JP4571787B2 - Filling container for solid organometallic compound and filling method thereof - Google Patents

Filling container for solid organometallic compound and filling method thereof Download PDF

Info

Publication number
JP4571787B2
JP4571787B2 JP2003271742A JP2003271742A JP4571787B2 JP 4571787 B2 JP4571787 B2 JP 4571787B2 JP 2003271742 A JP2003271742 A JP 2003271742A JP 2003271742 A JP2003271742 A JP 2003271742A JP 4571787 B2 JP4571787 B2 JP 4571787B2
Authority
JP
Japan
Prior art keywords
container
carrier gas
organometallic compound
filling
solid organometallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003271742A
Other languages
Japanese (ja)
Other versions
JP2005033045A (en
Inventor
静夫 富安
功一 徳留
健一 羽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Original Assignee
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp filed Critical Tosoh Finechem Corp
Priority to JP2003271742A priority Critical patent/JP4571787B2/en
Priority to US10/865,880 priority patent/US7547363B2/en
Priority to TW093119937A priority patent/TWI273643B/en
Priority to KR1020040052239A priority patent/KR101029894B1/en
Priority to CNB2004100640023A priority patent/CN100394551C/en
Publication of JP2005033045A publication Critical patent/JP2005033045A/en
Priority to US12/464,333 priority patent/US8092604B2/en
Application granted granted Critical
Publication of JP4571787B2 publication Critical patent/JP4571787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Supply Of Fluid Materials To The Packaging Location (AREA)
  • Basic Packing Technique (AREA)

Description

本発明は、固体有機金属化合物の充填容器およびその充填方法に関する。さらに詳しくは、化合物半導体等の電子工業用材料を製造する際に用いられるMetalorganic Chemical Vapor Deposition(以下、「MOCVD」と略称する)法等による気相エピタキシャル成長用の材料である固体有機金属化合物を、長期間一定の濃度で安定的に気相エピタキシャル成長用装置へ供給可能な充填容器および固体有機金属化合物の充填方法に関するものである。   The present invention relates to a filled container of a solid organometallic compound and a filling method thereof. More specifically, a solid organometallic compound that is a material for vapor phase epitaxial growth by a Metalorganic Chemical Vapor Deposition (hereinafter abbreviated as “MOCVD”) method or the like used when manufacturing materials for electronic industry such as compound semiconductors, The present invention relates to a filling container that can be stably supplied to a vapor phase epitaxial growth apparatus at a constant concentration for a long period of time and a method of filling a solid organometallic compound.

有機金属化合物は、電子工業用材料を製造する際の原料として幅広く使用されている。   Organometallic compounds are widely used as raw materials for producing materials for the electronic industry.

有機金属化合物を用いた電子工業用材料の製造方法として、近年、MOCVD法等による気相エピタキシャル成長が多く用いられている。例えば、化合物半導体の薄膜がMOCVD法によって製造されており、その際、トリメチルアルミニウム、トリメチルガリウム、トリメチルインジウム等の有機金属化合物を原料に用いる。   In recent years, vapor phase epitaxial growth by the MOCVD method or the like is frequently used as a method for producing materials for electronic industry using an organometallic compound. For example, a thin film of a compound semiconductor is manufactured by the MOCVD method, and an organic metal compound such as trimethylaluminum, trimethylgallium, or trimethylindium is used as a raw material.

MOCVD法でこれら有機金属化合物を使用する際にその有機金属化合物が使用する条件において固体の場合は、通常、有機金属化合物を図15に示すようなキャリアガス導入口(2a)およびキャリアガス排出口(3a)を備えた充填容器Aに充填し、水素ガス等のキャリアガスをキャリアガス導入口(2a)より容器内に導入し、キャリアガス排出口(3a)より有機金属化合物をキャリアガス中に飽和したガスとして取り出してMOCVD装置へ供給する方法を用いる。   When these organometallic compounds are used in the MOCVD method, when the organometallic compound is solid, the carrier gas inlet (2a) and the carrier gas outlet as shown in FIG. (3a) is filled in a filling container A, a carrier gas such as hydrogen gas is introduced into the container from the carrier gas inlet (2a), and the organometallic compound is introduced into the carrier gas from the carrier gas outlet (3a). A method of taking out as a saturated gas and supplying it to the MOCVD apparatus is used.

その際、この有機金属化合物が上記の供給において使用する温度で固体の場合には、充填容器A内において固体有機金属化合物中にキャリアガスが固体有機金属化合物と十分な接触をしないまま通過してしまう流路が形成されてしまうこと等によりキャリアガスと固体有機金属化合物との接触状態を均一に保つことが難しく、キャリアガスによって長期間一定の濃度で安定的にMOCVD装置に充填容器Aから固体有機金属化合物を供給することが困難であるという問題点がある。また、前述のようなキャリアガスを用いた方法による固体有機金属化合物の供給においては、充填容器Aに充填する固体有機金属化合物の量を増加させていくと、MOCVD装置へ安定的に供給可能な固体有機金属化合物の量の割合が充填した固体有機金属化合物の量に対して減少し、結果的に固体有機金属化合物の充填容器内への残存量が多くなり固体有機金属化合物を有効に使用できないという問題点がある。   In this case, when the organometallic compound is solid at the temperature used in the above supply, the carrier gas passes through the solid organometallic compound in the filled container A without making sufficient contact with the solid organometallic compound. It is difficult to maintain a uniform contact state between the carrier gas and the solid organometallic compound due to the formation of a flow path, and the carrier gas is stably solid from the filling container A to the MOCVD apparatus at a constant concentration for a long period of time. There is a problem that it is difficult to supply the organometallic compound. In addition, in the supply of the solid organometallic compound by the method using the carrier gas as described above, if the amount of the solid organometallic compound filled in the filling container A is increased, it can be stably supplied to the MOCVD apparatus. The proportion of the amount of the solid organometallic compound is reduced with respect to the amount of the filled solid organometallic compound, and as a result, the remaining amount of the solid organometallic compound in the filling container increases and the solid organometallic compound cannot be used effectively. There is a problem.

これら問題点を解決するために、固体有機金属化合物を充填容器Aに充填する際の方法について種々の提案がなされている。例えば特許文献1、特許文献2、特許文献3、特許文献4および特許文献5等においては固体有機金属化合物を充填材とともに充填容器に充填する方法が提案されている。また、例えば特許文献6等においては固体有機金属化合物を不活性な担体に被覆し充填容器Aに充填する方法等が提案されている。   In order to solve these problems, various proposals have been made regarding methods for filling a solid container A with a solid organometallic compound. For example, Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4 and Patent Literature 5 propose a method of filling a solid container with a solid organometallic compound together with a filler. For example, Patent Document 6 proposes a method in which a solid organometallic compound is coated on an inert carrier and filled in a filling container A.

このほかに、前述の問題点を解決する方法において、固体有機金属化合物を充填する充填容器自身の構造について種々の提案がなされている。例えば特許文献7等においては、図16に示すようにキャリアガス導入口にガスを均一化するためのディフューザー(20a)を設け、固体有機金属化合物に対してキャリアガスを均一に流通させる構造とする充填容器Bが提案されている。   In addition to the above, various proposals have been made for the structure of the filling container itself filled with the solid organometallic compound in the method for solving the above-mentioned problems. For example, in Patent Document 7 and the like, as shown in FIG. 16, a diffuser (20a) for making the gas uniform is provided at the carrier gas inlet, and the carrier gas is uniformly distributed to the solid organometallic compound. A filling container B has been proposed.

また、例えば特許文献8等においては、図17に示すような通気性を有する固体有機金属化合物配置室(21a)を有する、充填容器Cが提案されている。
特公平5−39915号公報 特公平6−20051号公報 特開平7−58023号公報 特開平8−250440号公報 特開平8−299778号公報 特許第2651530号公報 特公平2−124796号公報 特開平10−223540号公報
Further, for example, Patent Document 8 proposes a filling container C having a solid organometallic compound arrangement chamber (21a) having air permeability as shown in FIG.
Japanese Patent Publication No. 5-39915 Japanese Patent Publication No.6-20051 JP 7-58023 A JP-A-8-250440 JP-A-8-299778 Japanese Patent No. 2651530 Japanese Patent Publication No. 2-12496 JP-A-10-223540

しかしながら、従来の充填容器Aは、図15に示したように単一の容器にキャリアガス導入口(2a)とキャリアガス排出口(3a)とを備え、キャリアガス排出口下部より充填容器内部に充填容器Aの底部付近まで流路(8a)として下部開口部(7a)を有するディップチューブを備えた構造のものである。本発明者が検討した結果、図15の構造の充填容器Aを用いた場合には、キャリアガスを用いた方法において固体有機金属化合物をMOCVD装置に供給するに当たり、キャリアガスによる有機金属化合物の供給期間が長くなるにつれて徐々にキャリアガス中の有機金属化合物の供給量が低下する現象があることが明らかとなった。特に固体有機金属化合物の充填量を増加させたりキャリアガス流量を増加させると固体有機金属化合物の供給安定性に対する効果は著しく減少する。このように、充填容器Aでは長期間安定的に固体有機金属化合物をMOCVD装置に供給するに当たり十分な効果が得られていない。   However, the conventional filling container A includes a carrier gas inlet (2a) and a carrier gas outlet (3a) in a single container as shown in FIG. The structure is provided with a dip tube having a lower opening (7a) as a flow path (8a) up to the bottom of the filling container A. As a result of investigation by the present inventor, when the filled container A having the structure of FIG. 15 is used, supply of the organometallic compound by the carrier gas in supplying the solid organometallic compound to the MOCVD apparatus in the method using the carrier gas. It has been clarified that there is a phenomenon that the supply amount of the organometallic compound in the carrier gas gradually decreases as the period becomes longer. In particular, when the filling amount of the solid organometallic compound is increased or the carrier gas flow rate is increased, the effect on the supply stability of the solid organometallic compound is remarkably reduced. Thus, in the filled container A, an effect sufficient for supplying the solid organometallic compound to the MOCVD apparatus stably for a long period of time is not obtained.

また、種々の提案された図15以外の充填容器についても、キャリアガスを用いた方法において長期間安定的に固体有機金属化合物をMOCVD装置に供給するに当たっては不充分であったり、充填容器の外観形状が著しく大きくなるなどの問題点がある。   Also, various proposed filling containers other than those shown in FIG. 15 are insufficient for supplying the solid organometallic compound to the MOCVD apparatus stably for a long time in the method using the carrier gas, or the appearance of the filling container There is a problem that the shape becomes remarkably large.

このように、従来の固体有機金属化合物用充填容器は種々の問題点があり、固体有機金属化合物の供給安定性や充填容器の外観形状が著しく大きくならないこと等に関して改善が望まれている。   Thus, the conventional filled container for a solid organometallic compound has various problems, and improvements are desired with respect to the supply stability of the solid organometallic compound and the appearance shape of the filled container not significantly increasing.

本発明は、前述の問題点を解決するものであり、固体有機金属化合物を、長期間一定の濃度で安定的にMOCVD装置等の気相エピタキシャル成長用装置へ供給可能な新規な充填容器およびその充填容器に固体有機金属化合物を充填する方法に関するものである。   The present invention solves the above-described problems, and a novel filling container capable of stably supplying a solid organometallic compound to a vapor phase epitaxial growth apparatus such as an MOCVD apparatus at a constant concentration for a long period of time and its filling The present invention relates to a method of filling a container with a solid organometallic compound.

前述の問題点を解決するために、本発明者らが検討した結果、充填容器の内部の構造を以下に示す特徴を有する新規な構造とするによって、従来知られている充填容器に比べてその外観形状を著しく大きくすることなくMOCVD装置等の気相エピタキシャル成長用装置への固体有機金属化合物の供給を一定の濃度で安定的に行うことができ、さらに固体有機金属化合物を安定的に供給する期間が向上することを見出し、本発明を完成させた。   As a result of the study by the present inventors to solve the above-mentioned problems, the internal structure of the filling container is changed to a new structure having the following characteristics, and compared with a conventionally known filling container. The period during which solid organometallic compounds can be stably supplied at a constant concentration to a vapor phase epitaxial growth apparatus such as an MOCVD apparatus without significantly increasing the external shape, and the period during which the solid organometallic compounds are stably supplied The present invention has been completed.

すなわち本発明は、キャリアガス導入口とキャリアガス排出口を有する固体有機金属化合物用充填容器において、充填容器内部が複数の縦型空間に分画され、キャリアガス導入口から導入されたキャリアガスが各縦型空間を流通し、キャリアガス排出口から排出される構造を有することを特徴とする固体有機金属化合物用充填容器に関するものである。   That is, the present invention relates to a solid organometallic compound filling container having a carrier gas introduction port and a carrier gas discharge port, wherein the inside of the filling container is divided into a plurality of vertical spaces, and the carrier gas introduced from the carrier gas introduction port is The present invention relates to a filled container for a solid organometallic compound characterized by having a structure that circulates through each vertical space and is discharged from a carrier gas discharge port.

さらに具体的に本発明は、以下の(a)〜(c)の要件を具備することを特徴とする固体有機金属化合物用充填容器に関するものである。   More specifically, the present invention relates to a filled container for a solid organometallic compound characterized by having the following requirements (a) to (c).

固体有機金属化合物用充填容器において、
(a) 充填容器の内部を、少なくとも1枚以上の隔壁で縦方向に仕切り、充填容器の内部が少なくとも2つ以上の空間に区画された構造であること
(b) 隔壁で仕切られることによりできた充填容器内部の空間において、キャリアガス導入口を具備する空間と、キャリアガス排出口を具備する空間を有すること
(c) 充填容器の内部の隔壁において、キャリアガスをキャリアガス導入口から充填容器内の各空間を通じてキャリアガス排出口へ流通させるための開口部を有する隔壁を有することを特徴とする。
In filled containers for solid organometallic compounds,
(a) The inside of the filling container is vertically divided by at least one partition wall, and the inside of the filling container is divided into at least two spaces.
(b) The space inside the filling container formed by partitioning with a partition wall has a space having a carrier gas inlet and a space having a carrier gas outlet.
(c) The partition inside the filling container has a partition having an opening for flowing the carrier gas from the carrier gas inlet to the carrier gas outlet through each space in the filling container.

さらに、本発明の固体有機金属化合物用充填容器においては、隔壁で仕切られることによりできた充填容器内部の空間に、固体有機金属化合物を充填するための充填口を有することができる。   Furthermore, the filling container for a solid organometallic compound of the present invention can have a filling port for filling the solid organometallic compound in a space inside the filling container formed by partitioning with a partition wall.

また、本発明の固体有機金属化合物用充填容器では、固体有機金属化合物としてトリメチルインジウムを使用することができる。   In the filled container for a solid organometallic compound of the present invention, trimethylindium can be used as the solid organometallic compound.

さらに本発明は、上記の本発明の固体有機金属化合物用充填容器へ固体有機金属化合物を充填することを特徴とする固体有機金属化合物の充填方法に関するものである。   Furthermore, the present invention relates to a method for filling a solid organometallic compound, wherein the solid organometallic compound is filled into the filling container for a solid organometallic compound of the present invention.

本発明により、固体有機金属化合物用充填容器において、充填容器内に隔壁で縦方向に仕切り複数の空間とし、各空間をキャリアガスが流通する構造とすることで、従来の充填容器に比べてその外観形状を大きくすることなく長期間安定的に固体有機金属化合物をMOCVD装置等の気相エピタキシャル成長用装置へ供給することができる。   According to the present invention, in a filled container for a solid organometallic compound, a plurality of spaces are partitioned in a vertical direction by partition walls in the filled container, and each space has a structure in which a carrier gas flows, so that compared to a conventional filled container A solid organometallic compound can be stably supplied to a vapor phase epitaxial growth apparatus such as an MOCVD apparatus for a long period of time without increasing the external shape.

本発明の充填容器は、内部空間が複数の縦型空間に分画され、各縦型空間をキャリアガスが流通するものであれば特にその構造は限定されない。   The structure of the filling container of the present invention is not particularly limited as long as the internal space is divided into a plurality of vertical spaces and the carrier gas flows through each vertical space.

以下に本発明の固体有機金属化合物用充填容器およびその充填方法について図面を用いてさらに詳しく述べる。   Hereinafter, the filling container for solid organometallic compound and the filling method of the present invention will be described in more detail with reference to the drawings.

本発明の固体有機金属化合物用充填容器の一例を図1〜図4に示す。図1〜図4に示すように、本発明の固体有機金属化合物用充填容器は、充填容器の内部を少なくとも1枚以上の隔壁(1)で縦方向に仕切り、少なくとも2つ以上の空間に区画された構造を有する。隔壁(1)による空間の仕切り方は、例えば、図1〜4に示したように空間を区画した構造のものがある。   An example of the filling container for solid organometallic compounds of this invention is shown in FIGS. As shown in FIGS. 1-4, the filling container for solid organometallic compounds of this invention partitions the inside of a filling container into the vertical direction by at least 1 or more partition (1), and is divided into at least 2 or more space. Has a structured. The partitioning method of the space by the partition wall (1) includes, for example, a structure in which the space is partitioned as shown in FIGS.

充填容器の外形は、例えば、図1〜4のように円柱状の容器の他にも、三角柱、四角柱、五角柱、六角柱等の角柱状の容器等とすることもできる。   The outer shape of the filling container can be, for example, a prismatic container such as a triangular prism, a quadrangular prism, a pentagonal prism, and a hexagonal prism in addition to a cylindrical container as shown in FIGS.

さらに本発明の固体有機金属化合物用充填容器は、隔壁(1)で仕切られることによりできた充填容器内部の1つの空間に通じるキャリアガス導入口(2)を有し、残りの空間の1つに通じるキャリアガス排出口(3)を有する構造であり、例えば、図1〜4の構造のものを挙げることができる。キャリアガス導入口(2)よりキャリアガスを固体有機金属化合物が充填された充填容器に導入し、充填容器内部を流通させ、キャリアガス排出口(3)より有機金属化合物をキャリアガス中に飽和したガスとして取り出してMOCVD装置へ供給する。このキャリアガス導入口(2)およびキャリアガス排出口(3)の充填容器への設置位置は、隔壁(1)による空間の仕切り方や充填容器の使用の形態等に応じて、例えば、充填容器の上部にキャリアガス導入口(2)およびキャリアガス排出口(3)を有する構造のものや、また、例えば、それらが充填容器の側面に有する構造のものがある。   Furthermore, the filling container for a solid organometallic compound of the present invention has a carrier gas inlet (2) leading to one space inside the filling container formed by partitioning with the partition wall (1), and one of the remaining spaces. A structure having a carrier gas discharge port (3) leading to, for example, the structure shown in FIGS. The carrier gas is introduced into the filled container filled with the solid organometallic compound from the carrier gas inlet (2), and the inside of the filled container is circulated, and the organometallic compound is saturated in the carrier gas from the carrier gas outlet (3). It is taken out as gas and supplied to the MOCVD apparatus. The installation positions of the carrier gas introduction port (2) and the carrier gas discharge port (3) in the filling container are, for example, the filling container according to the way of dividing the space by the partition wall (1), the form of use of the filling container, and the like. There is a structure having a carrier gas introduction port (2) and a carrier gas discharge port (3) in the upper part of the container, and a structure having them on the side surface of the filling container, for example.

本発明の充填容器の内部の隔壁(1)においては、図1〜4に示すように、キャリアガスをキャリアガス導入口(2)から充填容器内の各空間を通じてキャリアガス排出口(3)へ流通させるための開口部(4)を具備する隔壁(1)を有することを特徴とする。   In the partition wall (1) inside the filling container of the present invention, as shown in FIGS. 1 to 4, the carrier gas is transferred from the carrier gas inlet (2) to the carrier gas outlet (3) through each space in the filling container. It has the partition (1) which comprises the opening part (4) for distribute | circulating, It is characterized by the above-mentioned.

この開口部(4)を具備する隔壁(1)の例として、例えば、図5〜6の構造のものを上げることが出来る。   As an example of the partition wall (1) having the opening (4), for example, a structure having a structure shown in FIGS.

これら開口部(4)の位置は、固体有機金属化合物が充填された空間を通じてキャリアガスがキャリアガス導入口(2)からキャリアガス排出口(3)へ十分に流通し、その際充填された固体有機金属化合物がキャリアガスと十分に接触し、有機金属化合物の安定的な供給に支障のないような位置であれば特に制限はないが、特に、充填された固体有機金属化合物とキャリアガスとを効果的に飽和接触させるために、キャリアガスを流すための開口部(4)において、開口部(4)を隔壁(1)の下部に配置する場合は、充填容器の内部底面から容器内部高さの1/3以下、好ましくは1/5以下、さらに好ましくは1/10以下の位置に開口部(4)を設置し、開口部(4)が隔壁(1)の上部に配置する場合には、充填容器の内部底面から容器内部高さの2/3以上、好ましくは4/5以上、さらに好ましくは9/10以上の位置に開口部(4)を設置する。   The positions of these openings (4) are such that the carrier gas is sufficiently circulated from the carrier gas inlet (2) to the carrier gas outlet (3) through the space filled with the solid organometallic compound, and the solid filled at that time. There is no particular limitation as long as the organometallic compound is in sufficient contact with the carrier gas and does not interfere with the stable supply of the organometallic compound, but the filled solid organometallic compound and the carrier gas are not particularly limited. In order to make saturation contact effectively, in the opening (4) for flowing the carrier gas, when the opening (4) is arranged at the lower part of the partition wall (1), the inner height of the container from the inner bottom surface of the filling container. When the opening (4) is installed at a position of 1/3 or less, preferably 1/5 or less, more preferably 1/10 or less, and the opening (4) is arranged above the partition wall (1) Or inside bottom of filling container Container inner height of more than 2/3, preferably 4/5 or more, more preferably installing opening (4) to 9/10 or more positions.

本発明の充填容器は、上記構造により、キャリアガスは区画された各空間を流通して、キャリアガス排出口(3)から排出される。   In the filling container of the present invention, the carrier gas flows through each partitioned space and is discharged from the carrier gas discharge port (3) by the above structure.

本発明の充填容器において、前記の開口部(4)を具備する隔壁(1)の例としては、隔壁(1)が1枚の場合の例として、例えば、図1のような構造のものが示すことができ、また、隔壁(1)が2枚の場合の例として、例えば、図2のような構造のものが示され、さらに、隔壁(1)が3枚以上の場合の例として、例えば、図3または図4のような構造のものが示すことができる。   In the filling container of the present invention, as an example of the partition wall (1) having the opening (4), as an example in the case of one partition wall (1), for example, a structure as shown in FIG. In addition, as an example in the case where there are two partition walls (1), for example, a structure as shown in FIG. 2 is shown. Further, as an example in the case where there are three or more partition walls (1), For example, the structure shown in FIG. 3 or 4 can be shown.

さらに、隔壁(1)に備わる開口部(4)の位置によっては、キャリアガスをキャリアガス導入口(2)から開口部(4)を通じて、空間すべてを流通させ、キャリアガス排出口(3)へ流通させるために、キャリアガス導入口(2)およびキャリアガス排出口(3)のそれぞれに流路(5)を設けた構造とすることが出来る。このキャリアガス導入口(2)およびキャリアガス排出口(3)のそれぞれに流路(5)を設けた構造を有する充填容器の例として、例えば、図7、8のような構造のものを示すことが出来る。   Further, depending on the position of the opening (4) provided in the partition wall (1), the carrier gas is circulated through the space from the carrier gas inlet (2) through the opening (4) to the carrier gas outlet (3). In order to make it circulate, it can be set as the structure which provided the flow path (5) in each of the carrier gas introduction port (2) and the carrier gas discharge port (3). As an example of a filling container having a structure in which a flow path (5) is provided in each of the carrier gas introduction port (2) and the carrier gas discharge port (3), for example, one having a structure as shown in FIGS. I can do it.

上記の流路(5)は、例えば、図9に示すような管状のものや、図10または図11のような隔壁(1)で仕切られた構造の下部に流路下部開口部(6)をもつもの等を用いることができる。前記流路(5)は、これら管状の構造のものや隔壁(1)で仕切られた構造の下部に流路下部開口部(6)をもつものとを組み合わせたものでもよい。   The flow path (5) is, for example, a tubular shape as shown in FIG. 9 or a flow path lower opening (6) at the lower part of the structure partitioned by the partition wall (1) as shown in FIG. 10 or FIG. It is possible to use those having The flow path (5) may be a combination of those having a tubular structure or a structure having a flow path lower opening (6) in the lower part of the structure partitioned by the partition wall (1).

この流路(5)の流路下部開口部(6)の位置は、充填容器の内部底面から容器内部高さの1/3以下、好ましくは1/5以下、さらに好ましくは1/10以下の位置に設置することが望ましい。   The position of the flow path lower opening (6) of this flow path (5) is 1/3 or less, preferably 1/5 or less, more preferably 1/10 or less of the container internal height from the inner bottom surface of the filling container. It is desirable to install in the position.

本発明の充填容器におけるキャリアガスの流通形態を図1に基づいて説明する。まず、キャリアガスはキャリアガス導入口(2)から導入され、キャリアガス導入口(2)を有する空間内を流通する。キャリアガスは、開口部(4)を通じて各空間を流通し、キャリアガス排出口(3)から排出されMOCVD装置へ供給される。なお、図1に基づいてキャリアガスの流通形態を説明したが、図2〜図4のように、充填容器内が3以上の空間に区画されている場合、各隔壁(1)に設けられた開口部(4)により、キャリアガスは流通することになる。   The carrier gas distribution mode in the filling container of the present invention will be described with reference to FIG. First, the carrier gas is introduced from the carrier gas inlet (2) and circulates in the space having the carrier gas inlet (2). The carrier gas flows through each space through the opening (4), is discharged from the carrier gas discharge port (3), and is supplied to the MOCVD apparatus. In addition, although the distribution | circulation form of carrier gas was demonstrated based on FIG. 1, when the inside of a filling container was divided into three or more space like FIGS. 2-4, it was provided in each partition (1). The carrier gas flows through the opening (4).

この流通形態において、図7のような、キャリアガス導入口(2)およびキャリアガス排出口(3)のそれぞれに流路(5)を設けた構造においては、キャリアガスはキャリアガス導入口(2)から導入され、流路(5)を流通した後、キャリアガス導入口(2)を有する空間内を流通する。キャリアガスは、開口部(4)を通じて各空間を流通し、キャリアガス排出口(3)に設けた流路(5)を流通し、キャリアガス排出口(3)から排出されMOCVD装置へ供給される。   In this distribution form, in the structure in which the flow path (5) is provided in each of the carrier gas inlet (2) and the carrier gas outlet (3) as shown in FIG. 7, the carrier gas is the carrier gas inlet (2 ) And circulates in the space having the carrier gas inlet (2) after flowing through the flow path (5). The carrier gas flows through each space through the opening (4), flows through the flow path (5) provided in the carrier gas discharge port (3), is discharged from the carrier gas discharge port (3), and is supplied to the MOCVD apparatus. The

固体有機金属化合物を本発明の充填容器に充填し、MOCVD装置への有機金属化合物の供給に使用する場合には、充填容器内部の空間に固体有機金属化合物を充填する。   When the solid organometallic compound is filled in the filling container of the present invention and used for supplying the organometallic compound to the MOCVD apparatus, the space inside the filling container is filled with the solid organometallic compound.

本発明の固体有機金属化合物用充填容器において、その充填容器に固体有機金属化合物を充填する方法としては、これまで知られている方法をそのまま使用することが可能であり、例えば、固体有機金属化合物を昇華により充填容器内に導入し充填する方法や、また、例えば、有機金属化合物をキャリアガス中の飽和蒸気として充填容器内に導入し充填する方法や、さらに、例えば、有機金属化合物を融点以上に加熱して液状にして充填容器内に導入する方法等を用いることができる。   In the filled container for the solid organometallic compound of the present invention, as a method for filling the filled container with the solid organometallic compound, a conventionally known method can be used as it is, for example, a solid organometallic compound. For example, a method for introducing and filling an organometallic compound into a filling vessel as saturated vapor in a carrier gas, and for example, a method for introducing an organometallic compound to a melting point or higher. A method of heating to a liquefied state and introducing into a filled container can be used.

さらに、本発明の固体有機金属化合物用充填容器においては、隔壁(1)で仕切られることによりできた充填容器内部の空間に固体有機金属化合物を充填するための充填口(9)を設けることもできる。この充填口(9)を設けることにより、固体有機金属化合物を固体のまま投入することが可能となる。本発明において、充填容器の充填口は、例えば、図1〜4のように充填容器の上部に設けることができる。また、キャリアガス導入口(2)および/またはキャリアガス排出口(3)を充填容器から切り離し可能な構造とすることで、これらキャリアガス導入口(2)および/またはキャリアガス排出口(3)と充填口(9)と兼用する構造とすることが可能である。切り離されたキャリアガス導入口(2)および/またはキャリアガス排出口(3)と充填容器とは、接続部品(26)を介して再び継ぎ合わせて使用する。この構造の例として、例えば、図12のように、キャリアガス導入口(2)と充填容器との間に、充填口として切り離し可能な接続部品(26)設け、これを介して再び継ぎ合わせて使用するものがあげられる。   Furthermore, in the filling container for solid organometallic compounds of the present invention, a filling port (9) for filling the solid organometallic compound in the space inside the filling container formed by partitioning with the partition wall (1) may be provided. it can. By providing this filling port (9), the solid organometallic compound can be charged as it is. In this invention, the filling port of a filling container can be provided in the upper part of a filling container, for example like FIGS. Further, the carrier gas introduction port (2) and / or the carrier gas discharge port (3) can be separated from the filling container, so that the carrier gas introduction port (2) and / or the carrier gas discharge port (3) can be separated. And a filling port (9). The separated carrier gas introduction port (2) and / or carrier gas discharge port (3) and the filling container are used together again through the connecting part (26). As an example of this structure, for example, as shown in FIG. 12, a connecting part (26) that can be separated as a filling port is provided between the carrier gas introduction port (2) and the filling container, and the connection parts are joined together via this. What is used.

なお、上記の充填口は固体有機金属化合物の充填方法に応じて、充填容器に具備しても、具備しなくてもよい。   The filling port may or may not be provided in the filling container depending on the filling method of the solid organometallic compound.

なお、本発明の充填容器においては、例えば、図1〜4のように、キャリアガス導入口(2)およびキャリアガス排出口(3)に開閉が可能なバルブ(22)を備えることができ、キャリアガス流通時にはバルブ(22)を開にして使用し、また、有機金属化合物を供給しない場合においては、通常バルブを閉の状態として固体有機金属化合物が外部から汚染されたり、充填容器外部へ昇華したりして蒸散することを防ぐ。   In the filled container of the present invention, for example, as shown in FIGS. 1 to 4, the carrier gas inlet (2) and the carrier gas outlet (3) can be provided with a valve (22) that can be opened and closed, When the carrier gas is circulated, it is used with the valve (22) opened. When the organometallic compound is not supplied, the solid organometallic compound is usually contaminated from the outside with the valve closed, or sublimated outside the filling container. To prevent transpiration.

このように、本発明の充填容器は、充填容器内部は隔壁(1)により複数の空間に区画されており、キャリアガス導入口(2)より導入したキャリアガスは各容器空間に充填した固体有機金属化合物の中をすべての空間において、それら空間の上部より空間の下部へ通過しキャリアガス排出口(3)へ流通する構造となっている。このように容器内部を隔壁(1)で仕切り複数の空間に区画することで各空間の断面積が小さくなりキャリアガスと固体有機金属化合物との接触が十分に行われるので、従来技術のように流路が形成されることなくキャリアガスと固体有機金属化合物との接触状態を均一に保つことができ、キャリアガスによって長期間一定の濃度で安定的にMOCVD装置に充填容器から固体有機金属化合物を供給することが可能になる。   Thus, the filling container of the present invention is divided into a plurality of spaces inside the filling container by the partition wall (1), and the carrier gas introduced from the carrier gas inlet (2) is a solid organic filled in each container space. In all the spaces in the metal compound, the structure passes from the upper part of the space to the lower part of the space and flows to the carrier gas discharge port (3). As described above, since the inside of the container is partitioned by the partition wall (1) and divided into a plurality of spaces, the cross-sectional area of each space is reduced and the contact between the carrier gas and the solid organometallic compound is sufficiently performed. The contact state between the carrier gas and the solid organometallic compound can be kept uniform without the formation of a flow path, and the solid organometallic compound can be stably transferred from the filling container to the MOCVD apparatus at a constant concentration for a long time by the carrier gas. It becomes possible to supply.

本発明の充填容器に充填して使用できる固体有機金属化合物については、これまで知られている充填容器で使用されている固体有機金属化合物はもちろんのこと、その他の固体有機金属化合物であっても、キャリアガスを用いた供給使用温度・圧力において、キャリアガスに対して所望の供給に足りうる飽和蒸気圧がありかつ供給条件下において固体であるものが適用可能である。これら固体有機金属化合物の代表的な例として、アルキル金属化合物、メタロセン化合物、β−ジケトン錯体、アダクト化合物があり、具体的には例えば、トリメチルインジウム、ジメチルクロルインジウム、トリフェニルアルミニウム、トリフェニルビスマス、tert−ブチルリチウム等のアルキル金属化合物、シクロペンタジエニルインジウム、ビスシクロペンタジエニルマグネシウム、ビスシクロペンタジエニルマンガン、フェロセン等のメタロセン化合物、バリウムアセチルアセトナート錯体、ストロンチウムアセチルアセトナート錯体、銅アセチルアセトナート錯体、カルシウムアセチルアセトナート錯体、バリウムジピバロイルメタナート錯体、ストロンチウムジピバロイルメタナート錯体、銅ジピバロイルメタナート錯体、イットリウムジピバロイルメタナート錯体、カルシウムジピバロイルメタナート錯体等のβ−ジケトン錯体、トリメチルインジウム・トリメチルアルシンアダクト、トリメチルインジウム・トリメチルホスフィンアダクト、バリウムジピバロイルメタナート・1,10−フェナントロリンアダクト等のアダクト化合物等が挙げられる。   Regarding the solid organometallic compound that can be used by filling the filling container of the present invention, not only the solid organometallic compound used in the filling container known so far, but also other solid organometallic compounds may be used. It is possible to apply a carrier gas having a saturated vapor pressure sufficient for a desired supply and a solid under supply conditions at a use temperature and pressure using the carrier gas. Representative examples of these solid organometallic compounds include alkyl metal compounds, metallocene compounds, β-diketone complexes, and adduct compounds. Specifically, for example, trimethylindium, dimethylchloroindium, triphenylaluminum, triphenylbismuth, alkyl metal compounds such as tert-butyllithium, metallocene compounds such as cyclopentadienylindium, biscyclopentadienylmagnesium, biscyclopentadienylmanganese, ferrocene, barium acetylacetonate complex, strontium acetylacetonate complex, copper acetyl Acetonate complex, calcium acetylacetonate complex, barium dipivaloylmethanate complex, strontium dipivaloylmethanate complex, copper dipivaloylmethanate complex, Β-diketone complexes such as thorium dipivaloylmethanate complex, calcium dipivaloylmethanate complex, trimethylindium trimethylarsine adduct, trimethylindium trimethylphosphine adduct, barium dipivaloylmethanate 1,10 -Adduct compounds, such as a phenanthroline adduct, etc. are mentioned.

また、本発明の充填容器を使用する際の圧力は、これまで知られている充填容器で用いられている条件を変更することなく使用可能であり、長期間安定的に固体有機金属化合物がMOCVD装置に供給されるような条件であれば特に制限はなく、加圧、常圧、減圧いずれでも使用可能であるが、通常常圧付近から減圧の条件で使用する。   Moreover, the pressure when using the filling container of the present invention can be used without changing the conditions used in the filling containers known so far, and the solid organometallic compound can be stably MOCVD for a long period of time. The conditions are not particularly limited as long as the conditions are supplied to the apparatus, and any of pressurization, normal pressure, and reduced pressure can be used.

さらに、本発明の充填容器を使用する際の温度についても、これまで知られている充填容器で用いられている条件を変更することなく適用可能であり、通常使用する固体有機金属化合物がキャリアガスに対して所望の供給に足りうる飽和蒸気圧が得られかつ供給条件下において固体となっている条件が適用可能である。
本発明の充填容器において、キャリアガスもこれまで知られている充填容器で用いられているものがすべて使用可能であり、例えば、窒素、アルゴン、ヘリウム等の不活性ガスあるいは水素ガス等が用いられる。
Further, the temperature at which the filling container of the present invention is used can be applied without changing the conditions used in the filling containers known so far, and the normally used solid organometallic compound is a carrier gas. On the other hand, it is possible to apply a condition in which a saturated vapor pressure sufficient for a desired supply is obtained and a solid is obtained under the supply conditions.
In the filling container of the present invention, any carrier gas used in known filling containers can be used. For example, inert gas such as nitrogen, argon, helium, or hydrogen gas is used. .

また、本発明の充填容器においては、これまで知られている充填容器において固体有機金属化合物とともに充填して使用されている既知の充填材が使用可能である。この充填材としてはその材質として、例えばステンレススチール、ガラス、セラミックス、フッ素樹脂等が用いられ、好ましくはステンレススチールを用いることができる。また、充填材の形状としては、丸型、角型、円筒状、コイル状、スプリング状、球状等の各種形状のものが使用でき、例えばこれらの例として、蒸留用各種パッキング、例えばディクソンパッキング、ヘリパック、フェンスケ等を使用できる。また、繊維状の充填材も使用できる。   Moreover, in the filling container of the present invention, a known filler that is used by being filled with a solid organometallic compound in a known filling container can be used. As the filler, for example, stainless steel, glass, ceramics, fluororesin or the like is used, and stainless steel can be preferably used. In addition, as the shape of the filler, various shapes such as a round shape, a square shape, a cylindrical shape, a coil shape, a spring shape, and a spherical shape can be used. For example, various packings for distillation such as Dixon packing, Helipak, Fenceke etc. can be used. A fibrous filler can also be used.

これらの充填材は、本発明の充填容器においても、これまで知られている方法で充填容器に充填して固体有機金属化合物とともに使用することができる。   These fillers can be used in the filling container of the present invention together with the solid organometallic compound after filling the filling container by a known method.

なお、本発明の充填容器は固体有機金属化合物だけでなく、その他蒸気圧をもつ固体無機化合物、固体有機化合物または固体金属等の一般的な固体物質の充填容器にも転用可能である。このように固体有機金属化合物のかわりにその他の固体物質をキャリアガスを用いキャリアガスに飽和したガスとして取り出すための充填容器としても本発明の充填容器は使用可能である。   In addition, the filling container of the present invention can be used not only for a solid organometallic compound but also for a filling container of a general solid substance such as a solid inorganic compound having a vapor pressure, a solid organic compound, or a solid metal. Thus, the filling container of the present invention can also be used as a filling container for taking out another solid substance as a gas saturated with the carrier gas instead of the solid organometallic compound.

以下、実施例によって本発明を詳しく説明する。   Hereinafter, the present invention will be described in detail by way of examples.

図7に示した充填容器に固体有機金属化合物としてトリメチルインジウムを用いて固体有機金属化合物の供給安定性をテストした。   The supply stability of the solid organometallic compound was tested using trimethylindium as the solid organometallic compound in the filled container shown in FIG.

供給安定性のテストは以下の方法で行った。   The supply stability test was conducted by the following method.

窒素雰囲気下において、図7に示すような、外径76.0mmφのSUS製充填容器に、トリメチルインジウム400gとステンレス製充填材647gとを充填口(9)から充填した。   In a nitrogen atmosphere, 400 g of trimethylindium and 647 g of a stainless steel filler were filled into a SUS filled container having an outer diameter of 76.0 mmφ as shown in FIG. 7 from the filling port (9).

次に、キャリアガス排出口(3)をトリメチルインジウム捕集用のドライアイス−メタノールで冷却したトラップに接続した。キャリアガス排出口(3)とドライアイス−メタノールで冷却したトラップとを接続する配管は加温して、この配管内をトリメチルインジウムが析出しないようにした。トリメチルインジウムと充填材が入った充填容器を25℃の恒温槽につけ、供給安定性テストの装置系内の圧力を大気圧付近にした条件下で、充填容器のキャリアガス導入口(2)より窒素ガスを毎分500cc流し、8時間毎にドライアイス−メタノールで冷却したトラップに捕集されたトリメチルインジウムの重量を測定した。あわせてトリメチルインジウムの蒸気を含むキャリアガスのガス相のガス濃度について、超音波式ガス濃度計(商品名エピソン:トーマススワン社製)にて測定した。   Next, the carrier gas outlet (3) was connected to a trap cooled with dry ice-methanol for collecting trimethylindium. The pipe connecting the carrier gas discharge port (3) and the trap cooled with dry ice-methanol was heated so that trimethylindium did not precipitate in the pipe. A filling container containing trimethylindium and a filler is attached to a thermostatic bath at 25 ° C., and nitrogen is supplied from the carrier gas inlet (2) of the filling container under the condition that the pressure in the apparatus system of the supply stability test is close to atmospheric pressure. The gas was flowed at 500 cc per minute, and the weight of trimethylindium collected in a trap cooled with dry ice-methanol every 8 hours was measured. In addition, the gas phase gas concentration of the carrier gas containing trimethylindium vapor was measured with an ultrasonic gas concentration meter (trade name Epison: manufactured by Thomas Swan).

その結果を図13に示す。図13に示すグラフの縦軸には1時間あたりのトリメチルインジウムの供給量を、横軸には供給したトリメチルインジウムの使用割合を重量%で示した。   The result is shown in FIG. The vertical axis of the graph shown in FIG. 13 shows the supply amount of trimethylindium per hour, and the horizontal axis shows the usage ratio of the supplied trimethylindium in weight%.

供給安定性のテストの結果、本発明の充填容器を用いた場合、トリメチルインジウムの供給速度は使用割合の62重量%まで安定していた。   As a result of the supply stability test, when the filled container of the present invention was used, the supply rate of trimethylindium was stable up to 62% by weight of the usage ratio.

このように、図7の充填容器を用いることで、固体有機金属化合物の供給を一定の濃度で安定的に行うことができ、さらに、安定した供給速度が得られた条件下において固体有機金属化合物の使用割合を増加させることが可能となる。その結果、本発明の充填容器を用いることで、固体有機金属化合物を安定的に供給する期間を向上することができる。   In this way, by using the filling container of FIG. 7, the solid organometallic compound can be stably supplied at a constant concentration, and further, the solid organometallic compound can be obtained under the conditions where a stable supply rate is obtained. It becomes possible to increase the usage rate of. As a result, the period during which the solid organometallic compound is stably supplied can be improved by using the filled container of the present invention.

比較例1Comparative Example 1

図15の従来の充填容器Aに固体有機金属化合物としてトリメチルインジウムを充填して、実施例1と同様に固体有機金属化合物の供給安定性をテストした。その結果を図14に示す。供給安定性のテストの結果、図15の従来の充填容器Aを用いた場合、トリメチルインジウムの供給速度は使用割合の35重量%まで安定していた。   15 was filled with trimethylindium as a solid organometallic compound, and the supply stability of the solid organometallic compound was tested in the same manner as in Example 1. The result is shown in FIG. As a result of the supply stability test, when the conventional filled container A of FIG. 15 was used, the supply rate of trimethylindium was stable up to 35% by weight of the use ratio.

本発明は、従来の充填容器に比べてその外観形状を大きくすることなく長期間安定的に固体有機金属化合物をMOCVD装置等の気相エピタキシャル成長用装置へ供給することができる。   The present invention can stably supply a solid organometallic compound to an apparatus for vapor phase epitaxial growth such as an MOCVD apparatus for a long period of time without increasing its external shape as compared with a conventional filled container.

(A)は本発明の充填容器の一実施形態を示す模式断面図、(B)はその平面図、(C)はその斜視図(A) is a schematic cross-sectional view showing an embodiment of the filling container of the present invention, (B) is a plan view thereof, and (C) is a perspective view thereof. (A)は本発明の充填容器の一実施形態を示す模式断面図、(B)はその平面図(A) is a schematic cross-sectional view showing an embodiment of the filled container of the present invention, (B) is a plan view thereof (A)は本発明の充填容器の一実施形態を示す模式断面図、(B)はその平面図(A) is a schematic cross-sectional view showing an embodiment of the filled container of the present invention, (B) is a plan view thereof (A)は本発明の充填容器の一実施形態を示す模式断面図、(B)はその平面図(A) is a schematic cross-sectional view showing an embodiment of the filled container of the present invention, (B) is a plan view thereof 本発明の充填容器における隔壁および開口部の一実施形態を示す斜視図The perspective view which shows one Embodiment of the partition and opening part in the filling container of this invention 本発明の充填容器における隔壁および開口部の一実施形態を示す斜視図The perspective view which shows one Embodiment of the partition and opening part in the filling container of this invention (A)は本発明の充填容器の一実施形態を示す模式断面図、(B)はその平面図、(C)はその斜視図(A) is a schematic cross-sectional view showing an embodiment of the filling container of the present invention, (B) is a plan view thereof, and (C) is a perspective view thereof. (A)は本発明の充填容器の一実施形態を示す模式断面図、(B)はその平面図、(C)はその斜視図(A) is a schematic cross-sectional view showing an embodiment of the filling container of the present invention, (B) is a plan view thereof, and (C) is a perspective view thereof. (A)は本発明の流路の一実施形態を示す斜視図、(B)はその断面図(A) is a perspective view which shows one Embodiment of the flow path of this invention, (B) is the sectional drawing. (A)は本発明の充填容器における隔壁が流路を兼用する構造の連絡流路の一実施形態を示す斜視図、(B)はその断面図(A) is a perspective view showing an embodiment of a communication flow channel having a structure in which a partition wall in the filling container of the present invention also serves as a flow channel, and (B) is a sectional view thereof. (A)は本発明の充填容器における隔壁が流路を兼用する構造の連絡流路の一実施形態を示す斜視図、(B)はその断面図(A) is a perspective view showing an embodiment of a communication channel having a structure in which a partition wall in the filling container of the present invention also serves as a channel, and (B) is a sectional view thereof. A)は本発明の充填容器におけるキャリアガス導入口と充填口とが兼用する構造で接続部品を有する充填容器の一実施形態を示す模式断面図、(B)はその平面図、(C)はその斜視図(A) is a schematic cross-sectional view showing an embodiment of a filling container having a connecting part with a structure in which the carrier gas introduction port and the filling port are combined in the filling container of the present invention, (B) is a plan view thereof, (C) is a plan view thereof. Perspective view 本実施例1におけるトリメチルインジウムの供給安定性のテストの結果(供給したトリメチルインジウムの使用割合と1時間あたりのトリメチルインジウムの供給量との関係)を示す図The figure which shows the result of the test of the supply stability of the trimethylindium in this Example 1 (relationship between the usage rate of the supplied trimethylindium and the supply amount of trimethylindium per hour). 比較例1におけるトリメチルインジウムの供給安定性のテストの結果(供給したトリメチルインジウムの使用割合と1時間あたりのトリメチルインジウムの供給量との関係)を示す図The figure which shows the result (the relationship between the usage-amount of the supplied trimethylindium and the supply amount of the trimethylindium per hour) of the supply stability test of the trimethylindium in the comparative example 1. 従来の充填容器Aを示す模式断面図Schematic sectional view showing a conventional filling container A 従来の充填容器Bを示す模式断面図Schematic sectional view showing a conventional filling container B 従来の充填容器Cを示す模式断面図Schematic sectional view showing a conventional filling container C

符号の説明Explanation of symbols

1:隔壁
2:キャリアガス導入口
3:キャリアガス排出口
4:開口部
5:流路
6:流路下部開口部
9:充填口
22:バルブ
26:接続部品
2a:キャリアガス導入口
3a:キャリアガス排出口
7a:下部開口部
8a:流路
9a:充填口
20a:ディフューザー
21a:固体有機金属化合物配置室
22a:バルブ
23a:カラム型容器
24a:フィルター
1: partition wall 2: carrier gas introduction port 3: carrier gas discharge port 4: opening 5: flow channel 6: flow channel lower opening 9: filling port 22: valve 26: connecting part 2a: carrier gas introduction port 3a: carrier Gas outlet 7a: Lower opening 8a: Channel 9a: Filling port 20a: Diffuser 21a: Solid organometallic compound placement chamber 22a: Valve 23a: Column type container 24a: Filter

Claims (5)

キャリアガス導入口とキャリアガス排出口を有する固体有機金属化合物用充填容器において、
(a) 充填容器の内部を、少なくとも1枚の隔壁で縦方向に仕切り、充填容器の内部が少なくとも2つの固体有機金属化合物が充填される空間に区画された構造であること
(b) 隔壁で仕切られることによりできた充填容器内部の空間において、キャリアガス導入口を具備する空間と、キャリアガス排出口を具備する空間を有すること
(c) 充填容器の内部の隔壁において、キャリアガスをキャリアガス導入口から充填容器内の各空間を通じてキャリアガス排出口へ流通させるための開口部を有する隔壁を有することを特徴とする固体有機金属化合物用充填容器(ただし、容器内部の固体有機金属化合物を充填する空間にメッシュ構造のあるものを除く)
In a filled container for a solid organometallic compound having a carrier gas inlet and a carrier gas outlet,
(a) The inside of the filling container is partitioned vertically by at least one partition, and the inside of the filling container is partitioned into a space filled with at least two solid organometallic compounds.
(b) The space inside the filling container formed by partitioning with a partition wall has a space having a carrier gas inlet and a space having a carrier gas outlet.
(c) A solid organic metal having a partition wall having an opening for flowing the carrier gas from the carrier gas inlet to the carrier gas outlet through each space in the filler container in the partition wall inside the container Compound container (excluding those with a mesh structure in the space filled with the solid organometallic compound inside the container) .
前記開口部において、開口部を隔壁の下部に配置する場合は、充填容器の内部底面から容器内部高さの1/3以下、開口部を隔壁の上部に配置する場合は、充填容器の内部底面から容器内部高さの2/3以上の位置にそれぞれ開口部を設置することを特徴とする請求項1記載の固体有機金属化合物用充填容器。 In the opening, when the opening is arranged at the lower part of the partition wall, it is 1/3 or less of the container inner height from the inner bottom surface of the filling container, and when the opening is arranged at the upper part of the partition wall, the inner bottom surface of the filling container 2. The filled container for a solid organometallic compound according to claim 1, wherein the opening is provided at a position of 2/3 or more of the inner height of the container. 隔壁で仕切られることによりできた充填容器内部の空間に固体有機金属化合物を充填するための充填口を有することを特徴とする請求項1または請求項2記載の固体有機金属化合物用充填容器。 The filling container for a solid organometallic compound according to claim 1 or 2, further comprising a filling port for filling the space inside the filling container formed by partitioning with the solid organometallic compound. 固体有機金属化合物がトリメチルインジウムである請求項1ないし請求項3のいずれか1項に記載の固体有機金属化合物用充填容器。 The filled container for a solid organometallic compound according to any one of claims 1 to 3, wherein the solid organometallic compound is trimethylindium. 請求項1ないし請求項4のいずれか1項に記載の固体有機金属化合物用充填容器に固体有機金属化合物を充填することを特徴とする固体有機金属化合物の充填方法。
A solid organometallic compound filling method, comprising filling the solid organometallic compound filling container according to any one of claims 1 to 4 with a solid organometallic compound.
JP2003271742A 2003-07-08 2003-07-08 Filling container for solid organometallic compound and filling method thereof Expired - Fee Related JP4571787B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003271742A JP4571787B2 (en) 2003-07-08 2003-07-08 Filling container for solid organometallic compound and filling method thereof
US10/865,880 US7547363B2 (en) 2003-07-08 2004-06-14 Solid organometallic compound-filled container and filling method thereof
TW093119937A TWI273643B (en) 2003-07-08 2004-07-01 Solid organometallic compound-filled container and filling method thereof
KR1020040052239A KR101029894B1 (en) 2003-07-08 2004-07-06 Container and method for filling solid organometallic compound
CNB2004100640023A CN100394551C (en) 2003-07-08 2004-07-08 Solid organometallic compound-filled container and filling method thereof
US12/464,333 US8092604B2 (en) 2003-07-08 2009-05-12 Solid organometallic compound-filled container and filling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271742A JP4571787B2 (en) 2003-07-08 2003-07-08 Filling container for solid organometallic compound and filling method thereof

Publications (2)

Publication Number Publication Date
JP2005033045A JP2005033045A (en) 2005-02-03
JP4571787B2 true JP4571787B2 (en) 2010-10-27

Family

ID=34209507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271742A Expired - Fee Related JP4571787B2 (en) 2003-07-08 2003-07-08 Filling container for solid organometallic compound and filling method thereof

Country Status (4)

Country Link
JP (1) JP4571787B2 (en)
KR (1) KR101029894B1 (en)
CN (1) CN100394551C (en)
TW (1) TWI273643B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420688B (en) 2008-12-04 2019-01-22 威科仪器有限公司 Air inlet element and its manufacturing method for chemical vapor deposition
EP2496733B1 (en) * 2009-11-02 2021-08-04 Sigma-Aldrich Co. LLC Method for evaporation
JP6324609B1 (en) * 2017-06-21 2018-05-16 日本エア・リキード株式会社 Solid material container and solid material product in which the solid material container is filled with solid material
KR102027179B1 (en) 2018-05-08 2019-10-02 주식회사 레이크머티리얼즈 Apparatus for supplying organometallic compound
KR102208303B1 (en) 2019-09-25 2021-01-28 주식회사 레이크머티리얼즈 Apparatus for supplying organometallic compound
CN114059038B (en) * 2020-08-07 2024-02-09 吕宝源 Solid metal organic compound transformation method and transformation system thereof
CN112458434B (en) * 2021-01-29 2021-06-01 江苏南大光电材料股份有限公司 Packaging container for solid precursor and application of packaging container in vapor deposition process
KR102407768B1 (en) * 2021-07-01 2022-06-10 주식회사 레이크머티리얼즈 Apparatus for supplying organometallic compound
CN116103636A (en) * 2023-04-12 2023-05-12 上海星原驰半导体有限公司 Solid-phase precursor output device and vapor deposition system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269389A (en) * 1988-08-31 1990-03-08 Toyo Stauffer Chem Co Formation of saturated vapor of solid organometallic compound in vapor growth method
JPH05343339A (en) * 1992-06-05 1993-12-24 Japan Energy Corp Organometal evaporative container
JPH08279497A (en) * 1995-04-07 1996-10-22 Hitachi Ltd Semiconductor and production system thereof
JPH10223540A (en) * 1997-02-03 1998-08-21 Sony Corp Organic metal chemical vapor deposition apparatus
JP2001059178A (en) * 1999-08-20 2001-03-06 Pioneer Electronic Corp Raw material feeding device in chemical vapor growth method and raw material feeding method
JP2001115263A (en) * 1999-08-20 2001-04-24 Morton Internatl Inc Bubbler having two frits

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464314A (en) * 1987-09-04 1989-03-10 Mitsubishi Electric Corp Sublimator
KR960010901A (en) * 1994-09-30 1996-04-20 김광호 Bubble Organic Device for Solid Organic Compound
JP2964313B2 (en) * 1995-03-09 1999-10-18 信越化学工業株式会社 Solid organometallic compound supply apparatus and method for producing the same
JPH09246194A (en) * 1996-03-05 1997-09-19 Sony Corp Container of organic metal compound material and its composite container, and organic metal chemical gas phase growing device
JP3932874B2 (en) 2001-11-27 2007-06-20 三菱マテリアル株式会社 Ruthenium compound for metal organic chemical vapor deposition and ruthenium-containing thin film obtained by the compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269389A (en) * 1988-08-31 1990-03-08 Toyo Stauffer Chem Co Formation of saturated vapor of solid organometallic compound in vapor growth method
JPH05343339A (en) * 1992-06-05 1993-12-24 Japan Energy Corp Organometal evaporative container
JPH08279497A (en) * 1995-04-07 1996-10-22 Hitachi Ltd Semiconductor and production system thereof
JPH10223540A (en) * 1997-02-03 1998-08-21 Sony Corp Organic metal chemical vapor deposition apparatus
JP2001059178A (en) * 1999-08-20 2001-03-06 Pioneer Electronic Corp Raw material feeding device in chemical vapor growth method and raw material feeding method
JP2001115263A (en) * 1999-08-20 2001-04-24 Morton Internatl Inc Bubbler having two frits

Also Published As

Publication number Publication date
JP2005033045A (en) 2005-02-03
CN1577745A (en) 2005-02-09
CN100394551C (en) 2008-06-11
KR20050006046A (en) 2005-01-15
TW200507074A (en) 2005-02-16
TWI273643B (en) 2007-02-11
KR101029894B1 (en) 2011-04-18

Similar Documents

Publication Publication Date Title
US7547363B2 (en) Solid organometallic compound-filled container and filling method thereof
RU2384652C2 (en) Bubbler for constant delivery of vapour of solid chemical
US8673413B2 (en) Method for packing solid organometallic compound and packed container
KR101183109B1 (en) Sublimation system employing carrier gas
JP4585182B2 (en) Trimethylindium filling method and filling container
KR101303271B1 (en) Improved bubbler for the transportation of substances by a carrier gas
US9297071B2 (en) Solid precursor delivery assemblies and related methods
US20220349054A1 (en) Solid material container and solid material product with solid material filled in solid material container
JP4571787B2 (en) Filling container for solid organometallic compound and filling method thereof
US8758515B2 (en) Delivery device and method of use thereof
KR20050046617A (en) Atomic layer deposition process and apparatus
KR20090051231A (en) Method for measuring precursor amounts in bubbler sources
JP3909022B2 (en) Filling container for solid organometallic compounds
KR100927456B1 (en) Filling container for solid organometallic compound and filling method thereof
CN217351525U (en) Precursor supply device and vapor deposition system
US20240052484A1 (en) Supply system for low volatility precursors
JP4748928B2 (en) Solid organometallic compound filling method and filling container
KR102286480B1 (en) Apparatus for supplying organometallic compound with double structure
KR20070015955A (en) Bubbler for constant vapor delivery of a solid chemical
JPH0717333U (en) Vaporizer for volatile raw materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4571787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees