JP5336109B2 - Methods for enriching mononuclear cells and platelets - Google Patents

Methods for enriching mononuclear cells and platelets Download PDF

Info

Publication number
JP5336109B2
JP5336109B2 JP2008142803A JP2008142803A JP5336109B2 JP 5336109 B2 JP5336109 B2 JP 5336109B2 JP 2008142803 A JP2008142803 A JP 2008142803A JP 2008142803 A JP2008142803 A JP 2008142803A JP 5336109 B2 JP5336109 B2 JP 5336109B2
Authority
JP
Japan
Prior art keywords
cell
cells
platelets
red blood
body fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008142803A
Other languages
Japanese (ja)
Other versions
JP2009284860A (en
Inventor
郁純 二宮
幹智 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP2008142803A priority Critical patent/JP5336109B2/en
Publication of JP2009284860A publication Critical patent/JP2009284860A/en
Application granted granted Critical
Publication of JP5336109B2 publication Critical patent/JP5336109B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for concentrating mononuclear cells and platelets to high concentrations from body fluid containing erythrocytes, nucleated cells and the platelets by a simple operation without using a blood preparation. <P>SOLUTION: The method for concentrating the mononuclear cells and the platelets from the body fluid containing the erythrocytes, the nucleated cells and the platelets by using a filter system having a cell-capturing tool 11 obtained by packing a container having an inlet and an outlet with a cell-capturing filter material, a circuit and a bag 13 includes adding an erythrocyte sedimentation agent to the body liquid stored in the bag, separating the body liquid to a layer inclined to the nucleated cells and the platelets, and a layer inclined to the erythrocytes, introducing only the layer inclined to the nucleated cells and the platelets to the cell-capturing tool to allow the filter material 41 to capture the nucleated cells and the platelets, introducing only the filtrate passing the filter material of &ge;0.2 vol. and &lt;1.0 vol. of the cell-capturing tool to the filter material by extruding the filtrate by a gas, and selectively collecting the mononuclear cells and the platelets captured by the filter material. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は赤血球、有核細胞、血小板を含む体液から、簡便な操作にて目的の単核細胞と血小板を効率的に高純度かつ高濃度に濃縮する方法に関する。   The present invention relates to a method for efficiently concentrating target mononuclear cells and platelets to high purity and high concentration by simple operations from a body fluid containing red blood cells, nucleated cells, and platelets.

近年、再生医療や細胞治療のような細胞を用いた研究や治療が注目され実用化されつつある。このような用途に使用される細胞は骨髄液、臍帯血や末梢血などから採取されることが多いが、これらの中には研究や治療に必要な細胞以外にも多様な細胞が含有されている。例えば骨髄液、臍帯血や末梢血には通常赤血球が多量に含まれているが、赤血球は目的とする細胞の増殖を妨げ、また細胞治療においては細胞の生着能を低下させる。そこで、いかに赤血球の混入を低減して必要とする間葉系幹細胞、脂肪細胞、造血幹細胞、単核球のような単核細胞を選択的に採取するかが課題であった。   In recent years, research and treatment using cells such as regenerative medicine and cell therapy have attracted attention and are being put into practical use. Cells used for such purposes are often collected from bone marrow fluid, umbilical cord blood, peripheral blood, etc., but these contain various cells in addition to those required for research and treatment. Yes. For example, bone marrow fluid, umbilical cord blood, and peripheral blood usually contain a large amount of red blood cells, but the red blood cells prevent the growth of the target cells and reduce the cell engraftment ability in cell therapy. Therefore, how to selectively collect mononuclear cells such as mesenchymal stem cells, adipocytes, hematopoietic stem cells, and mononuclear cells required to reduce erythrocyte contamination was a problem.

また治療効果の観点から、必要とする単核細胞の回収率が高く、濃度が高いことが求められている。さらに再生医療において、再生における重要三要素の一つである成長因子を豊富に含有する細胞等が高濃度に共存することで、さらなる高い治療効果が実現できる。   Further, from the viewpoint of therapeutic effect, it is required that the required recovery rate of mononuclear cells is high and the concentration is high. Furthermore, in regenerative medicine, a higher therapeutic effect can be realized by the coexistence of cells containing abundant growth factors, which are one of the three important factors in regeneration, at a high concentration.

従来、このような多量の赤血球を除去して必要な細胞のみを選択的に採取する方法としては、比重遠心法、赤血球凝集法、バフィーコート法、抗体を用いたアフィニティ分離法などが行われてきた。
しかしながら、比重遠心法は、赤血球除去率が高く、容積を小さくできるため細胞濃縮率も高いが、その反面、細胞の回収率は低く、また非常に熟練した技術が要求される煩雑な操作であり、さらに開放系での操作になるため雑菌の混入リスクが高く、安全性の面でも問題がある。
Conventionally, specific gravity centrifugation, erythrocyte agglutination, buffy coat method, affinity separation method using antibodies, etc. have been performed as a method for selectively collecting only necessary cells by removing such a large amount of red blood cells. It was.
However, the specific gravity centrifugation method has a high erythrocyte removal rate and a small volume, so that the cell concentration rate is also high. However, on the other hand, the cell recovery rate is low, and it is a complicated operation that requires highly skilled techniques. Furthermore, since the operation is an open system, there is a high risk of contamination and there is a problem in terms of safety.

また、赤血球凝集法では、ヒドロキシエチルスターチやデキストランと混和して赤血球の連銭形成により赤血球を凝集、沈降させて上層の必要な細胞を回収するが(非特許文献1、2)、赤血球の除去を高めようとすると界面に存在する細胞も除去してしまうために細胞の回収率が低下し、細胞の回収率を高めようとすると赤血球の混入を低減できず、この両方を満足することはできなかった。またこの方法では、液量の減容ができず充分な必要細胞濃度が得られなかった。   In the erythrocyte agglutination method, erythrocytes are agglomerated and precipitated by mixing with hydroxyethyl starch or dextran to collect and sediment the erythrocytes (Non-Patent Documents 1 and 2). If you try to increase the cell recovery rate, the cell recovery rate will decrease, and if you try to increase the cell recovery rate, you will not be able to reduce erythrocyte contamination. There wasn't. Also, with this method, the volume of the liquid cannot be reduced, and a sufficient necessary cell concentration cannot be obtained.

バフィーコート法では、血液が貯留されたバッグを強遠心して上層の血漿層、中間層の主に白血球と血小板からなるバフィーコート層、下層の赤血球層を形成させ、上層の血漿層と下層の赤血球層をバッグから追い出して中間層のバフィーコート層を回収するが(非特許文献3)、やはり赤血球凝集法と同じ問題がある。   In the buffy coat method, the bag containing blood is centrifugated to form the upper plasma layer, the buffy coat layer consisting mainly of white blood cells and platelets in the middle layer, and the lower red blood cell layer, and then the upper plasma layer and the lower red blood cell layer The buffy coat layer of the intermediate layer is recovered by expelling the layer from the bag (Non-patent Document 3), but still has the same problem as the hemagglutination method.

抗体を用いたアフィニティ分離法では、特異性は高く減容効果は大きいものの、分離した細胞を回収するためには、結合した抗体分子を酵素処理するため、細胞の損傷、高コスト、操作の煩雑さなどの問題がある。   In the affinity separation method using antibodies, the specificity is high and the effect of volume reduction is large. However, in order to recover the separated cells, the bound antibody molecules are treated with an enzyme, so that the cells are damaged, expensive, and complicated. There are problems such as.

また、赤血球の混入が少量である場合には、赤血球を低浸透圧下で溶血して除去する方法などもある。しかし、このような低浸透圧状態では必要とする細胞までもがダメージを受け、赤血球が除去できる一方で必要な細胞本来の細胞機能が失われる。また、実用化において安全性の観点から、できるだけ他家のものは用いずに全て自己の成分のみで構成され、操作が簡便であることが求められている。   There is also a method of removing red blood cells by hemolysis under low osmotic pressure when the amount of red blood cells is small. However, in such a low osmotic pressure state, even necessary cells are damaged, and red blood cells can be removed while necessary cell functions are lost. Moreover, from the viewpoint of safety in practical use, it is required that all of the components are composed of only their own components and that the operation is simple, without using the ones from other families as much as possible.

フィルター装置を用いて細胞含有液から簡便な操作で不要細胞の混入を低減し、効率的に有核細胞を分離回収する方法として、特許文献1では、細胞含有液を不要細胞に富む層と有核細胞に富んだ層に分離し、先ず不要細胞に富む層からフィルター装置に導入し、次に有核細胞に富んだ層を導入した後、フィルターに捕捉された有核細胞を回収液で回収する方法が開示されている。しかし、この方法では赤血球のような不要細胞に富む層もフィルターに導入するため、赤血球の除去率が十分でなく、また回収時に一定量の回収液を用いるため細胞濃度も低く、再生医療や細胞治療用途に適した赤血球除去と細胞濃縮液は得られなかった。さらに、有核細胞全般を回収し、かつ血小板を不要細胞として除去してしまう為に有益な単核細胞と血小板を選択的に濃縮する効果はない。   As a method for reducing the contamination of unnecessary cells from a cell-containing solution by a simple operation using a filter device and efficiently separating and recovering nucleated cells, Patent Document 1 discloses that a cell-containing solution is enriched with a layer rich in unnecessary cells. Separate into layers rich in nucleated cells, first introduce into the filter device from the layer rich in unwanted cells, then introduce the layer rich in nucleated cells, then collect the nucleated cells captured by the filter in the recovery solution A method is disclosed. However, this method also introduces a layer rich in unwanted cells such as red blood cells into the filter, so the removal rate of red blood cells is not sufficient, and since a certain amount of recovery solution is used during recovery, the cell concentration is low, and regenerative medicine and cell Erythrocyte removal and cell concentrate suitable for therapeutic use could not be obtained. Furthermore, there is no effect of selectively concentrating mononuclear cells and platelets useful for recovering all nucleated cells and removing platelets as unnecessary cells.

また、特許文献2では、細胞含有液をフィルターに導入した後、フィルターを通過した濾液を少量残存させることにより、回収時に市販製剤の血清蛋白質を用いずに、細胞を高率に回収できる方法が開示されている。しかしながら、細胞含有液をそのままフィルターに導入することから赤血球のような不要細胞が多量に混入し、さらには細胞の回収率を高めるために一定量の高粘度の回収液を用いることから細胞濃度も低く、さらに遠心等の操作が必要となり操作が煩雑で時間がかかる。また、血小板を濃縮する効果については一切記載されていない。   Moreover, in patent document 2, after introducing a cell-containing liquid into a filter, a method that allows cells to be collected at a high rate without using a commercially available serum protein at the time of collection by leaving a small amount of filtrate that has passed through the filter. It is disclosed. However, since the cell-containing solution is directly introduced into the filter, a large amount of unnecessary cells such as erythrocytes are mixed, and a certain amount of high-viscosity recovery solution is used to increase the cell recovery rate. The operation is complicated and time-consuming because operation such as centrifugation is required. Moreover, there is no description about the effect of concentrating platelets.

さらに特許文献3では、単核球捕捉フィルターに細胞集団を導入した後に、アルブミンを含むリンス液を導入してフィルター装置内に残存する赤血球を洗い流した後、フィルター装置に回収液を導入してフィルター装置内に捕捉された目的細胞を回収する方法が開示されている。この方法では、リンス液を導入している為に赤血球の混入は減少しているが、赤血球もフィルターに導入するために、これでもなお赤血球除去率が不十分である。さらにリンス液の作用によって血小板はむしろ洗い流される可能性があるためか血小板を濃縮するような記載はない。また、回収液としてヒト血清アルブミンを使用しているため感染のリスクも高い。さらに操作性に関して、リンス液を通液する際にフィルター装置に血液回路中の空気が入り込んで濾過不能(エアブロック)になる、フィルター装置に空気が入らないように濾過前にリンス液でフィルター装置および血液回路をプライミングしておく必要があるなど、非常に煩雑な操作を余儀なくされる上に、一定量の回収液を用いる為に細胞濃度も低く十分でない。   Furthermore, in Patent Document 3, after introducing a cell population into a mononuclear cell capture filter, a rinse solution containing albumin is introduced to wash away erythrocytes remaining in the filter device, and then a recovery solution is introduced into the filter device to filter the filter. A method for recovering target cells captured in an apparatus is disclosed. In this method, since the rinsing solution is introduced, the mixing of red blood cells is reduced. However, since the red blood cells are also introduced into the filter, the red blood cell removal rate is still insufficient. Furthermore, there is no description that concentrates platelets because platelets may be washed away by the action of the rinse solution. In addition, since human serum albumin is used as a recovery solution, there is a high risk of infection. Furthermore, with regard to operability, when the rinsing liquid is passed through, the air in the blood circuit enters the filter device and filtration becomes impossible (air block). The filter device is rinsed before the filtration to prevent air from entering the filter device. In addition, it is necessary to perform priming of the blood circuit and the like, and the cell concentration is not low enough to use a certain amount of the recovered solution.

特許文献4では、細胞集団を細胞分離フィルターで濾過した後に、細胞分離フィルターの下流側から先ず液体を導入し、引き続いて気体を導入することで回収必要細胞を高率かつ細胞にダメージを与えずに分離回収する方法が開示されている。しかしながら、特許文献4の方法では赤血球もフィルターに導入するために赤血球の混入量が多く、また回収必要細胞を高濃度に濃縮することはできず、血小板に関しては濃縮どころか除去してしまうことから回収さえもできなかった。   In Patent Document 4, after a cell population is filtered with a cell separation filter, a liquid is first introduced from the downstream side of the cell separation filter, and then a gas is introduced so that the cells that need to be collected are not damaged at a high rate. Discloses a separation and recovery method. However, in the method of Patent Document 4, since red blood cells are also introduced into the filter, the amount of red blood cells is large, and the cells that need to be collected cannot be concentrated to a high concentration, and platelets are removed rather than concentrated. I couldn't even do it.

以上より、多様な細胞を含有する細胞含有液から、簡便な操作法で単核細胞や血小板のような必要な細胞を効率的に高純度かつ高濃度に濃縮する細胞調製方法はいまだ確立されていなかった。
国際公開第2005/035737号パンフレット 特開2000−325071号公報 特開2004−121144号公報 特開2001−78757号公報 Proc.Natl.Acad.Sci.USA,Vol.92,pp10119−10122(1995) Indian J. Med. Res.,Vol.106,pp16−19(1997) Bone Marrow Transplantation,Vol.23,pp505−509(1999)
As described above, a cell preparation method for efficiently concentrating necessary cells such as mononuclear cells and platelets from a cell-containing solution containing various cells to high purity and high concentration by a simple operation method is still established. There wasn't.
International Publication No. 2005/035737 Pamphlet JP 2000-325071 A JP 2004-121144 A JP 2001-78757 A Proc. Natl. Acad. Sci. USA, Vol. 92, pp10119-10122 (1995) Indian J. Med. Res. , Vol. 106, pp16-19 (1997) Bone Marrow Transplantation, Vol. 23, pp505-509 (1999)

本発明の課題は、赤血球と有核細胞と血小板を含んでなる体液から、簡便な操作で、血液製剤を使用せずに、単核細胞と血小板を高濃度に濃縮する方法であって、赤血球の混入率が低く、単核細胞と血小板の回収率が高い濃縮方法を提供することである。   An object of the present invention is a method for concentrating mononuclear cells and platelets to a high concentration from a body fluid comprising erythrocytes, nucleated cells and platelets by a simple operation without using a blood product. It is to provide a concentration method with a low contamination rate and a high recovery rate of mononuclear cells and platelets.

本発明者らは、上記課題を解決すべく鋭意検討した結果、少なくとも赤血球と有核細胞と血小板を含んでなる体液に赤血球沈降剤を添加して有核細胞と血小板に偏った層と赤血球に偏った層とに分離させた後に、有核細胞と血小板に偏った層のみを細胞捕捉フィルター材に通過させ、細胞捕捉器の0.2容以上1.0容未満のフィルター材を通過した濾液と気体で回収することで、簡便な操作で赤血球を高率除去できかつ単核細胞と血小板を効率的に回収して高濃度に濃縮できることを見出し本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have added an erythrocyte sedimentation agent to a body fluid containing at least erythrocytes, nucleated cells, and platelets, and thereby applied to nucleated cells and platelet-biased layers and erythrocytes. After separation into the biased layer, only the nucleated cells and platelet-biased layer are passed through the cell trapping filter material, and the filtrate passes through the filter material of 0.2 to 1.0 volume of the cell trapping device. And recovering with gas, it was found that red blood cells can be removed at a high rate by a simple operation, and mononuclear cells and platelets can be efficiently recovered and concentrated to a high concentration, and the present invention has been completed.

すなわち、本発明は以下に関する。
(1)入口と出口を有する容器に細胞捕捉フィルター材を充填した細胞捕捉器と、回路と、バッグとを有するフィルターシステムを用いて、赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法であって、
バッグに貯留された前記体液に赤血球沈降剤を添加し、
有核細胞と血小板に偏った層と赤血球に偏った層とに分離して、
前記有核細胞と血小板に偏った層のみを前記細胞捕捉器に導入して有核細胞と血小板を前記フィルター材に捕捉させた後に、
前記細胞捕捉器の0.2容以上1.0容未満の、前記フィルター材を通過した濾液のみを、気体で押し出して前記フィルター材に導入して、
前記フィルター材に捕捉されている単核細胞と血小板を選択的に回収することを特徴とする赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法。
(2)前記気体が、空気であることを特徴とする前記(1)に記載の赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法。
(3)前記細胞捕捉器の0.2容以上1.0容未満の、前記フィルター材を通過した濾液が、前記細胞捕捉器と回路に残存した濾液であることを特徴とする前記(1)または(2)に記載の赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法。
(4)前記赤血球沈降剤が、ヒドロキシエチルスターチまたはデキストランのいずれかであることを特徴とする前記(1)乃至(3)のいずれかに記載の赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法。
(5)前記有核細胞と血小板に偏った層と赤血球に偏った層とに分離した後に、前記赤血球に偏った層をバッグから排出して、前記有核細胞と血小板に偏った層のみを前記細胞捕捉器に導入することを特徴とする前記(1)乃至(4)のいずれかに記載の赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法。
(6)前記赤血球と有核細胞と血小板を含んでなる体液が、末梢血、臍帯血、骨髄液からなる群より選択される一の体液であることを特徴とする前記(1)乃至(5)のいずれかに記載の赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法。
That is, the present invention relates to the following.
(1) Mononuclear from a body fluid containing red blood cells, nucleated cells, and platelets using a filter system having a cell trapping device filled with a cell trapping filter material in a container having an inlet and an outlet, a circuit, and a bag. A method of concentrating cells and platelets,
Add an erythrocyte sedimentation agent to the body fluid stored in the bag,
Separated into nucleated cells and a layer biased to platelets and a layer biased to red blood cells,
After introducing only the nucleated cells and platelet-biased layer into the cell trap and capturing the nucleated cells and platelets in the filter material,
Only the filtrate that has passed through the filter material of 0.2 volume or more and less than 1.0 volume of the cell trap, is extruded with gas and introduced into the filter material,
A method for concentrating mononuclear cells and platelets from a body fluid comprising erythrocytes, nucleated cells and platelets, wherein the mononuclear cells and platelets captured by the filter material are selectively collected.
(2) The method of concentrating mononuclear cells and platelets from a body fluid comprising red blood cells, nucleated cells, and platelets according to (1), wherein the gas is air.
(3) The filtrate that has passed through the filter material in a volume of 0.2 to 1.0 volume of the cell trap is the filtrate remaining in the cell trap and the circuit (1) Alternatively, the method for concentrating mononuclear cells and platelets from a body fluid comprising red blood cells, nucleated cells and platelets according to (2).
(4) The bodily fluid comprising erythrocytes, nucleated cells and platelets according to any one of (1) to (3), wherein the erythrocyte sedimenting agent is either hydroxyethyl starch or dextran To concentrate mononuclear cells and platelets.
(5) After separating the nucleated cell and the layer biased to platelets and the layer biased to red blood cells, the layer biased to red blood cells is discharged from the bag, and only the layer biased to the nucleated cells and platelets is removed. The method for concentrating mononuclear cells and platelets from a body fluid containing red blood cells, nucleated cells and platelets according to any one of (1) to (4), wherein the method is introduced into the cell trap.
(6) The body fluid containing red blood cells, nucleated cells, and platelets is one body fluid selected from the group consisting of peripheral blood, umbilical cord blood, and bone marrow fluid (1) to (5) A method for concentrating mononuclear cells and platelets from a body fluid comprising red blood cells, nucleated cells and platelets according to any one of the above.

本発明に係る単核細胞と血小板を濃縮する方法によれば、赤血球や有核細胞や血小板を含む細胞含有液から、簡便な操作で、血液製剤を使用せずに、単核細胞と血小板を選択的に高濃度に濃縮することができ、しかも赤血球の混入率は極めて低く、単核細胞と血小板の回収率は高くすることができる。   According to the method for concentrating mononuclear cells and platelets according to the present invention, mononuclear cells and platelets can be obtained from a cell-containing solution containing erythrocytes, nucleated cells, and platelets by a simple operation without using blood products. It can be selectively concentrated to a high concentration, the contamination rate of erythrocytes is extremely low, and the recovery rate of mononuclear cells and platelets can be increased.

本発明でいう赤血球と有核細胞と血小板を含んでなる体液とは、骨髄液、臍帯血、末梢血などであり、これらは採取したままのものであっても、生理食塩液、抗凝固剤液や培養液などで希釈されたものであっても良い。本発明でいう有核細胞とは、核を有する細胞であればいずれの細胞であっても良いが、白血球、単核細胞、顆粒球などが挙げられる。   The bodily fluid comprising erythrocytes, nucleated cells and platelets as used in the present invention is bone marrow fluid, umbilical cord blood, peripheral blood, etc., and even if these are collected as they are, physiological saline, anticoagulant It may be diluted with a solution or a culture solution. The nucleated cell referred to in the present invention may be any cell as long as it has a nucleus, and examples thereof include leukocytes, mononuclear cells, granulocytes and the like.

また本発明でいう単核細胞とは、単核の細胞のことをいうが、例えばリンパ球、単球、マクロファージ、樹状細胞、造血幹細胞、間葉系幹細胞、骨芽細胞や骨芽細胞前駆細胞、脂肪細胞などが挙げられ、なかでも単核細胞として選択的に採取されるのは、増殖または分化誘導能を有する造血幹細胞、間葉系幹細胞、骨芽細胞や骨芽細胞前駆細胞である。   The mononuclear cell in the present invention refers to a mononuclear cell. For example, lymphocytes, monocytes, macrophages, dendritic cells, hematopoietic stem cells, mesenchymal stem cells, osteoblasts and osteoblast precursors. Examples of cells that can be selectively collected as mononuclear cells include hematopoietic stem cells, mesenchymal stem cells, osteoblasts and osteoblast progenitor cells that have the ability to induce proliferation or differentiation. .

本発明でいう細胞捕捉フィルター材とは、有核細胞を捕捉し赤血球のような不要な細胞は通過する多孔質フィルター材をいう。ここでいう有核細胞を捕捉するとは、細胞含有液から有核細胞の60%以上、より好ましくは70%以上を回収することをいう。また、赤血球のような不要な細胞を通過するとは、細胞含有液から赤血球の90%以上、より好ましくは95%以上をフィルターに捕捉せずに通過させることをいう。   The cell capture filter material as used in the present invention refers to a porous filter material that captures nucleated cells and allows unnecessary cells such as red blood cells to pass through. Capturing nucleated cells here means recovering 60% or more, more preferably 70% or more of nucleated cells from the cell-containing solution. Further, passing unnecessary cells such as erythrocytes means that 90% or more, more preferably 95% or more of erythrocytes are passed from the cell-containing solution without being captured by the filter.

本発明に用いられる細胞捕捉フィルター材は、水不溶性担体であればいかなる材質でも用いることができるが、様々な形状に加工でき、医療材料として滅菌可能でありかつ生体適合性の高いものが挙げられる。例えば、セルロース、デキストラン、キチン、キトサン、デンプン、アガロース、蛋白質、天然ゴムなどの天然ポリマー、ポリスチレン、ポリアミド、ポリエステル、ポリエチレン、ポリウレタン、ポリビニルアルコール、エチレンビニルアルコール共重合体、イソプロピルアクリルアミドポリマー、ポリ乳酸、ポリグリコール酸、乳酸グリコール酸共重合体、ポリメタクリル酸エステル、ポリ塩化ビニル、ポリアミノ酸などの合成ポリマー、ハイドロキシアパタイト、リン酸三カルシウム、アルミナなどのセラミックス、チタン等が挙げられる。   The cell-capturing filter material used in the present invention can be any material as long as it is a water-insoluble carrier, but examples thereof include materials that can be processed into various shapes, can be sterilized as medical materials, and have high biocompatibility. . For example, natural polymers such as cellulose, dextran, chitin, chitosan, starch, agarose, protein, natural rubber, polystyrene, polyamide, polyester, polyethylene, polyurethane, polyvinyl alcohol, ethylene vinyl alcohol copolymer, isopropylacrylamide polymer, polylactic acid, Examples thereof include synthetic polymers such as polyglycolic acid, lactic acid glycolic acid copolymer, polymethacrylic acid ester, polyvinyl chloride, and polyamino acid, ceramics such as hydroxyapatite, tricalcium phosphate, and alumina, and titanium.

また、細胞捕捉フィルター材の表面に特定の細胞と親和性を持たせるような加工を施しているものも良好に用いられる。例えば、特定の細胞表面抗原に対する抗体、ペプチドやそのポリマー、またフィブロネクチンのような細胞接着分子、コラーゲンのような細胞外基質及びその変性体であるゼラチンなどをフィルター材表面に固定またはコーティングするなどして目的とする細胞をより選択的に捕捉することができる。これらのフィルター表面の加工剤は目的とする細胞に応じて選択され、複数種類を組み合わせて用いることもできる。   In addition, a material in which the surface of the cell trapping filter material is processed so as to have affinity with specific cells is also used favorably. For example, an antibody against a specific cell surface antigen, a peptide or a polymer thereof, a cell adhesion molecule such as fibronectin, an extracellular matrix such as collagen and gelatin, which is a modified form thereof, may be fixed or coated on the surface of the filter material. Thus, the target cells can be captured more selectively. These processing agents for the filter surface are selected according to the target cells, and a plurality of types can be used in combination.

細胞捕捉フィルター材の形状は、細胞を捕捉するのに十分な表面積を有することが必要であることから、例えば粒状・繊維塊・綿状・布状・糸状・中空糸状・糸束状・織布状・不織布状・スポンジ状等が挙げられるが、体積当りの表面積が大きい点から不織布やスポンジ状がより好ましく用いられる。   Since the shape of the cell trapping filter material needs to have a sufficient surface area to trap cells, for example, granular, fiber lump, cotton-like, cloth-like, thread-like, hollow fiber-like, thread-bundle-like, woven cloth Shape, non-woven fabric shape, sponge shape, etc. are mentioned, but non-woven fabric and sponge shape are more preferably used from the viewpoint of a large surface area per volume.

細胞捕捉フィルター材が不織布の場合、平均繊維径は1.0μm以上30μm以下であり、好ましくは1.0μm以上20μm以下であり、さらにより好ましくは1.5μm以上10μm以下である。1.0μm未満では有核細胞が強固に捕捉されてしまい回収困難となる可能性があるだけでなく、不要細胞の通過、特に凝集させた場合の通過を困難にする。また、30μmを超えると有核細胞が繊維に捕捉されず素通りする可能性が高くなる。いずれの場合も回収率の低下につながるおそれがあるので好ましくない。   When the cell trapping filter material is a nonwoven fabric, the average fiber diameter is 1.0 μm or more and 30 μm or less, preferably 1.0 μm or more and 20 μm or less, and more preferably 1.5 μm or more and 10 μm or less. If it is less than 1.0 μm, not only the nucleated cells are firmly captured and it may be difficult to collect, but also the passage of unnecessary cells, especially when they are aggregated, is difficult. On the other hand, if it exceeds 30 μm, the possibility that the nucleated cells pass through without being captured by the fibers increases. In either case, the recovery rate may be reduced, which is not preferable.

ここでいう平均繊維径とは、以下の手順に従って求められる値をいう。即ち実質的に均一と認められる細胞捕捉フィルター材の一部をサンプリングし、走査型電子顕微鏡などを用いて、1000倍〜3000倍の倍率で写真に撮る。サンプリングに際しては、細胞捕捉フィルター材の有効濾過断面積部分を、一辺が0.5cm〜1cmの正方形によって区分し、その中から3ヶ所以上、好ましくは5ヶ所以上をランダムサンプリングする。ランダムサンプリングするには、例えば上記各区分に番地を指定した後、乱数表を使うなどの方法で、必要箇所以上の区分を選べばよい。またサンプリングした各区分について、3ヶ所以上、好ましくは5ヶ所以上を写真に撮る。このようにして得た写真について、写っている全ての繊維の直径を測定する。ここで直径とは、繊維軸に対して直角方向の繊維の幅をいう。測定した全ての繊維の直径の和を、繊維の数で割った値を平均繊維径とする。但し、複数の繊維が重なり合っており、他の繊維の陰になってその幅が測定できない場合、また複数の繊維が溶融するなどして、太い繊維になっている場合、更に著しく直径の異なる繊維が混在している場合、等々の場合には、これらのデータは削除する。以上の方法により、500本以上、好ましくは1000本以上のデータにより平均繊維径を求める。   The average fiber diameter here means a value obtained according to the following procedure. That is, a part of the cell trapping filter material recognized as substantially uniform is sampled and photographed at a magnification of 1000 to 3000 using a scanning electron microscope or the like. At the time of sampling, the effective filtration cross-sectional area portion of the cell trapping filter material is divided by a square having a side of 0.5 cm to 1 cm, and 3 or more, preferably 5 or more are randomly sampled. In order to perform random sampling, for example, after specifying an address for each of the above-mentioned sections, it is possible to select more than necessary sections by using a random number table. Also, for each sampled section, take a picture of 3 or more, preferably 5 or more. For the photograph thus obtained, the diameters of all the visible fibers are measured. Here, the diameter means the width of the fiber in the direction perpendicular to the fiber axis. A value obtained by dividing the sum of the diameters of all the measured fibers by the number of fibers is defined as an average fiber diameter. However, when multiple fibers overlap each other and their width cannot be measured behind other fibers, or when multiple fibers melt and become thick fibers, fibers with significantly different diameters If there is a mixture of these, etc., these data are deleted. By the above method, the average fiber diameter is obtained from data of 500 or more, preferably 1000 or more.

また、本発明でいう細胞捕捉器の容器としては特に限定はないが、細胞含有液を導入可能とするような入口と出口を有し、細胞捕捉フィルター材に効率的に細胞を捕捉できるような構造であることが好ましい。例えば、細胞捕捉フィルター材として不織布を用いる場合、細胞捕捉器の容器の形状は、細胞含有液の入口と出口の距離が最長となるように、入口と出口が対角線の両端に位置する平板の正方形であることが好ましい。細胞捕捉フィルター材の有効濾過断面積は、捕捉する細胞数にも因るが、4.0cm〜45cmの範囲にあることが好ましく、細胞捕捉フィルター材に捕捉された細胞が高い線速によって剥離しないよう、より好ましくは9.0cm〜45cmの範囲であり、細胞捕捉フィルター材の全体を均一に有効利用するには、9.0cm〜18cmであることが最も好ましい。 In addition, the container of the cell trap used in the present invention is not particularly limited, but has an inlet and an outlet that allow introduction of a cell-containing solution, so that cells can be efficiently trapped in the cell trapping filter material. A structure is preferred. For example, when using a non-woven fabric as the cell trapping filter material, the shape of the container of the cell trap is a flat square in which the inlet and the outlet are located at both ends of the diagonal so that the distance between the inlet and the outlet of the cell-containing liquid is the longest. It is preferable that The effective filtration cross-sectional area of the cell trapping filter material depends on the number of cells to be trapped, but is preferably in the range of 4.0 cm 2 to 45 cm 2 , and the cells trapped in the cell trapping filter material are so as not to peel, more preferably from 9.0cm 2 ~45cm 2, to uniformly effective use of the whole cell capture filter material is most preferably a 9.0cm 2 ~18cm 2.

細胞捕捉器の容器の材質としては、水不溶性で成形性、密閉性、滅菌性に優れ、生体適合性の高い材質が好ましい。さらに、細胞含有液が細胞捕捉フィルター材を通過する際や、濾液で細胞捕捉フィルター材の単核細胞を回収する際などに、細胞捕捉器内部に負荷される圧力によって実質的に膨張したり漏洩したりしない硬い材質であることが好ましい。これらの観点から好ましい材質としては、ポリカーボネート、ポリエチレン、ポリスチレン、ポリプロピレンなどが挙げられ、硬度の観点からより好ましいのはポリカーボネート、ポリスチレンであり、容器への細胞付着による細胞ロスの観点からするとポリカーボネートが最も好ましく用いられる。   As the material for the container of the cell trap, a material that is insoluble in water, excellent in moldability, hermeticity, and sterilization properties and highly biocompatible is preferable. In addition, when the cell-containing liquid passes through the cell trapping filter material or when the mononuclear cells of the cell trapping filter material are collected with the filtrate, it is substantially expanded or leaked by the pressure applied inside the cell trapping device. It is preferable that it is a hard material which does not do. Preferred materials from these viewpoints include polycarbonate, polyethylene, polystyrene, polypropylene, and the like. From the viewpoint of hardness, polycarbonate and polystyrene are more preferable. From the viewpoint of cell loss due to cell adhesion to the container, polycarbonate is the most preferable. Preferably used.

本発明でいう赤血球沈降剤とは、多様な細胞を含有する細胞含有液から赤血球のみを連銭形成等により沈降させる成分を含有するものをいい、具体的にはヒドロキシエチルスターチ、デキストランなどが挙げられる。血液に対するヒドロキシエチルスターチ添加量としては、例えばヒドロキシエチルスターチの平均分子量が40万で10%生理食塩水溶液の場合、血液1に対して、1/3量〜1/10量が好ましく、濃度としては、0.9〜2.5%が好ましい。また静置する時間としては10分以上80分以下、好ましくは20分以上50分以下が好ましい。ヒドロキシエチルスターチ添加量が1/10量未満、もしくは静置する時間が10分未満の場合、赤血球の連銭形成が不十分で層分離が不十分となり好ましくない。一方、ヒドロキシエチルスターチ添加量が1/3量より多いか、もしくは静置する時間が80分より長い場合、層分離が急速に進み、細胞も沈降してしまうので好ましくない。また、ヒドロキシエチルスターチの分子量は7万〜40万の範囲にあることが好ましいが、赤血球の沈降速度や沈降性をより高くする観点から20万〜40万の分子量のものがより好ましく用いられる。   The erythrocyte sedimenting agent as used in the present invention refers to a substance containing a component that precipitates only erythrocytes from a cell-containing solution containing various cells by recurring formation, and specifically includes hydroxyethyl starch, dextran, and the like. It is done. As the amount of hydroxyethyl starch added to blood, for example, when the average molecular weight of hydroxyethyl starch is 400,000 and a 10% physiological saline solution is used, the amount is preferably 1/3 to 1/10 with respect to blood 1 as the concentration. 0.9 to 2.5% is preferable. Further, the standing time is 10 minutes or more and 80 minutes or less, preferably 20 minutes or more and 50 minutes or less. When the added amount of hydroxyethyl starch is less than 1/10, or when the standing time is less than 10 minutes, the formation of red blood cells is insufficient and the layer separation is insufficient. On the other hand, when the amount of hydroxyethyl starch added is more than 1/3, or when the standing time is longer than 80 minutes, the layer separation proceeds rapidly and the cells settle, which is not preferable. The molecular weight of hydroxyethyl starch is preferably in the range of 70,000 to 400,000, but a molecular weight of 200,000 to 400,000 is more preferably used from the viewpoint of increasing the sedimentation rate and sedimentation of erythrocytes.

デキストランの血液に対する添加量は、例えば分子量が7万で、5%のデキストラン生理食塩液の場合、血液1に対して1.5量〜3.0量が好ましく、濃度としては1.0〜4.5%が好ましい。静置する時間は30分〜75分が好ましく、デキストラン添加量が血液に対して1.5量未満、もしくは静置する時間が30分未満の場合は、赤血球の連銭形成が不十分で層分離の界面が明瞭でなくなるため好ましくない。一方、デキストラン添加量が3.0量よりも多いか、もしくは静置時間が75分よりも長い場合は、層分離が過剰に進み、細胞も沈降してしまうので好ましくない。また、分子量は5万〜20万の範囲にあることが好ましいが、ヒドロキシエチルスターチと同様の理由から7万〜20万の分子量のものが良好に用いられる。   The amount of dextran added to blood is, for example, in the case of 50000 dextran physiological saline with a molecular weight of 70,000, preferably 1.5 to 3.0 with respect to blood 1, and the concentration is 1.0 to 4 .5% is preferred. The standing time is preferably 30 to 75 minutes, and if the amount of dextran added is less than 1.5 to the blood, or the standing time is less than 30 minutes, the red blood cell formation is insufficient and the layer The separation interface is not clear, which is not preferable. On the other hand, if the amount of dextran added is larger than 3.0 or the standing time is longer than 75 minutes, the layer separation proceeds excessively and the cells also settle, which is not preferable. Further, the molecular weight is preferably in the range of 50,000 to 200,000, but those having a molecular weight of 70,000 to 200,000 are preferably used for the same reason as hydroxyethyl starch.

本発明でいう赤血球に偏った層とは、層分離する前の赤血球と有核細胞と血小板を含む体液中の赤血球の60%以上、好ましくは70%以上、さらに好ましくは80%以上が含有される層のことをいう。   In the present invention, the layer biased toward erythrocytes contains 60% or more, preferably 70% or more, more preferably 80% or more of erythrocytes in a body fluid containing erythrocytes, nucleated cells and platelets before layer separation. Refers to the layer.

また、本発明でいう有核細胞と血小板に偏った層とは、層分離する前の赤血球と有核細胞と血小板を含む体液中の有核細胞と血小板の60%以上、好ましくは70%以上、さらに好ましくは80%以上が含有される層のことをいう。   Further, the nucleated cells and the layer biased to platelets referred to in the present invention are 60% or more, preferably 70% or more, of nucleated cells and platelets in a body fluid containing erythrocytes, nucleated cells and platelets before layer separation. More preferably, it refers to a layer containing 80% or more.

本発明で単核細胞と血小板を選択的に回収するとは、細胞捕捉フィルター材に捕捉された有核細胞と血小板を回収する際に、フィルターを通過した濾液を少量気体で押出すことで、フィルターに捕捉された有核細胞と血小板から、単核細胞と血小板を優先的に回収することをいう。細胞表面の特性から有核細胞のうち粘着性の低い単核細胞が粘着性の高い多核細胞よりも優先的に回収される。   In the present invention, the selective collection of mononuclear cells and platelets means that when the nucleated cells and platelets captured by the cell capture filter material are collected, the filtrate that has passed through the filter is extruded with a small amount of gas. Mononuclear cells and platelets are preferentially collected from the nucleated cells and platelets captured in the above. Due to the characteristics of the cell surface, mononuclear cells with low adhesion among nucleated cells are preferentially collected over multinucleated cells with high adhesion.

本発明の方法では、濾液を回収液として使用するため、回収液を別途調製する必要がない。また、濾液は血漿蛋白等の血漿成分を含有しているため、回収液に細胞安定化剤として通常添加する血液製剤由来の血清アルブミンを補充する必要がなく、感染のリスクもない。回収液として用いる濾液量は、細胞捕捉フィルター材に捕捉された単核細胞と血小板を高い回収率で回収するために、細胞捕捉器の容積に対して0.2容以上である必要がある。回収に使用する濾液量が細胞捕捉器の容積の0.2容未満であると、泡立ち易くなり、細胞の回収率が低下する。また、回収に使用する濾液量を細胞捕捉器の1.0容以上にしても、目的とする単核細胞と血小板の回収率は向上しないから、濾液量を増加した分、目的とする単核細胞や血小板の濃度が減少する。よって、単核細胞と血小板の濃縮液を得るには、回収液に使用する濾液量が細胞捕捉器の0.2容以上1.0容未満であることが必須である。   In the method of the present invention, since the filtrate is used as the recovered liquid, it is not necessary to prepare the recovered liquid separately. In addition, since the filtrate contains plasma components such as plasma proteins, it is not necessary to replenish serum albumin derived from blood products that are usually added as a cell stabilizer to the collected liquid, and there is no risk of infection. The amount of the filtrate used as the recovery liquid needs to be 0.2 volume or more with respect to the volume of the cell trap in order to recover the mononuclear cells and platelets captured by the cell trapping filter material at a high recovery rate. When the amount of the filtrate used for the collection is less than 0.2 volume of the cell trap, foaming is likely to occur and the cell recovery rate decreases. In addition, even if the amount of filtrate used for collection is 1.0 volume or more of the cell trap, the recovery rate of the target mononuclear cells and platelets does not improve. Cell and platelet concentrations decrease. Therefore, in order to obtain a concentrated solution of mononuclear cells and platelets, it is essential that the amount of filtrate used for the collected liquid is 0.2 volume or more and less than 1.0 volume of the cell trap.

回収に使用する濾液の流速は、剪断力を高め、単核細胞を高率で回収するためにできるだけ高速が好ましいが、内圧上昇による細胞捕捉器と細胞導入管の接続部のはずれや、有核細胞へのダメージを起こさない流速に制御することが好ましい。また、回収に使用する濾液を細胞捕捉器に導入する手段は、シリンジポンプ、ブラッドポンプ、ペリスタポンプ等の装置を用いるものや、簡便法としてシリンジを手で押す方法、貯留したバッグを押しつぶして液流を惹起する方法、落差処理等が挙げられる。更に、有核細胞の回収率をより高めるために、フィルター装置に振動を加えるとか、ストップドフロー等を行ってもよい。回収に使用する濾液をフィルター装置に導入する方向は、体液を導入した方向と同方向または逆方向があるが、一般的に後者の方が細胞回収率が高いので好ましい。   The flow rate of the filtrate used for collection is preferably as high as possible in order to increase the shearing force and collect mononuclear cells at a high rate, but the connection between the cell trap and cell introduction tube due to an increase in internal pressure may cause It is preferable to control the flow rate so as not to cause damage to the cells. In addition, the means for introducing the filtrate used for collection into the cell trap can be obtained by using a device such as a syringe pump, a blood pump, or a peristaltic pump, as a simple method by manually pushing the syringe, For example, a head drop process, and the like. Furthermore, in order to further increase the recovery rate of nucleated cells, vibration may be applied to the filter device, or stopped flow may be performed. The direction in which the filtrate used for recovery is introduced into the filter device is the same or opposite to the direction in which the body fluid is introduced, but the latter is generally preferred because the cell recovery rate is higher.

本発明で使用する濾液量は細胞捕捉器の0.2容以上1.0容未満と少量であり、濾液だけでは細胞を回収できないので、濾液を細胞捕捉フィルター材に通し回収バッグまで押し出すために、気体を使用する。気体は濾液のpHや細胞の生存率に影響しない無菌状態のものであればどのような気体であっても良いが、窒素ガスや酸素ガス、空気が好ましく、簡便さの点で空気が最も好ましい。   The amount of the filtrate used in the present invention is a small amount of 0.2 to 1.0 volume of the cell trap, and the cells cannot be collected only by the filtrate. Therefore, in order to push the filtrate through the cell trapping filter material and push it out to the collection bag. Use gas. The gas may be any gas as long as it is sterile so long as it does not affect the pH of the filtrate and the cell viability, but nitrogen gas, oxygen gas, and air are preferred, and air is most preferred in terms of simplicity. .

図1と図2のシステムを例にとって、赤血球と有核細胞と血小板を含む体液から単核細胞と血小板を濃縮する方法を説明する。まず、赤血球廃棄管1上のクランプ20を閉じて、注入部3または赤血球廃棄管1から体液貯留バッグ14に赤血球と有核細胞と血小板を含む体液を導入する。体液貯留バッグ14の注入部3から赤血球沈降剤を導入し、一定時間静置させて体液を有核細胞と血小板に偏った層と赤血球に偏った層とに層分離する。次に、クランプ20を開けて、赤血球に偏った層を体液貯留バッグ14の赤血球廃棄管1から排出してから、クランプ20を閉じて有核細胞と血小板に偏った層のみを体液貯留バッグ14に残す。赤血球沈降剤によって沈降した赤血球に偏った層の廃棄は、体液貯留バッグ14と細胞導入管4を接続する前に行ってもよいし、接続後に行ってもよい。   A method of concentrating mononuclear cells and platelets from a body fluid containing red blood cells, nucleated cells, and platelets will be described using the system of FIGS. 1 and 2 as an example. First, the clamp 20 on the red blood cell waste tube 1 is closed, and a body fluid containing red blood cells, nucleated cells, and platelets is introduced into the body fluid storage bag 14 from the injection unit 3 or the red blood cell waste tube 1. An erythrocyte sedimentation agent is introduced from the injection part 3 of the body fluid storage bag 14 and allowed to stand for a certain period of time, so that the body fluid is separated into nucleated cells, a layer biased to platelets, and a layer biased to erythrocytes. Next, the clamp 20 is opened, and the layer biased to red blood cells is discharged from the red blood cell waste tube 1 of the body fluid storage bag 14, and then the clamp 20 is closed and only the layer biased to nucleated cells and platelets is retained. To leave. Discarding the layer biased to red blood cells precipitated by the red blood cell sedimentation agent may be performed before or after connecting the body fluid storage bag 14 and the cell introduction tube 4.

図2において、フィルターシステム(濃縮システム100)は、細胞捕捉フィルター材を充填した細胞捕捉器11と、バック即ちドレインバッグ12、回収バッグ13、体液貯留バッグ14とを、それぞれ回路即ち赤血球廃棄管1、濾液回収管5、細胞回収管7、細胞導入管4、注入管6及びT字管31、32を介して接続して形成されている。また、注入管6には、注入口33が設けられ、細胞導入管4のクランプ21とT字管31との間には、エアベントフィルター41が設けられ、更にクランプ20〜23が配置されている。濃縮システム100のクランプ21〜23をすべて閉じた状態で、体液貯留バッグ14の細胞導入管接続部2と濃縮システム100の細胞導入管4を接続し、T字管31は体液貯留バッグ14と細胞捕捉器11のみが連通するようにし、T字管32は細胞捕捉器11とドレインバッグ12のみが連通するようにする。濃縮システム100はスタンドなどの固定台に吊り下げて、重力方向上から、体液貯留バッグ14、細胞捕捉器11、ドレインバッグ12の順に配置されるようにする。   In FIG. 2, the filter system (concentration system 100) includes a cell trap 11 filled with a cell trapping filter material, a back or drain bag 12, a recovery bag 13 and a body fluid storage bag 14, and a circuit or red blood cell waste tube 1 respectively. The filtrate collection tube 5, the cell collection tube 7, the cell introduction tube 4, the injection tube 6, and the T-shaped tubes 31 and 32 are connected to each other. The injection tube 6 is provided with an injection port 33, an air vent filter 41 is provided between the clamp 21 of the cell introduction tube 4 and the T-shaped tube 31, and clamps 20 to 23 are further arranged. . With all the clamps 21 to 23 of the concentration system 100 closed, the cell introduction tube connecting part 2 of the body fluid storage bag 14 and the cell introduction tube 4 of the concentration system 100 are connected, and the T-shaped tube 31 is connected to the body fluid storage bag 14 and the cells. Only the trap 11 communicates, and the T-shaped tube 32 allows only the cell trap 11 and the drain bag 12 to communicate. The concentration system 100 is suspended on a fixed base such as a stand, and the body fluid storage bag 14, the cell trap 11, and the drain bag 12 are arranged in this order from above in the direction of gravity.

次に、クランプ21と22を開けて、体液貯留バッグ14に残った有核細胞と血小板に偏った層を細胞捕捉フィルター材を備える細胞捕捉器11に導入する。赤血球に偏った層を細胞捕捉器に導入せずに有核細胞と血小板に偏った層のみを細胞捕捉器11に導入することによって、赤血球の混入が低減することはもとより、細胞捕捉器に捕捉された細胞が、多量の赤血球のずり応力によって細胞捕捉フィルター材の深部に潜り込まず回収されやすい状態で保持される。例えば、層分離せずに体液を細胞捕捉器11に導入した場合、赤血球が混入するだけでなく、単核細胞と血小板の濃縮率も低減するため好ましくない。また、赤血球の層分離効率が悪い場合も同様のことが起こるため、十分な層分離を行った後に赤血球に偏った層を体液貯留バッグから慎重に排出することが好ましい。赤血球廃棄管が接続されている体液貯留バッグ14の接続部分は、出口に向かって傾斜していると赤血球に偏った層が残留しにくいため好ましい。また、有核細胞と血小板に偏った層を細胞捕捉器11に導入する手段については特に限定はないが、落差やポンプ、あるいは体液貯留バッグを押しつぶして導入しても良い。操作時間の観点から、落差やポンプによる導入が好ましく、簡便さの点から落差が最も好ましい。細胞捕捉器11から排出された液はドレインバッグ12に貯留される。体液貯留バッグ14内の有核細胞と血小板に偏った層が全て細胞捕捉器11に導入され、細胞捕捉フィルター材を通過したら、クランプ21と22を閉じる。この時、細胞捕捉器11と注入管6には、細胞捕捉器11の0.2容以上1.0容未満の濾液が残るようにする。   Next, the clamps 21 and 22 are opened, and the nucleated cells remaining in the body fluid storage bag 14 and the layer biased to platelets are introduced into the cell trap 11 including the cell trapping filter material. By introducing only a layer biased to nucleated cells and platelets into the cell trap 11 without introducing a layer biased to red blood cells into the cell trap, the contamination of red blood cells is reduced as well as capturing in the cell trap. The cells thus obtained are held in a state where they are easily recovered without being embedded in the deep part of the cell trapping filter material due to the shear stress of a large amount of red blood cells. For example, when a body fluid is introduced into the cell trap 11 without layer separation, not only red blood cells are mixed but also the concentration rate of mononuclear cells and platelets is not preferable. In addition, since the same thing occurs when the layer separation efficiency of red blood cells is poor, it is preferable to carefully discharge the layer biased to red blood cells from the body fluid storage bag after sufficient layer separation. If the connecting portion of the body fluid storage bag 14 to which the erythrocyte waste tube is connected is inclined toward the outlet, it is preferable that a layer biased to erythrocytes hardly remains. In addition, there is no particular limitation on the means for introducing the nucleated cell and platelet-biased layer into the cell trap 11, but it may be introduced by crushing a drop, a pump, or a body fluid storage bag. From the viewpoint of operation time, a drop or introduction by a pump is preferable, and a drop is most preferable from the viewpoint of simplicity. The liquid discharged from the cell trap 11 is stored in the drain bag 12. When all the nucleated cells and platelet-biased layers in the body fluid storage bag 14 are introduced into the cell trap 11 and pass through the cell trapping filter material, the clamps 21 and 22 are closed. At this time, in the cell trap 11 and the injection tube 6, the filtrate of 0.2 volume or more and less than 1.0 volume of the cell trap 11 is left.

次に、T字管32は注入口33と細胞捕捉器のみが連通するようにし、T字管31は細胞捕捉器11と回収液バッグ13のみが連通するようにし、クランプ23を開けて注入口33から空気を細胞捕捉器11に導入し、回収バッグ13に単核細胞と血小板を回収する。注入する空気の量は、濾液がすべて回収バッグ13に回収できれば良い。回収バッグ13に濾液がすべて回収されたら、クランプ23を閉じる。   Next, only the injection port 33 and the cell trap are in communication with the T-shaped tube 32, and only the cell trap 11 and the recovery solution bag 13 are in communication with the T-shaped tube 31, and the clamp 23 is opened and the injection port is opened. Air is introduced from 33 into the cell trap 11, and mononuclear cells and platelets are collected in the collection bag 13. The amount of air to be injected only needs to be able to collect all the filtrate in the collection bag 13. When all the filtrate is collected in the collection bag 13, the clamp 23 is closed.

あるいは、細胞捕捉器11と注入管6に濾液を残さずに、エアベントフィルター41からシリンジ等を用いて空気を導入し、細胞捕捉器11と濾液回収管5に残留した濾液を押し出してドレインバッグ12に回収しても良い。この場合は、ドレインバッグ12からシリンジ等を用いて細胞捕捉器11の0.2容以上1.0容未満の濾液を回収して、注入口33から導入し、導入した濾液を空気で押し出して回収液バッグ13に回収しても良い。この方法は、濾液の導入量を正確に設定できるという利点がある。
Alternatively, without leaving the filtrate in the cell trap 11 and the injection tube 6, air is introduced from the air vent filter 41 using a syringe or the like, and the filtrate remaining in the cell trap 11 and the filtrate collection tube 5 is pushed out to drain bag 12. It may be recovered. In this case, 0.2 to 1.0 volume filtrate of the cell trap 11 is collected from the drain bag 12 using a syringe or the like, introduced from the inlet 33, and the introduced filtrate is pushed out with air. It may be recovered in the recovery liquid bag 13. This method has the advantage that the amount of filtrate introduced can be set accurately.

以下に実施例により本発明をより詳細に説明するが、本発明はこれらにより限定されるものではない。   EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

[実施例1]
(1)細胞捕捉器の作製
上容器と下容器からなり、組み立てた後の内寸が縦43mm 、横43mm 、高さ2.9mm ( 有効濾過断面積18.5cm2 、内容積7mL) で、液体流入口と液体流出口を最長対角線上にもつポリカーボネート製容器に有核細胞捕捉材として、容器の入口側から平均繊維径約12μmのポリエステル不織布0 .14gと、平均繊維径1.7μm のポリエステル不織布1.28g と、平均繊維径1.1μmのポリエステル不織布0.19gからなる有核細胞捕捉フィルター材を充填した。尚、充填密度はそれぞれ入口側から0.20g/cm3、 0.24g/cm3および0.20g/cm3であった。
(2) 赤血球層排出操作
CPD加ヒト末梢血液58mLが貯留された体液貯留バッグ14に、6%ヒドロキシエチルスターチ(ニプロファーマ「HES40(赤血球沈降剤)」を12mL添加して、10分間混和した。そして、30分間静置して赤血球を沈降させた後、体液貯留バッグ14の下方に沈降した赤血球に偏った層を赤血球廃棄管1を通じで体液貯留バッグ14の外に排出した。この時、下層の赤血球に偏った層と上層の有核細胞と血小板に偏った層との界面を乱さないように注意し、かつ上層を排出しないようにゆっくりと排出した。なお、この時濃縮システムにおいて事前にクランプ21 、23を閉じてある。この時のCPD加ヒト末梢血液中の赤血球数と上層の有核細胞と血小板に偏った層の赤血球数を多項目自動血球分析装置(シスメックス社SF3000)を用いて測定した結果、それぞれ1.3×1011個、9.0×10個であった。
(3) 細胞濃縮操作
赤血球に偏った層を排出した後の有核細胞と血小板に偏った層が貯留された体液貯留バッグ14と細胞導入管4を接続し、クランプ21を開けて体液貯留バッグ14に貯留された上層の有核細胞と血小板に偏った層44mLを落差により細胞捕捉器11に導入して濾過を開始した。この時、有核細胞と血小板に偏った層が細胞捕捉器11に流れ、濾過された細胞浮遊液はドレインバッグ12 に貯留した。体液貯留バッグ14の全ての有核細胞と血小板に偏った層が細胞捕捉器11 に導入され、細胞捕捉器11の入口側空間の容器内は空気で満たされ、細胞捕捉器11の出口側空間の容器内にはフィルター材を通過した濾液が残留している状態で濾過が終了した。次に、クランプ21 、22を閉じた。続いてシリンジに空気38mLを充填し、クランプ23 を開けて注入口33 から手動で空気38mLを押出し、細胞捕捉器11内の出口側空間に残留している濾液でフィルターに捕捉された細胞を回収し、回収バッグ13 に細胞濃縮液を回収した。この時の回収された細胞濃縮液量は5.4mL(細胞捕捉器11の0.77容)であった。
(4)分析
本細胞濃縮操作により得られた細胞濃縮液の赤血球除去率、単核細胞回収率、単核細胞濃縮倍率、単核細胞含有率、血小板濃縮倍率、をそれぞれ以下の計算式にて算出した。
また、赤血球数、単核細胞数、単核細胞濃度、全細胞数、血小板濃度のカウントは多項目自動血球分析装置(シスメックス社SF3000)を用いて測定した。
・赤血球除去率(%)={(CPD加血液中の赤血球数−細胞濃縮液中の赤血球数)/CPD加血液中の赤血球数}×100
・単核細胞回収率(%)=(細胞濃縮液中の単核細胞数/CPD加血液中の単核細胞数)×100
・単核細胞濃縮倍率=(細胞濃縮液中の単核細胞濃度/CPD加血液中の単核細胞濃度)
・単核細胞含有率(%)=(細胞濃縮液中の単核細胞数/細胞濃縮液中の全細胞数)×100
・血小板濃縮倍率=(細胞濃縮液中の血小板濃度/CPD加血液中の血小板濃度)
(5)結果
本細胞濃縮操作により、細胞濃縮液の赤血球数は7.8×10個、赤血球除去率は99.4%、単核細胞回収率は74.6%、単核細胞濃度は6.9×10個/mL、単核細胞濃縮倍率は8.1倍、単核細胞含有率は50.2%、血小板濃縮倍率は2.9倍であった。
[Example 1]
(1) Production of cell trapping device It consists of an upper container and a lower container, and the inner dimensions after assembly are 43 mm in length, 43 mm in width, and 2.9 mm in height (effective filtration cross-sectional area 18.5 cm 2 , internal volume 7 mL) Polyester non-woven fabric having an average fiber diameter of about 12 μm from the inlet side of the container as a nucleated cell capturing material in a polycarbonate container having a liquid inlet and a liquid outlet on the longest diagonal. A nucleated cell-trapping filter material consisting of 14 g, 1.28 g of a polyester nonwoven fabric having an average fiber diameter of 1.7 μm and 0.19 g of a polyester nonwoven fabric having an average fiber diameter of 1.1 μm was filled. Incidentally, the packing density is 0.20 g / cm 3 from the inlet side, respectively, were 0.24 g / cm 3 and 0.20 g / cm 3.
(2) Erythrocyte layer drainage operation 12 mL of 6% hydroxyethyl starch (Nipropharma “HES40 (erythrocyte sedimentation agent)” was added to the body fluid storage bag 14 storing 58 mL of CPD-added human peripheral blood, and mixed for 10 minutes. Then, after standing for 30 minutes to precipitate red blood cells, a layer biased toward red blood cells settled below the body fluid storage bag 14 was discharged out of the body fluid storage bag 14 through the red blood cell waste tube 1. At this time, Care was taken not to disturb the interface between the erythrocyte-biased layer, the upper-layer nucleated cells, and the platelet-biased layer, and it was slowly drained so as not to drain the upper layer. 21 and 23. At this time, the number of red blood cells in the CPD-added human peripheral blood and the number of red blood cells in the upper layer of nucleated cells and platelets are divided into multi-item automatic blood cell counts. Apparatus (Sysmex SF3000) measured by using a, 1.3 × 10 11 pieces each, were 9.0 × 10 9 pieces.
(3) Cell concentration operation The nucleated cells after discharging the layer biased to erythrocytes and the body fluid storage bag 14 storing the layer biased to platelets and the cell introduction tube 4 are connected, the clamp 21 is opened, and the body fluid storage bag The upper layer nucleated cells stored in 14 and 44 mL of the layer biased to platelets were introduced into the cell trap 11 by a drop, and filtration was started. At this time, a layer biased toward nucleated cells and platelets flowed into the cell trap 11, and the filtered cell suspension was stored in the drain bag 12. All nucleated cells and platelet-biased layers of the body fluid storage bag 14 are introduced into the cell trap 11, the inside of the inlet space of the cell trap 11 is filled with air, and the outlet space of the cell trap 11 is filled. Filtration was completed while the filtrate that passed through the filter material remained in the container. Next, the clamps 21 and 22 were closed. Subsequently, the syringe is filled with 38 mL of air, the clamp 23 is opened, and 38 mL of air is manually pushed out from the inlet 33, and the cells captured by the filter are collected with the filtrate remaining in the outlet side space in the cell trap 11. The cell concentrate was recovered in the recovery bag 13. The amount of the cell concentrate collected at this time was 5.4 mL (0.77 volume of the cell trap 11).
(4) Analysis The erythrocyte removal rate, mononuclear cell recovery rate, mononuclear cell concentration rate, mononuclear cell content rate, and platelet concentration rate of the cell concentrate obtained by this cell concentration operation are respectively calculated by the following formulas. Calculated.
The counts of red blood cell count, mononuclear cell count, mononuclear cell concentration, total cell count, and platelet concentration were measured using a multi-item automatic blood cell analyzer (Sysmex SF3000).
Erythrocyte removal rate (%) = {(number of erythrocytes in CPD-added blood-number of erythrocytes in cell concentrate) / number of erythrocytes in CPD-added blood} × 100
Mononuclear cell recovery rate (%) = (number of mononuclear cells in cell concentrate / number of mononuclear cells in CPD-added blood) × 100
・ Mononuclear cell concentration factor = (Mononuclear cell concentration in cell concentrate / Mononuclear cell concentration in CPD-added blood)
Mononuclear cell content (%) = (number of mononuclear cells in cell concentrate / total number of cells in cell concentrate) × 100
・ Platelet concentration factor = (Platelet concentration in cell concentrate / platelet concentration in CPD-added blood)
(5) Results As a result of this cell concentration operation, the number of red blood cells in the cell concentrate is 7.8 × 10 8 , the red blood cell removal rate is 99.4%, the mononuclear cell recovery rate is 74.6%, and the mononuclear cell concentration is 6.9 × 10 6 cells / mL, mononuclear cells concentration ratio is 8.1 times, the mononuclear cell content 50.2% platelet concentrate ratio was 2.9 times.

[実施例2]
(1)細胞捕捉器の作製
実施例1と同様のものを使用した。
(2)赤血球層排出操作
実施例1と同様の操作を行った。この時のCPD加ヒト末梢血液中の赤血球数と上層の有核細胞と血小板に偏った層の赤血球数を多項目自動血球分析装置(シスメックス社SF3000)を用いて測定した結果、それぞれ1.4×1011個、8.9×10個であった。
(3)細胞濃縮操作
赤血球に偏った層を排出した後の有核細胞と血小板に偏った層(細胞浮遊液)が貯留された体液貯留バッグ14と細胞導入管4を接続し、クランプ21を開けて体液貯留バッグ14に貯留された上層の有核細胞と血小板に偏った層44mLを落差により細胞捕捉器11に導入して濾過を開始した。この時、有核細胞と血小板に偏った層は細胞捕捉器11に流れ、濾液はドレインバッグ12に貯留した。体液貯留バッグ14内の全ての有核細胞と血小板に偏った層が細胞捕捉器11に導入され、細胞捕捉器11の入口側空間は空気で満たされ、細胞捕捉器11の出口側空間にはフィルター材を通過した濾液が残留している状態で濾過が終了した。次に、クランプ21を閉じてクランプ23を開けてエアベントフィルター41にシリンジを用いて空気3.5mLを導入して細胞捕捉器11内の出口側空間に残留している濾液を押出し、ドレインバッグ12へ貯留した。この時、細胞捕捉器11内の出口側空間や注入管6には、少量の濾液が残存していた。以後の操作は実施例1と全く同じ操作を行った。この時に回収された細胞濃縮液量は1.8mL(細胞捕捉器11の0.26容)であった。
(4)分析
実施例1と同様の計算式にて算出した。
(5)結果
この時の細胞濃縮液の赤血球数は1.0×10個、赤血球除去率は99.3%、単核細胞回収率は65.1%、単核細胞濃度は1.9×10個/mL、単核細胞濃縮倍率は21.7倍、単核細胞含有率は49.8%、血小板濃縮倍率は5.5倍であった。
[Example 2]
(1) Production of cell trap The same device as in Example 1 was used.
(2) Red blood cell layer discharge operation The same operation as in Example 1 was performed. At this time, the number of red blood cells in the CPD-added human peripheral blood and the number of red blood cells in the upper layer of nucleated cells and platelets were measured using a multi-item automatic blood cell analyzer (Sysmex SF3000). × 10 11 and 8.9 × 10 9 .
(3) Cell concentration operation The nucleated cells after discharging the layer biased to erythrocytes and the body fluid storage bag 14 storing the layer biased to platelets (cell suspension) and the cell introduction tube 4 are connected, and the clamp 21 is connected. The upper layer nucleated cells stored in the body fluid storage bag 14 and 44 mL of the layer biased to platelets were introduced into the cell trap 11 by a drop, and filtration was started. At this time, the layer biased to nucleated cells and platelets flowed to the cell trap 11, and the filtrate was stored in the drain bag 12. All nucleated cells and platelet-biased layers in the body fluid storage bag 14 are introduced into the cell trap 11, the inlet side space of the cell trap 11 is filled with air, and the outlet side space of the cell trap 11 is in the outlet side space. Filtration was completed with the filtrate passing through the filter material remaining. Next, the clamp 21 is closed, the clamp 23 is opened, 3.5 mL of air is introduced into the air vent filter 41 using a syringe, the filtrate remaining in the outlet side space in the cell trap 11 is extruded, and the drain bag 12 Accumulated. At this time, a small amount of filtrate remained in the outlet side space in the cell trap 11 and the injection tube 6. Subsequent operations were the same as those in Example 1. The amount of the cell concentrate collected at this time was 1.8 mL (0.26 volume of the cell trap 11).
(4) Analysis The calculation was the same as in Example 1.
(5) Results The number of red blood cells in the cell concentrate at this time was 1.0 × 10 9 , the red blood cell removal rate was 99.3%, the mononuclear cell recovery rate was 65.1%, and the mononuclear cell concentration was 1.9. × 10 7 cells / mL, mononuclear cell concentration factor was 21.7 times, mononuclear cell content was 49.8%, and platelet concentration factor was 5.5 times.

[実施例3]
(1)細胞捕捉器の作製
実施例1と同じものを使用した。
(2)赤血球層排出操作
実施例1と同じ操作を行った。この時のCPD加ヒト末梢血液中の赤血球数と上層の有核細胞と血小板に偏った層の赤血球数を多項目自動血球分析装置(シスメックス社SF3000)を用いて測定した結果、それぞれ1.3×1011個、1.0×1010個であった。
(3)細胞濃縮操作
実施例1と同様に、有核細胞と血小板に偏った層を落差により細胞捕捉器11に導入して濾過が終了した後、クランプ21 、22を閉じた。次に、ドレインバッグ12に流入したフィルター材を通過した濾液1.0mLを、濾液採取ポート8にシリンジを接続して採取し、さらに空気を37mL充填し、クランプ23を開けて注入口33から手動でシリンジ中の濾液と空気を押出し、細胞捕捉器11内のフィルター材を通過した濾液でフィルターに捕捉された細胞を回収し、回収バッグ13 に細胞濃縮液を回収した。この時の回収された細胞濃縮液量は6.7mL(細胞捕捉器11の0.96容)であった。
(4)分析
実施例1と同様の計算式にて算出した。
(5)結果
この時の細胞濃縮液の赤血球数は7.1×10個、赤血球除去率は99.5%、単核細胞回収率は72.5%、単核細胞濃度は5.4×10個/mL、単核細胞濃縮倍率は6.3倍、単核細胞含有率は49.4%、血小板濃縮倍率は2.3倍であった。
[Example 3]
(1) Production of cell trap The same as in Example 1 was used.
(2) Red blood cell layer discharge operation The same operation as in Example 1 was performed. At this time, the number of red blood cells in the CPD-added human peripheral blood and the number of red blood cells in the upper layer of nucleated cells and platelets were measured using a multi-item automatic blood cell analyzer (Sysmex SF3000). × 10 11 pieces and 1.0 × 10 10 pieces.
(3) Cell Concentration Operation In the same manner as in Example 1, a layer biased toward nucleated cells and platelets was introduced into the cell trap 11 by a drop and filtration was completed, and then the clamps 21 and 22 were closed. Next, 1.0 mL of the filtrate that has passed through the filter material that has flowed into the drain bag 12 is collected by connecting a syringe to the filtrate collection port 8, filled with 37 mL of air, manually opened from the inlet 33 by opening the clamp 23. Then, the filtrate and air in the syringe were extruded, the cells captured by the filter were collected with the filtrate that passed through the filter material in the cell trap 11, and the cell concentrate was collected in the collection bag 13. The amount of the cell concentrate collected at this time was 6.7 mL (0.96 volume of the cell trap 11).
(4) Analysis The calculation was the same as in Example 1.
(5) Results The number of red blood cells in the cell concentrate at this time was 7.1 × 10 8 , the red blood cell removal rate was 99.5%, the mononuclear cell recovery rate was 72.5%, and the mononuclear cell concentration was 5.4. × 10 6 cells / mL, mononuclear cell concentration factor was 6.3 times, mononuclear cell content was 49.4%, and platelet concentration factor was 2.3 times.

[実施例4]
(1)細胞捕捉器の作製
実施例1と同じものを使用した。
(2)赤血球層排出操作
実施例1と同様の操作を行った。この時のCPD加ヒト末梢血液中の赤血球数と上層の有核細胞と血小板に偏った層の赤血球数を多項目自動血球分析装置(シスメックス社SF3000)を用いて測定した結果、それぞれ1.3×1011個、9.0×10個であった。
(3)細胞濃縮操作
赤血球に偏った層を排出した後の有核細胞と血小板に偏った層が貯留された体液貯留バッグ14と細胞導入管4を接続し、クランプ21を開けて体液貯留バッグ14に貯留された上層の有核細胞と血小板に偏った層44mLを落差により細胞捕捉器11に導入して濾過を開始した。濾液はドレインバッグ12に貯留した。体液貯留バッグ14内の全ての有核細胞と血小板に偏った層が細胞捕捉器11に導入され、細胞捕捉器の入口側空間は空気で満たされ、細胞捕捉器の出口側空間にはフィルター材を通過した濾液が残留している状態で濾過が終了した。次に、クランプ21を閉じてエアベントフィルター41にシリンジを用いて空気30mLを導入して細胞捕捉器11内に残留している濾液を完全に押出し、ドレインバッグ12へ貯留した。続いて、ドレインバッグ12に貯留された濾液6.0mLを、濾液液採取ポート8にシリンジを接続して採取し、さらに空気を32mL充填し、クランプ23を開けて注入口33から手動でシリンジ中の濾液と空気を押出し、濾液でフィルターに捕捉された細胞を回収し、回収バッグ13 に細胞濃縮液を回収した。この時の回収された細胞濃縮液量は6.1mL(細胞捕捉器11の0.87容)であった。
(4)分析
実施例1と同様の計算式にて算出した。
(5)結果
この時の細胞濃縮液の赤血球数は8.1×10個、赤血球除去率は99.4%、単核細胞回収率は68.5%、単核細胞濃度は5.6×10個/mL、単核細胞濃縮倍率は6.5倍、単核細胞含有率は49.1%、血小板濃縮倍率は2.4倍であった。
[Example 4]
(1) Production of cell trap The same as in Example 1 was used.
(2) Red blood cell layer discharge operation The same operation as in Example 1 was performed. At this time, the number of red blood cells in the CPD-added human peripheral blood and the number of red blood cells in the upper layer of nucleated cells and platelets were measured using a multi-item automatic blood cell analyzer (Sysmex SF3000). They were × 10 11 and 9.0 × 10 9 .
(3) Cell concentration operation The nucleated cells after discharging the layer biased to red blood cells and the body fluid storage bag 14 storing the layer biased to platelets and the cell introduction tube 4 are connected, the clamp 21 is opened, and the body fluid storage bag The upper layer nucleated cells stored in 14 and 44 mL of the layer biased to platelets were introduced into the cell trap 11 by a drop, and filtration was started. The filtrate was stored in the drain bag 12. All nucleated cells and platelet-biased layers in the body fluid storage bag 14 are introduced into the cell trap 11, the inlet side space of the cell trap is filled with air, and the outlet side space of the cell trap is a filter material. Filtration was completed in a state where the filtrate that passed through remained. Next, the clamp 21 was closed, 30 mL of air was introduced into the air vent filter 41 using a syringe, and the filtrate remaining in the cell trap 11 was completely extruded and stored in the drain bag 12. Subsequently, 6.0 mL of the filtrate stored in the drain bag 12 is collected by connecting a syringe to the filtrate collection port 8, and further filled with 32 mL of air, and the clamp 23 is opened to manually enter the syringe through the injection port 33. The filtrate and air were extruded, the cells trapped on the filter with the filtrate were collected, and the cell concentrate was collected in the collection bag 13. The amount of the cell concentrate collected at this time was 6.1 mL (0.87 volume of the cell trap 11).
(4) Analysis The calculation was the same as in Example 1.
(5) Results The number of red blood cells in the cell concentrate at this time was 8.1 × 10 8 , the red blood cell removal rate was 99.4%, the mononuclear cell recovery rate was 68.5%, and the mononuclear cell concentration was 5.6. × 10 6 cells / mL, the mononuclear cell concentration factor was 6.5 times, the mononuclear cell content was 49.1%, and the platelet concentration factor was 2.4 times.

[実施例5]
(1)細胞捕捉器の作製
実施例1と同じものを使用した。
(2)赤血球層排出操作
CPD加ヒト末梢血液58mLが貯留された体液貯留バッグ14に、5%デキストラン(和光純薬「Dextran200,000」)を溶解した生理食塩液30mLを添加して、10分間混和した。そして、30分間静置して赤血球を沈降させた後、体液貯留バッグ14の下方に沈降した赤血球に偏った層を赤血球廃棄管1を通じで体液貯留バッグ14の外に排出した。この時、下層の赤血球に偏った層と上層の有核細胞と血小板に偏った層との界面を乱さないように注意し、かつ上層を排出しないようにゆっくりと排出した。この時のCPD加ヒト末梢血液中の赤血球数と上層の有核細胞と血小板に偏った層の赤血球数を多項目自動血球分析装置(シスメックス社SF3000)を用いて測定した結果、それぞれ1.3×1011個、9.1×10個であった。
(3)細胞濃縮操作
実施例1と同様の操作を行った。この時に回収された細胞濃縮液量は5.0mL(細胞捕捉器11の0.71容)であった。
(4)分析
実施例1と同様の計算式にて算出した。
(5)結果
この時の細胞濃縮液の赤血球数は7.3×10個、赤血球除去率は99.4%、単核細胞回収率は71.3%、単核細胞濃度は7.1×10個/mL、単核細胞濃縮倍率は8.3倍、単核細胞含有率は51.2%、血小板濃縮倍率は2.7倍であった。
[Example 5]
(1) Production of cell trap The same as in Example 1 was used.
(2) Erythrocyte layer draining operation 30 mL of physiological saline solution in which 5% dextran (Wako Pure Chemical "Dextran 200,000") is dissolved is added to the body fluid storage bag 14 in which 58 mL of CPD-added human peripheral blood is stored for 10 minutes. Mixed. Then, after standing for 30 minutes to sediment the red blood cells, the layer biased to the red blood cells settled below the body fluid storage bag 14 was discharged out of the body fluid storage bag 14 through the red blood cell waste tube 1. At this time, care was taken not to disturb the interface between the lower layer of red blood cells and the upper layer of nucleated cells and the layer of platelets, and the cells were slowly discharged so as not to discharge the upper layer. At this time, the number of red blood cells in the CPD-added human peripheral blood and the number of red blood cells in the upper layer of nucleated cells and platelets were measured using a multi-item automatic blood cell analyzer (Sysmex SF3000). × 10 11 and 9.1 × 10 9 .
(3) Cell concentration operation The same operation as in Example 1 was performed. The amount of the cell concentrate collected at this time was 5.0 mL (0.71 volume of the cell trap 11).
(4) Analysis The calculation was the same as in Example 1.
(5) Results The number of red blood cells in the cell concentrate at this time was 7.3 × 10 8 , the red blood cell removal rate was 99.4%, the mononuclear cell recovery rate was 71.3%, and the mononuclear cell concentration was 7.1. × 10 6 cells / mL, mononuclear cell concentration factor was 8.3 times, mononuclear cell content was 51.2%, and platelet concentration factor was 2.7 times.

[比較例1]
(1)細胞捕捉器の作製
実施例1と同様のものを使用した。
(2)赤血球層排出操作
赤血球排出操作は行わず、CPD加ヒト末梢血液58mLが貯留された体液貯留バッグ14をそのまま用いた。この時のCPD加ヒト末梢血液中の赤血球数を多項目自動血球分析装置(シスメックス社SF3000)を用いて測定した結果、1.3×1011個であった。
(3)細胞濃縮操作
CPD加ヒト末梢血液58mLが貯留された体液貯留バッグ14と細胞導入管4を接続し、クランプ21を開けて体液貯留バッグ14に貯留されたCPD加ヒト末梢血液を落差により細胞捕捉器11に導入して濾過を開始した。濾液はドレインバッグ12に貯留した。体液貯留バッグ14内の全てのCPD加ヒト末梢血液が細胞捕捉器11に導入され、細胞捕捉器の入口側空間は空気で満たされ、細胞捕捉器の出口側空間には濾液が残留している状態で濾過が終了した。次に、クランプ21、22を閉じた。次に、10%デキストラン生理食塩水溶液(小林製薬「デキストラン40注」)にヒト血清アルブミンを最終濃度3%になるように添加した液体23mLと空気15mLをシリンジに充填し、クランプ23 を開けて注入口33から手動でシリンジ中の液体と空気を押出し、フィルターに捕捉された細胞を回収バッグ13 に回収して細胞濃縮液を得た。この時回収された細胞濃縮液量は25.1mL(細胞捕捉器11の3.59容)であった。
(4)分析
実施例1と同様の計算式にて算出した。
(5)結果
この時の細胞濃縮液の赤血球数は1.6×1010個、赤血球除去率は87.7%、単核細胞回収率は77.9%、単核細胞濃度は1.3×10個/mL、単核細胞濃縮倍率は1.8倍、単核細胞含有率は39.0%、血小板濃縮倍率は0.5倍であり、赤血球の混入が多く単核細胞の濃度や血小板濃縮倍率も低かった。
[Comparative Example 1]
(1) Production of cell trap The same device as in Example 1 was used.
(2) Red blood cell layer discharge operation The red blood cell discharge operation was not performed, and the body fluid storage bag 14 in which 58 mL of CPD-added human peripheral blood was stored was used as it was. The number of red blood cells in CPD-added human peripheral blood at this time was measured using a multi-item automatic blood cell analyzer (Sysmex Corporation SF3000), and found to be 1.3 × 10 11 .
(3) Cell Concentration Operation The body fluid storage bag 14 in which 58 mL of CPD-added human peripheral blood is stored and the cell introduction tube 4 are connected, the clamp 21 is opened, and the CPD-added human peripheral blood stored in the body fluid storage bag 14 is dropped. It was introduced into the cell trap 11 and filtration was started. The filtrate was stored in the drain bag 12. All the CPD-added human peripheral blood in the body fluid storage bag 14 is introduced into the cell trap 11, the inlet side space of the cell trap is filled with air, and the filtrate remains in the outlet side space of the cell trap. Filtration was completed in the state. Next, the clamps 21 and 22 were closed. Next, 23 mL of liquid added with human serum albumin to a final concentration of 3% and 10 mL of air in a 10% dextran physiological saline solution (Kobayashi Pharmaceutical "Dextran 40 Injection") is filled into a syringe, and the clamp 23 is opened for injection. The liquid and air in the syringe were manually pushed out from the inlet 33, and the cells captured by the filter were collected in the collection bag 13 to obtain a cell concentrate. The amount of the cell concentrate collected at this time was 25.1 mL (3.59 volumes of the cell trap 11).
(4) Analysis The calculation was the same as in Example 1.
(5) Results The number of red blood cells in the cell concentrate at this time was 1.6 × 10 10 cells, the red blood cell removal rate was 87.7%, the mononuclear cell recovery rate was 77.9%, and the mononuclear cell concentration was 1.3. × 10 6 cells / mL, mononuclear cell enrichment factor is 1.8 times, mononuclear cell content is 39.0%, platelet enrichment factor is 0.5 times, and the concentration of mononuclear cells is high with red blood cell contamination The platelet concentration factor was also low.

[比較例2]
(1)細胞捕捉器の作製
実施例1と同じものを使用した。
(2)赤血球層排出操作
実施例1と同じ操作を行った。この時のCPD加ヒト末梢血液中の赤血球数と上層の有核細胞と血小板に偏った層の赤血球数を多項目自動血球分析装置(シスメックス社SF3000)を用いて測定した結果、それぞれ1.3×1011個、6.3×10個であった。
(3)細胞濃縮操作
濾過終了後にエアベントフィルター41にシリンジを用いて空気4.5mLを導入して細胞捕捉器内に残留している濾液を押出し、ドレインバッグ12へ貯留した以外は、実施例2と同様の操作を行った。この時の回収された細胞濃縮液量は1.1mL(細胞捕捉器11の0.16容)であった。
(4)分析
実施例1と同様の計算式にて算出した。
(5)結果
この時の細胞濃縮液の赤血球数は1.6×10個、赤血球除去率は98.8%、単核細胞回収率は44.1%、単核細胞濃度は2.1×10個/mL、単核細胞濃縮倍率は24.5倍、単核細胞含有率は48.1%、血小板濃縮倍率は5.3倍であり、単核細胞の回収率が低く、細胞のロスが多かった。
[Comparative Example 2]
(1) Production of cell trap The same as in Example 1 was used.
(2) Red blood cell layer discharge operation The same operation as in Example 1 was performed. At this time, the number of red blood cells in the CPD-added human peripheral blood and the number of red blood cells in the upper layer of nucleated cells and platelets were measured using a multi-item automatic blood cell analyzer (Sysmex SF3000). × 10 11 and 6.3 × 10 9 .
(3) Cell Concentration Operation Example 2 except that 4.5 mL of air was introduced into the air vent filter 41 using a syringe after filtration and the filtrate remaining in the cell trap was extruded and stored in the drain bag 12. The same operation was performed. The amount of the cell concentrate collected at this time was 1.1 mL (0.16 volume of the cell trap 11).
(4) Analysis The calculation was the same as in Example 1.
(5) Results The number of red blood cells in the cell concentrate at this time was 1.6 × 10 9 , the red blood cell removal rate was 98.8%, the mononuclear cell recovery rate was 44.1%, and the mononuclear cell concentration was 2.1. × 10 7 cells / mL, mononuclear cell enrichment factor is 24.5 times, mononuclear cell content is 48.1%, platelet enrichment factor is 5.3 times, and the recovery rate of mononuclear cells is low. There was a lot of loss.

[比較例3]
(1)細胞捕捉器の作製
実施例1と同じものを使用した。
(2)赤血球層排出操作
実施例1と同じ操作を行った。この時のCPD加ヒト末梢血液中の赤血球数と上層の有核細胞と血小板に偏った層の赤血球数を多項目自動血球分析装置(シスメックス社SF3000)を用いて測定した結果、それぞれ1.2×1011個、5.7×10個であった。
(3)細胞濃縮操作
回収時に、ドレインバッグ12に流入しフィルター材を通過した濾液5.5mLを、濾液採取ポート8にシリンジを接続して採取し、さらに空気を32.5mL充填し、クランプ23を開けて注入口33 から手動でシリンジ中の濾液と空気を押出す以外は実施例3と同じ操作を行った。この時の回収された細胞濃縮液量は12.1mL(細胞捕捉器11の1.73容)であった。
(4)分析
実施例1と同様の計算式にて算出した。
(5)結果
この時の細胞濃縮液の赤血球数は1.9×10個、赤血球除去率は98.4%、単核細胞回収率は75.0%、単核細胞濃度は3.1×10個/mL、単核細胞濃縮倍率は3.6倍、単核細胞含有率は39.5%、血小板濃縮倍率は1.4倍であり、単核細胞濃度や濃縮倍率が低く、また単核細胞含有率も低値であり効率的な単核細胞の濃縮ができなかった。
[Comparative Example 3]
(1) Production of cell trap The same as in Example 1 was used.
(2) Red blood cell layer discharge operation The same operation as in Example 1 was performed. At this time, the number of red blood cells in the CPD-added human peripheral blood and the number of red blood cells in the upper layer of nucleated cells and platelets were measured using a multi-item automatic blood cell analyzer (Sysmex SF3000). × 10 11 pieces, 5.7 × 10 9 pieces.
(3) Cell concentration operation At the time of collection, 5.5 mL of the filtrate that flowed into the drain bag 12 and passed through the filter material was collected by connecting a syringe to the filtrate collection port 8, and further filled with 32.5 mL of air. Was opened and the same operation as in Example 3 was performed except that the filtrate and air in the syringe were manually pushed out from the injection port 33. The amount of the cell concentrate collected at this time was 12.1 mL (1.73 volumes of the cell trap 11).
(4) Analysis The calculation was the same as in Example 1.
(5) Results The number of red blood cells in the cell concentrate at this time was 1.9 × 10 9 , the red blood cell removal rate was 98.4%, the mononuclear cell recovery rate was 75.0%, and the mononuclear cell concentration was 3.1. × 10 6 cells / mL, mononuclear cell concentration rate is 3.6 times, mononuclear cell content is 39.5%, platelet concentration rate is 1.4 times, mononuclear cell concentration and concentration rate are low, In addition, the mononuclear cell content was low, and it was not possible to concentrate mononuclear cells efficiently.

[比較例4]
(1)細胞捕捉器の作製
実施例1と同じものを使用した。
(2)赤血球層排出操作
赤血球排出操作は行わず、CPD加ヒト末梢血液58mLが貯留された体液貯留バッグ14をそのまま用いた。この時のCPD加ヒト末梢血液中の赤血球数を多項目自動血球分析装置(シスメックス社SF3000)を用いて測定した結果、1.6×1011個であった。
(3)細胞濃縮操作
CPD加ヒト末梢血液58mLが貯留された体液貯留バッグ14と細胞導入管4を接続し、クランプ21を開けて体液貯留バッグ14に貯留されたCPD加ヒト末梢血液を落差により細胞捕捉器11に導入して濾過を開始した。濾液はドレインバッグ12に貯留した。体液貯留バッグ14内の全てのCPD加ヒト末梢血液が細胞捕捉器11に導入され、細胞捕捉器の入口側空間は空気で満たされ、細胞捕捉器の出口側空間にはフィルター材を通過した濾液が残留している状態で濾過が終了した。次に、クランプ21、22を閉じた。続いてシリンジに空気38mLを充填し、クランプ23を開けて注入口33から手動でシリンジ中の空気を押出し、細胞捕捉器内のフィルター材を通過した濾液でフィルターに捕捉された細胞を回収し、回収バッグ13 に細胞濃縮液を回収した。この時の回収された細胞濃縮液量は3.1mL(細胞捕捉器11の0.44容)であった。
(4)分析
実施例1と同様の計算式にて算出した。
(5)結果
この時の細胞濃縮液の赤血球数は9.1×10個、赤血球除去率は94.2%、単核細胞回収率は50.6%、単核細胞濃度は7.1×10個/mL、単核細胞濃縮倍率は9.6倍、単核細胞含有率は47.4%、血小板濃縮倍率は2.4倍であり、赤血球の混入が多くまた単核細胞の回収率も低値であった。
[Comparative Example 4]
(1) Production of cell trap The same as in Example 1 was used.
(2) Red blood cell layer discharge operation The red blood cell discharge operation was not performed, and the body fluid storage bag 14 in which 58 mL of CPD-added human peripheral blood was stored was used as it was. The number of red blood cells in CPD-added human peripheral blood at this time was measured using a multi-item automatic blood cell analyzer (Sysmex Corporation SF3000), and was 1.6 × 10 11 .
(3) Cell Concentration Operation The body fluid storage bag 14 in which 58 mL of CPD-added human peripheral blood is stored and the cell introduction tube 4 are connected, the clamp 21 is opened, and the CPD-added human peripheral blood stored in the body fluid storage bag 14 is dropped. It was introduced into the cell trap 11 and filtration was started. The filtrate was stored in the drain bag 12. All the CPD-added human peripheral blood in the body fluid storage bag 14 is introduced into the cell trap 11, the inlet side space of the cell trap is filled with air, and the filtrate that has passed through the filter material in the outlet side space of the cell trap. Filtration was completed with a residual amount remaining. Next, the clamps 21 and 22 were closed. Subsequently, the syringe was filled with 38 mL of air, the clamp 23 was opened, the air in the syringe was manually pushed out from the injection port 33, and the cells captured by the filter with the filtrate that passed through the filter material in the cell trap were collected. The cell concentrate was recovered in the recovery bag 13. The amount of the cell concentrate collected at this time was 3.1 mL (0.44 volume of the cell trap 11).
(4) Analysis The calculation was the same as in Example 1.
(5) Results The number of red blood cells in the cell concentrate at this time was 9.1 × 10 9 , the red blood cell removal rate was 94.2%, the mononuclear cell recovery rate was 50.6%, and the mononuclear cell concentration was 7.1. × 10 6 cells / mL, mononuclear cell enrichment factor is 9.6 times, mononuclear cell content is 47.4%, platelet enrichment factor is 2.4 times, there is a lot of red blood cell contamination, and mononuclear cells The recovery rate was also low.

[比較例5]
(1)細胞捕捉器の作製
実施例1と同じものを使用した。
(2)赤血球層排出操作
赤血球層排出操作は行わず、CPD加ヒト末梢血液58mLが貯留された体液貯留バッグ14に6%ヒドロキシエチルスターチ(ニプロファーマ「HES40(赤血球沈降剤)」)を12mL添加して、10分間混和した。この時のCPD加ヒト末梢血液中の赤血球数を多項目自動血球分析装置(シスメックス社SF3000)を用いて測定した結果、1.7×1011個であった。
(3)細胞濃縮操作
CPD加ヒト末梢血液と6%ヒドロキシエチルスターチが貯留された体液貯留バッグ14を10分間混和した後に細胞導入管4と接続した状態で30分間静置して赤血球を沈降させた。次に、クランプ21を開き、体液貯留バッグ14の下層の赤血球に偏った層を細胞捕捉器11に導入し、続いて上層の有核細胞と血小板に偏った層を同様に細胞捕捉器11に導入して濾過を開始した。濾液はドレインバッグ12に貯留した。体液貯留バッグ14内の全ての赤血球に偏った層と有核細胞と血小板に偏った層が細胞捕捉器11に導入され、細胞捕捉器11の入口側空間は空気で満たされ、細胞捕捉器の出口側空間にはフィルター材を通過した濾液が残留している状態で濾過が終了した。次に、10%デキストラン生理食塩水溶液(小林製薬「デキストラン40注」)にヒト血清アルブミンを最終濃度3%になるように添加した液体23mLと空気15mLをシリンジに充填し、クランプ23を開けて注入口33から手動でシリンジ中の液体と空気を押出し、フィルターに捕捉された細胞を回収バッグ13に回収して細胞濃縮液を得た。この時回収された細胞濃縮液量は25.8mL(細胞捕捉器11の3.69容)であった。
(3)分析
実施例1と同様の計算式にて算出した。
(4)結果
この時の細胞濃縮液の赤血球数は1.2×1010個、赤血球除去率は92.8%、単核細胞回収率は65.1%、単核細胞濃度は1.3×10個/mL、単核細胞濃縮倍率は1.5倍、単核細胞含有率は40.2%、血小板濃縮倍率は0.5倍であり、赤血球の混入が多くかつ単核細胞濃度も低値であった。
[Comparative Example 5]
(1) Production of cell trap The same as in Example 1 was used.
(2) Erythrocyte layer draining operation The erythrocyte layer draining operation is not performed, and 12 mL of 6% hydroxyethyl starch (Nipropharma “HES40 (erythrocyte sedimenting agent)”) is added to the body fluid storage bag 14 in which 58 mL of CPD-added human peripheral blood is stored. And mixed for 10 minutes. The number of red blood cells in the CPD-added human peripheral blood at this time was measured using a multi-item automatic blood cell analyzer (Sysmex Corporation SF3000), and the result was 1.7 × 10 11 .
(3) Cell Concentration Operation The CPD-added human peripheral blood and the body fluid storage bag 14 storing 6% hydroxyethyl starch are mixed for 10 minutes and then left to stand for 30 minutes in a state connected to the cell introduction tube 4 to precipitate red blood cells. It was. Next, the clamp 21 is opened, and the layer biased toward the lower red blood cells of the body fluid storage bag 14 is introduced into the cell trap 11. Subsequently, the upper layer nucleated cells and the layer biased toward platelets are similarly applied to the cell trap 11. Introduction and filtration was started. The filtrate was stored in the drain bag 12. All the red blood cell-biased layers, nucleated cells, and platelet-biased layers in the body fluid storage bag 14 are introduced into the cell trap 11, and the inlet side space of the cell trap 11 is filled with air. Filtration was completed with the filtrate passing through the filter material remaining in the outlet side space. Next, a syringe was filled with 23 mL of liquid and 15 mL of air, in which human serum albumin was added to a final concentration of 3% in 10% dextran physiological saline solution (Kobayashi Pharmaceutical "Dextran 40 Injection"), and the clamp 23 was opened for injection. The liquid and air in the syringe were manually pushed out from the inlet 33, and the cells captured by the filter were collected in the collection bag 13 to obtain a cell concentrate. The amount of the cell concentrate collected at this time was 25.8 mL (3.69 volumes of the cell trap 11).
(3) Analysis Calculated with the same calculation formula as in Example 1.
(4) Results The number of red blood cells in the cell concentrate at this time was 1.2 × 10 10 cells, the red blood cell removal rate was 92.8%, the mononuclear cell recovery rate was 65.1%, and the mononuclear cell concentration was 1.3. × 10 6 cells / mL, mononuclear cell concentration factor is 1.5 times, mononuclear cell content is 40.2%, platelet concentration factor is 0.5 times, and there is much red blood cell contamination and mononuclear cell concentration Was also low.

[比較例6]
(1)細胞捕捉器の作製
実施例1と同じものを使用した。
(2)赤血球層排出操作
実施例1と同様の操作を行った。この時のCPD加ヒト末梢血液中の赤血球数と上層の有核細胞と血小板に偏った層の赤血球数を多項目自動血球分析装置(シスメックス社SF3000)を用いて測定した結果、それぞれ1.4×1011個、8.9×10個であった。
(3)細胞濃縮操作
赤血球に偏った層を排出した後の有核細胞と血小板に偏った層が貯留された体液貯留バッグ14と細胞導入管4を接続し、クランプ21を開けて体液貯留バッグ14に貯留された上層の有核細胞と血小板に偏った層44mLを落差により細胞捕捉器11に導入して濾過を開始した。濾液はドレインバッグ12に貯留した。体液貯留バッグ14内の全ての有核細胞と血小板に偏った層が細胞捕捉器11 に導入され、細胞捕捉器11の入口側空間は空気で満たされ、細胞捕捉器11の出口側空間にはフィルター材を通過した濾液が残留している状態で濾過が終了した。次に、10%デキストラン生理食塩水溶液(小林製薬「デキストラン40注」)にヒト血清アルブミンを最終濃度3%になるように添加した液体23mLと空気15mLをシリンジに充填し、クランプ23を開けて注入口33から手動でシリンジ中の液体と空気を押出し、フィルターに捕捉された細胞を回収バッグ13 に回収して細胞濃縮液を得た。この時回収された細胞濃縮液量は25.8mL(細胞捕捉器11の3.69容)であった。
(4)分析
実施例1と同様の計算式にて算出した。
(5)結果
この時の細胞濃縮液の赤血球数は2.6×10個、赤血球除去率は98.1%、単核細胞回収率は72.5%、単核細胞濃度は1.4×10個/mL、単核細胞濃縮倍率は1.6倍、単核細胞含有率は40.1%、血小板濃縮倍率は0.6倍であり、赤血球の混入もあり単核細胞濃度も低く単核細胞含有率も低値であり効率的に単核細胞を濃縮できなかった。
[Comparative Example 6]
(1) Production of cell trap The same as in Example 1 was used.
(2) Red blood cell layer discharge operation The same operation as in Example 1 was performed. At this time, the number of red blood cells in the CPD-added human peripheral blood and the number of red blood cells in the upper layer of nucleated cells and platelets were measured using a multi-item automatic blood cell analyzer (Sysmex SF3000). × 10 11 and 8.9 × 10 9 .
(3) Cell concentration operation The nucleated cells after discharging the layer biased to red blood cells and the body fluid storage bag 14 storing the layer biased to platelets and the cell introduction tube 4 are connected, the clamp 21 is opened, and the body fluid storage bag The upper layer nucleated cells stored in 14 and 44 mL of the layer biased to platelets were introduced into the cell trap 11 by a drop, and filtration was started. The filtrate was stored in the drain bag 12. All nucleated cells and platelet-biased layers in the body fluid storage bag 14 are introduced into the cell trap 11, the inlet side space of the cell trap 11 is filled with air, and the outlet side space of the cell trap 11 is in the outlet side space. Filtration was completed with the filtrate passing through the filter material remaining. Next, a syringe was filled with 23 mL of liquid and 15 mL of air, in which human serum albumin was added to a final concentration of 3% in 10% dextran physiological saline solution (Kobayashi Pharmaceutical "Dextran 40 Injection"), and the clamp 23 was opened for injection. The liquid and air in the syringe were manually pushed out from the inlet 33, and the cells captured by the filter were collected in the collection bag 13 to obtain a cell concentrate. The amount of the cell concentrate collected at this time was 25.8 mL (3.69 volumes of the cell trap 11).
(4) Analysis The calculation was the same as in Example 1.
(5) Results The number of red blood cells in the cell concentrate at this time was 2.6 × 10 9 , the red blood cell removal rate was 98.1%, the mononuclear cell recovery rate was 72.5%, and the mononuclear cell concentration was 1.4. × 10 6 cells / mL, mononuclear cell concentration factor is 1.6 times, mononuclear cell content is 40.1%, platelet concentration factor is 0.6 times, and there is also contamination of red blood cells and mononuclear cell concentration The mononuclear cell content was low and the mononuclear cells could not be concentrated efficiently.


本発明による単核細胞と血小板の濃縮方法は、簡便に高濃度の単核細胞と血小板の混合溶液が調製可能であり、かつ完全自己成分のみで構成されるため感染等のリスクもないので、再生医療や細胞治療において有用である。本発明による濃縮方法は効率的なので、体液量が少量の場合、特に有用である。   The method for concentrating mononuclear cells and platelets according to the present invention can easily prepare a mixed solution of mononuclear cells and platelets at a high concentration, and since there is no risk of infection or the like because it is composed solely of complete self-components, Useful in regenerative medicine and cell therapy. Since the concentration method according to the present invention is efficient, it is particularly useful when the amount of body fluid is small.

本発明の赤血球沈降剤を添加し、有核細胞と血小板に偏った層と赤血球に偏った層とに分離するためのシステムの一例を示す模式図である。It is a schematic diagram which shows an example of the system for adding the erythrocyte sedimentation agent of this invention and isolate | separating into the layer biased to the nucleated cell and platelet, and the layer biased to erythrocytes. 本発明の単核細胞と血小板の濃縮を行うための濃縮システムの一例を示す模式図である。It is a schematic diagram which shows an example of the concentration system for concentrating the mononuclear cell and platelet of this invention.

符号の説明Explanation of symbols

1・・・赤血球廃棄管
2・・・細胞導入管接続部
3・・・注入部
4・・・細胞導入管
5・・・濾液回収管
6・・・注入管
7・・・細胞回収管
8・・・濾液採取ポート
11・・・細胞捕捉器
12・・・ドレインバッグ
13・・・回収バッグ
14・・・体液貯留バッグ
21、22、23・・・クランプ
31、32・・・T字管
33・・・注入口
41・・・エアベントフィルター
100・・・濃縮システム
DESCRIPTION OF SYMBOLS 1 ... Red blood cell waste tube 2 ... Cell introduction tube connection part 3 ... Injection | pouring part 4 ... Cell introduction tube 5 ... Filtrate collection tube 6 ... Injection tube 7 ... Cell collection tube 8 ... Filtrate collection port 11 ... Cell trap 12 ... Drain bag 13 ... Recovery bag 14 ... Body fluid storage bags 21, 22, 23 ... Clamps 31, 32 ... T-tube 33 ... Inlet 41 ... Air vent filter 100 ... Concentration system

Claims (6)

入口と出口を有する容器に細胞捕捉フィルター材を充填した細胞捕捉器と、回路と、バッグとを有するフィルターシステムを用いて、赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法であって、
前記フィルター材は平均繊維径が1.0μm以上30μm以下の不織布であり、
バッグに貯留された前記体液に赤血球沈降剤を添加し、
有核細胞と血小板に偏った層と赤血球に偏った層とに分離して、
前記有核細胞と血小板に偏った層のみを前記細胞捕捉器に導入して有核細胞と血小板を前記フィルター材に捕捉させた後に、
前記細胞捕捉器の0.2容以上1.0容未満の、前記フィルター材を通過した濾液のみを、気体で押し出して前記フィルター材に導入して、
前記フィルター材に捕捉されている単核細胞と血小板を選択的に回収することを特徴とする赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法。
Mononuclear cells and platelets from body fluids containing red blood cells, nucleated cells, and platelets using a filter system having a cell trapping device filled with a cell trapping filter material in a container having an inlet and an outlet, a circuit, and a bag A method of concentrating
The filter material is a nonwoven fabric having an average fiber diameter of 1.0 μm to 30 μm,
Add an erythrocyte sedimentation agent to the body fluid stored in the bag,
Separated into nucleated cells and a layer biased to platelets and a layer biased to red blood cells,
After introducing only the nucleated cells and platelet-biased layer into the cell trap and capturing the nucleated cells and platelets in the filter material,
Only the filtrate that has passed through the filter material of 0.2 volume or more and less than 1.0 volume of the cell trap, is extruded with gas and introduced into the filter material,
A method for concentrating mononuclear cells and platelets from a body fluid comprising erythrocytes, nucleated cells and platelets, wherein the mononuclear cells and platelets captured by the filter material are selectively collected.
前記気体が、空気であることを特徴とする請求項1に記載の赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法。   2. The method of concentrating mononuclear cells and platelets from a body fluid comprising red blood cells, nucleated cells and platelets according to claim 1, wherein the gas is air. 前記細胞捕捉器の0.2容以上1.0容未満の、前記フィルター材を通過した濾液が、前記細胞捕捉器と回路に残存した濾液であることを特徴とする請求項1または2に記載の赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法。   The filtrate that has passed through the filter material in a volume of 0.2 to 1.0 volume of the cell trap is the filtrate remaining in the cell trap and the circuit. A method for concentrating mononuclear cells and platelets from a body fluid comprising red blood cells, nucleated cells and platelets. 前記赤血球沈降剤が、ヒドロキシエチルスターチまたはデキストランのいずれかであることを特徴とする請求項1乃至3のいずれかに記載の赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法。   4. The mononuclear cells and platelets from a body fluid comprising red blood cells, nucleated cells and platelets according to any one of claims 1 to 3, wherein the erythrocyte sedimenting agent is either hydroxyethyl starch or dextran. How to concentrate. 前記有核細胞と血小板に偏った層と赤血球に偏った層とに分離した後に、前記赤血球に偏った層をバッグから排出して、前記有核細胞と血小板に偏った層のみを前記細胞捕捉器に導入することを特徴とする請求項1乃至4のいずれかに記載の赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法。   After separating the nucleated cells and the layer biased to platelets and the layer biased to erythrocytes, the layer biased to erythrocytes is discharged from the bag, and only the layer that is biased to nucleated cells and platelets is captured. A method for concentrating mononuclear cells and platelets from a body fluid comprising erythrocytes, nucleated cells and platelets according to any one of claims 1 to 4, which is introduced into a vessel. 前記赤血球と有核細胞と血小板を含んでなる体液が、末梢血、臍帯血、骨髄液からなる群より選択される一の体液であることを特徴とする請求項1乃至5のいずれかに記載の赤血球と有核細胞と血小板を含んでなる体液から単核細胞と血小板を濃縮する方法。   6. The body fluid comprising the red blood cells, nucleated cells, and platelets is one body fluid selected from the group consisting of peripheral blood, umbilical cord blood, and bone marrow fluid. A method for concentrating mononuclear cells and platelets from a body fluid comprising red blood cells, nucleated cells and platelets.
JP2008142803A 2008-05-30 2008-05-30 Methods for enriching mononuclear cells and platelets Expired - Fee Related JP5336109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008142803A JP5336109B2 (en) 2008-05-30 2008-05-30 Methods for enriching mononuclear cells and platelets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142803A JP5336109B2 (en) 2008-05-30 2008-05-30 Methods for enriching mononuclear cells and platelets

Publications (2)

Publication Number Publication Date
JP2009284860A JP2009284860A (en) 2009-12-10
JP5336109B2 true JP5336109B2 (en) 2013-11-06

Family

ID=41454679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142803A Expired - Fee Related JP5336109B2 (en) 2008-05-30 2008-05-30 Methods for enriching mononuclear cells and platelets

Country Status (1)

Country Link
JP (1) JP5336109B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0951009A1 (en) * 2009-12-22 2011-06-23 Device and method for purification and enrichment of biological sample
WO2011111386A1 (en) * 2010-03-11 2011-09-15 株式会社カネカ Method for concentrating/recovering cells and cell eluting liquid
JP5923529B2 (en) * 2011-03-18 2016-05-24 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Flexible bag for cell culture
JP2013034436A (en) * 2011-08-09 2013-02-21 Kaneka Corp Method for concentrating cell suspension
JP5596007B2 (en) * 2011-12-09 2014-09-24 保幸 黒岩 Cell culture method and culture apparatus
JP6142042B1 (en) 2016-03-18 2017-06-07 株式会社村田製作所 Filtration filter for nucleated cells and filtration method using the same
JP6249124B1 (en) 2017-04-26 2017-12-20 株式会社村田製作所 Filtration filter for nucleated cells and filtration method using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087660A1 (en) * 2001-04-26 2002-11-07 Asahi Medical Co., Ltd. Blood filtration methods and blood filtration apparatus
JP2004121144A (en) * 2002-10-04 2004-04-22 Asahi Medical Co Ltd Method for collecting mononucleosis
JP2004129545A (en) * 2002-10-09 2004-04-30 Asahi Medical Co Ltd Method for collecting monocyte
JP4245324B2 (en) * 2002-10-09 2009-03-25 旭化成クラレメディカル株式会社 How to collect and recover monocytes
KR101098162B1 (en) * 2003-10-10 2011-12-22 아사히 카세이 쿠라레 메디칼 가부시키가이샤 Method of preparing cell concentrate and cell composition

Also Published As

Publication number Publication date
JP2009284860A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP4587959B2 (en) Method for preparing cell concentrate and cell composition
JP5336109B2 (en) Methods for enriching mononuclear cells and platelets
KR101674517B1 (en) Blood component separation system and separation material
JP5975985B2 (en) Mononuclear cell preparation material, and mononuclear cell preparation method using the preparation material
JPWO2002101029A1 (en) Method for separating and enriching cells for kidney regeneration
JP6707031B2 (en) Cell separation material and cell separation method
JP2003304865A (en) Method for separating cell
JP2002087971A (en) Method for separating living body tissue-regenerating cell and device for the same
JP5785713B2 (en) Leukocyte fraction collection device
JP4245324B2 (en) How to collect and recover monocytes
JP2001000178A (en) Method and apparatus for cell separation
JP2009102049A (en) Cell-containing composition preparing container and cell-containing composition producing instrument equipped with the cell-containing composition preparing container
JP4162128B2 (en) Sample for cytodiagnosis, preparation method and apparatus thereof
JP2012080821A (en) Method of concentrating nucleated cell component in blood
JPH11322618A (en) Separation and collection of nucleated cell, and liquid containing nucleated cell
JP2001161352A (en) Method for separating cell for regenerating biotissue, cell for regenerating biotissue and apparatus for separating cell for regenerating biotissue
JPH11335289A (en) Removal of blood platelet and cell composition
JPH119270A (en) Separation and recovery of nucleated cell and separating and recovering device for nucleated cell
JP3945725B2 (en) Cell separation method
JP4640991B2 (en) Monocyte selective capture material
JP4135894B2 (en) Method, recovery device and recovery system for recovering blood from which leukocytes remaining on the leukocyte removal filter have been removed
JP4333936B2 (en) Method for obtaining cells for regeneration of living bone tissue
JP2000139454A (en) Separation and recovery of cell and recovery required cell-containing liquid
JP2001078757A (en) Cell segregation and fluid for cell segregation
JP2000325071A (en) Separation/recovery of cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R150 Certificate of patent or registration of utility model

Ref document number: 5336109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees