JP3940583B2 - Flat display device and manufacturing method thereof - Google Patents

Flat display device and manufacturing method thereof Download PDF

Info

Publication number
JP3940583B2
JP3940583B2 JP2001331234A JP2001331234A JP3940583B2 JP 3940583 B2 JP3940583 B2 JP 3940583B2 JP 2001331234 A JP2001331234 A JP 2001331234A JP 2001331234 A JP2001331234 A JP 2001331234A JP 3940583 B2 JP3940583 B2 JP 3940583B2
Authority
JP
Japan
Prior art keywords
melting point
substrate
conductive member
high melting
front substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001331234A
Other languages
Japanese (ja)
Other versions
JP2003132823A (en
Inventor
昌広 横田
貴志 榎本
晃義 山田
孝司 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001331234A priority Critical patent/JP3940583B2/en
Priority to EP02720557A priority patent/EP1389792A1/en
Priority to PCT/JP2002/003994 priority patent/WO2002089169A1/en
Priority to KR10-2003-7013784A priority patent/KR20040015114A/en
Priority to CNB028103106A priority patent/CN1306538C/en
Publication of JP2003132823A publication Critical patent/JP2003132823A/en
Priority to US10/690,744 priority patent/US7247072B2/en
Application granted granted Critical
Publication of JP3940583B2 publication Critical patent/JP3940583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、平坦な形状の平面表示装置に係り、特に、多数の電子放出素子を用いた平面表示装置、およびその製造方法に関する。
【0002】
【従来の技術】
近年、陰極線管(以下、CRTと称する)に代わる次世代の軽量、薄型の表示装置として様々な平面表示装置が開発されている。このような平面表示装置には、液晶の配向を利用して光の強弱を制御する液晶ディスプレイ(以下、LCDと称する)、プラズマ放電の紫外線により蛍光体を発光させるプラズマディスプレイパネル(以下、PDPと称する)、電界放出型電子放出素子の電子ビームにより蛍光体を発光させるフィールドエミッションディスプレイ(以下、FEDと称する)などがある。
【0003】
例えばFEDでは、一般に、所定の隙間を置いて対向配置された前面基板および背面基板を有し、これらの基板は、矩形枠状の側壁を介して周辺部同士を互いに接合することにより真空の外囲器を構成している。前面基板の内面には蛍光体スクリーンが形成され、背面基板の内面には蛍光体を励起して発光させる電子放出源として多数の電子放出素子が設けられている。
【0004】
また、背面基板および前面基板に加わる大気圧荷重を支えるために、これら基板の間には複数の支持部材が配設されている。背面基板側の電位はほぼアース電位であり、蛍光面にはアノード電圧が印加される。そして、蛍光体スクリーンを構成する赤、緑、青の蛍光体に多数の電子放出素子から放出された電子ビームを照射し、蛍光体を発光させることによって画像を表示する。
【0005】
このような表示装置では、表示装置の厚さを数mm程度にまで薄くすることができ、現在のテレビやコンピュータのディスプレイとして使用されているCRTと比較し、軽量化、薄型化を達成することができる。
【0006】
【発明が解決しようとする課題】
上記のようなFEDでは、外囲器の内部を真空にすることが必要となる。また、PDPにおいても一度真空にしてから放電ガスを充填する必要がある。外囲器を真空にする手段として、例えば、特開2001−229825号には、外囲器を構成する前面基板と背面基板との最終組み立てを真空槽内にて行う方法が示されている。
【0007】
ここでは、最初に真空槽内に配置された前面基板および背面基板を十分に加熱しておく。これは、外囲器真空度を劣化させる主因となっている外囲器内壁からのガス放出を軽減するためである。次に、前面基板と背面基板が冷えて真空槽内の真空度が十分に向上したところで、外囲器真空度を改善、維持させるためのゲッタ膜を蛍光面スクリーン上に形成する。その後、封着材が溶解する温度まで前面基板と背面基板とを再び加熱し、前面基板および背面基板を所定の位置に組み合わせた状態で封着材が固化するまで冷却する。
【0008】
このような方法で作成された真空外囲器は、封着工程および真空封止工程を兼ねるうえ、排気管を用いて外囲器内を排気する場合のような時間を必要とせず、かつ、極めて良好な真空度を得ることができる。
【0009】
しかしながら、上記の方法では、真空中で行う封着工程が、加熱、位置合わせ、冷却と多岐に渡り、かつ、封着材が溶解固化する間、長時間に亘って前面基板と背面基板とを所定の位置に維持し続けなければならない。また、封着時の加熱、冷却に伴い前面基板および背面基板が熱膨張し、位置合わせ精度が劣化し易い。更に、封着時の加熱によりゲッタ膜が劣化することなど、封着に伴なう生産性、特性面での問題があった。
【0010】
この発明は以上の点に鑑みなされたもので、その目的は、真空雰囲気中で容易に、かつ高い位置精度で封着を行うことが可能な平面表示装置、およびその製造方法を提供することにある。
【0011】
【課題を解決するための手段】
上記の課題を解決するため、この発明の態様に係る平面表示装置は、対向配置された前面基板および背面基板と、上記前面基板および上記背面基板の周辺部を互いに封着した封着部と、を有した外囲器を備え、
上記封着部は、枠状の高融点導電性部材と封着材とを含み、上記高融点導電性部材は、上記封着材よりも高い融点あるいは軟化点を有しているとともに、上記前面基板および背面基板の表面に対して垂直方向にばね性を有し、
上記高融点導電性部材は、弾性変形した状態で上記前面基板および背面基板の間に配置され、上記前面基板の内面および背面基板の内面に押圧力を印加し、
前記封着材は、上記高融点導電性部材と上記前面基板との間、および上記高融点導電性部材と背面基板との間の少なくとも一方に介在していることを特徴としている。
【0012】
また、この発明の態様に係る平面表示装置の製造方法は、対向配置された前面基板および背面基板を有し、高融点導電性部材と封着材とを含む封着部により前面基板および背面基板の周辺部が互いに封着された外囲器を備えた平面表示装置の製造方法において、
上記封着材よりも高い融点あるいは軟化点を有しているとともに、上記前面基板および背面基板の表面に対して垂直方向にばね性を有した枠状の高融点導電性部材を用意し、
上記前面基板および背面基板を対向配置するとともに、上記前面基板および背面基板の周辺部間に上記高融点導電性部材および封着材を配置し、
上記封着材が固化した状態で、上記対向配置された前面基板および背面基板を重ね合わせ、上記高融点導電性部材を上記前面基板および背面基板の表面と垂直な方向へ弾性変形させ、
上記前面基板および背面基板を重ね合わせた状態で、上記高融点導電性部材に通電して上記封着材を溶融あるいは軟化させ、上記前面基板および背面基板の周辺部を互い封着すること特徴としている。
【0013】
上記構成の平面表示装置および製造方法によれば、前面基板と背面基板とを重ね合わせた時の基板たわみを高融点導電性部材のばね性により改善し、前面基板および背面基板の位置合わせ精度を向上して封着することができる。
【0014】
【発明の実施の形態】
以下、図面を参照ながら、この発明に係る平面表示装置をFEDに適用した実施の形態について詳細に説明する。
【0015】
図1ないし図3に示すように、このFEDは、絶縁基板としてそれぞれ厚さ2.8mmの矩形状のガラスからなる前面基板11および背面基板12を備え、これらの基板は例えば約2.0mmの隙間を置いて対向配置されている。背面基板12の大きさは前面基板11よりも僅かに大きく、その外周部には映像信号を入力するための引き出し線(図示しない)が形成されている。そして、前面基板11および背面基板12は、ほぼ矩形枠状の封着部30を介して周縁部同士が接合され、内部が真空状態に維持された偏平な矩形状の真空外囲器10を構成している。
【0016】
封着部30は、導電性を有した矩形枠状の高融点導電性部材18と第1および第2封着材32、34を含んでいる。そして、側壁としても機能する高融点導電性部材18は、第1封着材32を介して前面基板11の周辺部に接着され、また、第2封着材34を介して背面基板12の周辺部に接着されている。
【0017】
高融点導電性部材18は、第1および第2封着材32、34よりも高い融点または軟化点(すなわち封着に適した温度)を有し、例えば、鉄−ニッケル合金が用いられている。その他、導電性を有する高融点導電性部材としては、少なくともFe、Cr、Ni、Alのいずれかを含有した材料が用いられる。第1および第2封着材32としては、例えば、インジウムあるいはインジウム合金を用いている。なお、高融点導電性部材18の融点あるいは軟化点は、500℃以上、第1および第2封着材の融点または軟化点は300℃未満であることが望ましい。
【0018】
また、高融点導電性部材18、第1および第2封着材32、34は、前面基板および背面基板の熱膨張係数に対し、±20%の数値範囲で最大値と最小値との間となる熱膨張係数を有していることが望ましい。
【0019】
更に、高融点導電性部材18は、前面基板11および背面基板12の表面に対して垂直な方向の復元性、つまり、ばね性を有している。本実施の形態において、高融点導電性部材18は、ほぼV字状の断面形状に形成されている。そして、高融点導電性部材18は、V字の角度が減少する方向に僅かに弾性変形した状態で前面基板11および背面基板12間に配置され、そのばね性により、前面基板および背面基板の内面に所望の押圧力を付加している。なお、高融点導電性部材18は、ばね定数0.1kgf/mm〜1.0kgf/mm程度に設定されていることが望ましい。
【0020】
図2および図3に示すように、真空外囲器10の内部には、前面基板11および背面基板12に加わる大気圧荷重を支えるため、複数の板状の支持部材14が設けられている。これらの支持部材14は、真空外囲器10の短辺と平行な方向に配置されているとともに、長辺と平行な方向に沿って所定の間隔を置いて配置されている。なお、支持部材14の形状については、板状に限定されるものではなく、例えば、柱状の支持部材等を用いることもできる。
【0021】
前面基板11の内面上には、図3および図4に示す蛍光体スクリーン16が形成されている。この蛍光体スクリーン16は、赤、緑、青のストライプ状の蛍光体層、および蛍光体層の間および周囲に位置した非発光部としての黒色光吸収層20を並べて構成されている。蛍光体層は、真空外囲器の短辺と平行な方向に延在しているとともに、長辺と平行な方向に沿って所定の間隔を置いて配置されている。なお、蛍光体スクリーン16上には、たとえばアルミニウム層からなるメタルバック層17が蒸着されている。
【0022】
また、図3に示すように、背面基板12の内面上には、蛍光体スクリーン16の蛍光体層を励起する電子放出源として、それぞれ電子ビームを放出する多数の電子放出素子22、および電子放出素子を駆動するための図示しない多数の配線が設けられている。電子放出素子22は、画素毎に対応して複数列および複数行に配列されている。
【0023】
詳細に述べると、背面基板12の内面上には、導電性カソード層24が形成され、この導電性カソード層上には多数のキャビティ25を有した二酸化シリコン膜26が形成されている。二酸化シリコン膜26上には、モリブデンやニオブ等からなるゲート電極28が形成されている。そして、背面基板12の内面上において各キャビティ25内にはモリブデンなどからなるコーン状の電子放出素子22が設けられている。
【0024】
上記のように構成されたFEDにおいて、映像信号は、マトリクス状に形成された電子放出素子22とゲート電極28に入力される。電子放出素子22を基準とした場合、最も輝度の高い状態の時、+100Vのゲート電圧が印加される。また、蛍光体スクリーン16には+10kVが印加される。これにより、電子放出素子22から電子ビームが放出される。そして、電子放出素子22から放出される電子ビームの大きさは、ゲート電極28の電圧によって変調され、この電子ビームが蛍光体スクリーン16の蛍光体層を励起して発光させることにより画像を表示する。
【0025】
次に、上記のように構成されたFEDの製造方法について詳細に説明する。 まず、背面基板用の板ガラスに電子放出素子22および種々の配線を形成する。続いて、大気中において、背面基板12上に板状の支持部材14を例えば、フリットガラスにより固定する。
【0026】
また、前面基板11となる板ガラスに蛍光体スクリーン16を形成する。これは、前面基板11と同じ大きさの板ガラスを準備し、この板ガラスにプロッターマシンで蛍光体層のストライプパターンを形成する。この蛍光体ストライプパターンが形成された板ガラスと前面基板用の板ガラスとを位置決め治具に載せて露光台にセットすることにより、露光、現像して蛍光体スクリーン16を形成する。次に、蛍光体スクリーン16に重ねて、アルミニウム膜からなるメタルバック層17を形成する。
【0027】
続いて、封着面となる前面基板11の内面周辺部および背面基板12の内面周辺部に、それぞれ第1および第2封着材としてインジウムを枠状に充填する。この際、形成されたインジウム層の厚さは約0.3mmとし、最終的に外囲器が組み立てられた後のインジウム層厚よりも厚く形成する。
【0028】
一方、高融点導電性部材18は、厚さ0.2mmのNi−Fe合金により矩形枠状に形成され、また、その断面形状は、1辺の幅が約15mmのほぼV字状を有している。ここで、Ni−Fe合金の線熱膨張係数は基板を構成するガラス材の線熱膨張係数とほぼ等しい。
【0029】
次に、上記のように蛍光体スクリーン16の形成された前面基板11、および支持部材14が固定された背面基板12を、所定の隙間を置いて対向配置し、かつ、高融点導電性部材18を基板間に配置した状態で、真空処理装置100内に投入する。
【0030】
図5に示すように、この真空処理装置100は、順に並んで設けられたロード室101、ベーキング、電子線洗浄室102、冷却室103、ゲッタ膜の蒸着室104、組立室105、冷却室106、およびアンロード室107を有している。これら各室は真空処理が可能な処理室として構成され、FEDの製造時には全室が真空排気されている。隣合う処理室間はゲートバルブ等により接続されている。
【0031】
上述した背面基板12および前面基板11は、ロード室101に投入され、ロード室101内を真空雰囲気とした後、ベーキング、電子線洗浄室102へ送られる。べーキング、電子線洗浄室102では、上記背面基板12および前面基板11を350℃の温度に加熱し、各部材の表面吸着ガスを放出させる。
【0032】
また、加熱と同時に、ベーキング、電子線洗浄室102に取り付けられた図示しない電子線発生装置から、前面基板11の蛍光体スクリーン面、および背面基板12の電子放出素子面に電子線を照射する。この電子線は、電子線発生装置外部に装着された偏向装置によって偏向走査されるため、蛍光体スクリーン面、および電子放出素子面の全面を電子線洗浄することが可能となる。
【0033】
加熱、電子線洗浄後、上記背面基板12および前面基板11は冷却室103に送られ、例えば約100℃の温度まで冷却される。続いて、上記背面基板12および前面基板11はゲッタ膜形成用の蒸着室104へと送られ、ここで蛍光体スクリーンの外側にゲッタ膜としてBa膜が蒸着形成される。
【0034】
続いて、背面基板12および前面基板11は組立室105に送られる。この組立室105では、図6(a)に示すように、これらの基板を例えば約100℃に加熱した状態で、すなわち、第1および第2封着材32、34の融点または軟化点よりも低い温度に維持した状態で、前面基板11、背面基板12、および高融点導電性部材18を相対的に位置合わせする。この際、第1および第2封着材32、34であるインジウム層は固化した状態にある。
【0035】
なお、後述する通電加熱工程の直前まで、前面基板11および背面基板12の温度を第1および第2封着材32、34の融点または軟化点よりも低い温度に維持し、望ましくは、封着材の融点との温度差が20℃〜150℃の範囲内となるように維持する。
【0036】
位置合わせが終了した後、図6(b)に示すように、高融点導電性部材18を間に挟んで前面基板11および背面基板12を重ね合わせ、両側から約50kgfの加圧力を前面基板および背面基板に印加する。この際、V字型の高融点導電性部材18は、固化状態の第1および第2封着材32、34により両側から押圧され、基板に対して垂直な方向に弾性変形し、V字の角度が減少する。
【0037】
これにより、厚めに充填された第1および第2封着材32、34の厚さを吸収し、前面基板および背面基板の中央部と封着部とにおける基板間の隙間の差を無くすことができる。従って、封着部30においても、前面基板11および背面基板12に反りを生じることがなく、前面基板11と背面基板12との間隔は、全域に亘って支持部材14の高さと等しい約2mmに保持される。
【0038】
この状態で、高融点導電性部材18に電極を接触させ、直流電流140Aを40秒通電する。すると、この電流は第1および第2封着材32、34、つまり、インジウムにも同時に流れ、高融点導電性部材18およびインジウムが発熱する。これにより、インジウムは約200℃程度に加熱されて溶融あるいは軟化する。そして、第1封着材32が溶融または軟化した時点で通電を停止し、速やかに高融点導電性部材18およびインジウムの熱を周りの前面基板11および背面基板12に伝熱拡散させてインジウムを固化させる。
【0039】
なお、図6(c)に示すように、通電加熱時、高融点導電性部材18は、自身の復元性あるいはばね性により、溶融または軟化したインジウムを適切なバネ力で基板内面側へ押圧する。それにより、各インジウム層は、僅かに押し潰された状態で固化する。この際、インジウム層の厚さは、平均0.15mm程度となっている。
【0040】
このようにして、高融点導電性部材18、第1および第2封着材32、34を介して前面基板11および背面基板12を封着し、真空外囲器10を形成する。通電停止後、約60秒で封着された真空外囲器10を組立室105から搬出する。そして、このようにして形成された真空外囲器10は、冷却室106で常温まで冷却されて、アンロード室107から取り出される。
【0041】
以上のように構成されたFEDおよびその製造方法によれば、背面基板および前面基板を真空雰囲気中で封着することができ、同時に、封着を量産性に優れた通電加熱封着とすることができる。また、高融点導電性部材は基板に対して垂直な方向のばね性を有していることから、封着時、基板中央部と封着部とにおける基板間の隙間の差を無くし、封着部における基板に反り防止することができる。これにより、前面基板および背面基板を高い精度で位置合わせし封着することが可能となる。
【0042】
更に、通電加熱時、高融点導電性部材によって、溶融または軟化した封着材を適切なばね力で基板方向へ押圧することができ、封着材の不足などによるリークパス発生を抑制することが可能となる。
【0043】
なお、上述した実施の形態では、高融点導電性部材として断面V字形状のものを用いたが、前面基板および背面基板の表面に対して垂直な方向のばね性を有していれば、他の形状としても良い。
【0044】
図7に示す第2の実施の形態に係るFEDによれば、封着部30を構成する高融点導電性部材18としてNi−Fe合金からなる厚さ0.12mm、直径3mmのパイプ状部材を用いている。この高融点導電性部材18は、それぞれ第1および第2封着材32、34としてのインジウムを介して前面基板11および背面基板12に接着されている。そして、この高融点導電性部材18は、前面基板11および背面基板12の表面に対して垂直な方向のばね性を有している。
【0045】
封着状態において、高融点導電性部材18は押し潰された状態に弾性変形し、前面基板11および背面基板12の表面に対し垂直な方向の適切なばね力を印加している。他の構成は上述した第1の実施の形態と同一であり、その詳細な説明は省略する。
【0046】
上記構成のFEDは、前述した第1の実施の形態と同様の方法で製造される。そして、製造条件を第1の実施の形態と同一とした場合、通電加熱時、高融点導電性部材18に直流電流40Aを40秒間通電することによりインジウムを溶融させ、溶融後、40秒間冷却することによりインジウムを固化させ封着を行うことができる。従って、第2の実施の形態においても、上述した第1の実施の形態と同様の作用効果を得ることができるとともに、通電、冷却時間を短縮し、製造効率の向上を図ることが可能となる。
【0047】
上述した第2の実施の形態において、図8に示すように、インジウム等の封着材35を高融点導電性部材18の外周面全体に充填してもよい。この場合、高融点導電性部材18をインジウムはんだ槽に漬け込むだけでインジウムの充填が完了し、製造にかかる手間を省くことができる。同時に、前面基板11と背面基板12とを封着材そのもので直に封着することができ、真空外囲器の気密性が向上する。
【0048】
なお、この発明は上述した実施の形態に限定されることなく、この発明の範囲内で種々変形可能である。例えば、上述した実施の形態では、封着材料であるインジウムを基板側に充填したが、高融点導電性部材側に充填してもよい。また、高融点導電性部材に通電する電流は直流に限らず、商用周波数あるいは高周波の交流を用いてもよい。
【0049】
また、上述した実施の形態では、高融点導電性部材は、組み立て時に真空槽内で所定の位置に配置する構成としたが、予め、インジウム等の封着材を用いて、大気中で前面基板あるいは背面基板に接着しておく構成としても良い。
【0050】
この発明は、FEDやSEDなどの真空外囲器を必要とする表示装置に限るものではなく、PDPのように一度真空にしてから放電ガスを注入するような他の表示装置にも有効である。
【0051】
【発明の効果】
以上に述べたように、この発明によれば、真空雰囲気中で容易に、かつ高い位置精度で封着を行うことが可能な平面表示装置、およびその製造方法を提供することができる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態に係るFEDを示す斜視図。
【図2】上記FEDの前面基板を取り外した状態を示す斜視図。
【図3】図1の線A−Aに沿った断面図。
【図4】上記FEDの蛍光体スクリーンを示す平面図。
【図5】上記FEDの製造に用いる真空処理装置を概略的に示す図。
【図6】上記FEDの製造工程をそれぞれ概略的に示す断面図。
【図7】この発明の第2の実施の形態に係るFEDの封着部、および高融点導電性部材を示す断面図。
【図8】この発明の他の実施の形態に係るFEDの封着部、および高融点導電性部材を示す断面図。
【符号の説明】
10…真空外囲器
11…前面基板
12…背面基板
14…支持部材
16…蛍光体スクリーン
17…メタルバック層
18…高融点導電性部材
22…電子放出素子
30…封着部
32…第1封着材
34…第2封着材
35…封着材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flat display device having a flat shape, and more particularly to a flat display device using a large number of electron-emitting devices and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, various flat display devices have been developed as next-generation light-weight and thin display devices that replace cathode ray tubes (hereinafter referred to as CRT). Such flat display devices include a liquid crystal display (hereinafter referred to as LCD) that controls the intensity of light using the orientation of liquid crystal, and a plasma display panel (hereinafter referred to as PDP) that emits phosphors by ultraviolet rays of plasma discharge. And a field emission display (hereinafter referred to as FED) that emits a phosphor with an electron beam of a field emission type electron-emitting device.
[0003]
For example, an FED generally has a front substrate and a rear substrate facing each other with a predetermined gap, and these substrates are connected to each other through a rectangular frame-shaped side wall so that their peripheral portions are joined to each other. It constitutes an envelope. A phosphor screen is formed on the inner surface of the front substrate, and a number of electron-emitting devices are provided on the inner surface of the rear substrate as electron emission sources that excite the phosphor to emit light.
[0004]
Further, in order to support an atmospheric pressure load applied to the back substrate and the front substrate, a plurality of support members are disposed between these substrates. The potential on the back substrate side is almost the ground potential, and an anode voltage is applied to the phosphor screen. The red, green, and blue phosphors that make up the phosphor screen are irradiated with electron beams emitted from a large number of electron-emitting devices, and the phosphors emit light to display an image.
[0005]
In such a display device, the thickness of the display device can be reduced to about several millimeters, and the weight and thickness can be reduced as compared with a CRT currently used as a display of a television or a computer. Can do.
[0006]
[Problems to be solved by the invention]
In the FED as described above, the inside of the envelope needs to be evacuated. Moreover, it is necessary to fill the discharge gas after evacuating the PDP once. As a means for evacuating the envelope, for example, Japanese Patent Application Laid-Open No. 2001-229825 discloses a method in which final assembly of a front substrate and a rear substrate constituting the envelope is performed in a vacuum chamber.
[0007]
Here, first, the front substrate and the rear substrate disposed in the vacuum chamber are sufficiently heated. This is to reduce gas emission from the inner wall of the envelope, which is the main cause of the deterioration of the envelope vacuum. Next, when the front substrate and the rear substrate are cooled and the degree of vacuum in the vacuum chamber is sufficiently improved, a getter film for improving and maintaining the degree of envelope vacuum is formed on the phosphor screen. Thereafter, the front substrate and the rear substrate are heated again to a temperature at which the sealing material dissolves, and cooled in a state where the front substrate and the rear substrate are combined at a predetermined position until the sealing material is solidified.
[0008]
The vacuum envelope created by such a method serves as a sealing step and a vacuum sealing step, and does not require time as in the case of exhausting the inside of the envelope using an exhaust pipe, and A very good degree of vacuum can be obtained.
[0009]
However, in the above method, the sealing process performed in vacuum covers a wide range of heating, alignment, and cooling, and the front substrate and the rear substrate are bonded over a long period of time while the sealing material is dissolved and solidified. Must remain in place. Further, the front substrate and the rear substrate are thermally expanded with heating and cooling at the time of sealing, and the alignment accuracy is likely to deteriorate. Furthermore, there have been problems in productivity and characteristics associated with sealing, such as deterioration of the getter film due to heating during sealing.
[0010]
The present invention has been made in view of the above points, and an object of the present invention is to provide a flat display device that can be easily sealed with high positional accuracy in a vacuum atmosphere, and a method for manufacturing the same. is there.
[0011]
[Means for Solving the Problems]
In order to solve the above-described problems, a flat display device according to an aspect of the present invention includes a front substrate and a rear substrate that are arranged to face each other, and a sealing unit that seals the peripheral portions of the front substrate and the rear substrate to each other. An envelope with
The sealing portion includes a frame-shaped high melting point conductive member and a sealing material, and the high melting point conductive member has a higher melting point or softening point than the sealing material, and the front surface. Spring property in the direction perpendicular to the surface of the substrate and the back substrate,
The high melting point conductive member is disposed between the front substrate and the rear substrate in an elastically deformed state, and applies a pressing force to the inner surface of the front substrate and the inner surface of the rear substrate,
The sealing material is interposed between at least one of the high melting point conductive member and the front substrate and between the high melting point conductive member and the back substrate .
[0012]
In addition, a method for manufacturing a flat display device according to an aspect of the present invention includes a front substrate and a rear substrate having a front substrate and a rear substrate arranged to face each other, and a sealing portion including a high melting point conductive member and a sealing material. In the manufacturing method of the flat display device including the envelope in which the peripheral portions of the two are sealed to each other,
A frame-like high melting point conductive member having a melting point or softening point higher than that of the sealing material and having a spring property in a direction perpendicular to the surfaces of the front substrate and the back substrate is prepared,
While disposing the front substrate and the back substrate opposite to each other, disposing the high melting point conductive member and the sealing material between the peripheral portions of the front substrate and the back substrate,
In a state where the sealing material is solidified, the front substrate and the rear substrate arranged opposite to each other are overlapped, and the high melting point conductive member is elastically deformed in a direction perpendicular to the surfaces of the front substrate and the rear substrate,
In a state where the front substrate and the rear substrate are overlapped, the high melting point conductive member is energized to melt or soften the sealing material, and the peripheral portions of the front substrate and the rear substrate are sealed together. Yes.
[0013]
According to the flat display device and the manufacturing method of the above configuration, the substrate deflection when the front substrate and the rear substrate are overlapped is improved by the spring property of the high melting point conductive member, and the alignment accuracy of the front substrate and the rear substrate is improved. It can be improved and sealed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments in which a flat display device according to the present invention is applied to an FED will be described in detail with reference to the drawings.
[0015]
As shown in FIGS. 1 to 3, this FED includes a front substrate 11 and a rear substrate 12 made of rectangular glass each having a thickness of 2.8 mm as insulating substrates, and these substrates are, for example, about 2.0 mm. They are placed opposite each other with a gap. The size of the back substrate 12 is slightly larger than that of the front substrate 11, and lead lines (not shown) for inputting video signals are formed on the outer periphery thereof. The front substrate 11 and the back substrate 12 constitute a flat rectangular vacuum envelope 10 whose peripheral portions are joined to each other via a substantially rectangular frame-shaped sealing portion 30 and the inside is maintained in a vacuum state. is doing.
[0016]
The sealing portion 30 includes a rectangular frame-shaped high melting point conductive member 18 having conductivity and first and second sealing materials 32 and 34. The high melting point conductive member 18 that also functions as a side wall is bonded to the peripheral portion of the front substrate 11 via the first sealing material 32, and the periphery of the rear substrate 12 via the second sealing material 34. Bonded to the part.
[0017]
The high melting point conductive member 18 has a higher melting point or softening point (that is, a temperature suitable for sealing) than the first and second sealing materials 32 and 34, and, for example, an iron-nickel alloy is used. . In addition, as the high melting point conductive member having conductivity, a material containing at least one of Fe, Cr, Ni, and Al is used. As the first and second sealing materials 32, for example, indium or an indium alloy is used. The melting point or softening point of the high melting point conductive member 18 is preferably 500 ° C. or higher, and the melting points or softening points of the first and second sealing materials are preferably lower than 300 ° C.
[0018]
In addition, the high melting point conductive member 18 and the first and second sealing materials 32 and 34 are between the maximum value and the minimum value within a numerical range of ± 20% with respect to the thermal expansion coefficients of the front substrate and the rear substrate. It is desirable to have a thermal expansion coefficient of
[0019]
Further, the high melting point conductive member 18 has resilience in a direction perpendicular to the surfaces of the front substrate 11 and the back substrate 12, that is, spring property. In the present embodiment, the high melting point conductive member 18 is formed in a substantially V-shaped cross-sectional shape. The high melting point conductive member 18 is disposed between the front substrate 11 and the rear substrate 12 in a state where it is slightly elastically deformed in a direction in which the V-shaped angle decreases, and due to its spring property, the inner surfaces of the front substrate and the rear substrate. The desired pressing force is applied to the. The high melting point conductive member 18 is preferably set to a spring constant of about 0.1 kgf / mm to 1.0 kgf / mm.
[0020]
As shown in FIGS. 2 and 3, a plurality of plate-like support members 14 are provided inside the vacuum envelope 10 in order to support an atmospheric pressure load applied to the front substrate 11 and the rear substrate 12. These support members 14 are disposed in a direction parallel to the short side of the vacuum envelope 10 and are disposed at predetermined intervals along a direction parallel to the long side. In addition, about the shape of the supporting member 14, it is not limited to plate shape, For example, a columnar supporting member etc. can also be used.
[0021]
A phosphor screen 16 shown in FIGS. 3 and 4 is formed on the inner surface of the front substrate 11. The phosphor screen 16 is configured by arranging red, green, and blue stripe-shaped phosphor layers and a black light absorbing layer 20 as a non-light emitting portion located between and around the phosphor layers. The phosphor layer extends in a direction parallel to the short side of the vacuum envelope, and is arranged at a predetermined interval along a direction parallel to the long side. Note that a metal back layer 17 made of, for example, an aluminum layer is deposited on the phosphor screen 16.
[0022]
Further, as shown in FIG. 3, on the inner surface of the back substrate 12, as an electron emission source for exciting the phosphor layer of the phosphor screen 16, a large number of electron emission elements 22 each emitting an electron beam and electron emission are provided. A large number of wirings (not shown) for driving the elements are provided. The electron-emitting devices 22 are arranged in a plurality of columns and a plurality of rows corresponding to each pixel.
[0023]
More specifically, a conductive cathode layer 24 is formed on the inner surface of the back substrate 12, and a silicon dioxide film 26 having a large number of cavities 25 is formed on the conductive cathode layer. On the silicon dioxide film 26, a gate electrode 28 made of molybdenum, niobium or the like is formed. A cone-shaped electron-emitting device 22 made of molybdenum or the like is provided in each cavity 25 on the inner surface of the back substrate 12.
[0024]
In the FED configured as described above, the video signal is input to the electron-emitting devices 22 and the gate electrode 28 formed in a matrix. When the electron-emitting device 22 is used as a reference, a gate voltage of +100 V is applied when the luminance is highest. Further, +10 kV is applied to the phosphor screen 16. Thereby, an electron beam is emitted from the electron emitter 22. The magnitude of the electron beam emitted from the electron-emitting device 22 is modulated by the voltage of the gate electrode 28, and this electron beam excites the phosphor layer of the phosphor screen 16 to emit light, thereby displaying an image. .
[0025]
Next, a method for manufacturing the FED configured as described above will be described in detail. First, the electron-emitting device 22 and various wirings are formed on the glass plate for the back substrate. Subsequently, the plate-like support member 14 is fixed on the back substrate 12 with, for example, frit glass in the atmosphere.
[0026]
In addition, the phosphor screen 16 is formed on the plate glass to be the front substrate 11. In this method, a plate glass having the same size as the front substrate 11 is prepared, and a phosphor layer stripe pattern is formed on the plate glass by a plotter machine. The plate glass on which the phosphor stripe pattern is formed and the plate glass for the front substrate are placed on a positioning jig and set on an exposure table, so that the phosphor screen 16 is formed by exposure and development. Next, a metal back layer 17 made of an aluminum film is formed on the phosphor screen 16.
[0027]
Subsequently, indium is filled in a frame shape as first and second sealing materials in the inner peripheral portion of the front substrate 11 and the inner peripheral portion of the rear substrate 12 which are sealing surfaces. At this time, the thickness of the formed indium layer is about 0.3 mm, and the indium layer is finally formed thicker than the thickness after the envelope is assembled.
[0028]
On the other hand, the high melting point conductive member 18 is formed in a rectangular frame shape by a Ni-Fe alloy having a thickness of 0.2 mm, and the cross-sectional shape thereof is substantially V-shaped with a side width of about 15 mm. ing. Here, the linear thermal expansion coefficient of the Ni—Fe alloy is substantially equal to the linear thermal expansion coefficient of the glass material constituting the substrate.
[0029]
Next, the front substrate 11 on which the phosphor screen 16 is formed as described above and the rear substrate 12 to which the support member 14 is fixed are arranged opposite to each other with a predetermined gap therebetween, and the high melting point conductive member 18 is disposed. Are placed in the vacuum processing apparatus 100 in a state of being placed between the substrates.
[0030]
As shown in FIG. 5, this vacuum processing apparatus 100 includes a load chamber 101, a baking, an electron beam cleaning chamber 102, a cooling chamber 103, a getter film deposition chamber 104, an assembly chamber 105, and a cooling chamber 106, which are arranged in order. And an unload chamber 107. Each of these chambers is configured as a processing chamber capable of vacuum processing, and all the chambers are evacuated when the FED is manufactured. Adjacent processing chambers are connected by a gate valve or the like.
[0031]
The back substrate 12 and the front substrate 11 described above are put into the load chamber 101, and after the inside of the load chamber 101 is evacuated, it is sent to the baking and electron beam cleaning chamber 102. In the baking and electron beam cleaning chamber 102, the back substrate 12 and the front substrate 11 are heated to a temperature of 350 ° C., and the surface adsorption gas of each member is released.
[0032]
Simultaneously with the heating, an electron beam is applied to the phosphor screen surface of the front substrate 11 and the electron emitting element surface of the rear substrate 12 from an electron beam generator (not shown) attached to the baking and electron beam cleaning chamber 102. Since this electron beam is deflected and scanned by a deflection device mounted outside the electron beam generator, the entire surface of the phosphor screen and the surface of the electron-emitting device can be cleaned with an electron beam.
[0033]
After heating and electron beam cleaning, the back substrate 12 and the front substrate 11 are sent to the cooling chamber 103 and cooled to a temperature of about 100 ° C., for example. Subsequently, the back substrate 12 and the front substrate 11 are sent to a vapor deposition chamber 104 for forming a getter film, where a Ba film is deposited on the outside of the phosphor screen as a getter film.
[0034]
Subsequently, the back substrate 12 and the front substrate 11 are sent to the assembly chamber 105. In this assembly chamber 105, as shown in FIG. 6A, these substrates are heated to, for example, about 100 ° C., that is, above the melting point or softening point of the first and second sealing materials 32,. The front substrate 11, the rear substrate 12, and the high melting point conductive member 18 are relatively aligned while being maintained at a low temperature. At this time, the indium layers as the first and second sealing materials 32 and 34 are in a solidified state.
[0035]
Note that the temperature of the front substrate 11 and the back substrate 12 is maintained at a temperature lower than the melting point or softening point of the first and second sealing materials 32 and 34 until just before the energization heating process described later, and preferably sealing is performed. The temperature difference from the melting point of the material is maintained within a range of 20 ° C to 150 ° C.
[0036]
After the alignment is completed, as shown in FIG. 6B, the front substrate 11 and the rear substrate 12 are overlapped with the high melting point conductive member 18 interposed therebetween, and a pressing force of about 50 kgf is applied from both sides to the front substrate and Apply to the back substrate. At this time, the V-shaped high melting point conductive member 18 is pressed from both sides by the solidified first and second sealing materials 32 and 34, and is elastically deformed in a direction perpendicular to the substrate. The angle decreases.
[0037]
This absorbs the thickness of the first and second sealing materials 32 and 34 that are filled thicker, and eliminates the difference in the gap between the substrates at the central portion and the sealing portion of the front substrate and the rear substrate. it can. Therefore, even in the sealing portion 30, the front substrate 11 and the back substrate 12 are not warped, and the distance between the front substrate 11 and the back substrate 12 is about 2 mm, which is equal to the height of the support member 14 over the entire area. Retained.
[0038]
In this state, an electrode is brought into contact with the high melting point conductive member 18 and a direct current 140A is applied for 40 seconds. Then, this current also flows through the first and second sealing materials 32 and 34, that is, indium, and the refractory conductive member 18 and indium generate heat. Thereby, indium is heated to about 200 ° C. and melted or softened. Then, when the first sealing material 32 is melted or softened, the energization is stopped, and the heat of the high melting point conductive member 18 and indium is quickly transferred to the surrounding front substrate 11 and back substrate 12 to diffuse indium. Solidify.
[0039]
As shown in FIG. 6C, during energization heating, the high melting point conductive member 18 presses molten or softened indium toward the inner surface of the substrate with an appropriate spring force due to its own restoring property or spring property. . Thereby, each indium layer is solidified in a slightly crushed state. At this time, the average thickness of the indium layer is about 0.15 mm.
[0040]
In this manner, the front substrate 11 and the rear substrate 12 are sealed through the high melting point conductive member 18 and the first and second sealing materials 32 and 34 to form the vacuum envelope 10. After the energization is stopped, the sealed vacuum envelope 10 is carried out from the assembly chamber 105 in about 60 seconds. The vacuum envelope 10 thus formed is cooled to room temperature in the cooling chamber 106 and taken out from the unload chamber 107.
[0041]
According to the FED configured as described above and the manufacturing method thereof, the back substrate and the front substrate can be sealed in a vacuum atmosphere, and at the same time, the sealing is made by energization heating excellent in mass productivity. Can do. In addition, since the high melting point conductive member has a spring property in a direction perpendicular to the substrate, at the time of sealing, there is no difference in the gap between the substrate at the central portion of the substrate and the sealing portion. It is possible to prevent warping of the substrate in the portion. As a result, the front substrate and the rear substrate can be aligned and sealed with high accuracy.
[0042]
Furthermore, during energization heating, the melted or softened sealing material can be pressed toward the substrate with an appropriate spring force by the high melting point conductive member, and it is possible to suppress the occurrence of a leak path due to insufficient sealing material. It becomes.
[0043]
In the above-described embodiment, the refractory conductive member having a V-shaped cross section is used. However, as long as the high melting point conductive member has a spring property in a direction perpendicular to the surfaces of the front substrate and the rear substrate. It is good also as a shape.
[0044]
According to the FED according to the second embodiment shown in FIG. 7, a pipe-shaped member made of Ni—Fe alloy having a thickness of 0.12 mm and a diameter of 3 mm is used as the high melting point conductive member 18 constituting the sealing portion 30. Used. The high melting point conductive member 18 is bonded to the front substrate 11 and the back substrate 12 through indium as the first and second sealing materials 32 and 34, respectively. The high melting point conductive member 18 has a spring property in a direction perpendicular to the surfaces of the front substrate 11 and the back substrate 12.
[0045]
In the sealed state, the high melting point conductive member 18 is elastically deformed into a crushed state, and an appropriate spring force is applied in a direction perpendicular to the surfaces of the front substrate 11 and the back substrate 12. Other configurations are the same as those of the first embodiment described above, and a detailed description thereof will be omitted.
[0046]
The FED having the above configuration is manufactured by a method similar to that of the first embodiment described above. When the manufacturing conditions are the same as those in the first embodiment, during energization heating, the refractory conductive member 18 is energized with a direct current 40A for 40 seconds to melt indium, and then cooled for 40 seconds. As a result, indium can be solidified and sealed. Therefore, also in the second embodiment, it is possible to obtain the same operational effects as those in the first embodiment described above, shorten the energization and cooling time, and improve the manufacturing efficiency. .
[0047]
In the second embodiment described above, the entire outer peripheral surface of the high melting point conductive member 18 may be filled with a sealing material 35 such as indium as shown in FIG. In this case, the filling of indium can be completed simply by immersing the high melting point conductive member 18 in the indium solder bath, and the labor for manufacturing can be saved. At the same time, the front substrate 11 and the back substrate 12 can be directly sealed with the sealing material itself, and the airtightness of the vacuum envelope is improved.
[0048]
The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. For example, in the above-described embodiment, indium, which is a sealing material, is filled on the substrate side, but may be filled on the high melting point conductive member side. Further, the current to be passed through the high melting point conductive member is not limited to direct current, and commercial frequency or high frequency alternating current may be used.
[0049]
Further, in the above-described embodiment, the high melting point conductive member is arranged at a predetermined position in the vacuum chamber at the time of assembly. However, the front substrate is previously used in the atmosphere by using a sealing material such as indium. Or it is good also as a structure adhere | attached on a back substrate.
[0050]
The present invention is not limited to a display device that requires a vacuum envelope such as an FED or SED, but is also effective for other display devices such as a PDP in which a discharge gas is injected after being evacuated once. .
[0051]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a flat display device that can be easily sealed with high positional accuracy in a vacuum atmosphere, and a method for manufacturing the same.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an FED according to a first embodiment of the invention.
FIG. 2 is a perspective view showing a state where a front substrate of the FED is removed.
3 is a cross-sectional view taken along line AA in FIG.
FIG. 4 is a plan view showing a phosphor screen of the FED.
FIG. 5 is a diagram schematically showing a vacuum processing apparatus used for manufacturing the FED.
FIG. 6 is a cross-sectional view schematically showing a manufacturing process of the FED.
FIG. 7 is a cross-sectional view showing an FED sealing portion and a high melting point conductive member according to a second embodiment of the present invention.
FIG. 8 is a cross-sectional view showing an FED sealing portion and a high melting point conductive member according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Vacuum envelope 11 ... Front substrate 12 ... Back substrate 14 ... Support member 16 ... Phosphor screen 17 ... Metal back layer 18 ... High melting point conductive member 22 ... Electron emission element 30 ... Sealing part 32 ... First sealing Dressing material 34 ... Second sealing material 35 ... Sealing material

Claims (13)

対向配置された前面基板および背面基板と、上記前面基板および上記背面基板の周辺部を互いに封着した封着部と、を有した外囲器を備え、
上記封着部は、枠状の高融点導電性部材と封着材とを含み、上記高融点導電性部材は、上記封着材よりも高い融点あるいは軟化点を有しているとともに、上記前面基板および背面基板の表面に対して垂直方向にばね性を有し、
上記高融点導電性部材は、弾性変形した状態で上記前面基板および背面基板の間に配置され、上記前面基板の内面および背面基板の内面に押圧力を印加し、
前記封着材は、上記高融点導電性部材と上記前面基板との間、および上記高融点導電性部材と背面基板との間の少なくとも一方に介在していることを特徴とする平面表示装置。
An envelope having a front substrate and a rear substrate arranged to face each other, and a sealing portion that seals the peripheral portions of the front substrate and the rear substrate to each other;
The sealing portion includes a frame-shaped high melting point conductive member and a sealing material, and the high melting point conductive member has a higher melting point or softening point than the sealing material, and the front surface. Spring property in the direction perpendicular to the surface of the substrate and the back substrate,
The high melting point conductive member is disposed between the front substrate and the rear substrate in an elastically deformed state, and applies a pressing force to the inner surface of the front substrate and the inner surface of the rear substrate,
The flat display device , wherein the sealing material is interposed between at least one of the high melting point conductive member and the front substrate and between the high melting point conductive member and the rear substrate .
上記高融点導電性部材は、外面全体が上記封着材で覆われていることを特徴とする請求項1に記載の平面表示装置。  The flat display device according to claim 1, wherein the high melting point conductive member is entirely covered with the sealing material. 上記高融点導電性材は、上記外囲器の側壁を構成していることを特徴とする請求項1に記載の平面表示装置。  The flat display device according to claim 1, wherein the high melting point conductive material constitutes a side wall of the envelope. 上記封着材は導電性を有していることを特徴とする請求項1ないし3のいずれか1項に記載の平面表示装置。  4. The flat display device according to claim 1, wherein the sealing material has conductivity. 上記封着材は、インジウムあるいはインジウムを含む合金であることを特徴とする請求項1ないしのいずれか1項に記載の平面表示装置。The sealing material, flat panel display device according to any one of claims 1 to 4, characterized in that an alloy containing indium or indium. 上記高融点導電性部材は、少なくともFe、Cr、Ni、Alのいずれかを含有されていることを特徴とする請求項1ないしのいずれか1項に記載の平面表示装置。The refractory conductive member, at least Fe, Cr, Ni, flat panel display device according to any one of claims 1 to 5, characterized in that it is containing any of Al. 上記封着材は、300℃以下の融点あるいは軟化点を有していることを特徴とする請求項1ないしのいずれか1項に記載の平面表示装置The sealing material, flat panel display device according to any one of claims 1 to 6, characterized in that it has a melting point or softening point of 300 ° C. or less 上記高融点導電性部材は500℃以上の融点を有していることを特徴とする請求項1ないしのいずれか1項に記載の平面表示装置。Flat panel display device according to any one of claims 1 to 7 the refractory conductive member, characterized in that it has a melting point of at least 500 ° C.. 上記高融点導電性部材の熱膨張係数は、上記前面基板および背面基板のそれぞれの熱膨張係数の±20%の数値範囲で最大値と最小値との間にあることを特徴とする請求項1ないしのいずれか1項に記載の平面表示装置。The thermal expansion coefficient of the high melting point conductive member is between a maximum value and a minimum value in a numerical range of ± 20% of the thermal expansion coefficient of each of the front substrate and the rear substrate. 9. The flat display device according to any one of items 8 to 8 . 上記外囲器の内部に設けられた蛍光体および上記蛍光体を励起する電子源とを備え、上記外囲器の内部は真空に維持されていることを特徴とする請求項1ないしのいずれか1項に記載の平面表示装置。The phosphor according to any one of claims 1 to 9 , further comprising: a phosphor provided inside the envelope; and an electron source for exciting the phosphor, wherein the inside of the envelope is maintained in a vacuum. A flat display device according to claim 1. 対向配置された前面基板および背面基板を有し、高融点導電性部材と封着材とを含む封着部により前面基板および背面基板の周辺部が互いに封着された外囲器を備えた平面表示装置の製造方法において、
上記封着材よりも高い融点あるいは軟化点を有しているとともに、上記前面基板および背面基板の表面に対して垂直方向にばね性を有した枠状の高融点導電性部材を用意し、
上記前面基板および背面基板を対向配置するとともに、上記前面基板および背面基板の周辺部間に上記高融点導電性部材および封着材を配置し、
上記封着材が固化した状態で、上記対向配置された前面基板および背面基板を重ね合わせ、上記高融点導電性部材を上記前面基板および背面基板の表面と垂直な方向へ弾性変形させ、
上記前面基板および背面基板を重ね合わせた状態で、上記高融点導電性部材に通電して上記封着材を溶融あるいは軟化させ、上記前面基板および背面基板の周辺部を互い封着すること特徴とする平面表示装置の製造方法。
A plane having an envelope having a front substrate and a rear substrate disposed opposite to each other, and peripheral portions of the front substrate and the rear substrate are sealed to each other by a sealing portion including a high melting point conductive member and a sealing material. In the manufacturing method of the display device,
A frame-like high melting point conductive member having a melting point or softening point higher than that of the sealing material and having a spring property in a direction perpendicular to the surfaces of the front substrate and the back substrate is prepared,
While disposing the front substrate and the back substrate opposite to each other, disposing the high melting point conductive member and the sealing material between the peripheral portions of the front substrate and the back substrate,
In a state where the sealing material is solidified, the front substrate and the rear substrate arranged opposite to each other are overlapped, and the high melting point conductive member is elastically deformed in a direction perpendicular to the surfaces of the front substrate and the rear substrate,
In a state where the front substrate and the rear substrate are overlapped, the high melting point conductive member is energized to melt or soften the sealing material, and the peripheral portions of the front substrate and the rear substrate are sealed together. For manufacturing a flat display device.
上記高融点導電性部材に通電する直前の上記前面基板および背面基板の温度を、上記封着材の融点あるいは軟化点よりも低い温度に設定することを特徴とする請求項11に記載の平面表示装置の製造方法。The flat display according to claim 11 , wherein the temperature of the front substrate and the rear substrate immediately before energizing the high melting point conductive member is set to a temperature lower than the melting point or softening point of the sealing material. Device manufacturing method. 上記高融点導電性部材に通電する直前の上記前面基板および背面基板の温度を、上記封着材の融点との差が20℃〜150℃の範囲内となるように設定することを特徴とする請求項12記載の平面表示装置の製造方法。The temperature of the front substrate and the back substrate immediately before energizing the high melting point conductive member is set so that the difference from the melting point of the sealing material is in the range of 20 ° C to 150 ° C. A method for manufacturing a flat display device according to claim 12 .
JP2001331234A 2001-04-23 2001-10-29 Flat display device and manufacturing method thereof Expired - Fee Related JP3940583B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001331234A JP3940583B2 (en) 2001-10-29 2001-10-29 Flat display device and manufacturing method thereof
EP02720557A EP1389792A1 (en) 2001-04-23 2002-04-22 IMAGE DISPLAY DEVICE, AND METHOD AND DEVICE FOR PRODUCING IMAGE DISPLAY DEVICE
PCT/JP2002/003994 WO2002089169A1 (en) 2001-04-23 2002-04-22 Image display device, and method and device for producing image display device
KR10-2003-7013784A KR20040015114A (en) 2001-04-23 2002-04-22 Image display device, and method and device for producing image display device
CNB028103106A CN1306538C (en) 2001-04-23 2002-04-22 Image display device, and method and device for producing image display device
US10/690,744 US7247072B2 (en) 2001-04-23 2003-10-23 Method of manufacturing an image display apparatus by supplying current to seal the image display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331234A JP3940583B2 (en) 2001-10-29 2001-10-29 Flat display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003132823A JP2003132823A (en) 2003-05-09
JP3940583B2 true JP3940583B2 (en) 2007-07-04

Family

ID=19146845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331234A Expired - Fee Related JP3940583B2 (en) 2001-04-23 2001-10-29 Flat display device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3940583B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362926A (en) * 2003-06-04 2004-12-24 Toshiba Corp Image display device and manufacturing method of same
JP2005353313A (en) * 2004-06-08 2005-12-22 Toshiba Corp Image display device
JP2008171602A (en) * 2007-01-09 2008-07-24 Futaba Corp Flat display, manufacturing method of flat display, and positioning drift prevention member used for flat display

Also Published As

Publication number Publication date
JP2003132823A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
JP2001210258A (en) Picture display device and its manufacturing method
KR100759136B1 (en) Image display and method for manufacturing same
US7264529B2 (en) Method of manufacturing an image display device having a sealing portion which seals peripheral edges of front and back substrates
KR20060120266A (en) Image forming device
JPWO2004008471A1 (en) Image display apparatus, image display apparatus manufacturing method, and manufacturing apparatus
JP3940583B2 (en) Flat display device and manufacturing method thereof
JP3940577B2 (en) Flat display device and manufacturing method thereof
JP2002184328A (en) Image display device and its manufacturing method
KR20040066190A (en) Image display device and its manufacturing method
JP3782347B2 (en) Flat display device and manufacturing method thereof
JP2002319346A (en) Display device and its manufacturing method
JP2003132822A (en) Panel display device and manufacturing method therefor
JP2005197050A (en) Image display device and its manufacturing method
JP2002184329A (en) Image display device and its manufacturing method
JP2003068238A (en) Display device and manufacture thereof
JP2005235452A (en) Display device
KR100769383B1 (en) Image display device and method of producing the device
JP2003242913A (en) Flat display device and manufacturing method of the same
US20070103051A1 (en) Image display apparatus
JP2004265630A (en) Image display device and manufacturing method of the same
JP2008269998A (en) Airtight container and image display device equipped with airtight container
JP2005044529A (en) Image display device and its manufacturing method
JP2005174739A (en) Manufacturing method and manufacturing device of picture display device
JP2004273134A (en) Method of producing image display device
JP2005302579A (en) Manufacturing method of image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

LAPS Cancellation because of no payment of annual fees