 2,2-Bis (3,4-Anhydrodicarboxyphenyl) Hexafluoropropane (6FDA)
2,3,2', 3'-biphenyltetracarboxylic dianhydride (BPDA)
〔solvent〕
-N, N-dimethylacetamide (DMAc)

合成例1
窒素気流下で、TFMB(9.4g、0.03mol)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc127.5g中に加え加温し、50℃で溶解させた。次いで、6FDA(13.09g、0.03mol)を加えた。ジアミンと酸無水物のモル比が実質的に1:1になるようにした。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、200gの淡黄色の粘稠なポリアミド酸ワニスAを得た。なお、このポリアミド酸ワニスAを後述の加熱条件で硬化することによりポリイミド樹脂Aが得られる。
Synthesis example 1
Under a nitrogen stream, TFMB (9.4 g, 0.03 mol) was added to 127.5 g of the solvent DMAc with stirring in a 300 ml separable flask and heated to dissolve at 50 ° C. Then 6 FDA (13.09 g, 0.03 mol) was added. The molar ratio of diamine to acid anhydride was made to be substantially 1: 1. Then, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain 200 g of a pale yellow viscous polyamic acid varnish A. The polyimide resin A can be obtained by curing this polyamic acid varnish A under the heating conditions described later.

合成例2
窒素気流下で、m-TB10.2gとTPE-R1.6gをモル比90:10で、300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc170g中に加え加温し、50℃で溶解させた。次いで、PMDA9.2gとBPDA3.1gをモル比90:10で加えた。ジアミンと酸無水物のモル比が実質的に1:1になるようにした。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、200gの淡白色の粘稠なポリアミド酸ワニスBを得た。なお、このポリアミド酸ワニスBを後述の加熱条件で硬化することによりポリイミド樹脂Bが得られる。
Synthesis example 2
Under a nitrogen stream, 10.2 g of m-TB and 1.6 g of TPE-R were added to 170 g of solvent DMAc while stirring in a 300 ml separable flask at a molar ratio of 90:10, and the mixture was heated and dissolved at 50 ° C. .. Then, 9.2 g of PMDA and 3.1 g of BPDA were added at a molar ratio of 90:10. The molar ratio of diamine to acid anhydride was made to be substantially 1: 1. Then, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain 200 g of a pale white viscous polyamic acid varnish B. The polyimide resin B can be obtained by curing this polyamic acid varnish B under the heating conditions described later.

合成例3
窒素気流下で、TFMB(12.6g、0.04mol)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc127.5g中に加え加温し、50℃で溶解させた。次いで、6FDA(2.2g、0.005mol)とPMDA(7.7g、0.035mol)をモル比12.5:87.5で加えた。ジアミンと酸無水物のモル比が実質的に1:1になるようにした。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、150gの淡白色の粘稠なポリアミド酸ワニスCを得た。なお、このポリアミド酸ワニスCを後述の加熱条件で硬化することによりポリイミド樹脂Cが得られる。
Synthesis example 3
Under a nitrogen stream, TFMB (12.6 g, 0.04 mol) was added to 127.5 g of the solvent DMAc with stirring in a 300 ml separable flask and heated to dissolve at 50 ° C. Then 6 FDA (2.2 g, 0.005 mol) and PMDA (7.7 g, 0.035 mol) were added at a molar ratio of 12.5: 87.5. The molar ratio of diamine to acid anhydride was made to be substantially 1: 1. Then, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain 150 g of a pale white viscous polyamic acid varnish C. The polyimide resin C can be obtained by curing this polyamic acid varnish C under the heating conditions described later.

合成例4
窒素気流下で、m-TB(14.4g、0.07mol)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc170g中に加え加温し、50℃で溶解させた。次いで、PMDA(13.6g 0.06mol)とBPDA(2g、0.007mol)をモル比90:10で加えた。ジアミンと酸無水物のモル比が実質的に1:1になるようにした。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、200gの淡白色の粘稠なポリアミド酸ワニスDを得た。なお、このポリアミド酸ワニスDを後述の加熱条件で硬化することによりポリイミド樹脂Dが得られる。
Synthesis example 4
Under a nitrogen stream, m-TB (14.4 g, 0.07 mol) was added to 170 g of the solvent DMAc with stirring in a 300 ml separable flask, heated, and dissolved at 50 ° C. PMDA (13.6 g 0.06 mol) and BPDA (2 g, 0.007 mol) were then added at a molar ratio of 90:10. The molar ratio of diamine to acid anhydride was made to be substantially 1: 1. Then, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain 200 g of a pale white viscous polyamic acid varnish D. The polyimide resin D can be obtained by curing this polyamic acid varnish D under the heating conditions described later.

合成例5
窒素気流下で、ジアミンとしてTPE-R(14.8g、0.05mol)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc170g中に加え加温し、50℃で溶解させた。次いで、酸無水物としてBPDA(15.2g,0.05mol)を加えた。ジアミンと酸無水物のモル比が実質的に1:1になるようにした。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、200gの淡白色の粘稠なポリアミド酸ワニスEを得た。なお、このポリアミド酸ワニスEを後述の加熱条件で硬化することによりポリイミド樹脂Eが得られる。
Synthesis example 5
Under a nitrogen stream, TPE-R (14.8 g, 0.05 mol) as a diamine was added to 170 g of the solvent DMAc while stirring in a 300 ml separable flask, and the mixture was heated and dissolved at 50 ° C. Then, BPDA (15.2 g, 0.05 mol) was added as an acid anhydride. The molar ratio of diamine to acid anhydride was made to be substantially 1: 1. Then, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain 200 g of a pale white viscous polyamic acid varnish E. The polyimide resin E can be obtained by curing this polyamic acid varnish E under the heating conditions described later.

合成例6
窒素気流下で、m-TB:TPE-Rがモル比で90:10になるように300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc170g中に加え加温し、50℃で溶解させた。次いで、PMDA:BPDAのモル比が80:20になるように加えた。ジアミンと酸無水物のモル比は実質的に1:1になるようにした。その後、溶液を室温で3時間攪拌を続けて重合反応を行い、200gの淡白色の粘稠なポリアミド酸Fワニスを得た。なお、このポリアミド酸Fワニスを後述の加熱条件で硬化することによりポリイミド樹脂Fが得られる。
Synthesis example 6
Under a nitrogen stream, the mixture was added to 170 g of the solvent DMAc while stirring in a 300 ml separable flask so that m-TB: TPE-R had a molar ratio of 90:10, and the mixture was heated and dissolved at 50 ° C. Then, it was added so that the molar ratio of PMDA: BPDA was 80:20. The molar ratio of diamine to acid anhydride was set to be substantially 1: 1. Then, the solution was stirred at room temperature for 3 hours to carry out a polymerization reaction to obtain 200 g of a pale white viscous polyamic acid F varnish. The polyimide resin F can be obtained by curing this polyamic acid F varnish under the heating conditions described later.

合成例7
窒素気流下で、TFMB(16.93g)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc(170g)中に加え溶解させた。次いで、PMDA(10.12g)と6FDA(2.95g)を加えた。その後、溶液を室温で6時間攪拌を続けて重合反応を行い、200gの淡黄色の粘稠なポリアミド酸Hワニスを得た。なお、このポリアミド酸Hワニスを後述の加熱条件で硬化することによりポリイミド樹脂Hが得られる。
Synthesis example 7
Under a nitrogen stream, TFMB (16.93 g) was added and dissolved in solvent DMAc (170 g) with stirring in a 300 ml separable flask. Then PMDA (10.12g) and 6FDA (2.95g) were added. Then, the solution was stirred at room temperature for 6 hours to carry out a polymerization reaction to obtain 200 g of a pale yellow viscous polyamic acid H varnish. The polyimide resin H can be obtained by curing this polyamic acid H varnish under the heating conditions described later.

合成例8
窒素気流下で、BAPP(19.45g)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc(170g)中に加え溶解させた。次いで、PMDA(9.85g)とBPDA(0.70g)を加えた。その後、溶液を室温で6時間攪拌を続けて重合反応を行い、200gの淡黄色の粘稠なポリアミド酸Iワニスを得た。なお、このポリアミド酸Iワニスを後述の加熱条件で硬化することによりポリイミド樹脂Iが得られる。
Synthesis example 8
BAPP (19.45 g) was added to and dissolved in the solvent DMAc (170 g) with stirring in a 300 ml separable flask under a nitrogen stream. Then PMDA (9.85 g) and BPDA (0.70 g) were added. Then, the solution was stirred at room temperature for 6 hours to carry out a polymerization reaction to obtain 200 g of a pale yellow viscous polyamic acid I varnish. The polyimide resin I can be obtained by curing this polyamic acid I varnish under the heating conditions described later.

合成例9
窒素気流下で、4,4‘-DAPE(8.97g)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc(170g)中に加え溶解させた。次いで、PMDA(8.95g)とBPDA(12.08g)を加えた。その後、溶液を室温で6時間攪拌を続けて重合反応を行い、200gの褐色の粘稠なポリアミド酸Jワニスを得た。なお、このポリアミド酸Jワニスを後述の加熱条件で硬化することによりポリイミド樹脂Jが得られる。
Synthesis example 9
Under a nitrogen stream, 4,4'-DAPE (8.97 g) was added and dissolved in solvent DMAc (170 g) with stirring in a 300 ml separable flask. Then PMDA (8.95 g) and BPDA (12.08 g) were added. Then, the solution was stirred at room temperature for 6 hours to carry out a polymerization reaction to obtain 200 g of brown viscous polyamic acid J varnish. The polyimide resin J can be obtained by curing this polyamic acid J varnish under the heating conditions described later.

合成例10
窒素気流下で、4,4‘-DAPE(8.14g)とPPD(4.40g)を300mlのセパラブルフラスコの中で攪拌しながら溶剤DMAc(170g)中に加え溶解させた。次いで、PMDA(17.45g)を加えた。その後、溶液を室温で6時間攪拌を続けて重合反応を行い、200gの褐色の粘稠なポリアミド酸Kワニスを得た。なお、このポリアミド酸Kワニスを後述の加熱条件で硬化することによりポリイミド樹脂Kが得られる。
Synthesis example 10
Under a nitrogen stream, 4,4'-DAPE (8.14 g) and PPD (4.40 g) were added and dissolved in solvent DMAc (170 g) with stirring in a 300 ml separable flask. Then PMDA (17.45 g) was added. Then, the solution was stirred at room temperature for 6 hours to carry out a polymerization reaction to obtain 200 g of brown viscous polyamic acid K varnish. The polyimide resin K can be obtained by curing this K polyamic acid varnish under the heating conditions described later.

3.塗工によるポリイミド(PI)層の形成
キャリア層として、2種類のポリイミドフィルムを使用した。
1)ポリイミドフィルム1:中国寧波今山製、厚み=0.75mm、CTE=45ppm/K、Ra=3nm(以下、キャリアフィルム1ともいう。)
2)ポリイミドフィルム2:中国Rayitek製、厚み=0.75mm、CTE=45ppm/K、Ra=10nm(以下、キャリアフィルム2ともいう。)
3. 3. Formation of Polyimide (PI) Layer by Coating Two types of polyimide films were used as the carrier layer.
1) Polyimide film 1: Made by Ningbo Imayama, China, thickness = 0.75 mm, CTE = 45 ppm / K, Ra = 3 nm (hereinafter, also referred to as carrier film 1).
2) Polyimide film 2: Made by Rayitek, China, thickness = 0.75 mm, CTE = 45 ppm / K, Ra = 10 nm (hereinafter, also referred to as carrier film 2).

実施例1
キャリアフィルム1(幅520mm×長さ500m×厚さ75μm)を、巻出し部、リップコーター、連続乾燥炉、連続炉及び巻き取り部を備えた、例えば図3に示すRTR方式の塗工乾燥硬化設備で2m/minの速度で巻出しながら、ポリアミド酸ワニスBをモーノポンプを用いて膜厚が45μmになるように塗布した。これを複数の炉から構成される連続乾燥炉を通過させて90℃で2分間、130℃で1分間乾燥して、さらに複数の炉から構成され、試料入口側の炉から出口側の炉にかけて段階的に温度が高くなる連続炉に通過させて、130℃から段階的に400℃まで、合計25分間段階的に加熱し、キャリアフィルム上に、カール抑制層としてのポリイミド樹脂Bが形成されたロールを作成した。次に、このロールを同じ塗工乾燥装置の巻出し部にセットし、ポリイミド樹脂Bの上に、ポリイミド酸ワニスAを100μm塗布し、複数の炉から構成される連続乾燥炉を通過させて90℃で2分間、130℃で1分間で乾燥して、さらに、複数の炉から構成され、試料入口側の炉から出口側の炉にかけて段階的に温度が高くなる連続炉に通過させて、130℃から段階的に400℃まで、合計20分間段階的に加熱し、基材層としての厚さ10μmのポリイミド樹脂Aを形成し、ロール状のポリイミド樹脂積層体(積層体1)を得た。
積層体1の各層の厚さは、キャリア層が75μm、カール抑制層が4.5μm、基材層が10μmであった。積層体1の層構造を、図1に模式的に示す。キャリアフィルム4の一面側に、カール抑制層3を介在して基材層2が積層した構造となっている(形態1)。なお、積層体の基材層2上に、以下の方法によって、機能層1を形成する。
Example 1
The carrier film 1 (width 520 mm × length 500 m × thickness 75 μm) is provided with an unwinding portion, a lip coater, a continuous drying furnace, a continuous furnace and a winding portion, for example, the RTR method coating drying and curing shown in FIG. While unwinding at a rate of 2 m / min with the equipment, varnish B polyamic acid was applied using a mono pump so that the film thickness became 45 μm. This is passed through a continuous drying furnace composed of a plurality of furnaces and dried at 90 ° C. for 2 minutes and at 130 ° C. for 1 minute. The polyimide resin B as a curl suppressing layer was formed on the carrier film by passing it through a continuous furnace in which the temperature gradually increased and heating it stepwise from 130 ° C. to 400 ° C. for a total of 25 minutes. Created a role. Next, this roll is set in the unwinding portion of the same coating / drying device, 100 μm of polyimide acid varnish A is applied on the polyimide resin B, and the polyimide acid varnish A is passed through a continuous drying furnace composed of a plurality of furnaces. It is dried at ° C for 2 minutes and at 130 ° C for 1 minute, and is further passed through a continuous furnace composed of a plurality of furnaces and gradually increasing in temperature from the furnace on the sample inlet side to the furnace on the outlet side to 130. The polyimide resin A having a thickness of 10 μm as a substrate layer was formed by stepwise heating from ° C. to 400 ° C. for a total of 20 minutes to obtain a roll-shaped polyimide resin laminate (laminate 1).
The thickness of each layer of the laminated body 1 was 75 μm for the carrier layer, 4.5 μm for the curl suppressing layer, and 10 μm for the base material layer. The layer structure of the laminated body 1 is schematically shown in FIG. The structure is such that the base material layer 2 is laminated on one surface side of the carrier film 4 with the curl suppressing layer 3 interposed therebetween (form 1). The functional layer 1 is formed on the base material layer 2 of the laminated body by the following method.

次に、上記ロール状のポリイミド樹脂積層体について、巻出し部、搬送ロール、プロセス処理部及び巻き取り部を備えた、RTR方式の装置を用いて、2m/minの速度で、基材層が上になるように長手方向に巻出しながら、搬送ロールを経由して真空チャンバー内に設置されたプロセス処理部に導入させて、基材層に、スパッタリング法により厚さ50nmの機能層としてのITOを連続処理により成膜し、機能層付ポリイミド基板フィルムとして巻き取った。
さらに、機能層付ポリイミド基板フィルム370×450mmのシート状にカットし、製膜したITOについて、一方向(X方向)及び他方向(Y方向)のXY方向に透明回路加工を行った。その際、Y回路のX回路との交点は回路を形成しなかった。
続いて、XY回路の交点にオーバーコートを塗布して250℃で熱処理してオーバーコート層を硬化させ、銀ペーストを用いて、オーバーコート層をまたいでブリッジ加工を行ってXY回路を完成させ、さらに、ITO成膜側の全面にオーバーコートを塗布し、270℃でアニール処理を行い、オーバーコートの硬化及びITOの結晶化を行った。
最後に、カバーガラスにITO製膜側の表面にOCA(透明粘着シート)を貼りつけ、その後キャリアフィルム及びカール抑制層を機械的に剥離し、基材層上に機能層が形成されたタッチパネル基板を完成させた。
Next, with respect to the roll-shaped polyimide resin laminate, the substrate layer was formed at a speed of 2 m / min using an RTR-type device provided with an unwinding section, a transport roll, a process processing section, and a winding section. While unwinding in the longitudinal direction so as to be on top, it is introduced into a process processing unit installed in a vacuum chamber via a transport roll, and ITO as a functional layer having a thickness of 50 nm is applied to a substrate layer by a sputtering method. Was formed into a film by continuous treatment and wound up as a polyimide substrate film with a functional layer.
Further, the polyimide substrate film with a functional layer was cut into a sheet of 370 × 450 mm, and the film-formed ITO was subjected to transparent circuit processing in one direction (X direction) and the other direction (Y direction) in the XY directions. At that time, the intersection of the Y circuit with the X circuit did not form a circuit.
Subsequently, an overcoat is applied to the intersections of the XY circuits and heat-treated at 250 ° C. to cure the overcoat layer, and a silver paste is used to perform bridge processing across the overcoat layers to complete the XY circuit. Further, an overcoat was applied to the entire surface of the ITO film formation side and an annealing treatment was performed at 270 ° C. to cure the overcoat and crystallize the ITO.
Finally, an OCA (transparent adhesive sheet) is attached to the surface of the cover glass on the ITO film-forming side, and then the carrier film and the curl-suppressing layer are mechanically peeled off to form a functional layer on the base material layer. Was completed.

比較例1
カール抑制層を形成することなく、実施例1と同様にキャリアフィルム1に基材層としてのポリイミド樹脂A(厚さ10μm)を形成して、ポリイミド樹脂積層体(積層体C1)を得た。
この積層体C1は、反り(カール)が大きくタッチパネルの製造工程でITO製膜をシート状にカットしたときに反りのためマスクとの位置合わせができず、XY方向の透明回路加工できず、タッチパネルは作成できなかった。
Comparative Example 1
A polyimide resin A (thickness 10 μm) as a base material layer was formed on the carrier film 1 in the same manner as in Example 1 without forming a curl suppressing layer to obtain a polyimide resin laminate (laminate C1).
This laminated body C1 has a large warp (curl), and when the ITO film is cut into a sheet shape in the touch panel manufacturing process, it cannot be aligned with the mask due to the warp, and the transparent circuit in the XY direction cannot be processed. Could not be created.

実施例2
キャリアフィルム1(幅520mm×長さ500m×厚さ75μm)を、巻出し部、リップコーター、連続乾燥炉、連続炉及び巻き取り部を備えた、例えば図3に示すRTR方式の塗工乾燥硬化設備で2m/minの速度で巻出しながら、ポリアミド酸ワニスEをモーノポンプを用いて膜厚が100μmになるように塗布した。これを複数の炉から構成される連続乾燥炉を通過させて90℃で2分間、130℃で1分間乾燥して、キャリアフィルム上に、カール抑制層としてのポリイミド樹脂Eが形成されたロールを作成した。次に、このロールを同じ塗工乾燥装置の巻出し部にセットし、ポリイミド樹脂Eの反対側に、ポリアミド酸ワニスAを100μm塗布し、複数の炉から構成される連続乾燥炉を通過させて90℃で2分間、130℃で1分間で乾燥して、さらに、複数の炉から構成され、試料入口側の炉から出口側の炉にかけて段階的に温度が高くなる連続炉に通過させて、130℃から段階的に400℃まで、合計20分間段階的に加熱し、基材層としての厚さ10μのポリイミド樹脂Aを形成し、ロール状のポリイミド樹脂積層体(積層体2)を得た。
積層体2の各層の厚さは、キャリアフィルムが75μm、カール抑制層が13μm、基材層が10μmであった。積層体2の層構造は、図1において、カール抑制層3とキャリアフィルム4とを逆に積層した構造であり、キャリアフィルム4の一面側にカール抑制層3、反対面側に基材層2が積層されている(形態2)。
Example 2
The carrier film 1 (width 520 mm × length 500 m × thickness 75 μm) is provided with an unwinding portion, a lip coater, a continuous drying furnace, a continuous furnace and a winding portion, for example, the RTR method coating drying and curing shown in FIG. While unwinding at a rate of 2 m / min with the equipment, varnish E polyamic acid was applied using a mono pump so that the film thickness became 100 μm. This is passed through a continuous drying furnace composed of a plurality of furnaces and dried at 90 ° C. for 2 minutes and at 130 ° C. for 1 minute to form a roll on which the polyimide resin E as a curl suppressing layer is formed on the carrier film. Created. Next, this roll was set in the unwinding portion of the same coating / drying device, 100 μm of varnish A polyamic acid was applied to the opposite side of the polyimide resin E, and the mixture was passed through a continuous drying furnace composed of a plurality of furnaces. It was dried at 90 ° C. for 2 minutes and dried at 130 ° C. for 1 minute, and then passed through a continuous furnace composed of multiple furnaces and gradually increasing in temperature from the sample inlet side furnace to the outlet side furnace. A polyimide resin A having a thickness of 10 μm was formed as a substrate layer by heating stepwise from 130 ° C. to 400 ° C. for a total of 20 minutes to obtain a roll-shaped polyimide resin laminate (laminate 2). ..
The thickness of each layer of the laminated body 2 was 75 μm for the carrier film, 13 μm for the curl suppressing layer, and 10 μm for the base material layer. In FIG. 1, the layer structure of the laminated body 2 is a structure in which the curl suppressing layer 3 and the carrier film 4 are laminated in reverse, with the curl suppressing layer 3 on one side of the carrier film 4 and the base material layer 2 on the opposite side. Are laminated (form 2).

次に、積層体2について、実施例1と同様の方法で、基材層上に機能層が形成されたタッチパネル基板を完成させた。 Next, with respect to the laminated body 2, the touch panel substrate in which the functional layer was formed on the base material layer was completed by the same method as in Example 1.

実施例3
基材層として、ポリアミド酸ワニスAに替えてポリアミド酸ワニスCを、カール抑制層として、ポリアミド酸ワニスEに替えてポリアミド酸ワニスDを使用した以外は、実施例2と同様の方法で、ポリイミド樹脂積層体(積層体3)を得た。
積層体3の各層の厚さは、キャリア層が75μm、基材層が12μm、カール抑制層が13μmであった。
この積層体2の上に、実施例1と同様の方法で、ITO及びXY回路を製膜し、タッチパネルを得た。
Example 3
Polyimide was used in the same manner as in Example 2 except that the polyamic acid varnish C was used instead of the polyamic acid varnish A as the base material layer and the polyamic acid varnish D was used instead of the polyamic acid varnish E as the curl suppressing layer. A resin laminated body (laminated body 3) was obtained.
The thickness of each layer of the laminated body 3 was 75 μm for the carrier layer, 12 μm for the base material layer, and 13 μm for the curl suppressing layer.
An ITO and XY circuits were formed on the laminated body 2 by the same method as in Example 1 to obtain a touch panel.

実施例4
キャリアとしてポリイミドフィルム2を用い、カール抑制層として、ポリアミド酸ワニスCに替えてポリアミド酸ワニスFを使用した以外は、実施例1と同様の方法で、ポリイミド樹脂積層体(積層体4)を得た。
積層体4の各層の厚さは、キャリア層が75μm、基材層が10μm、カール抑制層が4μmであった。
Example 4
A polyimide resin laminated body (laminated body 4) was obtained by the same method as in Example 1 except that the polyimide film 2 was used as the carrier and the polyamic acid varnish F was used as the curl suppressing layer instead of the polyamic acid varnish C. rice field.
The thickness of each layer of the laminated body 4 was 75 μm for the carrier layer, 10 μm for the base material layer, and 4 μm for the curl suppressing layer.

実施例5
基材層として、ポリアミド酸ワニスAに替えてポリアミド酸ワニスHを、カール抑制層として、ポリアミド酸ワニスBに替えてポリアミド酸ワニスEを使用した以外は、実施例1と同様の方法で、ポリイミド樹脂積層体(積層体5)を得た。
積層体5の各層の厚さは、キャリア層が75μm、基材層が10μm、カール抑制層が50μmであった。
Example 5
Polyimide was used in the same manner as in Example 1 except that the polyamic acid varnish H was used instead of the polyamic acid varnish A as the base material layer and the polyamic acid varnish E was used instead of the polyamic acid varnish B as the curl suppressing layer. A resin laminated body (laminated body 5) was obtained.
The thickness of each layer of the laminated body 5 was 75 μm for the carrier layer, 10 μm for the base material layer, and 50 μm for the curl suppressing layer.

実施例6
基材層及びカール抑制層の厚さ以外は、実施例2と同様の方法で、ポリイミド樹脂積層体(積層体6)を得た。
積層体6の各層の厚さは、キャリア層が75μm、基材層が10μm、カール抑制層が13μmであった。
Example 6
A polyimide resin laminated body (laminated body 6) was obtained by the same method as in Example 2 except for the thickness of the base material layer and the curl suppressing layer.
The thickness of each layer of the laminated body 6 was 75 μm for the carrier layer, 10 μm for the base material layer, and 13 μm for the curl suppressing layer.

実施例7
基材層として、ポリアミド酸ワニスAに替えてポリアミド酸ワニスHを使用し、カール抑制層としてポリアミド酸ワニスEに替えてBを使用した以外は、実施例2と同様の方法で、ポリイミド樹脂積層体(積層体7)を得た。
積層体7の各層の厚さは、キャリア層が75μm、基材層が10μm、カール抑制層が15μmであった。
Example 7
Polyimide resin lamination was performed in the same manner as in Example 2 except that the polyamic acid varnish H was used instead of the polyamic acid varnish A and B was used instead of the polyamic acid varnish E as the curl suppressing layer. A body (laminated body 7) was obtained.
The thickness of each layer of the laminated body 7 was 75 μm for the carrier layer, 10 μm for the base material layer, and 15 μm for the curl suppressing layer.

比較例2
カール抑制層として、ポリアミド酸ワニスBに替えてポリアミド酸ワニスIを使用した以外は、実施例1と同様の方法で、ポリイミド樹脂積層体(積層体C2)を得た。
積層体C2の各層の厚さは、キャリア層が75μm、基材層が10μm、カール抑制層が4μmであった。
Comparative Example 2
A polyimide resin laminated body (laminated body C2) was obtained by the same method as in Example 1 except that the polyamic acid varnish I was used instead of the polyamic acid varnish B as the curl suppressing layer.
The thickness of each layer of the laminated body C2 was 75 μm for the carrier layer, 10 μm for the base material layer, and 4 μm for the curl suppressing layer.

比較例3
カール抑制層として、ポリアミド酸ワニスEに替えてポリアミド酸ワニスJを使用した以外は、実施例2と同様の方法で、ポリイミド樹脂積層体(積層体C3)を得た。
積層体C3の各層の厚さは、キャリア層が75μm、基材層が10μm、カール抑制層が15μmであった。
Comparative Example 3
A polyimide resin laminated body (laminated body C3) was obtained by the same method as in Example 2 except that the polyamic acid varnish J was used instead of the polyamic acid varnish E as the curl suppressing layer.
The thickness of each layer of the laminated body C3 was 75 μm for the carrier layer, 10 μm for the base material layer, and 15 μm for the curl suppressing layer.

比較例4
カール抑制層として、ポリアミド酸ワニスBに替えてポリアミド酸ワニスIを使用した以外は、実施例1と同様の方法で、ポリイミド樹脂積層体(積層体C4)を得た。
積層体C4の各層の厚さは、キャリア層が75μm、基材層が10μm、カール抑制層が13μmであった。
Comparative Example 4
A polyimide resin laminated body (laminated body C4) was obtained by the same method as in Example 1 except that the polyamic acid varnish I was used instead of the polyamic acid varnish B as the curl suppressing layer.
The thickness of each layer of the laminated body C4 was 75 μm for the carrier layer, 10 μm for the base material layer, and 13 μm for the curl suppressing layer.

比較例5
実施例4のポリアミック酸Aの代わりにポリアミック酸Hを用いポリアミック酸Eの代わりにポリアミック酸Kを用いた以外は実施例1と同様に行った。
基材層として、ポリアミド酸ワニスAに替えてポリアミド酸ワニスHを、カール抑制層として、ポリアミド酸ワニスBに替えてポリアミド酸ワニスKを使用した以外は、実施例1と同様の方法で、ポリイミド樹脂積層体(積層体C5)を得た。
積層体C5の各層の厚さは、キャリア層が75μm、基材層が10μm、カール抑制層が13μmであった。
Comparative Example 5
The same procedure as in Example 1 was carried out except that the polyamic acid H was used instead of the polyamic acid A of Example 4 and the polyamic acid K was used instead of the polyamic acid E.
Polyimide was used in the same manner as in Example 1 except that the polyamic acid varnish H was used instead of the polyamic acid varnish A as the base material layer and the polyamic acid varnish K was used instead of the polyamic acid varnish B as the curl suppressing layer. A resin laminate (laminate C5) was obtained.
The thickness of each layer of the laminated body C5 was 75 μm for the carrier layer, 10 μm for the base material layer, and 13 μm for the curl suppressing layer.

これらの実施例及び比較例で得られたポリイミド樹脂積層体の物性を、表1に示す。 Table 1 shows the physical characteristics of the polyimide resin laminates obtained in these Examples and Comparative Examples.

Figure 0007030418000006
Figure 0007030418000006

1 機能層
2 基材層
3 カール抑制層
4 キャリア層(キャリアフィルム)
10 積層体
11 スパッタ装置
12、13 ガイドロール
14 巻出ロール
15 巻取ロール
1 Functional layer 2 Base material layer 3 Curl suppression layer 4 Carrier layer (carrier film)
10 Laminated body 11 Sputtering device 12, 13 Guide roll 14 Unwinding roll 15 Winding roll

Claims (11)

下記一般式(1)で表される構造単位を50モル%以上含有するポリイミド樹脂からなるカール抑制層、ポリイミド樹脂からなるキャリア層、及びポリイミド樹脂からなる基材層が積層されたポリイミド樹脂積層体であって、キャリア層の一面側にカール抑制層を有し、さらに該カール抑制層に剥離可能に接着した基材層を有し、基材層とキャリア層の熱膨張係数(CTE)差が±40ppm/K以下であることを特徴とするポリイミド樹脂積層体。
Figure 0007030418000007
ここで、式(1)において、Xは、芳香族基又は脂環式基であって、芳香環又は脂環を1個以上有する4価の有機基であり、Rは炭素数1~6の置換基である。CTEは、30℃から260℃の温度範囲で引張り試験を行い、100~250℃の温度範囲における伸び量から換算した値である。
A polyimide resin laminate in which a curl-suppressing layer made of a polyimide resin containing 50 mol% or more of a structural unit represented by the following general formula (1), a carrier layer made of a polyimide resin, and a base material layer made of a polyimide resin are laminated. The curl-suppressing layer is provided on one surface side of the carrier layer, and the curl-suppressing layer is peelably adhered to the base material layer, and the difference in thermal expansion coefficient (CTE) between the base material layer and the carrier layer is different. A polyimide resin laminate characterized by being ± 40 ppm / K or less.
Figure 0007030418000007
Here, in the formula (1), X is an aromatic group or an alicyclic group, and is a tetravalent organic group having one or more aromatic rings or alicyclics, and R is a tetravalent organic group having 1 to 6 carbon atoms. It is a substituent. CTE is a value converted from the amount of elongation in the temperature range of 100 to 250 ° C after conducting a tensile test in the temperature range of 30 ° C to 260 ° C.
キャリア層の一面側にカール抑制層及び基材層を介在してさらに機能層が形成されてなる請求項1記載のポリイミド樹脂積層体。 The polyimide resin laminate according to claim 1, wherein a curl suppressing layer and a base material layer are interposed on one surface side of the carrier layer to further form a functional layer. 下記一般式(1)で表される構造単位を50モル%以上含有するポリイミド樹脂からなるカール抑制層、ポリイミド樹脂からなるキャリア層、及びポリイミド樹脂からなる基材層が積層されたポリイミド樹脂積層体であって、キャリア層の一面側に剥離可能に接着した基材層を有し、前記キャリア層の反対面側にカール抑制層を有し、基材層とカール抑制層の熱膨張係数(CTE)差が±40ppm/K以下であることを特徴とするポリイミド樹脂積層体。
Figure 0007030418000008
ここで、式(1)において、Xは、芳香族基又は脂環式基であって、芳香環又は脂環を1個以上有する4価の有機基であり、Rは炭素数1~6の置換基である。CTEは、30℃から260℃の温度範囲で引張り試験を行い、100~250℃の温度範囲における伸び量から換算した値である。
A polyimide resin laminate in which a curl-suppressing layer made of a polyimide resin containing 50 mol% or more of a structural unit represented by the following general formula (1), a carrier layer made of a polyimide resin, and a base material layer made of a polyimide resin are laminated. It has a peelable base material layer on one surface side of the carrier layer, a curl suppression layer on the opposite surface side of the carrier layer, and a thermal expansion coefficient (CTE) between the base material layer and the curl suppression layer. ) A polyimide resin laminate characterized in that the difference is ± 40 ppm / K or less.
Figure 0007030418000008
Here, in the formula (1), X is an aromatic group or an alicyclic group, and is a tetravalent organic group having one or more aromatic rings or alicyclics, and R is a tetravalent organic group having 1 to 6 carbon atoms. It is a substituent. CTE is a value converted from the amount of elongation in the temperature range of 100 to 250 ° C after conducting a tensile test in the temperature range of 30 ° C to 260 ° C.
キャリア層の一面側に基材層を介在してさらに機能層が形成されてなる請求項3記載のポリイミド樹脂積層体。 The polyimide resin laminate according to claim 3, wherein a functional layer is further formed by interposing a base material layer on one surface side of the carrier layer. 基材層の全光線透過率が80%以上、かつ、厚みが50μm以下である請求項1又は3記載のポリイミド樹脂積層体。 The polyimide resin laminate according to claim 1 or 3, wherein the substrate layer has a total light transmittance of 80% or more and a thickness of 50 μm or less. 基材層を形成するポリイミド樹脂のTgが300℃以上である請求項1又は3記載のポリイミド樹脂積層体。 The polyimide resin laminate according to claim 1 or 3, wherein the Tg of the polyimide resin forming the base material layer is 300 ° C. or higher. 請求項2記載のポリイミド樹脂積層体を使用し、カール抑制層と基材層との界面で剥離してキャリア層及びカール抑制層を除去してなることを特徴とする機能層付きポリイミドフィルム。 A polyimide film with a functional layer, which comprises using the polyimide resin laminate according to claim 2 and peeling off at the interface between the curl suppressing layer and the base material layer to remove the carrier layer and the curl suppressing layer. 請求項4記載のポリイミド樹脂積層体を使用し、キャリア層と基材層との界面で剥離してキャリア層及びカール抑制層を除去してなることを特徴とする機能層付きポリイミドフィルム。 A polyimide film with a functional layer, which comprises using the polyimide resin laminate according to claim 4 and peeling off at the interface between the carrier layer and the base material layer to remove the carrier layer and the curl suppressing layer. 請求項1又は3記載のポリイミド樹脂積層体を製造する方法であって、キャリア層にカール抑制層及び基材層をキャスト法にて塗工することを特徴とするポリイミド樹脂積層体の製造方法。 The method for producing a polyimide resin laminate according to claim 1 or 3, wherein the carrier layer is coated with a curl suppressing layer and a base material layer by a casting method. キャリア層に塗工されたカール抑制層及び基材層を一体硬化する請求項9記載のポリイミド樹脂積層体の製造方法。 The method for producing a polyimide resin laminate according to claim 9, wherein the curl suppressing layer and the base material layer coated on the carrier layer are integrally cured. キャスト法が多層ダイ又は連続ダイによる塗工である請求項9記載のポリイミド樹脂積層体の製造方法。 The method for manufacturing a polyimide resin laminate according to claim 9, wherein the casting method is coating with a multilayer die or a continuous die.
JP2017068868A 2016-03-31 2017-03-30 Polyimide resin laminate and its manufacturing method Active JP7030418B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016071525 2016-03-31
JP2016071525 2016-03-31
JP2016071526 2016-03-31
JP2016071526 2016-03-31

Publications (2)

Publication Number Publication Date
JP2017185806A JP2017185806A (en) 2017-10-12
JP7030418B2 true JP7030418B2 (en) 2022-03-07

Family

ID=60046052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017068868A Active JP7030418B2 (en) 2016-03-31 2017-03-30 Polyimide resin laminate and its manufacturing method

Country Status (4)

Country Link
JP (1) JP7030418B2 (en)
KR (1) KR102313706B1 (en)
CN (1) CN107263984B (en)
TW (1) TWI719184B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7000652B2 (en) 2018-09-11 2022-02-10 エルジー・ケム・リミテッド A laminate for manufacturing a flexible display and a method for manufacturing a flexible display using the same.
CN111070832A (en) * 2018-10-18 2020-04-28 达迈科技股份有限公司 Strippable polyimide composite film
CN114506101A (en) 2020-11-17 2022-05-17 臻鼎科技股份有限公司 Polyimide thick film and preparation method thereof
TWI758954B (en) * 2020-11-17 2022-03-21 臻鼎科技股份有限公司 Polyimide thick film and method for manufacturing the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306086A (en) 2005-03-31 2006-11-09 Nippon Steel Chem Co Ltd Multi-layer laminate and flexible copper-clad laminated substrate
JP2007001173A (en) 2005-06-24 2007-01-11 Toyobo Co Ltd Multilayered polyimide film
US20070298260A1 (en) 2006-06-22 2007-12-27 Kuppusamy Kanakarajan Multi-layer laminate substrates useful in electronic type applications
JP2009083201A (en) 2007-09-28 2009-04-23 Toyobo Co Ltd Multi-layer polyimide film and structure, multi-layer circuit substrate
JP2010221523A (en) 2009-03-24 2010-10-07 Toray Ind Inc Method for manufacturing metallic layer laminated film
JP2012146905A (en) 2011-01-14 2012-08-02 Kaneka Corp Utilization of soluble polyimide resin film
JP2013075525A (en) 2012-11-30 2013-04-25 Nippon Steel & Sumikin Chemical Co Ltd Polyimide film
JP2014061685A (en) 2012-09-24 2014-04-10 Nippon Steel & Sumikin Chemical Co Ltd Polyimide laminate and production method of the same
JP2014166722A (en) 2013-02-28 2014-09-11 Nippon Steel & Sumikin Chemical Co Ltd Method of producing laminate member
CN104066574A (en) 2011-12-28 2014-09-24 Sk新技术株式会社 Flexible metal clad laminate and preparation method thereof
JP2015182393A (en) 2014-03-25 2015-10-22 新日鉄住金化学株式会社 Polyimide laminate structure and method for producing the same
CN106541652A (en) 2015-09-23 2017-03-29 新日铁住金化学株式会社 Polyimides laminate structure and its manufacture method and display device and touch screen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548848B1 (en) 1968-06-28 1979-04-19
JPS4834758B1 (en) 1968-11-06 1973-10-23
JP2008231327A (en) 2007-03-22 2008-10-02 Ihara Chem Ind Co Ltd Polyimide having high transparency and its manufacturing method
JP5408848B2 (en) * 2007-07-11 2014-02-05 株式会社ジャパンディスプレイ Manufacturing method of semiconductor device
JP2011011493A (en) * 2009-07-03 2011-01-20 Nippon Steel Chem Co Ltd Method for producing laminated body of transparent conductive film
JP5487066B2 (en) * 2010-10-04 2014-05-07 ルネサスエレクトロニクス株式会社 Inspection method of semiconductor device
KR101773651B1 (en) * 2013-04-09 2017-08-31 주식회사 엘지화학 Laminate structure for manufacturing substrate and device comprising substrate manufactured by using same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306086A (en) 2005-03-31 2006-11-09 Nippon Steel Chem Co Ltd Multi-layer laminate and flexible copper-clad laminated substrate
JP2007001173A (en) 2005-06-24 2007-01-11 Toyobo Co Ltd Multilayered polyimide film
US20070298260A1 (en) 2006-06-22 2007-12-27 Kuppusamy Kanakarajan Multi-layer laminate substrates useful in electronic type applications
JP2008006818A (en) 2006-06-22 2008-01-17 E I Du Pont De Nemours & Co Multilayer laminate substrate useful for electronic application
JP2009083201A (en) 2007-09-28 2009-04-23 Toyobo Co Ltd Multi-layer polyimide film and structure, multi-layer circuit substrate
JP2010221523A (en) 2009-03-24 2010-10-07 Toray Ind Inc Method for manufacturing metallic layer laminated film
JP2012146905A (en) 2011-01-14 2012-08-02 Kaneka Corp Utilization of soluble polyimide resin film
CN104066574A (en) 2011-12-28 2014-09-24 Sk新技术株式会社 Flexible metal clad laminate and preparation method thereof
JP2015507563A (en) 2011-12-28 2015-03-12 エスケー イノベーション カンパニー リミテッド Flexible metal-clad laminate and manufacturing method thereof
JP2014061685A (en) 2012-09-24 2014-04-10 Nippon Steel & Sumikin Chemical Co Ltd Polyimide laminate and production method of the same
JP2013075525A (en) 2012-11-30 2013-04-25 Nippon Steel & Sumikin Chemical Co Ltd Polyimide film
JP2014166722A (en) 2013-02-28 2014-09-11 Nippon Steel & Sumikin Chemical Co Ltd Method of producing laminate member
JP2015182393A (en) 2014-03-25 2015-10-22 新日鉄住金化学株式会社 Polyimide laminate structure and method for producing the same
CN106541652A (en) 2015-09-23 2017-03-29 新日铁住金化学株式会社 Polyimides laminate structure and its manufacture method and display device and touch screen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
今井淑夫,ポリイミドの構造と物性,エレクトロニクス実装学会誌,2001年,Vol.4,No.7,p.640-646
平石克文、外3名,ポリイミド塗膜の低熱膨張性発現機構,ポリイミド最近の進歩,1997年,p.88-91

Also Published As

Publication number Publication date
KR102313706B1 (en) 2021-10-18
CN107263984A (en) 2017-10-20
TWI719184B (en) 2021-02-21
JP2017185806A (en) 2017-10-12
KR20170113434A (en) 2017-10-12
TW201736139A (en) 2017-10-16
CN107263984B (en) 2021-01-12

Similar Documents

Publication Publication Date Title
JP6963504B2 (en) Polyimide laminate and its manufacturing method
JP5931672B2 (en) Polyimide laminate and method for producing the same
JP6457168B2 (en) POLYIMIDE FILM FOR DISPLAY DEVICE SUPPORTING SUBSTRATE, ITS LAMINATE, AND METHOD FOR PRODUCING THE SAME
JP6265902B2 (en) Transparent polyimide laminate and method for producing the same
KR20210015983A (en) Method of manufacturing laminated member
TWI654251B (en) Display device and method for producing the same, and polyimide film for display device
JP7030418B2 (en) Polyimide resin laminate and its manufacturing method
JP6949507B2 (en) Thin-film mask and its manufacturing method, and laminated body for thin-film mask and its manufacturing method
CN113874420B (en) Resin film and metal-clad laminate
KR20170038718A (en) Method for producing laminate with polyimide layer and method for producing polyimide film
JP2017069200A (en) Manufacturing method of functional layer-attached polyimide film
JP6411047B2 (en) Polyimide laminated structure and manufacturing method thereof
JP7212480B2 (en) Polyimide films, metal-clad laminates and circuit boards
JP2018104525A (en) Polyimide film for flexible device, precursor thereof, and polyimide film with functional layers
JP2018028076A (en) Polyimide precursor and polyimide prepared from the same
JP6078319B2 (en) Manufacturing method of input device, substrate with conductive film used therefor, and laminated member
JP7102191B2 (en) Method of manufacturing polyimide film
TWI698347B (en) Polyimide laminated structure, manufacturing method thereof, display device and touch panel
JP7265864B2 (en) Polyimide precursor and polyimide
JP2020006562A (en) Production method of metal-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R150 Certificate of patent or registration of utility model

Ref document number: 7030418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150