JP4162128B2 - Sample for cytodiagnosis, preparation method and apparatus thereof - Google Patents

Sample for cytodiagnosis, preparation method and apparatus thereof Download PDF

Info

Publication number
JP4162128B2
JP4162128B2 JP2002298885A JP2002298885A JP4162128B2 JP 4162128 B2 JP4162128 B2 JP 4162128B2 JP 2002298885 A JP2002298885 A JP 2002298885A JP 2002298885 A JP2002298885 A JP 2002298885A JP 4162128 B2 JP4162128 B2 JP 4162128B2
Authority
JP
Japan
Prior art keywords
cells
cell
nucleated
capturing
nucleated cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002298885A
Other languages
Japanese (ja)
Other versions
JP2003202334A (en
Inventor
幹智 安武
修司 寺嶋
美鈴 築地
康子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Kuraray Medical Co Ltd
Original Assignee
Asahi Kasei Kuraray Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kuraray Medical Co Ltd filed Critical Asahi Kasei Kuraray Medical Co Ltd
Priority to JP2002298885A priority Critical patent/JP4162128B2/en
Publication of JP2003202334A publication Critical patent/JP2003202334A/en
Application granted granted Critical
Publication of JP4162128B2 publication Critical patent/JP4162128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、細胞中の染色体や、細胞表面のマーカー蛋白、マーカー物質の細胞内の局在などを検査する細胞診断用検体、該検体を調製する方法及び装置に関する。
【0002】
【従来の技術】
細胞そのもの、あるいは、細胞が含有する蛋白や遺伝子の検査において、赤血球や血小板などの無核成分が、診断の阻害物質となることが知られている。
例えば、遺伝子診断において、PCR(ポリメラーゼ連鎖反応)によりヒト遺伝子を増幅した後、各種の遺伝子検査を行うことが最近、頻繁に行われているが、PCRに用いる耐熱性DNAポリメラーゼが赤血球由来のヘモグロビンなどにより阻害され、増幅反応に支障をきたすことが知られている。
そこで赤血球を不織布などで除去する方法が提案されているが(例えば、特許文献1参照)、遺伝子診断では、DNAだけを取り出せばよいのでこの従来技術では、捕捉された細胞を溶解または破砕してしまう。
【0003】
しかしながら、HLA(ヒト白血球抗原)のタイピングや染色体異常の検査などにおいては、細胞がその形態を保っていることが望ましく、さらに、複数の種類の細胞の混合物から、狙いの細胞を単離あるいは濃縮して後に、細胞をそのまま、或いは溶解・破砕して検査する診断方法においても、初期段階の前処理として赤血球や血小板を除く際には、検査対象の細胞がその形態を保っていることが特に望まれる。
【0004】
このように細胞がその形態を保っていることが望まれる一例として、母体の血液に混入してくる胎児の赤芽球などの幼若有核細胞を用いて、胎児の染色体異常の有無を検査する母体中の胎児細胞診断が挙げられる(例えば、非特許文献1参照)。
【0005】
以上のように、細胞内あるいは細胞表面に存在する物質などを検査する細胞診断においては、細胞の形態を残したままで、検査対象細胞を回収することが強く望まれている。
【0006】
細胞診断のためではないが、回収細胞の凍結前処理のために、フィコール法やHES(ヒドロキシエチルスターチ)法などの遠心分離法が、細胞の形態を残したままで細胞を回収する方法として、従来から用いられてきた。たとえば、臍帯血の有核細胞回収では、特許文献2にフィコールハイパキュー(比重液による遠心分離)で分離すること(以下フィコール法と略す)及びそのプロトコールの詳細が開示されている。また、特許文献3には、ヒドロキシエチルスターチを用いて赤血球を沈降分離し、有核細胞濃厚液を得るためのバッグシステム、方法が開示されている。しかし、これら遠心法は、操作が煩雑でいずれも手間と時間がかかるという問題点を有している。
【0007】
前述した、母体中の胎児細胞診断においても、細胞を予備濃縮するための前処理として、フィコール法が採用されているが、時間と手間がかかり、多数の検体を検査するには適していない。さらに、リンパ球に比べて比重が大きい赤芽球はフィコール法では下層に沈んでしまうため、効率よく分離回収できない。
【0008】
研究レベルでは、密度1.083g/mlと1.090g/mlのパーコールと呼ばれる比重調整液を用いて分離を試みて回収率を向上させる検討がなされているが、操作が極めて煩雑であり、診断用にルーチンで実施するには実用上困難である(非特許文献2)。
【0009】
もう一つの前処理法として、フィルター濾過法が主に用いられている。フィルター濾過法でも、回収液中に赤血球が多く混入するため、混入量を減少させるために生理食塩水、BSA添加生理食塩水(特許文献4参照)、PBS(特許文献5参照)など、細胞に対するダメージを軽減し、かつ洗浄性の高いリンス液を用いているが、十分な効果は見られていない。リンス液を大量に使用すると細胞を回収しにくいという欠点を有している。フィルター法を利用して、洗浄液に溶血剤を用ることによって、赤血球を除去し、回収白血球純度を上げている例があるが(特許文献6参照)、赤芽球を溶血操作を用いて分離する方法は今までに行われていない。
【0010】
【特許文献1】
特開平8−280384号公報
【特許文献2】
特公平8−69号公報
【特許文献3】
国際公開第96/17514号パンフレット
【特許文献4】
特開平11−313887号公報
【特許文献5】
特開平10−137557号公報
【特許文献6】
特開昭54−122713号公報
【特許文献7】
国際公開98/32840号パンフレット
【特許文献8】
国際公開87/05812号パンフレット
【特許文献9】
特開平2−261833号公報
【非特許文献1】
「産婦人科の世界」 2001年、第53巻、第9号
【非特許文献2】
Fetal Diagn.Ther.1999年、第14巻、第4号、P.229
−233
【0011】
【発明が解決しようとする課題】
本発明の課題は、上記のような問題点を解決するために、フィルター法を発展させ、細胞診断用に適する細胞を、簡便でかつ短時間で効率よく分離回収する方法及び装置を提供することにある。特に、本発明は、未熟な細胞、特に赤芽球を、簡便かつ短時間に、細胞診断用検体として提供すること、及び該検体を調製する方法あるいは装置を提供することを課題とする。
【0012】
【課題を解決するための手段】
本出願人は、以前、臍帯血から、造血幹細胞を含む白血球を分離濃縮する方法として、フィルター法を開発した(特許文献7)。本発明者らは、上記課題を解決するために鋭意研究していたところ、本出願人が開発したこのフィルター法による細胞分離方法を、細胞診断用の細胞を分離するために使用できるのではないかと着想した。すなわち、フィルター法によれば、細胞が破壊されることなくそのままの形態で分離し得ることに着目し、フィルターによる分離回収法を胎児細胞である赤芽球の分離回収操作に応用した。さらに溶血処理を行い、混入する赤血球を除去するという方法を組み合わせた。このような方法が、細胞内や細胞表面に存在する物質を検査するために好適な細胞診断用の細胞として提供できるのではないかと発想した結果、本発明をなすに至ったものである。
【0013】
本発明は、有核細胞は捕捉し、核を持たない細胞は実質的に捕捉しない有核細胞捕捉手段に有核細胞含有液を導入して、有核細胞は捕捉させ、核を持たない細胞は流出させた後、該有核細胞捕捉手段に捕捉されている有核細胞を細胞の形態を保ったまま回収することを特徴とする細胞診断用検体の調製方法に関するものである。
本発明の方法は、特に、妊娠中の母体血液から、その母体血液に存在する胎児細胞である赤芽球を、その形態を保ったまま回収し細胞診断用に用いるために適している。
【0014】
さらに、本発明は、細胞診断用検体を調製するための細胞分離装置にも関するものであり、有核細胞は捕捉し、核を持たない細胞は実質的に捕捉しない有核細胞捕捉手段(1)と、該有核細胞捕捉手段の入口より上流に接続される、有核細胞含有液を前記有核細胞捕捉手段に注入する手段(2)と、前記有核細胞捕捉手段の出口より下流に接続される、前記有核細胞捕捉手段の出口から流出する液体を排液する手段(3)と、前記有核細胞捕捉手段の出口より下流に接続される、前記有核細胞捕捉手段に回収液を注入する手段(4)と、前記有核細胞捕捉手段の入口より上流に接続される、前記有核細胞捕捉手段の入口側から有核細胞を回収する手段(5)とからなることを特徴とする細胞診断用検体を調製するための細胞分離装置を提供するものである。
【0015】
さらに、本発明は、細胞診断用検体の調整方法により得られた有核細胞含有組成物に関するものである。
【0016】
これらの方法及び装置によると、細胞診断検体用の細胞を形態を保ったまま回収することができるので、細胞診断に適する細胞を、簡便に短時間に効率よく分離回収するのに有用である。
【0017】
【発明の実施の形態】
以下本発明を詳細に説明するが、本発明はそれに限られるわけではない。
本発明で言う有核細胞とは例えば、白血球のように核を持つ細胞のことであり、リンパ球、顆粒球、単球、造血幹細胞、赤芽球、などがあげられる。
本発明で言う核を持たない細胞とは赤血球、血小板などがあげられる。
【0018】
また、本発明で言う有核細胞含有液とは前記有核細胞を含有する液体のことであり、例えば末梢血、リンパ液、骨髄液、臍帯血、或いは、これらに抗凝固剤を混ぜたり、例えば遠心分離などの何らかの処理を施した液体等があげられる。
本発明で言う有核細胞成分とは、有核細胞そのもの、または有核細胞を構成しているタンパク質、核酸(DNA、RNA)などの成分をいう。
【0019】
本発明でいう赤芽球とは、赤血球に増殖、分化する能力を有する核を持つ細胞集団の全てをいい、例えば、BFU−e(赤芽球バースト形成細胞)、CFU−e(赤芽球コロニー形成細胞)などの赤血球前駆細胞も含まれる。実際に形態上識別できる細胞としては、前赤芽球細胞、あるいは好塩基性赤芽球、多染性赤芽球、正染性赤芽球などが含まれる。また、ヘモグロビンと核の両方を持つ細胞を総称して有核赤血球と定義されることもあるが、該細胞も本発明でいう赤芽球に含まれる。
【0020】
本発明でいう、妊娠中の母体血液とは、妊娠18週までの妊婦の静脈から採血した末梢血をいう。細胞診断という目的に対して、妊娠中の母体血液が有用であり、さらに診断の有効性を考慮すると、妊娠18週までの母体血液が有効である。
【0021】
さらに、本発明でいう胎児由来の有核細胞とは、妊婦の血液中に存在する胎児の有核細胞のことをいい、該血液中にごく微量存在する胎児由来の有核細胞をいう。
特に赤芽球は、正常成人の末梢血中には殆ど存在しないので、母体血液に存在する赤芽球を分離回収して細胞診断用検体として用いることができるなら、胎児疾患のスクリーニング等に有用である。したがって、本発明によって、赤芽球がそのままの形態を保ったまま分離回収され細胞診断用検体として用いられることの価値は高い。
【0022】
本発明における、有核細胞は捕捉し、核を持たない細胞は実質的に捕捉しない手段とは、例えば有核細胞は捕捉し、核を持たない細胞は実質的に捕捉しない材料を充填した容器があげられる。
【0023】
有核細胞は捕捉し、核を持たない細胞は実質的に捕捉しない材料には、通常の有核細胞捕捉材であればいかなる材料も使用できるが、成型性、滅菌性や細胞毒性が低いという点で好ましいものを例示すると、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、ナイロン、ポリエステル、ポリカーボネート、ポリアクリルアミド、ポリウレタン等の合成高分子、アガロース、セルロース、酢酸セルロース、キチン、キトサン、アルギン酸塩等の天然高分子、ハイドロキシアパタイト、ガラス、アルミナ、チタニア等の無機材料、ステンレス、チタン、アルミニウム等の金属があげられる。
【0024】
また、これらの捕捉材はこのままでも用いることができるが、血小板通過性を高める、或いは細胞の選択的捕捉を行う等の必要に応じ、表面改質を施したものでもよい。例えば、血小板通過性を高めるには特許文献8で提案されている非イオン性親水基と塩基性含窒素官能基を有するポリマーのコートによる方法等があげられ、細胞の選択的捕捉を行う場合、アミノ酸、ペプチド、糖類、糖タンパク(抗体、接着分子等のバイオリガンドを含む)といった、特定の細胞に親和性のあるリガンドを、例えば特許文献9で提案されているハロアセトアミド法により固定する方法等があげられる。
【0025】
また、捕捉材の形状としては粒状、繊 維塊、織布、不織布、スポンジ状多孔質体、平板等があげられるが、体積あたりの表面積が大きいという点で粒状、繊維塊、織布、不織布、スポンジ状多孔質体が好ましい。
【0026】
有核細胞は捕捉し、核を持たない細胞は実質的に捕捉しない材料を充填する容器として、成型性、滅菌性や細胞毒性が低いという点で好ましいものを例示すると、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、ナイロン、ポリエステル、ポリカーボネート、ポリアクリルアミド、ポリウレタン、塩化ビニル等の合成高分子、ハイドロキシアパタイト、ガラス、アルミナ、チタニア等の無機材料、ステンレス、チタン、アルミニウム等の金属があげられる。
【0027】
本発明における、有核細胞捕捉手段に導入して捕捉した細胞を回収する回収液は生理的溶液であればいかなるものも使用可能であるが、いくつか例示すると、生理食塩水、D−PBSやHBSSなどの緩衝液、RPMI1640などの培地があげられる。これらの生理的溶液に、細胞保護、栄養補給、凍結保存時の凍害保護等の目的で必要に応じ、デキストラン、ヒドロキシエチルデンプン、アルブミン、グロブリン、ゼラチン、グルコース、サッカロース、トレハロース等を添加してもよい。
【0028】
本発明における回収液の粘度は、5mPa・s以上500mPa・s以下とする。より好ましくは10mPa・s以上200mPa・s以下である。粘度が5mPa・s未満では有核細胞の回収率が急激に低下し、500mPa・sを超えると例えポンプを用いたとしても細胞捕捉手段への通液が著しく困難となり、作業性が劣る。また、圧力の上昇が起こりフィルターと各種手段との接続部がはずれる可能性もあり危険である。
【0029】
本発明における、溶血液とは、蒸留水、0.2%食塩水等の低張溶液、また、塩化アンモニウム溶血液等の、少なからず赤血球膜を溶解、あるいは破壊し、ヘモグロビンを遊出できる溶液をいう。それぞれの作用としては、蒸留水、0.2%食塩水等の低張溶液は、浸透圧の作用により、細胞内に低張溶液が流入することにより、細胞膜が破壊され溶血する。また、塩化アンモニウム溶血液は、酵素が活性化され、浸透圧の影響を受け、細胞内に水分が流入することにより、細胞膜が破壊され溶血する。一方で、赤芽球は赤血球よりも、これら溶血作用に不活性なため溶血しにくい。
【0030】
本発明の方法において、有核細胞を回収するに先立って、あらかじめ溶血液で捕捉細胞を処理することによって、赤血球が略完全に破壊され、赤芽球等の有核細胞は破壊されずに有核細胞捕捉手段に残るので、これらの細胞を回収すると、赤血球を実質的に全く含まない有核細胞含有組成物を得ることができる。
【0031】
本発明における極細繊維の平均繊維径は、0.1〜10μmが好ましく、より好ましくは1〜5μmが好ましい。また極細繊維集合体の容器に対する充填率は、0.1〜0.5g/立方cmが好ましい。
【0032】
平均繊維径が0.1μm未満または充填率が0.5g/立方cmを超える場合は、有核細胞含有液の濾過抵抗が高くなり流れにくくなる。一方、平均繊維径が10μmを超えるまたは充填率が0.1g/立方cm未満の場合は、有核細胞を捕捉する能力が著しく低下する。
【0033】
本発明における平均繊維径とは、以下の手順に従って求められる値をいう。即ち細胞吸着性極細繊維を構成する、実質的に均一と認められるフィルター要素の一部をサンプリングし、走査型電子顕微鏡などを用いて、1000〜3000倍の倍率で写真に撮る。サンプリングに際しては、フィルター要素の有効濾過断面積部分を、一辺が0.5〜1cmの正方形によって区分し、その中から3ヶ所以上、好ましくは5ヶ所以上をランダムサンプリングする。ランダムサンプリングするには、例えば上記各区分に番地を指定した後、乱数表を使うなどの方法で、必要ヶ所以上の区分を選べばよい。またサンプリングした各区分について、3ヶ所以上、好ましくは5ヶ所以上を写真に撮る。このようにして得た写真について写っている全ての繊維の直径を測定する。ここで直径とは、繊維軸に対して直角方向の繊維の幅をいう。測定した全ての繊維の直径の和を、繊維の数で割った値を平均繊維径とする。但し、複数の繊維が重なり合っており、他の繊維の陰になってその幅が測定できない場合、また複数の繊維が溶融するなどして、太い繊維になっている場合、更に著しく直径の異なる繊維が混在している場合、等々の場合には、これらのデータは削除する。以上の方法により、500本以上、好ましくは1000本以上のデータにより平均繊維径を求める。
【0034】
本発明における極細繊維集合体の容器に対する充填率とは、容器に充填された極細繊維集合体の単位体積あたりの重量のことをいう。即ち、容器に充填された極細繊維集合体の重量を容器の体積で除した値である。
【0035】
本発明における、カチオン性基を有するポリマーとは少なくともカチオン性である官能基、例えば、アミノ基等を有するモノマーと、非カチオン性である官能基、例えば、水酸基、エステル基等を有するモノマーの共重合体である。
【0036】
本発明における、少なくとも赤芽球を捕捉し、少なくとも赤血球は実質的に捕捉しない赤芽球捕捉手段としては、不織布フィルターが好ましく、該不織布フィルターは、例えば少なくとも表面にカチオン性基を有するポリマーを有し、かつ、該ポリマー中のカチオン性基を有するモノマーの密度が1×10−4〜5×10−1meq/平方mであることが好ましい。さらに好ましくは、ポリマー中のカチオン性基を有するモノマーの密度が1×10−3〜5×10−2meq/平方mであることが好ましい。カチオン性基を有するモノマーの密度が5×10−1meq/平方mを超える場合、様々な細胞が多く吸着し、詰まってしまい、有核細胞含有液の濾過抵抗が高くなり流れにくくなる傾向がある。一方カチオン性基を有するモノマーの密度が1×10−4meq/平方m未満の場合は赤芽球を捕捉する能力が著しく低下する傾向にある。
【0037】
本発明におけるポリマー中のカチオン性基を有するモノマーの密度とは、容器に充填された極細繊維集合体の単位面積あたりのカチオン性基を有するモノマーの当量をいう。それは、トリパンブルーの吸着量を測定することにより求められたカチオン性基を有するモノマーの当量を、極細繊維集合体の総表面積で除すことによって得られる値である。ここでいうトリパンブルーの吸着量を測定することにより求められたカチオン性基を有するモノマーの当量とは以下の手順で求められた値をいう。まず、ポリマーの1g/lメタノール溶液を、0.5、1.0、1.5、2.0mlずつサンプル瓶に調整し、溶媒を除くため、真空乾燥させたものを検量線用サンプル瓶とする。コーティング済の極細繊維集合体を入れたサンプル瓶と、検量線用コート済サンプル瓶とに、トリパンブルー液10ml(トリパンブルー0.018gを、トリスアミノメタン1.21gの注射用蒸留水1l溶液に溶かしたもの)を入れ、30℃で24−48時間振盪した後、対照を水とし、578nmで吸光度を測定する。その結果から検量線を書き、検量線からポリマーコート量を求める。その値に、カチオン性基を有するポリマーのモル分率を掛け、ポリマー1mol当りの重量で除して求める。
ここでいう極細繊維集合体の総表面積とは、極細繊維の平均繊維径、極細繊維集合体の比重、極細繊維集合体の総重量により求めることができ、以下の式で算出される。
極細線維集合体の表面積(m
=4×極細繊維集合体の総重量(g)/(極細繊維集合体の平均繊維径
(μm)×極細繊維集合体の比重(g/cm))
【0038】
また、カチオン性基を有するモノマーのモル分率が0.1〜30mol%であることが好ましい。
さらに好ましくは、カチオン性基を有するモノマーのモル分率が1〜15mol%である。カチオン性基を有するモノマーのモル分率が30mol%を超える場合は赤芽球含有液の濾過抵抗が高くなり流れにくくなる傾向がある。一方、プラス荷電を有するモノマーのモル分率が0.1mol%未満の場合は、赤芽球を捕捉する能力が著しく低下する傾向がある。
【0039】
本発明でいう有核細胞含有液を、有核細胞は捕捉し、核を持たない細胞は実質的に捕捉しない有核細胞捕捉手段に導入する方法としては、前記手段にチューブを介して有核細胞含有液を入れたバッグ或いはボトルを接続して落差、ローラーポンプ、バッグを押しつぶし液流を惹起させる、などにより導入するか、有核細胞含有液を入れたシリンジを接続し、手押しまたはシリンジポンプなどで送液して導入すればよい。
【0040】
有核細胞を該有核細胞捕捉手段に導入すると、有核細胞は該手段内に捕捉され、核を持たない細胞は該手段から流出するが、若干容器内にも残存する場合があるので、残存した核を持たない細胞を洗浄除去する目的で前記手段に洗浄液を導入して洗浄することが好ましい。洗浄液としては生理的溶液であればいかなるものも使用可能であるが、いくつか例示すると、生理食塩水、ダルベッコリン酸緩衝液(D−PBS)やハンクス液(HBSS)等の緩衝液、RPMI1640等の培地があげられる。これらの生理的溶液に、細胞保護、栄養補給等の目的で必要に応じ、デキストラン、ヒドロキシエチルデンプン、アルブミン、グロブリン、グルコース、サッカロース、トレハロース等を添加してもよい。洗浄液の送液方向は有核細胞含有液を導入した方向と同一方向が好ましい。逆方向ではこの洗浄操作により、有核細胞が漏出してしまうおそれがある。
【0041】
本発明における、前記有核細胞捕捉手段に回収液を導入する方法としては、該手段にチューブを介して回収液を入れたバッグ或いはボトルを接続して落差、ローラーポンプ、バッグ押しつぶしなどで送液するか、回収液を入れたシリンジを接続し、手押しまたはシリンジポンプなどで送液すればよい。この際、回収液の送液方向としては、有核細胞含有液を導入した方向と同一方向、その逆方向の2通りがあるが、一般に細胞回収率は後者の方が高いので好ましい。回収液の流速は早い方が回収率が高くなるので好ましい。
【0042】
次に本発明の細胞分離装置について図面を参照しながら説明する。
図1は、本発明の細胞分離装置の一実施態様を示すものであって、有核細胞は捕捉し、核を持たない細胞は実質的に捕捉しない有核細胞捕捉手段(1)と、該有核細胞捕捉手段の入口より上流に接続される、有核細胞含有液を前記有核細胞捕捉手段に注入する手段(2)と、前記有核細胞捕捉手段の出口より下流に接続される、前記有核細胞捕捉手段の出口から流出する液体を排液する手段(3)と、前記有核細胞捕捉手段の出口より下流に接続される、前記有核細胞捕捉手段に回収液を注入する手段(4)と、前記有核細胞捕捉手段の入口より上流に接続される、前記有核細胞捕捉手段の入口側から細胞を回収する手段(5)と、核を持たない細胞を洗浄除去するための溶血液、あるいは洗浄液を注入するための手段(6)とを有している。
【0043】
本発明で言う有核細胞捕捉手段の入口より上流に接続される、有核細胞含有液を前記有核細胞捕捉手段に注入する手段(2)は、有核細胞含有液が貯留されている容器等への接続、または有核細胞含有液の存在する組織への接続によって形成され得るものである。前者の接続の具体例をあげると、例えば有核細胞含有液を貯留している容器がバッグであれば、スパイク付チューブ、ルアーアダプター(オス、メス)付チューブ、或いは無菌接続器による接続(以下「SCD接続」と言う)を行うのであれば単なるチューブ、といったように適宜選択する。有核細胞含有液を貯留している容器が針付シリンジであれば穿刺可能なセプタム付チューブ、針無しでルアー口の場合はルアーアダプター(メス)というように適宜選択する。後者の接続の具体例をあげると、例えば臍帯血を対象とした場合、当該組織は胎盤及び/または臍帯であり、これらに穿刺可能な金属針付チューブがあげられる。チューブの場合には途中に流量調整の為のローラークランプ、凝集塊除去の為のメッシュチャンバー等を有してもよい。また、シリンジの場合、チューブを介さず有核細胞捕捉手段の入口に直接接続してもよい。
本発明でいう有核細胞捕捉手段の出口より下流に接続される、前記有核細胞捕捉手段から流出する液体を排液する手段(3)の接続回路は、排液される液体をいかなる手段で収集(または廃棄)するかにより、以下のように分けられる。即ち、バッグに収集する場合は、予めバッグを接続しておくか、バッグと接続可能な手段、即ち、スパイク付チューブ、ルアーアダプター(オス、メス)付チューブ、或いはSCD接続を行うのであれば単なるチューブというように適宜選択する。また、コニカルチューブに収集する場合や、廃液ビンあるいは廃液チューブに廃棄する場合は先端が開放されていればよく、ルアー口のシリンジで収集する場合はルアーアダプター(メス)を用いる。また、シリンジの場合、チューブを介さず有核細胞捕捉手段の出口に直接接続してもよい。
【0044】
本発明でいう有核細胞捕捉手段の出口より下流に接続される、前記有核細胞捕捉手段に回収液を注入する手段(4)の接続は、有核細胞捕捉手段に注入する回収液を入れた容器を予め接続しておくか、後から接続可能とするか、また回収液の注入手段により以下のように分けられる。即ち、有核細胞捕捉手段に注入する回収液を入れた容器を予め接続しておく場合は、バッグ付チューブ、シリンジとなる。バッグの場合、有核細胞捕捉手段に回収液を注入する方法としては、落差による方法、バッグを押しつぶす方法、ローラーポンプを用いる方法があげられる。有核細胞捕捉手段に注入する回収液を入れた容器を後から接続する場合、シリンジを用いる場合はシリンジが接続可能である穿刺可能なセプタム付チューブ、ルアーアダプター(メス)付チューブ、三方活栓付チューブなどがあげられる。バッグを用いる場合はバッグと接続可能な手段、即ち、スパイク付チューブ、ルアーアダプター(オス、メス)付チューブ、或いはSCD接続を行うのであれば単なるチューブというように適宜選択する。また、シリンジの場合、チューブを介さず有核細胞捕捉手段の出口に直接接続してもよい。
【0045】
また、回収液の注入手段(4)には回収操作を複数回行う際に、それぞれ別々の回収液を用いる場合の為に複数の分岐を設けることが好ましい。具体的には三方活栓、四方活栓を用いる方法、クランプを用いる方法、シリンジ接続可能な三つ又分岐管を用いる方法(要時にシリンジを接続)がある。また、前述の、シリジンを直接、チューブを介さずに有核細胞捕捉手段の出口に接続した場合は、回収液毎にシリンジを交換することで対応すればよい。
【0046】
本発明でいう有核細胞捕捉手段の入口より上流に接続される、前記有核細胞捕捉手段の入口側から細胞を回収する回収手段(5)の接続回路は、有核細胞捕捉手段から流出した細胞をいかなる容器で回収するかにより、以下のように分けられる。即ち、バッグに回収する場合は、予めバッグを接続しておくか、バッグと接続可能な手段、即ち、スパイク付チューブ、ルアーアダプター(オス、メス)付チューブ、或いはSCD接続を行うのであれば単なるチューブというように適宜選択する。また、コニカルチューブに収集する場合は先端が開放されていればよく、ルアー口のシリンジで回収する場合にはルアーアダプター(メス)、三方活栓などを用いる。また、シリンジの場合、チューブを介さず有核細胞捕捉手段の入口に直接接続してもよい。ここで、有核細胞を該有核細胞捕捉手段から流出させる回収液が、その後の凍結保存される場合は、有核細胞を回収する容器も凍結保存用のものであることが好ましい。凍結保存容器の例をあげると、「クリオサイト」(バクスター社製)、「セルフリーズバッグ」(チャーターメド社製)等の凍結バッグがあげられる。
【0047】
また、有核細胞を回収する手段(5)は流路切替え手段と複数の分岐を有することが好ましい。これは回収操作を複数回行い、それぞれの有核細胞成分を別々に回収するためのものであるが、具体的には三方活栓、四方活栓を用いる方法、クランプを用いる方法がある。
また、前述の、シリンジを直接、チューブを介さずに有核細胞捕捉手段の入口に接続した場合は、回収液毎にシリンジを交換することで対応すればよい。
【0048】
本発明による有核細胞分離装置は、有核細胞捕捉手段に捕捉された細胞を該有核細胞捕捉手段から回収する前に、該有核細胞捕捉手段に残存する核を持たない細胞を洗浄するための溶血液、あるいは洗浄液を注入する手段(6)を設けることがより好ましい。溶血液、あるいは洗浄液注入手段(6)の接続回路は溶血液または洗浄液を入れた容器を予め接続しておくか、後から接続可能とするか、また液体の注入手段により以下のように分けられる。即ち、溶血液、あるいは洗浄液を入れた容器を予め接続しておく場合は、バッグ付チューブ、シリンジとなる。溶血液、あるいは洗浄液を入れた容器を後から接続する場合、シリンジを用いる場合はシリンジが接続可能である穿刺可能なセプタム付チューブ、ルアーアダプター(メス)付チューブがあげられる。バッグを用いる場合はバッグと接続可能な手段、即ち、スパイク付チューブ、ルアーアダプター(オス、メス)付チューブ、或いはSCD接続を行うのであれば単なるチューブというように適宜選択する。また、シリンジの場合チューブを介さず有核細胞捕捉手段の出口に直接接続してもよい。洗浄手段の、細胞捕捉手段への接続位置としては、入口側、出口側のいずれも可能であるが、入口側が操作の簡便さという点でより好ましい。
【0049】
図2には、上記のように回収を複数回行い、それぞれの有核細胞成分を別々に回収するための細胞分離装置の一実施態様を示す。図2において、1は、有核細胞捕捉手段である。有核細胞含有液注入手段は、有核細胞含有液を注入する手段のうち有核細胞含有液貯留容器へ接続するためのスパイク(2−1)、接続チューブ(2−2)、流路切替え手段(2−3)を含む。有核細胞捕捉手段の出口から流出する液体を排液する手段は、接続チューブ(3−1)、流路切替え手段(3−2)、排液を収集するバッグへ接続するためのスパイク(3−3)を含んでいる。4は、有核細胞捕捉手段の出口より下流に接続される、有核細胞捕捉手段に回収液を注入する手段である。有核細胞捕捉手段の入口側から細胞を回収する手段は、複数の流路に分岐するための分岐(5−1)、流路切替え手段(5−2、5−3)、回収液収集のための容器(5−4)、他の回収液収集のための容器を接続するためのスパイク(5−5)、接続チューブ(5−6、5−7)を含んでいる。
【0050】
以上に詳細に説明した本発明の細胞診断用検体の調製方法及び装置を用いて、細胞診断用の細胞を分離する場合、特に、赤芽球を高い濃縮率で回収することができた。
すなわち、本出願人による幹細胞分離用フィルター(特許文献7:非イオン性親水基と塩基性含窒素官能基を含有するポリマーでコートされた極細繊維集合体を充填したフィルター)を用いて、臍帯血から分離した有核細胞をコロニーアッセイすると、BFU-eでもない、CFU-eとしても小さすぎる多くの赤色コロニーが見られた。これはフィコールにもHES遠心法にもない特徴であり、比重遠心法では回収できなかった赤芽球がフィルター法によって回収できていることを示すものである。このことから、本発明のフィルター法は、赤芽球回収のために非常に有効な手段になると考えられる。母体血液中の胎児赤芽球細胞は存在頻度が低いので、本発明によって赤芽球をそのままの形態を保って回収できることは、特に有用である。
【0051】
本発明における、有核細胞分離回収方法によって得られた有核細胞含有組成物とは、白血球のように核を持つ細胞、例えばリンパ球、顆粒球、単球、造血幹細胞、赤芽球等を含有した回収液であり、細胞診断用検体としてそのまま用いることもできるし、遠心分離により濃縮するなどの調製をした後、細胞診断用検体として用いることもできる。
【0052】
【実施例】
以下に本発明の実施例を示すが、本発明はこれに限定されるわけではない。
【実施例1】
平均繊維径2.3ミクロンのポリエチレンテレフタレート不織布に非イオン性親水基を有する2−ヒドロキシエチルメタクリレートと、窒素を含む塩基性官能基を有するカチオン性モノマーであるN,N−ジメチルアミノエチルメタクリレートとの共重合体をコーティングして得られた濾過面積16平方cmの不織布を積層し、ポリカーボネート容器に充填さしてフィルターを作成した。該フィルターを使用して、ヒト臍帯血76ml(抗凝固剤CPDを28ml含む)を濾過し、引き続いて10mlの3%ウシ血清アルブミンの生理食塩水溶液をフィルターに流して赤血球や血小板を洗い出した。あらかじめ用意していた25%ヒト血清アルブミン3mlとデキストラン40注射液23mlからなる回収液をシリンジに取り、フィルターの出口側から勢いよく流して不織布フィルターに捕捉された細胞を回収した。
3mlのコロニーアッセイ用メチルセルロース半固形培地メソカルトGFH4434Vに、細胞数が1×105個となるようにフィルターにより回収した細胞浮遊液を添加し、ボルテックスミキサーにかけ、細胞を均一に浮遊させ10mm培養ディッシュに播種し5%CO2インキュベータ中で培養した。開始後7日目に観察したところ、BFU−e、CFU−eの他に、肉眼で辛うじて確認できるが、細胞数が合計50個に満たない小さな赤色コロニーが1ディッシュあたり20個以上認められ、従来のフィコール法では見られない特徴を示した。
この実施例によって、従来のフィコール法では回収できなかった、赤血球に分裂可能な細胞である赤芽球がフィルターによって回収できていることが分かる。
【0053】
【実施例2】
インフォームドコンセントが得られた正常妊娠30週の妊婦から、末梢血20mlを採血し、生理食塩液で2倍に希釈して総量を40mlとした後、20mlずつに分けて実験に供した。片方をフィコールに重層して400G、30分間遠心分離し、中間層を採取し単核球分画とした。単核球分画は約1.5×10個の細胞を含んでいた。もう片方は平均繊維径2.3ミクロンのポリエチレンテレフタレート不織布に非イオン性親水基を有する2−ヒドロキシエチルメタクリレートと、窒素を含む塩基性官能基を有するカチオン性モノマーであるN,N−ジメチルアミノエチルメタクリレートとが97:3の重合比である共重合体をコーティングして得られた不織布を10枚積層してポリカーボネート製のミニカラムに充填して作製したミニフィルターに、30mlシリンジでゆっくりと注入して全量を濾過し、その後引き続いて20mlの生理食塩液を同じやり方で注入してミニフィルター中に残存している赤血球を洗浄除去した後、出口側から入口側方向に10mlの生理食塩液を勢いよく流し、濾材に捕捉された細胞を回収した。回収された細胞浮遊液は約4×10個の細胞を含み、うち単核球を約2.5×10個含んでいた。
ミニフィルターならびにフィコールで分離した細胞分画を単核球が1×10個含まれるように調整し、磁気細胞分離システムを用いてCD45陰性またはCD14陰性細胞、さらにCD71陽性細胞を分離しフローサイトメーターで純度を測定し、細胞数と存在率を求めた。フィコール分画群では約2×10個(存在率約0.2%)、ミニフィルター処理群では6×104個(存在率約0.6%)のCD45陰性またはCD14陰性細胞が得られた。そのうちCD71陽性細胞はフィコール処理群では約5×102個(全単核球に対して約0.005%)であり、ミニフィルター処理群では2×103個(全単核球に対して約0.02%)という結果であった。
【0054】
【実施例3】
平均繊維径2.3ミクロンのポリエチレンテレフタレート不織布に非イオン性親水基を有する2−ヒドロキシエチルメタクリレートと、窒素を含む塩基性官能基を有するカチオン性モノマーであるN,N−ジメチルアミノエチルメタクリレートと、エステル基を有する疎水性モノマーであるメチルメタクリレートとが6:1:3の重合比である共重合体をコーティングして得られたカチオン性基を有するモノマーの密度が1.50×10−2meq/平方m、濾過面積1.54平方cmの不織布を厚さ9mmになるように積層し、ポリカーボネート容器に、容器に対する充填率が0.23g/立方cmで充填してフィルターを作製した。該フィルターを使用して、ヒト末梢血と、臍帯血の有核成分をフィコール法によって分離したものを7:2の混合比で混合した血液7ml(抗凝固剤CPDを980μl含む)を濾過し、引き続いて10mlの0.83%塩化アンモニウム水溶液を流して、赤血球を溶血させ、引き続いて200mlの生理食塩液をフィルターに流して残存している赤血球や血小板を洗い出した。7mlデキストラン40注射液をシリンジに取り、フィルターの出口側から勢いよく流して不織布フィルターに捕捉された細胞を回収した。得られた回収液を濃縮して1mlにしたものを用いて遠心塗抹プレートを作成し、ヘモグロビン染色を行い、赤芽球をカウントしたところ、全細胞に対する赤芽球濃縮率は212倍であった。
ここでいう濃縮率とは、回収総細胞数に対する回収赤芽球数の割合を、元血液の総細胞数に対する赤芽球数の割合で除した値である。
【0055】
【実施例4】
平均繊維径2.3ミクロンのポリエチレンテレフタレート不織布に非イオン性親水基を有する2−ヒドロキシエチルメタクリレートと、窒素を含む塩基性官能基を有するカチオン性モノマーであるN,N−ジメチルアミノエチルメタクリレートとが97:3の重合比である共重合体をコーティングして得られたカチオン性基を有するモノマーの密度が4.26×10−3meq/平方m、濾過面積1.54平方cmの不織布を厚さ9mmになるように積層し、ポリカーボネート容器に容器に対する充填率が0.23g/立方cmで充填してフィルターを作製した。該フィルターを使用して、ヒト末梢血と、臍帯血の有核成分をフィコール法によって分離したものを7:2の混合比で混合した血液7ml(抗凝固剤CPDを980μl含む)を濾過し、引き続いて10mlの0.83%塩化アンモニウム水溶液を流して、赤血球を溶血させ、引き続いて200mlの生理食塩液をフィルターに流して残存している赤血球や血小板を洗い出した。7mlデキストラン40注射液をシリンジに取り、フィルターの出口側から勢いよく流して不織布フィルターに捕捉された細胞を回収した。得られた回収液を濃縮して1mlにしたものを用いて遠心塗抹プレートを作成し、ヘモグロビン染色を行い、赤芽球をカウントしたところ、全細胞に対する赤芽球濃縮率は151倍であった。
ここでいう濃縮率とは、回収総細胞数に対する回収赤芽球数の割合を、元血液の総細胞数に対する赤芽球数の割合で除した値である。
【0056】
【実施例5】
平均繊維径2.3ミクロンのポリエチレンテレフタレート不織布に非イオン性親水基を有する2−ヒドロキシエチルメタクリレートと、エステル基を有し、カチオン性モノマーであるメチルメタクリレートとが97:3の重合比である共重合体をコーティングして得られたカチオン性基を有するモノマーの密度が4.26×10−3meq/平方m、濾過面積1.54平方cmの不織布を厚さ9mmになるように積層し、ポリカーボネート容器に容器に対する充填率が0.23g/立方cmで充填されたフィルターを使用して、ヒト末梢血と、臍帯血の有核成分をフィコール法によって分離したものを7:2の混合比で混合した血液7ml(抗凝固剤CPDを980μl含む)を濾過し、引き続いて200mlの生理食塩液をフィルターに流して残存している赤血球や血小板を洗い出した。7mlデキストラン40注射液をシリンジに取り、フィルターの出口側から勢いよく流して不織布フィルターに捕捉された細胞を回収した。得られた回収液を濃縮して1mlにしたものを用いて遠心塗抹プレートを作成し、ヘモグロビン染色を行い、赤芽球をカウントしたところ、赤芽球濃縮率は99倍であった。
ここでいう濃縮率とは、回収総細胞数に対する回収赤芽球数の割合を、元血液の総細胞数に対する赤芽球数の割合で除した値である。
【0057】
【発明の効果】
以上のとおり、本発明の有核細胞は捕捉し、核を持たない細胞は実質的に捕捉しない手段を有する方法及び装置によると、有核細胞を細胞の形態を保ったまま回収することができるので、細胞診断用検体の調製のために有用であるという効果を奏することができる。
【図面の簡単な説明】
【図1】本発明の細胞分離装置の一実施態様を示す。
【図2】本発明の細胞分離装置の他の実施態様を示す。
【符号の説明】
1:有核細胞捕捉手段
2:有核細胞含有液注入手段
3:液体排液手段
4:回収液注入手段
5:有核細胞回収手段
6:リンス液注入手段
2−1:スパイク
2−2:接続チューブ
2−3:流路切替え手段
3−1:接続チューブ
3−2:流路切替え手段
3−3:スパイク
5−1:分岐手段
5−2:流路切替え手段
5−3:流路切替え手段
5−4:回収液収集容器
5−5:スパイク
5−6:接続チューブ
5−7:接続チューブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a specimen for cytodiagnosis for examining chromosomes in cells, marker proteins on the cell surface, intracellular localization of marker substances, and the like, and a method and apparatus for preparing the specimen.
[0002]
[Prior art]
In the examination of cells themselves, or proteins and genes contained in cells, it is known that anuclear components such as red blood cells and platelets are diagnostic inhibitors.
For example, in gene diagnosis, various gene tests have been frequently performed after amplifying a human gene by PCR (polymerase chain reaction), but the heat-resistant DNA polymerase used in PCR is hemoglobin derived from erythrocytes. It is known that the amplification reaction is hindered by such factors.
Therefore, a method of removing erythrocytes with a nonwoven fabric or the like has been proposed (see, for example, Patent Document 1). However, in genetic diagnosis, it is only necessary to take out DNA. In this conventional technique, the captured cells are lysed or crushed. End up.
[0003]
However, in HLA typing (human leukocyte antigen) typing and chromosomal aberration tests, it is desirable that the cells maintain their morphology, and that target cells are isolated or concentrated from a mixture of multiple types of cells. Even in a diagnostic method in which cells are examined as they are or after being lysed / disrupted, when removing red blood cells and platelets as a pretreatment in the initial stage, it is particularly preferable that the cells to be examined maintain their morphology. desired.
[0004]
As an example where it is desirable that the cells maintain their morphology in this way, fetal erythroblasts and other immature nucleated cells mixed in the mother's blood are used to check for fetal chromosomal abnormalities. And fetal cytodiagnosis in the mother (see, for example, Non-Patent Document 1).
[0005]
As described above, in cytodiagnosis for examining substances present in cells or on the cell surface, it is strongly desired to collect the cells to be examined while leaving the cell form intact.
[0006]
Although it is not for cytodiagnosis, a centrifugal method such as Ficoll method or HES (hydroxyethyl starch) method has been used as a method for recovering cells while leaving the cell shape in order to pre-freeze recovered cells. Has been used since. For example, in the recovery of nucleated cells from umbilical cord blood, Patent Document 2 discloses separation by Ficoll hypercue (centrifugation with a specific gravity solution) (hereinafter abbreviated as Ficoll method) and details of its protocol. Patent Document 3 discloses a bag system and method for obtaining a nucleated cell concentrate by precipitating and separating red blood cells using hydroxyethyl starch. However, these centrifugal methods have the problem that the operation is complicated and both of them require labor and time.
[0007]
In the above-described fetal cell diagnosis in the maternal body, the Ficoll method is employed as a pretreatment for preconcentrating the cells, but it takes time and effort and is not suitable for examining a large number of specimens. Furthermore, erythroblasts, which have a higher specific gravity than lymphocytes, sink into the lower layer by the Ficoll method and cannot be efficiently separated and recovered.
[0008]
At the research level, attempts have been made to improve the recovery by using a density adjusting liquid called Percoll with density of 1.083 g / ml and 1.090 g / ml, but the operation is extremely complicated and diagnosis Therefore, it is practically difficult to carry out routinely (Non-patent Document 2).
[0009]
As another pretreatment method, a filter filtration method is mainly used. Even in the filter filtration method, since a large amount of red blood cells are mixed in the collected liquid, physiological saline, BSA-added physiological saline (see Patent Document 4), PBS (see Patent Document 5), etc. are used to reduce the amount of the mixed cells. Although a rinse solution that reduces damage and has high cleaning properties is used, a sufficient effect has not been observed. When a large amount of rinsing solution is used, it has a drawback that it is difficult to collect cells. There is an example in which red blood cells are removed by using a hemolytic agent in the washing solution by using a filter method to increase the purity of recovered white blood cells (see Patent Document 6), but erythroblasts are separated using a hemolysis operation. There is no way to do so far.
[0010]
[Patent Document 1]
JP-A-8-280384
[Patent Document 2]
Japanese Patent Publication No. 8-69
[Patent Document 3]
International Publication No. 96/17514 Pamphlet
[Patent Document 4]
JP-A-11-313887
[Patent Document 5]
JP-A-10-137557
[Patent Document 6]
JP 54-122713 A
[Patent Document 7]
WO98 / 32840 pamphlet
[Patent Document 8]
International Publication No. 87/05812 Pamphlet
[Patent Document 9]
JP-A-2-261833
[Non-Patent Document 1]
“The World of Obstetrics and Gynecology” 2001, Volume 53, Issue 9
[Non-Patent Document 2]
Fetal Diagn. Ther. 1999, Vol. 14, No. 4, p. 229
-233
[0011]
[Problems to be solved by the invention]
An object of the present invention is to provide a method and apparatus for developing a filter method in order to solve the above-described problems, and separating and collecting cells suitable for cytodiagnosis simply and efficiently in a short time. It is in. In particular, an object of the present invention is to provide immature cells, particularly erythroblasts, as a specimen for cytodiagnosis in a simple and short time, and to provide a method or apparatus for preparing the specimen.
[0012]
[Means for Solving the Problems]
The present applicant has previously developed a filter method as a method for separating and concentrating leukocytes containing hematopoietic stem cells from cord blood (Patent Document 7). The inventors of the present invention have been diligently researching to solve the above-mentioned problems. However, the cell separation method by the filter method developed by the present applicant cannot be used for separating cells for cytodiagnosis. I was inspired. That is, focusing on the fact that according to the filter method, cells can be separated as they are without being destroyed, the separation and collection method using a filter was applied to the separation and collection operation of erythroblasts that are fetal cells. Furthermore, the method of performing hemolysis treatment and removing mixed red blood cells was combined. As a result of the idea that such a method can be provided as a cell for cytodiagnosis suitable for examining substances existing in cells or on the cell surface, the present invention has been made.
[0013]
The present invention captures nucleated cells, introduces a nucleated cell-containing solution into a nucleated cell capturing means that does not substantially capture nucleated cells, and does not capture nucleated cells. The present invention relates to a method for preparing a specimen for cytodiagnosis characterized by collecting nucleated cells captured by the nucleated cell capturing means while maintaining the cell morphology after flowing out.
The method of the present invention is particularly suitable for recovering erythroblasts, which are fetal cells present in the maternal blood from the maternal blood during pregnancy, while maintaining the morphology, and using it for cytodiagnosis.
[0014]
Furthermore, the present invention relates to a cell separation device for preparing a specimen for cytodiagnosis, which captures nucleated cells and does not substantially capture cells without nuclei (1 ), Means (2) for injecting a nucleated cell-containing liquid into the nucleated cell capturing means, connected upstream from the inlet of the nucleated cell capturing means, and downstream from the outlet of the nucleated cell capturing means. A means (3) for draining the liquid flowing out from the outlet of the nucleated cell capturing means, and a recovery liquid connected to the nucleated cell capturing means connected downstream from the outlet of the nucleated cell capturing means. And a means (5) for recovering nucleated cells from the inlet side of the nucleated cell trapping means connected upstream of the inlet of the nucleated cell trapping means. A cell separation device for preparing a specimen for cytodiagnosis It is intended.
[0015]
Furthermore, the present invention relates to a nucleated cell-containing composition obtained by a method for preparing a cytodiagnosis specimen.
[0016]
According to these methods and apparatuses, cells for cytodiagnosis specimens can be collected while maintaining the form, and therefore, it is useful for efficiently separating and collecting cells suitable for cytodiagnosis in a short time.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below, but the present invention is not limited thereto.
The nucleated cells referred to in the present invention are, for example, cells having a nucleus such as leukocytes, and include lymphocytes, granulocytes, monocytes, hematopoietic stem cells, erythroblasts, and the like.
Examples of cells having no nucleus in the present invention include erythrocytes and platelets.
[0018]
In addition, the nucleated cell-containing liquid referred to in the present invention is a liquid containing the nucleated cells, such as peripheral blood, lymph, bone marrow, umbilical cord blood, or mixed anticoagulant with these, for example, Examples thereof include a liquid subjected to some treatment such as centrifugation.
The nucleated cell component referred to in the present invention refers to a component such as a nucleated cell itself or a protein, nucleic acid (DNA, RNA) or the like constituting the nucleated cell.
[0019]
The erythroblast referred to in the present invention refers to all cell populations having nuclei having the ability to proliferate and differentiate into erythrocytes. For example, BFU-e (erythroblast burst-forming cells), CFU-e (erythroblasts). Also included are erythroid progenitors such as colony forming cells). Examples of cells that can be identified in terms of morphology include pre-erythroblasts, basophil erythroblasts, polychromatic erythroblasts, and normal erythroblasts. In addition, cells having both hemoglobin and nucleus may be collectively defined as nucleated red blood cells, and these cells are also included in the erythroblast referred to in the present invention.
[0020]
As used herein, maternal blood during pregnancy refers to peripheral blood collected from the veins of pregnant women up to 18 weeks of gestation. For the purpose of cytodiagnosis, maternal blood during pregnancy is useful, and maternal blood up to 18 weeks of pregnancy is effective considering the effectiveness of diagnosis.
[0021]
Furthermore, the fetal nucleated cell referred to in the present invention refers to a fetal nucleated cell present in the blood of a pregnant woman, and refers to a fetal nucleated cell present in a very small amount in the blood.
In particular, erythroblasts are scarcely present in the peripheral blood of normal adults. Therefore, if erythroblasts present in maternal blood can be separated and recovered and used as cytological specimens, they are useful for fetal disease screening, etc. It is. Therefore, according to the present invention, it is highly valuable that the erythroblast is separated and recovered while maintaining its intact form and used as a specimen for cytodiagnosis.
[0022]
In the present invention, means for capturing nucleated cells and not substantially capturing cells without nuclei is, for example, a container filled with a material that captures nucleated cells and does not substantially capture cells without nuclei. Can be given.
[0023]
Any material that captures nucleated cells and does not substantially capture cells without nuclei can be used as long as it is a normal nucleated cell capture material, but it has low moldability, sterility, and cytotoxicity. Examples that are preferable in terms of point include synthetic polymers such as polyethylene, polypropylene, polystyrene, acrylic resin, nylon, polyester, polycarbonate, polyacrylamide, polyurethane, and natural polymers such as agarose, cellulose, cellulose acetate, chitin, chitosan, and alginate. Examples thereof include inorganic materials such as molecules, hydroxyapatite, glass, alumina, and titania, and metals such as stainless steel, titanium, and aluminum.
[0024]
In addition, these capture materials can be used as they are, but they may be subjected to surface modification as necessary, for example, to increase platelet permeability or to selectively capture cells. For example, in order to increase platelet permeability, there is a method of coating a polymer having a nonionic hydrophilic group and a basic nitrogen-containing functional group proposed in Patent Document 8, and when selective capture of cells is performed, A method of immobilizing ligands having affinity for specific cells such as amino acids, peptides, saccharides, glycoproteins (including bioligands such as antibodies and adhesion molecules) by the haloacetamide method proposed in Patent Document 9, etc. Can be given.
[0025]
Examples of the shape of the trapping material include granules, fiber masses, woven fabrics, nonwoven fabrics, sponge-like porous bodies, flat plates, etc. Granules, fiber masses, woven fabrics, nonwoven fabrics, etc. because of their large surface area per volume. A sponge-like porous body is preferred.
[0026]
Examples of containers filled with materials that capture nucleated cells and cells that do not substantially capture nuclei are preferable in terms of moldability, sterilization, and low cytotoxicity, such as polyethylene, polypropylene, polystyrene, Examples thereof include synthetic polymers such as acrylic resin, nylon, polyester, polycarbonate, polyacrylamide, polyurethane, and vinyl chloride, inorganic materials such as hydroxyapatite, glass, alumina, and titania, and metals such as stainless steel, titanium, and aluminum.
[0027]
In the present invention, any recovery solution can be used as long as it is a physiological solution that is introduced into the nucleated cell capturing means and recovers the captured cells. For example, physiological saline, D-PBS, Examples thereof include a buffer solution such as HBSS and a medium such as RPMI 1640. To these physiological solutions, dextran, hydroxyethyl starch, albumin, globulin, gelatin, glucose, saccharose, trehalose, etc. may be added as necessary for the purpose of cell protection, nutritional supplementation, frost damage protection during cryopreservation, etc. Good.
[0028]
The viscosity of the recovered liquid in the present invention is 5 mPa · s or more and 500 mPa · s or less. More preferably, it is 10 mPa · s or more and 200 mPa · s or less. When the viscosity is less than 5 mPa · s, the recovery rate of nucleated cells is drastically reduced. When the viscosity is more than 500 mPa · s, even if a pump is used, liquid passing through the cell capturing means becomes extremely difficult and workability is inferior. Also, the pressure rises and the connection between the filter and various means may be disconnected, which is dangerous.
[0029]
The hemolyzed blood in the present invention is a hypotonic solution such as distilled water or 0.2% saline, or a solution capable of regenerating hemoglobin by dissolving or destroying at least the erythrocyte membrane, such as ammonium chloride hemolyzed blood. Say. As each action, a hypotonic solution such as distilled water or 0.2% saline is osmotically pressurized, and the hypotonic solution flows into the cells, whereby the cell membrane is destroyed and hemolyzed. Ammonium chloride hemolysis is affected by osmotic pressure when the enzyme is activated, and water flows into the cells, so that the cell membrane is destroyed and hemolysis occurs. On the other hand, erythroblasts are less prone to hemolysis than erythrocytes because they are inactive in these hemolytic actions.
[0030]
In the method of the present invention, prior to recovering the nucleated cells, the erythrocytes are almost completely destroyed by treating the captured cells with hemolyzed blood in advance, and nucleated cells such as erythroblasts are present without being destroyed. Since these cells remain in the nuclear cell capturing means, a nucleated cell-containing composition containing substantially no red blood cells can be obtained by collecting these cells.
[0031]
The average fiber diameter of the ultrafine fibers in the present invention is preferably 0.1 to 10 μm, more preferably 1 to 5 μm. The filling rate of the ultrafine fiber assembly in the container is preferably 0.1 to 0.5 g / cubic cm.
[0032]
When the average fiber diameter is less than 0.1 μm or the filling rate exceeds 0.5 g / cubic cm, the filtration resistance of the nucleated cell-containing liquid becomes high and it becomes difficult to flow. On the other hand, when the average fiber diameter exceeds 10 μm or the filling rate is less than 0.1 g / cubic cm, the ability to capture nucleated cells is significantly reduced.
[0033]
The average fiber diameter in the present invention refers to a value obtained according to the following procedure. That is, a part of the filter element which is recognized as being substantially uniform and which constitutes the cell-adsorbing ultrafine fiber is sampled and photographed at a magnification of 1000 to 3000 times using a scanning electron microscope or the like. At the time of sampling, the effective filtration cross-sectional area portion of the filter element is divided by a square having a side of 0.5 to 1 cm, and 3 or more, preferably 5 or more are randomly sampled. In order to perform random sampling, for example, after specifying an address for each of the above-mentioned sections, it is sufficient to select more than necessary sections by using a random number table. Also, for each sampled section, take a picture of 3 or more, preferably 5 or more. The diameters of all the fibers in the photograph thus obtained are measured. Here, the diameter means the width of the fiber in the direction perpendicular to the fiber axis. A value obtained by dividing the sum of the diameters of all the measured fibers by the number of fibers is defined as an average fiber diameter. However, when multiple fibers overlap each other and their width cannot be measured behind other fibers, or when multiple fibers melt and become thick fibers, fibers with significantly different diameters If there is a mixture of these, etc., these data are deleted. By the above method, the average fiber diameter is obtained from data of 500 or more, preferably 1000 or more.
[0034]
The filling rate of the ultrafine fiber aggregate in the container in the present invention refers to the weight per unit volume of the ultrafine fiber aggregate filled in the container. That is, it is a value obtained by dividing the weight of the ultrafine fiber assembly filled in the container by the volume of the container.
[0035]
In the present invention, a polymer having a cationic group is a combination of a monomer having at least a cationic functional group such as an amino group and a monomer having a non-cationic functional group such as a hydroxyl group or an ester group. It is a polymer.
[0036]
In the present invention, the erythroblast capturing means that captures at least erythroblasts and does not substantially capture at least erythrocytes is preferably a nonwoven fabric filter. The nonwoven fabric filter has, for example, a polymer having a cationic group at least on its surface. And the density of the monomer having a cationic group in the polymer is 1 × 10 -4 ~ 5x10 -1 It is preferably meq / square m. More preferably, the density of the monomer having a cationic group in the polymer is 1 × 10 -3 ~ 5x10 -2 It is preferably meq / square m. The density of the monomer having a cationic group is 5 × 10 -1 When it exceeds meq / square m, various cells tend to be adsorbed and clogged, and the filtration resistance of the nucleated cell-containing liquid tends to increase and become difficult to flow. On the other hand, the density of the monomer having a cationic group is 1 × 10 -4 When it is less than meq / square m, the ability to capture erythroblasts tends to be significantly reduced.
[0037]
The density of the monomer having a cationic group in the polymer in the present invention refers to the equivalent of the monomer having a cationic group per unit area of the ultrafine fiber assembly filled in the container. It is a value obtained by dividing the equivalent of the monomer having a cationic group determined by measuring the amount of trypan blue adsorbed by the total surface area of the ultrafine fiber assembly. The equivalent of the monomer having a cationic group determined by measuring the amount of trypan blue adsorbed herein refers to a value determined by the following procedure. First, a 1 g / l methanol solution of the polymer was prepared in 0.5, 1.0, 1.5, and 2.0 ml sample bottles, and the sample was vacuum dried to remove the solvent. To do. In a sample bottle containing a coated ultrafine fiber assembly and a coated sample bottle for a calibration curve, 10 ml of trypan blue solution (0.018 g of trypan blue is added to 1 l of distilled water for injection of 1.21 g of trisaminomethane. The solution is dissolved and shaken at 30 ° C. for 24-48 hours, and then the control is water, and the absorbance is measured at 578 nm. A calibration curve is written from the result, and the polymer coat amount is obtained from the calibration curve. The value is obtained by multiplying the molar fraction of the polymer having a cationic group by the weight per mole of the polymer.
Here, the total surface area of the ultrafine fiber aggregate can be determined from the average fiber diameter of the ultrafine fibers, the specific gravity of the ultrafine fiber aggregate, and the total weight of the ultrafine fiber aggregate, and is calculated by the following equation.
Surface area of microfiber assembly (m 2 )
= 4 × total weight of ultrafine fiber aggregate (g) / (average fiber diameter of ultrafine fiber aggregate
(Μm) x specific gravity of ultrafine fiber assembly (g / cm 3 ))
[0038]
Moreover, it is preferable that the molar fraction of the monomer which has a cationic group is 0.1-30 mol%.
More preferably, the molar fraction of the monomer having a cationic group is 1 to 15 mol%. When the molar fraction of the monomer having a cationic group exceeds 30 mol%, the filtration resistance of the erythroblast-containing liquid tends to be high and it tends to be difficult to flow. On the other hand, when the mole fraction of the monomer having a positive charge is less than 0.1 mol%, the ability to capture erythroblasts tends to be remarkably reduced.
[0039]
As a method of introducing the nucleated cell-containing solution as used in the present invention into a nucleated cell capturing means that captures nucleated cells and does not substantially capture cells without nuclei, the means is nucleated via a tube. Connected with a bag or bottle containing cell-containing liquid, introduced by drop, roller pump, crushing bag to induce liquid flow, etc., or connected with syringe containing nucleated cell-containing liquid, manually pushed or syringe pump For example, it may be introduced by liquid feeding.
[0040]
When nucleated cells are introduced into the nucleated cell capturing means, the nucleated cells are captured in the means, and cells without nuclei flow out of the means, but may remain in the container slightly. For the purpose of washing and removing the cells having no remaining nuclei, washing is preferably performed by introducing a washing solution into the means. As the cleaning solution, any physiological solution can be used. For example, physiological saline, buffer solution such as Dulbecco's phosphate buffer (D-PBS) or Hanks solution (HBSS), RPMI 1640, etc. Medium. Dextran, hydroxyethyl starch, albumin, globulin, glucose, saccharose, trehalose and the like may be added to these physiological solutions as necessary for the purpose of cell protection, nutritional supplementation and the like. The liquid feeding direction is preferably the same as the direction in which the nucleated cell-containing liquid is introduced. In the reverse direction, this washing operation may cause nucleated cells to leak out.
[0041]
In the present invention, as a method for introducing the recovery liquid into the nucleated cell capturing means, a bag or a bottle containing the recovery liquid is connected to the means via a tube, and the liquid is sent by a drop, a roller pump, a bag crushing, or the like. Alternatively, a syringe containing the collected liquid may be connected and fed by hand or a syringe pump. At this time, there are two recovery liquid feeding directions: the same direction as the direction in which the nucleated cell-containing liquid is introduced and the opposite direction, but generally the cell recovery rate is preferable because the latter is higher. A faster recovery liquid flow rate is preferable because the recovery rate is higher.
[0042]
Next, the cell separation device of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of the cell separation device of the present invention, which is a nucleated cell capturing means (1) for capturing nucleated cells and substantially not capturing cells without nuclei, Connected upstream from the inlet of the nucleated cell capture means, means (2) for injecting the nucleated cell-containing liquid into the nucleated cell capture means, and connected downstream from the outlet of the nucleated cell capture means, Means (3) for draining the liquid flowing out from the outlet of the nucleated cell trapping means, and means for injecting the recovery liquid into the nucleated cell trapping means connected downstream from the outlet of the nucleated cell trapping means (4), means (5) for collecting cells from the inlet side of the nucleated cell trapping means, connected upstream from the inlet of the nucleated cell trapping means, and for washing and removing cells without nuclei And means (6) for injecting the hemolyzed blood or the washing liquid
[0043]
The means (2) for injecting the nucleated cell-containing liquid into the nucleated cell-capturing means connected upstream from the inlet of the nucleated-cell capturing means in the present invention is a container in which the nucleated cell-containing liquid is stored. Or a connection to a tissue in which a nucleated cell-containing fluid is present. For example, if the container storing the nucleated cell-containing liquid is a bag, for example, the connection with a spiked tube, a tube with a luer adapter (male, female), or a sterile connector If “SCD connection” is performed, a simple tube is selected as appropriate. If the container storing the nucleated cell-containing liquid is a syringe with a needle, a tube with a septum that can be punctured is selected, and if there is a needle without a needle, a luer adapter (female) is selected as appropriate. As a specific example of the latter connection, for example, when umbilical cord blood is targeted, the tissue is the placenta and / or the umbilical cord, and a tube with a metal needle that can be punctured to these is included. In the case of a tube, it may have a roller clamp for adjusting the flow rate, a mesh chamber for removing agglomerates, and the like. Moreover, in the case of a syringe, you may connect directly to the inlet of a nucleated cell capture means not via a tube.
The connection circuit of the means (3) for draining the liquid flowing out from the nucleated cell capturing means, connected downstream from the outlet of the nucleated cell capturing means in the present invention, is any means for draining the drained liquid. Depending on whether it is collected (or discarded), it is divided as follows. In other words, when collecting in a bag, if the bag is connected in advance, or a means that can be connected to the bag, that is, a spiked tube, a tube with a luer adapter (male, female), or SCD connection is used, Select appropriately as a tube. In addition, when collecting in a conical tube, or when discarding in a waste liquid bottle or a waste liquid tube, the tip only needs to be open, and when collecting with a syringe at the luer mouth, a luer adapter (female) is used. Moreover, in the case of a syringe, you may connect directly to the exit of a nucleated cell capture means not via a tube.
[0044]
The connection of the means (4) for injecting the recovered liquid into the nucleated cell capturing means, which is connected downstream from the outlet of the nucleated cell capturing means in the present invention, is performed by inserting the recovered liquid to be injected into the nucleated cell capturing means. Depending on whether the container is connected in advance or can be connected later, it is divided as follows according to the means for injecting the recovered liquid. That is, when a container containing a recovery liquid to be injected into the nucleated cell capturing means is connected in advance, a tube with a bag and a syringe are obtained. In the case of a bag, examples of a method for injecting the recovered liquid into the nucleated cell capturing means include a method using a drop, a method for crushing the bag, and a method using a roller pump. When connecting the container containing the recovery liquid to be injected into the nucleated cell capturing means later, when using a syringe, a puncturable tube with a septum that can be connected to a syringe, a tube with a luer adapter (female), and a three-way stopcock Tube. In the case of using a bag, a means that can be connected to the bag, that is, a spiked tube, a tube with a luer adapter (male or female), or a simple tube if SCD connection is used is appropriately selected. Moreover, in the case of a syringe, you may connect directly to the exit of a nucleated cell capture means not via a tube.
[0045]
In addition, it is preferable to provide a plurality of branches in the recovery liquid injection means (4) in order to use separate recovery liquids when performing the recovery operation a plurality of times. Specifically, there are a three-way stopcock, a method using a four-way stopcock, a method using a clamp, and a method using a three-branch pipe that can be connected to a syringe (connecting a syringe when necessary). Moreover, what is necessary is just to respond | correspond by exchanging a syringe for every collection | recovery liquid, when the above-mentioned sirizine is directly connected to the exit of a nucleated cell capture | acquisition means not via a tube.
[0046]
The connection circuit of the recovery means (5) for recovering cells from the inlet side of the nucleated cell capturing means connected upstream from the inlet of the nucleated cell capturing means referred to in the present invention flows out of the nucleated cell capturing means. Depending on the container in which the cells are collected, it can be divided as follows. In other words, when collecting in a bag, if the bag is connected in advance, or a means that can be connected to the bag, that is, a spiked tube, a tube with a luer adapter (male or female), or SCD connection is used, Select appropriately as a tube. Further, when collecting in a conical tube, it is only necessary that the tip is open, and when collecting with a syringe at the luer port, a luer adapter (female), a three-way stopcock, or the like is used. Moreover, in the case of a syringe, you may connect directly to the inlet of a nucleated cell capture means not via a tube. Here, in the case where the recovered solution for causing the nucleated cells to flow out of the nucleated cell capturing means is subsequently cryopreserved, the container for recovering the nucleated cells is also preferably used for cryopreservation. Examples of cryopreservation containers include frozen bags such as “cryosite” (manufactured by Baxter) and “selfie bags” (manufactured by Charter Med).
[0047]
The means (5) for recovering nucleated cells preferably has a flow path switching means and a plurality of branches. This is for carrying out the collection operation a plurality of times and collecting each nucleated cell component separately. Specifically, there are a method using a three-way stopcock, a four-way stopcock, and a method using a clamp.
Moreover, what is necessary is just to respond | correspond by exchanging a syringe for every collection | recovery liquid, when connecting the above-mentioned syringe directly to the inlet_port | entrance of a nucleated cell capture | acquisition means not via a tube.
[0048]
The nucleated cell separation device according to the present invention is to wash cells without nuclei remaining in the nucleated cell capturing means before recovering the cells captured by the nucleated cell capturing means from the nucleated cell capturing means. It is more preferable to provide means (6) for injecting hemolyzed blood or cleaning liquid. The connection circuit of the lysed blood or cleaning liquid injection means (6) is divided as follows depending on whether a container containing the lysed blood or cleaning liquid is connected in advance or can be connected later. . That is, when a container containing hemolyzed blood or cleaning liquid is connected in advance, a tube with a bag and a syringe are obtained. When a container containing hemolyzed blood or washing solution is connected later, when a syringe is used, a puncturable tube with a septum to which a syringe can be connected and a tube with a luer adapter (female) can be mentioned. In the case of using a bag, a means that can be connected to the bag, that is, a spiked tube, a tube with a luer adapter (male or female), or a simple tube if SCD connection is used is appropriately selected. Moreover, in the case of a syringe, you may connect directly to the exit of a nucleated cell capture means not via a tube. As the connection position of the washing means to the cell trapping means, either the inlet side or the outlet side is possible, but the inlet side is more preferable in terms of ease of operation.
[0049]
FIG. 2 shows an embodiment of a cell separation device for performing the collection a plurality of times as described above and separately collecting each nucleated cell component. In FIG. 2, 1 is a nucleated cell capturing means. The nucleated cell-containing liquid injecting means includes a spike (2-1), a connection tube (2-2), and a channel switching for connecting to the nucleated cell-containing liquid storage container among the means for injecting the nucleated cell-containing liquid. Means (2-3) are included. The means for draining the liquid flowing out from the outlet of the nucleated cell trapping means includes a connection tube (3-1), a flow path switching means (3-2), and a spike (3) for connecting to a bag for collecting the drainage. -3). 4 is a means for injecting the recovery liquid into the nucleated cell capturing means connected downstream from the outlet of the nucleated cell capturing means. The means for collecting cells from the inlet side of the nucleated cell capturing means includes a branch (5-1) for branching into a plurality of flow paths, a flow path switching means (5-2, 5-3), A container (5-4) for connecting, a spike (5-5) for connecting another container for collecting the collected liquid, and a connecting tube (5-6, 5-7).
[0050]
When separating cells for cytodiagnosis using the method and apparatus for preparing a specimen for cytodiagnosis of the present invention described in detail above, particularly erythroblasts could be collected at a high concentration rate.
That is, the cord blood using the filter for stem cell separation by the present applicant (Patent Document 7: a filter filled with a microfiber assembly coated with a polymer containing a nonionic hydrophilic group and a basic nitrogen-containing functional group) When nucleated cells isolated from the colony were assayed, many red colonies that were neither BFU-e nor CFU-e were observed. This is a characteristic that neither Ficoll nor the HES centrifuge method shows, and indicates that erythroblasts that could not be collected by the specific gravity centrifuge method can be collected by the filter method. From this, the filter method of the present invention is considered to be a very effective means for recovering erythroblasts. Since fetal erythroblast cells in the maternal blood have a low frequency of presence, it is particularly useful that the present invention allows erythroblasts to be recovered in their intact form.
[0051]
In the present invention, the nucleated cell-containing composition obtained by the method for separating and collecting nucleated cells includes cells having a nucleus such as leukocytes, such as lymphocytes, granulocytes, monocytes, hematopoietic stem cells, erythroblasts, and the like. The collected liquid can be used as it is as a specimen for cytodiagnosis, or can be used as a specimen for cytodiagnosis after preparation such as concentration by centrifugation.
[0052]
【Example】
Examples of the present invention are shown below, but the present invention is not limited thereto.
[Example 1]
2-hydroxyethyl methacrylate having a nonionic hydrophilic group on a polyethylene terephthalate nonwoven fabric having an average fiber diameter of 2.3 microns and N, N-dimethylaminoethyl methacrylate which is a cationic monomer having a basic functional group containing nitrogen A nonwoven fabric with a filtration area of 16 square cm obtained by coating the copolymer was laminated and filled in a polycarbonate container to prepare a filter. Using the filter, 76 ml of human umbilical cord blood (containing 28 ml of the anticoagulant CPD) was filtered, and then 10 ml of 3% bovine serum albumin physiological saline solution was passed through the filter to wash out red blood cells and platelets. A collected liquid consisting of 3 ml of 25% human serum albumin prepared in advance and 23 ml of dextran 40 injection solution was taken into a syringe, and vigorously flowed from the outlet side of the filter to collect cells captured by the nonwoven fabric filter.
In 3 ml of methylcellulose semi-solid medium for colony assay, mesocult GFH4434V, the number of cells was 1 × 10 Five Add the cell suspension collected by the filter so that it becomes individual, vortex mixer, suspend the cells uniformly, seed in a 10mm culture dish, 5% CO 2 Cultured in an incubator. When observed on the 7th day after the start, in addition to BFU-e and CFU-e, it can be barely confirmed with the naked eye, but 20 or more small red colonies with a total cell number of less than 50 are recognized per dish, The characteristics not seen in the conventional Ficoll method are shown.
This example shows that erythroblasts, which are cells that can divide into red blood cells, which could not be collected by the conventional Ficoll method, can be collected by the filter.
[0053]
[Example 2]
Peripheral blood 20 ml was collected from a pregnant woman with 30 weeks of normal pregnancy and informed consent was obtained, diluted twice with physiological saline to a total volume of 40 ml, and then divided into 20 ml portions for the experiment. One layer was overlaid on Ficoll and centrifuged at 400 G for 30 minutes, and the intermediate layer was collected to obtain a mononuclear cell fraction. The mononuclear cell fraction is about 1.5 × 10 7 Cells. The other is a polyethylene terephthalate nonwoven fabric having an average fiber diameter of 2.3 microns, 2-hydroxyethyl methacrylate having a nonionic hydrophilic group, and N, N-dimethylaminoethyl which is a cationic monomer having a basic functional group containing nitrogen. Slowly inject with a 30 ml syringe into a mini filter made by laminating 10 non-woven fabrics obtained by coating a copolymer with a polymerization ratio of 97: 3 methacrylate and filling a mini column made of polycarbonate. After filtering the whole volume and subsequently injecting 20 ml of physiological saline in the same manner to wash away the red blood cells remaining in the minifilter, 10 ml of physiological saline is vigorously moved from the outlet side to the inlet side. The cells trapped on the filter medium were collected. The recovered cell suspension is approximately 4 × 10 7 Cells, including about 2.5 × 10 mononuclear cells 7 Included.
The cell fraction separated by minifilter and Ficoll is 1 × 10 7 The CD45 negative or CD14 negative cells and further the CD71 positive cells were separated using a magnetic cell separation system, and the purity was measured with a flow cytometer to determine the number of cells and the presence rate. About 2 × 10 in the Ficoll fraction group 4 Individual (existence rate: about 0.2%), 6 × 10 for the mini filter treatment group Four Individual (approximately 0.6% abundance) CD45 negative or CD14 negative cells were obtained. Among them, CD71 positive cells are about 5 × 10 6 in the Ficoll treatment group. 2 (Approximately 0.005% of all mononuclear cells), 2 × 10 in the minifilter treatment group Three The result was about 0.02% for all mononuclear cells.
[0054]
[Example 3]
2-hydroxyethyl methacrylate having a nonionic hydrophilic group on a polyethylene terephthalate nonwoven fabric having an average fiber diameter of 2.3 microns, N, N-dimethylaminoethyl methacrylate which is a cationic monomer having a basic functional group containing nitrogen, The density of the monomer having a cationic group obtained by coating a copolymer having a polymerization ratio of 6: 1: 3 with methyl methacrylate which is a hydrophobic monomer having an ester group is 1.50 × 10 -2 Nonwoven fabrics having a meq / square m and a filtration area of 1.54 square cm were laminated to a thickness of 9 mm, and a polycarbonate container was filled at a filling rate of 0.23 g / cubic cm to produce a filter. Using this filter, 7 ml of blood (containing 980 μl of the anticoagulant CPD) obtained by mixing human peripheral blood and nucleated components of cord blood separated by Ficoll method at a mixing ratio of 7: 2 is filtered, Subsequently, 10 ml of 0.83% ammonium chloride aqueous solution was flowed to lyse the red blood cells, and then 200 ml of physiological saline was passed through the filter to wash out remaining red blood cells and platelets. 7 ml dextran 40 injection solution was taken into a syringe, and vigorously flowed from the outlet side of the filter to collect cells captured by the nonwoven fabric filter. A centrifugal smear plate was prepared by concentrating the collected liquid obtained to 1 ml, hemoglobin staining was performed, and erythroblasts were counted. As a result, the erythroblast concentration rate for all cells was 212 times. .
The concentration ratio here is a value obtained by dividing the ratio of the number of recovered erythroblasts to the total number of recovered cells by the ratio of the number of erythroblasts to the total number of cells in the original blood.
[0055]
[Example 4]
2-hydroxyethyl methacrylate having a nonionic hydrophilic group on a polyethylene terephthalate nonwoven fabric having an average fiber diameter of 2.3 microns, and N, N-dimethylaminoethyl methacrylate which is a cationic monomer having a basic functional group containing nitrogen The density of the monomer having a cationic group obtained by coating a copolymer having a polymerization ratio of 97: 3 is 4.26 × 10. -3 Nonwoven fabrics having a meq / square m and a filtration area of 1.54 square cm were laminated to a thickness of 9 mm, and a polycarbonate container was filled at a filling rate of 0.23 g / cubic cm to produce a filter. Using this filter, 7 ml of blood (containing 980 μl of the anticoagulant CPD) obtained by mixing human peripheral blood and nucleated components of cord blood separated by Ficoll method at a mixing ratio of 7: 2 is filtered, Subsequently, 10 ml of 0.83% ammonium chloride aqueous solution was flowed to lyse the red blood cells, and then 200 ml of physiological saline was passed through the filter to wash out remaining red blood cells and platelets. 7 ml dextran 40 injection solution was taken into a syringe, and vigorously flowed from the outlet side of the filter to collect cells captured by the nonwoven fabric filter. A centrifugal smear plate was prepared by concentrating the obtained recovered liquid to 1 ml, hemoglobin staining was performed, and erythroblasts were counted. As a result, the erythroblast concentration ratio for all cells was 151 times. .
The concentration ratio here is a value obtained by dividing the ratio of the number of recovered erythroblasts to the total number of recovered cells by the ratio of the number of erythroblasts to the total number of cells in the original blood.
[0056]
[Example 5]
A polyethylene terephthalate non-woven fabric having an average fiber diameter of 2.3 microns has a polymerization ratio of 97: 3 between 2-hydroxyethyl methacrylate having a nonionic hydrophilic group and methyl methacrylate having an ester group and a cationic monomer. The density of the monomer having a cationic group obtained by coating the polymer is 4.26 × 10 -3 Using a filter in which a nonwoven fabric with a meq / square m and a filtration area of 1.54 square cm is laminated to a thickness of 9 mm and a polycarbonate container is filled with a filling rate of 0.23 g / cubic cm to the container, 7 ml of blood (containing 980 μl of anticoagulant CPD) obtained by mixing peripheral blood and nucleated components of umbilical cord blood by the Ficoll method at a mixing ratio of 7: 2 was filtered, followed by 200 ml of physiological saline. The remaining red blood cells and platelets were washed out by flowing through a filter. 7 ml dextran 40 injection solution was taken into a syringe, and vigorously flowed from the outlet side of the filter to collect cells captured by the nonwoven fabric filter. A centrifugal smear plate was prepared by concentrating the collected liquid to 1 ml, hemoglobin staining was performed, and erythroblasts were counted. As a result, the erythroblast concentration rate was 99 times.
The concentration ratio here is a value obtained by dividing the ratio of the number of recovered erythroblasts to the total number of recovered cells by the ratio of the number of erythroblasts to the total number of cells in the original blood.
[0057]
【The invention's effect】
As described above, according to the method and apparatus having means for capturing nucleated cells of the present invention and substantially not capturing cells without nuclei, the nucleated cells can be recovered while maintaining the cell morphology. Therefore, the effect of being useful for the preparation of a cytodiagnosis sample can be achieved.
[Brief description of the drawings]
FIG. 1 shows one embodiment of the cell separation apparatus of the present invention.
FIG. 2 shows another embodiment of the cell separation device of the present invention.
[Explanation of symbols]
1: Nucleated cell capture means
2: Nucleated cell-containing liquid injection means
3: Liquid draining means
4: Recovery liquid injection means
5: Nucleated cell recovery means
6: Rinse solution injection means
2-1: Spike
2-2: Connection tube
2-3: Channel switching means
3-1: Connection tube
3-2: Channel switching means
3-3: Spike
5-1: Branch means
5-2: Channel switching means
5-3: Channel switching means
5-4: Recovery liquid collection container
5-5: Spike
5-6: Connection tube
5-7: Connection tube

Claims (5)

平均繊維径が0.1〜10μmである細胞吸着性極細繊維集合体よりなり、少なくともカチオン性を有するモノマーと非カチオン性モノマーの共重合体で構成されており、かつカチオン性モノマーのモル分率が0.1〜30mol%であるカチオン性を有するポリマーを少なくともその表面に有し、胎児由来の赤芽球は捕捉し、赤血球、血小板は実質的に捕捉しない、有核細胞捕捉手段に、
妊娠中の母体血液を導入して、
胎児由来の赤芽球は捕捉させ、赤血球、血小板は流出させた後、
あらかじめ溶血液で捕捉細胞を処理した後、
該有核細胞捕捉手段に捕捉されている胎児由来の赤芽球を細胞の形態を保ったまま回収することを特徴とする
細胞診断用検体の調製方法。
It consists of a cell-adsorptive ultrafine fiber aggregate having an average fiber diameter of 0.1 to 10 μm, is composed of a copolymer of at least a cationic monomer and a non-cationic monomer, and the molar fraction of the cationic monomer A means for capturing nucleated cells, having at least a polymer having a cationic property of 0.1 to 30 mol% on the surface thereof, capturing fetal erythroblasts, and not substantially capturing red blood cells and platelets,
Introducing maternal blood during pregnancy,
After capturing fetal erythroblasts and draining red blood cells and platelets,
After pre-treatment of the captured cells with hemolysis,
A method for preparing a specimen for cytodiagnosis, characterized in that fetal erythroblasts captured by the nucleated cell capturing means are collected while maintaining the cell morphology.
有核細胞捕捉手段に回収液を導入して、該手段に捕捉された胎児由来の赤芽球を細胞の形態を保ったまま回収することを特徴とする請求項1記載の方法。The method according to claim 1, wherein a recovery solution is introduced into the nucleated cell capturing means, and fetal erythroblasts captured by the means are recovered while maintaining the cell morphology. 細胞吸着性極細繊維集合体が、ポリエステル、ポリプロピレン及びナイロンの1種以上からなることを特徴とする請求項1または2記載の方法。The method according to claim 1 or 2, wherein the cell-adsorbing ultrafine fiber aggregate comprises at least one of polyester, polypropylene and nylon. カチオン性を有するポリマー中のカチオン性基を有するモノマーの密度が1×10−4〜5×10−1meq/平方mであることを特徴とする請求項1乃至3の何れかに記載の方法。4. The method according to claim 1, wherein the density of the monomer having a cationic group in the polymer having a cationic property is 1 × 10 −4 to 5 × 10 −1 meq / square m. 5. . 平均繊維径が0.1〜10μmである細胞吸着性極細繊維集合体よりなり、少なくともカチオン性を有するモノマーと非カチオン性モノマーの共重合体で構成されており、かつカチオン性モノマーのモル分率が0.1〜30mol%であるカチオン性を有するポリマーを少なくともその表面に有し、胎児由来の赤芽球は捕捉し、赤血球、血小板は実質的に捕捉しない、有核細胞捕捉手段を有することを特徴とする請求項1乃至4の何れかに記載の細胞診断用検体の調製方法に使用するための細胞分離デバイス。It consists of a cell-adsorptive ultrafine fiber aggregate having an average fiber diameter of 0.1 to 10 μm, is composed of a copolymer of at least a cationic monomer and a non-cationic monomer, and the molar fraction of the cationic monomer Has a polymer having a cationic property of 0.1 to 30 mol% at least on the surface thereof, has a means for capturing nucleated cells, captures fetal erythroblasts, and does not substantially capture red blood cells and platelets. A cell separation device for use in the method for preparing a specimen for cytodiagnosis according to any one of claims 1 to 4.
JP2002298885A 2001-10-12 2002-10-11 Sample for cytodiagnosis, preparation method and apparatus thereof Expired - Fee Related JP4162128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298885A JP4162128B2 (en) 2001-10-12 2002-10-11 Sample for cytodiagnosis, preparation method and apparatus thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-315829 2001-10-12
JP2001315829 2001-10-12
JP2002298885A JP4162128B2 (en) 2001-10-12 2002-10-11 Sample for cytodiagnosis, preparation method and apparatus thereof

Publications (2)

Publication Number Publication Date
JP2003202334A JP2003202334A (en) 2003-07-18
JP4162128B2 true JP4162128B2 (en) 2008-10-08

Family

ID=27666305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298885A Expired - Fee Related JP4162128B2 (en) 2001-10-12 2002-10-11 Sample for cytodiagnosis, preparation method and apparatus thereof

Country Status (1)

Country Link
JP (1) JP4162128B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100317112A1 (en) * 2007-04-27 2010-12-16 Hyunjin Yang Scaffolds increased specific gravity for cell culture and method for manufacturing thereof
JP5196618B1 (en) * 2012-09-28 2013-05-15 株式会社大塚製薬工場 Method for washing adherent cells using cell washing solution containing trehalose
JP5276230B1 (en) * 2013-01-10 2013-08-28 株式会社大塚製薬工場 Method for in vitro passage of adherent cells using trehalose-containing cell washing solution
CN106537144A (en) * 2014-08-05 2017-03-22 富士胶片株式会社 Nucleated erythrocyte sorting method
WO2016152672A1 (en) * 2015-03-25 2016-09-29 富士フイルム株式会社 Method for isolating nucleated red blood cell candidate cells
CN112567223A (en) * 2018-08-17 2021-03-26 国立大学法人大阪大学 Method for distributing particles

Also Published As

Publication number Publication date
JP2003202334A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
AU731766B2 (en) Cell separation method
KR101674517B1 (en) Blood component separation system and separation material
JP4587959B2 (en) Method for preparing cell concentrate and cell composition
JPWO2002101029A1 (en) Method for separating and enriching cells for kidney regeneration
JP6707031B2 (en) Cell separation material and cell separation method
JP5336109B2 (en) Methods for enriching mononuclear cells and platelets
US20020031757A1 (en) Method of regenerating a tissue
JP4162128B2 (en) Sample for cytodiagnosis, preparation method and apparatus thereof
JPH114682A (en) Preservation of nucleated cells, composition for the same and segregation of yukakusaihou
JP2013036818A (en) Method of concentrating tumor cell and separation material
US20030180705A1 (en) Method of regenerating blood vessels
JP2001000178A (en) Method and apparatus for cell separation
JP2002087971A (en) Method for separating living body tissue-regenerating cell and device for the same
JPH11322618A (en) Separation and collection of nucleated cell, and liquid containing nucleated cell
JP3945725B2 (en) Cell separation method
JP2004236527A (en) Nucleated cell-separating device
JP4437335B2 (en) Human undifferentiated hematopoietic stem cells, separation method and separation apparatus thereof
JP2001161352A (en) Method for separating cell for regenerating biotissue, cell for regenerating biotissue and apparatus for separating cell for regenerating biotissue
JPH11335289A (en) Removal of blood platelet and cell composition
JP4043094B2 (en) Cell separator
JP2003116521A (en) Method and apparatus for separating and concentrating sp cell
JP2000139454A (en) Separation and recovery of cell and recovery required cell-containing liquid
JPH119270A (en) Separation and recovery of nucleated cell and separating and recovering device for nucleated cell
US20040224300A1 (en) Method for separating nucleated cells
JP2000325071A (en) Separation/recovery of cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees