JP3929858B2 - Multilayer piezoelectric element - Google Patents

Multilayer piezoelectric element Download PDF

Info

Publication number
JP3929858B2
JP3929858B2 JP2002259390A JP2002259390A JP3929858B2 JP 3929858 B2 JP3929858 B2 JP 3929858B2 JP 2002259390 A JP2002259390 A JP 2002259390A JP 2002259390 A JP2002259390 A JP 2002259390A JP 3929858 B2 JP3929858 B2 JP 3929858B2
Authority
JP
Japan
Prior art keywords
glass
external electrode
electrode
silver
conductive terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002259390A
Other languages
Japanese (ja)
Other versions
JP2004103621A (en
Inventor
隆己 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002259390A priority Critical patent/JP3929858B2/en
Publication of JP2004103621A publication Critical patent/JP2004103621A/en
Application granted granted Critical
Publication of JP3929858B2 publication Critical patent/JP3929858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、積層型圧電素子及び噴射装置に関し、例えば、自動車用燃料噴射装置、光学装置等の精密位置決め装置や振動防止用の駆動素子等に用いられる積層型圧電素子に関するものである。
【0002】
【従来の技術】
従来より、積層型圧電素子としては、圧電体と内部電極を交互に積層した積層型圧電アクチュエータが知られている。積層型圧電アクチュエータには、同時焼成タイプと、圧電磁器と内部電極板を交互に積層したスタックタイプとの2種類に分類されており、低電圧化、製造コスト低減の面から考慮すると、同時焼成タイプの積層型圧電アクチュエータが薄層化に対して有利であるために、その優位性を示しつつある。
【0003】
図4は、従来の積層型圧電アクチュエータを示すもので、このアクチュエータでは、圧電体51と内部電極52が交互に積層されて柱状積層体53が形成され、その積層方向における両端面には不活性層55が積層されている。内部電極52は、その一方の端部が左右交互に絶縁体61で被覆され、その上から帯状外部電極70が内部電極52と左右各々一層おきに導通するように形成されている。帯状外部電極70上には、さらにリード線76が半田77により固定されている。
【0004】
ところで、近年においては、小型の圧電アクチュエータで大きな圧力下において大きな変位量を確保するため、より高い電界を印加し、長期間連続駆動させることが行われている。
【0005】
【特許文献1】
特許第3250918号
【0006】
【発明が解決しようとする課題】
しかしながら、上記した圧電アクチュエータでは、高電界、高圧力下で長期間連続駆動させた場合、圧電体51間に形成された内部電極52と、正極、負極用の外部電極70との間で剥離が発生し、一部の圧電体51に電圧供給されなくなり、駆動中に変位特性が変化するという問題があった。また、外部電極も長期間連続駆動させた場合、その繰り返し応力により断線し、電圧が供給されなくなると言う問題があった。
【0007】
本発明は、高電界、高圧力下で長期間連続駆動させた場合でも、外部電極と内部電極とが断線することがなく、耐久性に優れた積層型圧電素子を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の積層型圧電素子は、圧電体と内部電極とを交互に積層してなる柱状積層体と、該柱状積層体の側面に設けられ、前記内部電極が一層おきに交互に接続された一対の外部電極とを具備してなる積層型圧電素子であって、前記内部電極の端部に一層おきに前記柱状積層体の側面から突出し、銀を主成分とする突起状導電性端子が設けられ、該突起状導電性端子がとガラスを含有する外部電極中に埋設され、前記外部電極は、前記柱状積層体の表面に形成されたガラスリッチ層と、該ガラスリッチ層の表面に形成され、ガラスリッチ層よりもガラス成分が少なくかつ空隙が多い多孔質層とを備え前記突起状導電性端子は、その根元部分が前記ガラスリッチ層に埋設され、前記根元部分よりも先端側が前記多孔質層に埋設されていることを特徴とする積層型圧電素子。
ことを特徴とする。
【0009】
本発明の積層型圧電素子では、内部電極の端部には突起状導電性端子が設けられ、この突起状導電性端子が外部電極中に埋設されているため、突起状導電性端子のアンカー効果により外部電極が内部電極に強固に接合しており、高電界、高圧力下で長期間連続運転させた場合でも、外部電極と内部電極との断線を抑制することができ、耐久性を大幅に向上できる。
【0010】
また、従来は、内部電極の端部に外部電極を接合しており、外部電極との接合面積が小さく、導電性が低く、接続信頼性も低いものであったが、本発明では、突起状導電性端子を外部電極中に埋設しているため、突起状導電性端子と外部電極との接合面積が大きく、外部電極と内部電極間の導電性を向上でき、しかも外部電極と内部電極との接続信頼性も向上できる。
さらに、本発明では、外部電極における柱状積層体側の表層部にガラスリッチ層が形成されているので、外部電極と柱状積層体との接合強度を高めることができるとともに、ガラスリッチ層以外の他の部分が多孔質層であるので、熱膨張の差に起因するクラックの発生や駆動による繰り返し応力に起因する外部電極の破壊を抑えて信頼性をさらに向上させることができる。
【0011】
また、外部電極の空隙率が30〜70%であるときには、熱膨張の差によるクラックの発生や、駆動による繰り返し応力に起因する外部電極の破壊をより確実に抑制し、信頼性をさらに向上させることができる
【0012】
また、本発明の積層型圧電素子は、突起状導電性端子が、内部電極の端部に拡散接合していることを特徴とする。このような積層型圧電素子では、内部電極の端部に突起状導電性端子をより強固に接合できる。
【0013】
さらに、本発明の積層型圧電素子は、突起状導電性端子及び外部電極の導電材が、銀を主成分とすることを特徴とする。銀は比較的低温で拡散移動しやすいため、後述する製法により、内部電極の端部に突起状導電性端子を容易に形成できるとともに、この突起状導電性端子を外部電極中に容易に埋設できる。また、銀は耐酸化性を有し、ヤング率が低いため、外部電極として最適となる。
【0014】
【発明の実施の形態】
図1は本発明の積層型圧電アクチュエータからなる積層型圧電素子の一形態を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図、(c)、(d)は内部電極と外部電極の接合部近傍の拡大図である。
【0015】
積層型圧電アクチュエータは、図1に示すように、圧電体1と内部電極2とを交互に複数積層してなる四角柱状の柱状積層体1aの側面において、内部電極2の端部を一層おきに絶縁体3で被覆し、絶縁体3で被覆していない内部電極2の端部に突起状導電性端子5を設け、該突起状導電性端子5を、銀を主成分とする導電材とガラスからなる外部電極4中に埋設して接合し、各外部電極4にリード線6を接続固定して構成されている。
【0016】
圧電体1は、例えば、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3(以下PZTと略す)、或いはチタン酸バリウムBaTiO3を主成分とする圧電セラミックス材料等で形成されている。この圧電セラミックスは、その圧電特性を示す圧電歪み定数d33が高いものが望ましい。
【0017】
また、圧電体1の厚み、つまり内部電極2間の距離は50〜250μmが望ましい。これは、積層型圧電アクチュエータは電圧を印加してより大きな変位量を得るために、積層数を増加させる方法がとられるが、上記のような圧電体1の厚みを採用することにより、アクチュエータの小型化、低背化を達成できるとともに、圧電体1の絶縁破壊を防止できるからである。
【0018】
圧電体1の間には内部電極2が配されているが、この内部電極2は銀−パラジウム等の金属材料で形成されており、各圧電体1に所定の電圧を印加し、圧電体1に逆圧電効果による変位を起こさせる作用をなす。
【0019】
また、突起状導電性端子5が形成された柱状積層体1aの側面に一層おきに深さ30〜500μm、積層方向の幅30〜200μmの溝が形成されており、この溝内にガラスが充填されて絶縁体3が形成されている。溝内のガラスはヤング率が小さいものが望ましい。
【0020】
突起状導電性端子5と絶縁体3は、外部電極4が形成された柱状積層体1aの一側面に露出した内部電極2の端部に、交互に形成されている。
【0021】
即ち、溝内に充填された絶縁体3により内部電極2の端部が互い違いに一層おきに絶縁され、内部電極2の絶縁されていない他方の端部は、突起状導電性端子5を介して銀を主成分とする導電材とガラスからなる外部電極4と接合されている。
【0022】
突起状導電性端子5は、内部電極2の端部に拡散接合している。即ち、内部電極2が銀を主成分とし、パラジウムを含有し、突起状導電性端子5が銀を主成分としている場合、内部電極2と突起状導電性端子5の銀が相互に拡散するとともに、内部電極2のパラジウムが突起状導電性端子5に拡散し、これにより突起状導電性端子5が内部電極2の端部に拡散接合している。
【0023】
柱状積層体1aの対向する側面には、導電性ペーストを塗布して形成され、銀を主成分とする導電材と、ガラスとからなる外部電極4が接合しており、この外部電極4中には、突起状導電性端子5が埋設され、これにより外部電極4に内部電極2が一層おきに電気的に接続されている。この銀を主成分とする導電材とガラスからなる外部電極4は、接続されている各内部電極2に圧電体1を逆圧電効果により変位させるに必要な電圧を共通に供給する作用をなす。
【0024】
外部電極4、突起状導電性端子5の導電材は銀を主成分とするもので、これ以外に、ニッケル、銅、金、アルミニウム等の導電性を備えた金属及びそれらの合金から構成されていても良いが、外部電極4の導電材、突起状導電性端子5は、同一金属又は同一合金を主成分とする。
【0025】
外部電極4の導電材、突起状導電性端子5は、耐酸化性を有し、比較的低温で拡散移動しやすく、ヤング率が低いという点から、銀、若しくは銀主成分の合金が望ましい。
【0026】
また、本発明では、外部電極4の圧電体側表層部には、他の部分4aよりもガラス成分が多いガラスリッチ層4bが形成されており、このガラスリッチ層4bが圧電体1表面に接合している。このように、圧電体1に接する外部電極4のガラスリッチ層4bが、外部電極4の他の部分4aよりもガラス成分を多く含むようにすることにより、外部電極4と柱状積層体1aとの接合強度を強固なものとすることができる。ガラスリッチ層4bには、ガラスが外部電極4の他の部分4aよりも1.1倍以上の割合で存在する。
【0027】
突起状導電性端子5の周囲に該当する部分にも外部電極4のガラスリッチ層4bが形成され易いが、突起状導電性端子5は外部電極4の導電材と接続しており、さらなる導電性向上のためにはガラスリッチ層4b中の導電材量が多い方が望ましい。
【0028】
尚、突起状導電性端子5の形状、突起状導電性端子5に接するガラスリッチ層4b及び圧電体1に接するガラスリッチ層4bの形状、厚み等は、図1(c)、(d)に示すように、均一である必要はない。
【0029】
また、外部電極4中の導電材は50〜95体積%、残部のガラス成分は5〜50体積%とされている。これにより、適度なガラス成分量を確保できるため、外部電極4と柱状積層体1a及び突起状導電性端子5との接合強度を効果的に高めることができ、また、外部電極4の抵抗値を低くでき、外部電極4の局所発熱を抑制し、外部電極4の断線を防止できる。
【0030】
また、外部電極4の空隙率は30〜70%が望ましい。外部電極中の空隙率が30%未満の場合、外部電極4は緻密化してしまい、ヤング率が高くなり、長期間駆動した場合にその繰り返し応力により、クラックが発生し断線してしまう。空隙率が70%を超える場合、外部電極としての強度が低くなり、断線や局所発熱により素子が破壊してしまう。
【0031】
外部電極4の空隙率を調整するためには、銀ガラス導電性ペースト中のバインダー添加量を変化させたり、また焼き付け時の熱処理温度を変化させたり、熱処理時間を長くしたり、ガラスの軟化点を変化させることにより達成できる。
【0032】
例えば、ガラスの軟化点より高い温度で熱処理すると、空隙率は少なくなり、逆に低い温度で熱処理すると空隙率は高くなる。軟化点に対し90%から120%の範囲で熱処理することにより、空隙率を30〜70%に調整できる。
【0033】
また、導電性ペースト中のバインダー量を増やすことによりペーストの密度を低下させたり、電極の焼き付け処理中に分解して飛散する有機物からなるポア材を添加したりすることも有効である。
【0034】
また、外部電極4を構成するガラスとしては、外部電極4を形成する際の作業温度が400〜930℃であるシリカガラス、ソーダ石灰ガラス、鉛アルカリけい酸塩ガラス、アルミノほうけい酸塩ガラス、ほうけい酸塩ガラス、アルミノけい酸塩ガラス、ほう酸塩ガラス、りん酸塩ガラス等を用いることが好ましい。
【0035】
例えば、ほうけい酸塩ガラスとしては、SiO240〜70重量%、B232〜30重量%、Al230〜20重量%、MgO、CaO、SrO、BaOのようなアルカリ土類金属酸化物を総量で0〜20重量%、Na2O、K2O、Li2Oのようなアルカリ金属酸化物を総量で0〜10重量%含有するものを使用することができる。また、上記のほうけい酸塩ガラスに、5〜30重量%のZnOを含むようなガラスとしても構わない。ZnOは、ほうけい酸塩ガラスの軟化点の温度を低下させる効果がある。
【0036】
また、りん酸塩ガラスとしては、P2540〜80重量%、Al230〜30重量%、B230〜30重量%、ZnO0〜30重量%、アルカリ土類金属酸化物0〜30重量%、アルカリ金属酸化物0〜10重量%を含むようなガラスを使用することができる。
【0037】
また、鉛ガラスとしては、PbO30〜80重量%、SiO20〜40重量%、Bi230〜30重量%、Al230〜20重量%、ZnO0〜30重量%、アルカリ土類金属酸化物0〜30重量%、アルカリ金属酸化物0〜10重量%を含むようなガラスを使用することができる。
【0038】
外部電極4にはリード線6が半田により接続固定されている。このリード線6は外部電極4を外部の電圧供給部に接続する作用をなす。
【0039】
本発明の積層型圧電素子の製法について説明する。まず、柱状積層体1aを作製する。PZT等の圧電セラミックスの仮焼粉末と、アクリル系、ブチラール系等の有機高分子から成るバインダーと、DBP(フタル酸ジオチル)、DOP(フタル酸ジブチル)等の可塑剤とを混合してスラリーを作製し、該スラリーを周知のドクターブレード法やカレンダーロール法等のテープ成型法により圧電体1となるセラミックグリーンシートを作製する。
【0040】
次に、銀−パラジウム粉末にバインダー、可塑剤等を添加混合して導電性ペーストを作製し、これを前記各グリーンシートの上面にスクリーン印刷等によって1〜40μmの厚みに印刷する。
【0041】
そして、上面に導電性ペーストが印刷されたグリーンシートを複数積層するとともに、この積層体の上下面に、導電性ペーストが印刷されていないグリーンシートを複数積層し、この積層体を所定の温度で脱バインダーを行った後、900〜1200℃で焼成することによって作製される。
【0042】
その後、図2(a)に示すように、ダイシング装置等により柱状積層体1aの側面に一層おきに溝を形成する。そして、図2(b)に示すように該溝部にガラス粉末を分散させたペーストを充填し、700〜1000℃で焼き付けを行い、ガラスを溝に充填し、柱状積層体1aを形成する。
【0043】
その後、柱状積層体1aの溝を形成した側面に、図2(c)に示すように、平均粒径0.1〜10μmの銀粉末(融点:960℃)を50〜95体積%と、残部が平均粒径0.1〜10μmでケイ素を主成分とする軟化点が400〜930℃のガラス粉末5〜50体積%からなる混合物に、バインダーを加えて作製した銀ガラス導電性ペースト21を塗布し、ガラスの軟化点よりも高い温度、且つ銀の融点以下の温度で焼き付けを行うことにより、銀ガラス導電性ペースト21中の銀が内部電極2端部に集合し、図2(d)に示すように、突起状導電性端子5が形成されるとともに、外部電極4を形成することができる。
【0044】
即ち、銀ガラス導電性ペースト21中にガラス成分を分散させ、ガラスの軟化点よりも高い温度で、且つ銀の融点以下で熱処理することにより、ガラスが軟化し、この状態において圧電体1には拡散しにくい銀が内部電極2の端部に集合して突起状導電性端子5を形成し、同時に該突起状導電性端子5及び圧電体1近傍にはガラス成分が集まる。このようにして、突起状導電性端子5及び外部電極4が形成することができる。
【0045】
また、同時に内部電極2を構成する銀とパラジウムが突起状導電性端子5に拡散し、突起状導電性端子5と内部電極2との接合が強固なものとなる。突起状導電性端子5の柱状積層体1aからの突出高さは、1μm以上、特には3μm以上が好ましい。このように、突出高さを高くするためには、焼き付け時の熱処理温度を高くしたり、熱処理時間を長くしたり、ガラスの軟化点を低下させることにより達成できる。該銀ガラス導電性ペーストの焼き付け温度は、溝部に充填したガラスの焼き付け温度以下の温度が好ましい。
【0046】
上述のように、突起状導電性端子5及び外部電極4を形成した後、リード線6を接続することにより本発明の積層型圧電素子が完成する。
【0047】
そして、リード線6を介して一対の外部電極4に0.1〜3kV/mmの直流電圧を印加し、柱状積層体1aを分極処理することによって、製品としての積層型圧電アクチュエータが完成し、リード線6を外部の電圧供給部に接続し、リード線6及び外部電極4を介して内部電極2に電圧を印加させれば、各圧電体1は逆圧電効果によって大きく変位する。
【0048】
以上のように構成された積層型圧電素子は、内部電極2の端部には突起状導電性端子5が設けられ、この突起状導電性端子5が外部電極4中に埋設されているため、突起状導電性端子5のアンカー効果により外部電極4が内部電極2に強固に接合しており、高電界、高圧力下で長期間連続運転させた場合でも、外部電極4と内部電極2との断線を抑制することができ、耐久性を大幅に向上できる。
【0049】
また、突起状導電性端子5を外部電極4中に埋設しているため、突起状導電性端子5と外部電極4との接合面積が大きく、外部電極4と内部電極2間の導電性を向上でき、しかも外部電極4と内部電極2との接続信頼性も向上できる。
【0050】
また、突起状導電性端子が、導電材とガラスを含有する外部電極中に埋設され、その外部電極の空隙率を30〜70%にすることにより、熱膨張の差によるクラックの発生や、駆動による繰り返し応力に起因する外部電極の破壊を抑え、信頼性を向上することができる。
【0051】
尚、本発明では、図3に示すように、外部電極4の外側に導電性補助部材7を形成しても良い。この場合には、外部電極4の外面に導電性補助部材7を設けることによりアクチュエータに大電流を投入し、高速で駆動させる場合においても、大電流を導電性補助部材7に流すことができ、外部電極4に流れる電流を低減でき、外部電極4が局所発熱を起こし断線することを防ぐことができ、耐久性を大幅に向上させることができる。
【0052】
なお、導電性補助部材7は、板状導電部材、導電性接着剤、導電性コイル、導電性波板、導電性繊維集合体(ウール状)の一つ若しくは複合体からなる。
【0053】
本発明の積層型圧電素子はこれらに限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0054】
また、上記例では、柱状積層体1aの対向する側面に外部電極4を形成した例について説明したが、本発明では、例えば隣設する側面に一対の外部電極を形成してもよい。
【0055】
【実施例】
実施例1
まず、柱状積層体を作製した。圧電体は厚み150μmのPZTで形成し、内部電極は厚み3μmの銀−パラジウム合金によって形成し、圧電体及び内部電極の各々の積層数は300層とした。
【0056】
その後、図2(a)に示すように、ダイシング装置により柱状積層体側面の内部電極の端部に一層おきに深さ50μm、幅50μmの溝を形成した。そして、図2(b)に示すように該溝部にガラス粉末を分散させたペーストを充填し、900℃で焼き付けを行い、ガラスを溝に充填した。
【0057】
次に、平均粒径5μmの銀粉末を90体積%と、残部が平均粒径5μmのケイ素を主成分とする軟化点が600℃の非晶質のほうけい酸塩ガラス(Si、Al、Bを含有)粉末10体積%との混合物にバインダーを加え、十分に混合して銀ガラス導電性ペーストを作製し、図2(c)に示すように、前記柱状積層体の溝を形成した側面に塗布し、700℃で焼き付けを行い、図2(d)に示すように、突起状導電性端子を形成するとともに、外部電極を形成した。突起状導電性端子の積層方向厚みは平均で3μm、柱状積層体の側面からの突出高さは平均で5μmであった。
【0058】
この時、該突起状導電性端子の主成分は銀で、該突起状導電性端子には、内部電極からパラジウムが拡散していることを確認した。また、外部電極の突起状導電性端子及び圧電体に接する部分には、他の外部電極の部分よりもガラス成分が多いガラスリッチ層が形成されており、そのガラスリッチ層の平均的な厚みは約2μmであった。
【0059】
その後、外部電極にリード線を接続し、正極及び負極の外部電極にリード線を介して3kV/mmの直流電界を15分間印加して分極処理を行い、図1に示すような積層型圧電アクチュエータを作製した。
【0060】
得られた積層型圧電アクチュエータに150Vの直流電圧を印加した結果、積層方向に40μmの変位量が得られた。さらに、このアクチュエータに室温で0〜+150Vの交流電圧を150Hzの周波数にて印加し駆動試験を行った結果、1×108サイクルまで駆動したところ40μmの変位量が得られ、外部電極の異常は見られなかった。表1のサンプルNo.1に記載する。
実施例2
次に、銀ガラス導電性ペースト中の銀含有率とガラス軟化点を変化させ、外部電極4の焼き付けの熱処理温度を変化させて、空隙率を変化させた以外は、実施例1と同様の構成の積層型圧電アクチュエータ(No.2〜8)を作製したところ、No.1〜7のサンプルにおいて、銀を主成分とする突起状導電性端子が柱状積層体の内部電極端部に形成されていた。空隙率の測定は、外部電極4の断面を鏡面加工し、画像解析にて測定した。なお、No.6〜8のサンプルは比較例であり、No.6のサンプルにおいては、突起状導電性端子は形成されていたが、外部電極4の空隙率が15%と本発明の範囲外であり、No.7〜8のサンプルにおいては突起状導電性端子は形成されていなかった。
【0061】
得られた積層型圧電アクチュエータに室温で0〜150Vの交流電圧を150Hzの周波数にて印加し、駆動試験を行った。初期に得られた変位量はすべてのサンプル(No.1〜8)において40μmであった。併せて、室温で0〜200Vの交流電圧を150Hzの周波数においても駆動試験を行った。得られた結果を表1に示す。
【0062】
【表1】

Figure 0003929858
【0063】
サンプルNo.8の突起状導電性端子が形成されていないサンプル以外の全てのサンプルにおいて、150Vで1×108サイクルまで駆動したところ40μmの変位が得られ、外部電極の異常は見られなかった。また、突起状導電性端子が形成されていたサンプルNo.1〜6においては、外部電極と内部電極とが突起状導電性端子を介して電気的に強固に接合されているため、1×108サイクルまで外部電極と内部電極との間でスパークが生じることはなかった。
【0064】
一方、突起状導電性端子が形成されなかったNo.7〜8のサンプルの場合、外部電極と内部電極との接続が弱く、外部電極と内部電極の接点においてスパークが生じてしまった。
【0065】
さらに、駆動条件が厳しい200Vでの駆動の結果、本発明の範囲内であるNo.1、2、3、4、5のサンプルにおいては、200Vの駆動においても、1×108サイクルまで駆動しても外部電極の断線、スパークといった異常は見られなかった。一方、No.6のサンプルは外部電極4の空隙率が低いために、外部電極が断線してしまった。
【0066】
即ち、外部電極中の銀の含有率を50〜95体積%、ガラス成分の軟化点を銀の融点以下、外部電極の空隙率を30〜70%にすることにより、高電界で高速に連続駆動した場合においても、突起状導電性端子が内部電極と外部電極を強固に電気的に接合し、また外部電極が強固に柱状積層体と接合されているため、外部電極の断線、外部電極と内部電極の接点でのスパークといった問題が生じることはなかった。
【0067】
【発明の効果】
本発明の積層型圧電素子によれば、内部電極の端部に一層おきに前記柱状積層体の側面から突出し、銀を主成分とする突起状導電性端子が設けられ、該突起状導電性端子がとガラスを含有する外部電極中に埋設され、前記外部電極が、前記柱状積層体の表面に形成されたガラスリッチ層と、該ガラスリッチ層の表面に形成され、ガラスリッチ層よりもガラス成分が少なくかつ空隙が多い多孔質層とを備え前記突起状導電性端子が、その根元部分が前記ガラスリッチ層に埋設され、前記根元部分よりも先端側が前記多孔質層に埋設されているので、外部電極と柱状積層体との接合強度を高めることができるとともに、熱膨張の差に起因するクラックの発生や駆動による繰り返し応力に起因する外部電極の破壊を抑えて信頼性をさらに向上させることができる。
【図面の簡単な説明】
【図1】本発明の積層型圧電素子を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図、(c)及び(d)は(b)の一部を拡大して示す断面図である。
【図2】(a)〜(d)は本発明の積層型圧電素子の製法を説明するための工程図である。
【図3】本発明の積層型圧電素子の他の実施形態を示すもので、(a)は斜視図、(b)は(a)のA−A’線断面図である。
【図4】従来の積層型圧電アクチュエータの縦断面図である。
【符号の説明】
1・・・圧電体
1a・・・柱状積層体
2・・・内部電極
4・・・外部電極
4b・・・ガラスリッチ層
5・・・突起状導電性端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer piezoelectric element and an injection device, and more particularly to a multilayer piezoelectric element used for a precision positioning device such as a fuel injection device for an automobile and an optical device, a driving element for preventing vibration, and the like.
[0002]
[Prior art]
Conventionally, as a multilayer piezoelectric element, a multilayer piezoelectric actuator in which piezoelectric bodies and internal electrodes are alternately stacked is known. Multilayer piezoelectric actuators are classified into two types: the simultaneous firing type and the stack type in which piezoelectric ceramics and internal electrode plates are alternately laminated. Since the multilayer piezoelectric actuator of the type is advantageous for thinning, its superiority is being shown.
[0003]
FIG. 4 shows a conventional laminated piezoelectric actuator. In this actuator, piezoelectric bodies 51 and internal electrodes 52 are alternately laminated to form a columnar laminated body 53, which is inactive on both end faces in the laminating direction. Layer 55 is laminated. The internal electrode 52 is formed so that one end thereof is alternately covered with the insulator 61 on the left and right sides, and the strip-like external electrode 70 is electrically connected to the internal electrode 52 every two layers on the left and right. On the strip-shaped external electrode 70, a lead wire 76 is further fixed with solder 77.
[0004]
By the way, in recent years, in order to ensure a large amount of displacement under a large pressure with a small piezoelectric actuator, a higher electric field is applied to continuously drive for a long time.
[0005]
[Patent Document 1]
Japanese Patent No. 3250918 [0006]
[Problems to be solved by the invention]
However, in the above-described piezoelectric actuator, when continuously driven for a long time under a high electric field and high pressure, peeling occurs between the internal electrode 52 formed between the piezoelectric bodies 51 and the external electrode 70 for the positive electrode and the negative electrode. There is a problem that the voltage is not supplied to some of the piezoelectric bodies 51 and the displacement characteristics change during driving. Further, when the external electrode is continuously driven for a long time, there is a problem that the voltage is not supplied due to disconnection due to the repeated stress.
[0007]
An object of the present invention is to provide a multi-layer piezoelectric element having excellent durability without disconnection of an external electrode and an internal electrode even when continuously driven for a long time under a high electric field and high pressure. .
[0008]
[Means for Solving the Problems]
The multilayer piezoelectric element of the present invention includes a pair of columnar laminates formed by alternately laminating piezoelectric bodies and internal electrodes, and a pair of the internal electrodes connected alternately every other layer. a laminated piezoelectric element comprising comprising an external electrode, protruding from the side surface of the columnar laminate every other layer on the end portion of the inner electrode, the protruding conductive terminals mainly composed of silver is provided is, embedded in the external electrodes projecting Okoshijo conductive terminals containing silver and glass, the external electrode includes a glass-rich layer formed on the surface of the columnar laminate, formed on the surface of the glass-rich layer is, and a glass component is small and a lot of voids porous layer than the glass-rich layer, the protruded conductive terminal, the root portion is embedded in the glass-rich layer, the root portion leading end side than said that it is embedded in the porous layer Laminated piezoelectric element characterized.
It is characterized by that.
[0009]
In the multilayer piezoelectric element of the present invention, the projecting conductive terminal is provided at the end of the internal electrode, and this projecting conductive terminal is embedded in the external electrode. The external electrode is firmly bonded to the internal electrode, and even when operated continuously for a long time under a high electric field and high pressure, the disconnection between the external electrode and the internal electrode can be suppressed, greatly improving durability. It can be improved.
[0010]
Conventionally, an external electrode is bonded to the end of the internal electrode, and the bonding area with the external electrode is small, the conductivity is low, and the connection reliability is low. Since the conductive terminal is embedded in the external electrode, the joint area between the protruding conductive terminal and the external electrode is large, the conductivity between the external electrode and the internal electrode can be improved, and the connection between the external electrode and the internal electrode can be improved. Connection reliability can also be improved.
Furthermore, in the present invention, since the glass rich layer is formed on the surface layer portion of the external electrode on the columnar laminate side, the bonding strength between the external electrode and the columnar laminate can be increased, and other than the glass rich layer Since the portion is a porous layer, the reliability can be further improved by suppressing the generation of cracks due to the difference in thermal expansion and the destruction of the external electrodes due to the repeated stress due to the drive.
[0011]
Moreover, when the porosity of the external electrode is 30 to 70%, the generation of cracks due to a difference in thermal expansion and the destruction of the external electrode due to repeated stress due to driving are more reliably suppressed, and the reliability is further improved. Can
[0012]
The multilayer piezoelectric element of the present invention is characterized in that the protruding conductive terminals are diffusion bonded to the end portions of the internal electrodes. In such a multilayer piezoelectric element, the protruding conductive terminal can be more firmly bonded to the end portion of the internal electrode.
[0013]
Furthermore, the multilayer piezoelectric element of the present invention is characterized in that the conductive material of the projecting conductive terminal and the external electrode contains silver as a main component. Since silver is easy to diffuse and move at a relatively low temperature, a protruding conductive terminal can be easily formed at the end of the internal electrode by the manufacturing method described later, and the protruding conductive terminal can be easily embedded in the external electrode. . Further, silver has oxidation resistance and has a low Young's modulus, so it is optimal as an external electrode.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B show one embodiment of a multilayer piezoelectric element comprising a multilayer piezoelectric actuator of the present invention. FIG. 1A is a perspective view, and FIG. 1B is a longitudinal sectional view taken along the line AA 'in FIG. , (C), (d) are enlarged views of the vicinity of the joint between the internal electrode and the external electrode.
[0015]
As shown in FIG. 1, the multilayer piezoelectric actuator has a side surface of a quadrangular columnar laminated body 1 a in which a plurality of piezoelectric bodies 1 and internal electrodes 2 are alternately laminated. A protruding conductive terminal 5 is provided at the end of the internal electrode 2 that is covered with the insulator 3 and is not covered with the insulator 3, and the protruding conductive terminal 5 is made of a conductive material mainly composed of silver and glass. The external electrodes 4 are embedded and bonded, and lead wires 6 are connected and fixed to the external electrodes 4.
[0016]
The piezoelectric body 1 is made of, for example, lead zirconate titanate Pb (Zr, Ti) O 3 (hereinafter abbreviated as PZT) or a piezoelectric ceramic material mainly composed of barium titanate BaTiO 3 . The piezoelectric ceramics are those piezoelectric strain constant d 33 indicating the piezoelectric characteristic is high is preferable.
[0017]
The thickness of the piezoelectric body 1, that is, the distance between the internal electrodes 2 is preferably 50 to 250 μm. In order to obtain a larger displacement amount by applying a voltage to the laminated piezoelectric actuator, a method of increasing the number of laminated layers is used. By adopting the thickness of the piezoelectric body 1 as described above, This is because a reduction in size and height can be achieved, and dielectric breakdown of the piezoelectric body 1 can be prevented.
[0018]
An internal electrode 2 is disposed between the piezoelectric bodies 1, and the internal electrode 2 is formed of a metal material such as silver-palladium, and a predetermined voltage is applied to each piezoelectric body 1. It acts to cause displacement due to the reverse piezoelectric effect.
[0019]
Further, grooves having a depth of 30 to 500 μm and a width of 30 to 200 μm in the stacking direction are formed on the side surface of the columnar laminated body 1a on which the protruding conductive terminals 5 are formed, and glass is filled in the grooves. Thus, the insulator 3 is formed. The glass in the groove preferably has a low Young's modulus.
[0020]
The protruding conductive terminals 5 and the insulators 3 are alternately formed at the end portions of the internal electrodes 2 exposed on one side surface of the columnar laminated body 1a on which the external electrodes 4 are formed.
[0021]
That is, the end portions of the internal electrodes 2 are alternately insulated by the insulators 3 filled in the grooves, and the other non-insulated end portions of the internal electrodes 2 are connected via the protruding conductive terminals 5. It is joined to a conductive material mainly composed of silver and an external electrode 4 made of glass.
[0022]
The protruding conductive terminal 5 is diffusion bonded to the end of the internal electrode 2. That is, when the internal electrode 2 contains silver as a main component, contains palladium, and the protruding conductive terminal 5 has silver as a main component, the silver of the internal electrode 2 and the protruding conductive terminal 5 diffuses mutually. The palladium of the internal electrode 2 diffuses into the projecting conductive terminal 5, whereby the projecting conductive terminal 5 is diffusion bonded to the end of the internal electrode 2.
[0023]
The opposite side surfaces of the columnar laminate 1 a are formed by applying a conductive paste, and a conductive material mainly composed of silver and an external electrode 4 made of glass are bonded to each other. Are embedded with protruding conductive terminals 5, whereby the internal electrodes 2 are electrically connected to the external electrodes 4 every other layer. The external electrode 4 made of a conductive material mainly composed of silver and glass serves to commonly supply a voltage necessary for displacing the piezoelectric body 1 to the connected internal electrodes 2 by the inverse piezoelectric effect.
[0024]
The conductive material of the external electrode 4 and the protruding conductive terminal 5 is mainly composed of silver, and is composed of a metal having conductivity such as nickel, copper, gold, and aluminum and alloys thereof. However, the conductive material of the external electrode 4 and the protruding conductive terminal 5 are mainly composed of the same metal or the same alloy.
[0025]
The conductive material of the external electrode 4 and the protruding conductive terminal 5 are preferably silver or an alloy containing silver as a main component because they have oxidation resistance, are easy to diffuse and move at a relatively low temperature, and have a low Young's modulus.
[0026]
Further, in the present invention, a glass rich layer 4b having a glass component larger than that of the other portion 4a is formed on the surface layer portion of the external electrode 4 on the piezoelectric body side, and this glass rich layer 4b is bonded to the surface of the piezoelectric body 1. ing. As described above, the glass-rich layer 4b of the external electrode 4 in contact with the piezoelectric body 1 contains more glass components than the other portion 4a of the external electrode 4, so that the external electrode 4 and the columnar laminated body 1a are formed. The bonding strength can be made strong. In the glass rich layer 4 b, glass is present at a ratio of 1.1 times or more than the other portion 4 a of the external electrode 4.
[0027]
The glass-rich layer 4b of the external electrode 4 is easily formed on the portion corresponding to the periphery of the projecting conductive terminal 5, but the projecting conductive terminal 5 is connected to the conductive material of the external electrode 4 and further conductive. In order to improve, it is desirable that the amount of the conductive material in the glass rich layer 4b is large.
[0028]
The shape of the protruding conductive terminal 5, the shape and thickness of the glass rich layer 4 b in contact with the protruding conductive terminal 5 and the glass rich layer 4 b in contact with the piezoelectric body 1 are shown in FIGS. 1 (c) and 1 (d). As shown, it need not be uniform.
[0029]
Further, the conductive material in the external electrode 4 is 50 to 95% by volume, and the remaining glass component is 5 to 50% by volume. Thereby, since an appropriate amount of glass component can be secured, the bonding strength between the external electrode 4 and the columnar laminate 1a and the protruding conductive terminal 5 can be effectively increased, and the resistance value of the external electrode 4 can be increased. Therefore, local heat generation of the external electrode 4 can be suppressed, and disconnection of the external electrode 4 can be prevented.
[0030]
The porosity of the external electrode 4 is desirably 30 to 70%. When the porosity in the external electrode is less than 30%, the external electrode 4 is densified, the Young's modulus becomes high, and when it is driven for a long period of time, a crack is generated due to the repeated stress and the wire is disconnected. When the porosity exceeds 70%, the strength as an external electrode is lowered, and the element is broken due to disconnection or local heat generation.
[0031]
In order to adjust the porosity of the external electrode 4, the amount of binder added in the silver glass conductive paste is changed, the heat treatment temperature during baking is changed, the heat treatment time is increased, the glass softening point is changed. This can be achieved by changing.
[0032]
For example, when the heat treatment is performed at a temperature higher than the softening point of the glass, the porosity is decreased. Conversely, when the heat treatment is performed at a low temperature, the porosity is increased. The porosity can be adjusted to 30 to 70% by heat treatment in the range of 90% to 120% with respect to the softening point.
[0033]
It is also effective to reduce the density of the paste by increasing the amount of binder in the conductive paste, or to add a pore material made of organic matter that decomposes and scatters during the baking process of the electrode.
[0034]
Moreover, as glass which comprises the external electrode 4, the working temperature at the time of forming the external electrode 4 is 400-930 degreeC, soda lime glass, lead alkali silicate glass, alumino borosilicate glass, It is preferable to use borosilicate glass, aluminosilicate glass, borate glass, phosphate glass, or the like.
[0035]
For example, the borosilicate glass includes SiO 2 40 to 70 wt%, B 2 O 3 2 to 30 wt%, Al 2 O 3 0 to 20 wt%, alkaline earth such as MgO, CaO, SrO and BaO. 0-20 wt% of the metalloid oxides in total, Na 2 O, K 2 O , it may be used those containing 0-10% by weight of alkali metal oxides such as Li 2 O in a total amount. Moreover, it is good also as glass which contains 5-30 weight% ZnO in said borosilicate glass. ZnO has the effect of lowering the temperature of the softening point of borosilicate glass.
[0036]
As the phosphate glass, P 2 O 5 40 to 80 wt%, Al 2 O 3 0 to 30 wt%, B 2 O 3 0 to 30 wt%, ZnO0~30 wt%, the alkaline earth metal oxide Glasses containing 0 to 30% by weight of the product and 0 to 10% by weight of the alkali metal oxide can be used.
[0037]
As the lead glass, PbO30~80 wt%, SiO 2 0 to 40 wt%, Bi 2 O 3 0 to 30 wt%, Al 2 O 3 0 to 20 wt%, ZnO0~30 wt%, an alkaline earth Glasses containing 0 to 30% by weight of metal oxide and 0 to 10% by weight of alkali metal oxide can be used.
[0038]
A lead wire 6 is connected and fixed to the external electrode 4 with solder. The lead wire 6 serves to connect the external electrode 4 to an external voltage supply unit.
[0039]
A method for producing the multilayer piezoelectric element of the present invention will be described. First, the columnar laminate 1a is produced. A slurry is prepared by mixing calcined powder of piezoelectric ceramics such as PZT, a binder made of an organic polymer such as acrylic or butyral, and a plasticizer such as DBP (diethyl phthalate) or DOP (dibutyl phthalate). The ceramic green sheet which becomes the piezoelectric body 1 is produced by tape molding methods such as a known doctor blade method and calendar roll method.
[0040]
Next, a conductive paste is prepared by adding a binder, a plasticizer, and the like to silver-palladium powder, and this is printed on the upper surface of each green sheet to a thickness of 1 to 40 μm by screen printing or the like.
[0041]
Then, a plurality of green sheets with conductive paste printed on the top surface are laminated, and a plurality of green sheets with no conductive paste printed are laminated on the top and bottom surfaces of the laminate. After debinding, it is produced by firing at 900 to 1200 ° C.
[0042]
Thereafter, as shown in FIG. 2A, grooves are formed on every other side of the columnar laminate 1a by a dicing apparatus or the like. And as shown in FIG.2 (b), it fills with the paste which disperse | distributed glass powder to this groove part, and it bakes at 700-1000 degreeC, a glass is filled into a groove | channel, and the columnar laminated body 1a is formed.
[0043]
Thereafter, as shown in FIG. 2 (c), 50 to 95% by volume of silver powder (melting point: 960 ° C.) having an average particle size of 0.1 to 10 μm is formed on the side surface where the groove of the columnar laminate 1a is formed. A silver glass conductive paste 21 prepared by adding a binder to a mixture of 5 to 50% by volume of glass powder having an average particle size of 0.1 to 10 μm and a softening point of 400 to 930 ° C. containing silicon as a main component is applied. Then, by baking at a temperature higher than the softening point of the glass and below the melting point of silver, the silver in the silver glass conductive paste 21 gathers at the end of the internal electrode 2, and FIG. As shown, the protruding conductive terminals 5 are formed, and the external electrodes 4 can be formed.
[0044]
That is, the glass component is dispersed in the silver glass conductive paste 21, and the glass is softened by heat treatment at a temperature higher than the softening point of the glass and below the melting point of silver. Silver that is difficult to diffuse gathers at the end of the internal electrode 2 to form the projecting conductive terminal 5, and at the same time, glass components gather near the projecting conductive terminal 5 and the piezoelectric body 1. In this manner, the protruding conductive terminals 5 and the external electrodes 4 can be formed.
[0045]
At the same time, silver and palladium constituting the internal electrode 2 are diffused into the protruding conductive terminal 5, and the bonding between the protruding conductive terminal 5 and the internal electrode 2 becomes strong. The protruding height of the protruding conductive terminals 5 from the columnar laminate 1a is preferably 1 μm or more, and particularly preferably 3 μm or more. Thus, increasing the protrusion height can be achieved by increasing the heat treatment temperature during baking, increasing the heat treatment time, or lowering the softening point of the glass. The baking temperature of the silver glass conductive paste is preferably equal to or lower than the baking temperature of the glass filled in the groove.
[0046]
As described above, after forming the projecting conductive terminals 5 and the external electrodes 4, the lead wires 6 are connected to complete the multilayer piezoelectric element of the present invention.
[0047]
Then, by applying a direct current voltage of 0.1 to 3 kV / mm to the pair of external electrodes 4 via the lead wires 6 to polarize the columnar laminated body 1a, a laminated piezoelectric actuator as a product is completed, When the lead wire 6 is connected to an external voltage supply unit and a voltage is applied to the internal electrode 2 via the lead wire 6 and the external electrode 4, each piezoelectric body 1 is greatly displaced by the inverse piezoelectric effect.
[0048]
In the multilayer piezoelectric element configured as described above, the protruding conductive terminal 5 is provided at the end of the internal electrode 2, and the protruding conductive terminal 5 is embedded in the external electrode 4. The external electrode 4 is firmly bonded to the internal electrode 2 due to the anchor effect of the protruding conductive terminal 5, and even when operated continuously for a long time under a high electric field and high pressure, the external electrode 4 and the internal electrode 2 Disconnection can be suppressed and durability can be greatly improved.
[0049]
Further, since the protruding conductive terminal 5 is embedded in the external electrode 4, the bonding area between the protruding conductive terminal 5 and the external electrode 4 is large, and the conductivity between the external electrode 4 and the internal electrode 2 is improved. In addition, the connection reliability between the external electrode 4 and the internal electrode 2 can be improved.
[0050]
Further, the protruding conductive terminal is embedded in an external electrode containing a conductive material and glass, and the porosity of the external electrode is set to 30 to 70%, thereby generating cracks due to a difference in thermal expansion and driving. It is possible to suppress the destruction of the external electrode due to the repeated stress caused by the above and improve the reliability.
[0051]
In the present invention, a conductive auxiliary member 7 may be formed outside the external electrode 4 as shown in FIG. In this case, by providing a conductive auxiliary member 7 on the outer surface of the external electrode 4, a large current can be supplied to the conductive auxiliary member 7 even when a large current is input to the actuator and driven at high speed. The current flowing through the external electrode 4 can be reduced, the external electrode 4 can be prevented from causing local heat generation and disconnection, and the durability can be greatly improved.
[0052]
The conductive auxiliary member 7 is composed of one or a composite of a plate-like conductive member, a conductive adhesive, a conductive coil, a conductive corrugated plate, a conductive fiber assembly (wool-like).
[0053]
The multilayer piezoelectric element of the present invention is not limited to these, and various modifications can be made without departing from the gist of the present invention.
[0054]
Moreover, although the example which formed the external electrode 4 in the side surface which the columnar laminated body 1a opposes was demonstrated in the said example, in this invention, you may form a pair of external electrode in the side surface provided adjacently, for example.
[0055]
【Example】
Example 1
First, a columnar laminate was produced. The piezoelectric body was formed of PZT having a thickness of 150 μm, the internal electrode was formed of a silver-palladium alloy having a thickness of 3 μm, and the number of stacked piezoelectric bodies and internal electrodes was 300 layers.
[0056]
After that, as shown in FIG. 2A, grooves having a depth of 50 μm and a width of 50 μm were formed at every other end portion of the internal electrode on the side surface of the columnar laminate by a dicing apparatus. Then, as shown in FIG. 2B, the groove was filled with a paste in which glass powder was dispersed, and baked at 900 ° C. to fill the groove with glass.
[0057]
Next, an amorphous borosilicate glass (Si, Al, B) having 90% by volume of silver powder having an average particle diameter of 5 μm and a balance of 600 ° C. with a softening point of silicon having an average particle diameter of 5 μm as the main component. 2) A binder is added to a mixture of 10% by volume of powder and mixed well to prepare a silver glass conductive paste. As shown in FIG. 2 (c), on the side surface on which the grooves of the columnar laminate are formed. This was applied and baked at 700 ° C. to form protruding conductive terminals and external electrodes as shown in FIG. The thickness of the protruding conductive terminals in the stacking direction was 3 μm on average, and the height of protrusion from the side surface of the columnar stacked body was 5 μm on average.
[0058]
At this time, the main component of the protruding conductive terminal was silver, and it was confirmed that palladium was diffused from the internal electrode into the protruding conductive terminal. In addition, a glass-rich layer having a glass component larger than that of other external electrodes is formed on the portion of the external electrode that contacts the projecting conductive terminal and the piezoelectric body, and the average thickness of the glass-rich layer is It was about 2 μm.
[0059]
Thereafter, a lead wire is connected to the external electrode, a 3 kV / mm DC electric field is applied to the positive and negative external electrodes via the lead wire for 15 minutes to perform polarization treatment, and the laminated piezoelectric actuator as shown in FIG. Was made.
[0060]
As a result of applying a DC voltage of 150 V to the obtained multilayer piezoelectric actuator, a displacement of 40 μm was obtained in the stacking direction. Furthermore, as a result of applying a driving test by applying an AC voltage of 0 to +150 V at a frequency of 150 Hz to this actuator at a room temperature, a displacement of 40 μm was obtained when driving up to 1 × 10 8 cycles, and abnormalities in the external electrodes were observed. I couldn't see it. Sample No. in Table 1 It is described in 1.
Example 2
Next, the same configuration as in Example 1 except that the silver content and the glass softening point in the silver glass conductive paste were changed, the heat treatment temperature for baking the external electrode 4 was changed, and the porosity was changed. No. 2 to No. 8 were produced. In the samples 1 to 7, protruding conductive terminals mainly composed of silver were formed at the end portions of the internal electrodes of the columnar laminate. The porosity was measured by mirror-processing the cross section of the external electrode 4 and performing image analysis. In addition, No. Samples 6 to 8 are comparative examples. In the sample No. 6, the protruding conductive terminals were formed, but the porosity of the external electrode 4 was 15%, which is outside the scope of the present invention. In the samples 7 to 8, no projecting conductive terminals were formed.
[0061]
An AC voltage of 0 to 150 V was applied to the obtained multilayer piezoelectric actuator at room temperature at a frequency of 150 Hz, and a driving test was performed. The amount of displacement obtained in the initial stage was 40 μm in all samples (Nos. 1 to 8). In addition, a driving test was performed with an AC voltage of 0 to 200 V at a frequency of 150 Hz at room temperature. The obtained results are shown in Table 1.
[0062]
[Table 1]
Figure 0003929858
[0063]
Sample No. In all the samples other than the sample in which the protruding conductive terminals of 8 were not formed, a displacement of 40 μm was obtained when driving up to 1 × 10 8 cycles at 150 V, and no abnormality of the external electrode was observed. In addition, the sample No. in which the protruding conductive terminal was formed. In 1 to 6, since the external electrode and the internal electrode are electrically and firmly joined via the projecting conductive terminal, a spark occurs between the external electrode and the internal electrode up to 1 × 10 8 cycles. It never happened.
[0064]
On the other hand, no. In the case of samples 7 to 8, the connection between the external electrode and the internal electrode was weak, and sparking occurred at the contact point between the external electrode and the internal electrode.
[0065]
Furthermore, as a result of driving at 200 V, which has strict driving conditions, No. 1 within the scope of the present invention. In the samples 1, 2, 3, 4, and 5, no abnormality such as disconnection or sparking of the external electrode was observed even when driving at 200 V or driving up to 1 × 10 8 cycles. On the other hand, the sample No. 6 has a low porosity of the external electrode 4, and therefore the external electrode is disconnected.
[0066]
That is, by continuously setting the silver content in the external electrode to 50 to 95% by volume, the softening point of the glass component to the melting point of silver or less, and the porosity of the external electrode to 30 to 70%, continuous driving at a high electric field and high speed. Even in this case, the protruding conductive terminal strongly bonds the internal electrode and the external electrode electrically, and the external electrode is firmly bonded to the columnar laminate. There was no problem of sparking at the electrode contacts.
[0067]
【The invention's effect】
According to the laminated piezoelectric element of the present invention, the protruded from the side surface of the columnar laminate every other layer on the end portion of the inner electrode, the protruding conductive terminals mainly provided silver, projecting Okoshijo conductive A terminal is embedded in an external electrode containing silver and glass, and the external electrode is formed on the surface of the columnar laminate, and is formed on the surface of the glass-rich layer. A porous layer having a small glass component and a large number of voids , wherein the protruding conductive terminal has a root portion embedded in the glass-rich layer, and a tip side of the root portion is embedded in the porous layer. As a result , the bonding strength between the external electrode and the columnar laminate can be increased, and the reliability can be further improved by suppressing the generation of cracks due to the difference in thermal expansion and the destruction of the external electrode due to repeated stress due to driving. The Rukoto can.
[Brief description of the drawings]
1A and 1B show a multilayer piezoelectric element of the present invention, in which FIG. 1A is a perspective view, FIG. 1B is a longitudinal sectional view taken along the line AA ′ in FIG. FIG. 3 is an enlarged sectional view showing a part of (b).
FIGS. 2A to 2D are process diagrams for explaining a method for producing a multilayer piezoelectric element of the present invention.
3A and 3B show another embodiment of the multilayer piezoelectric element of the present invention, in which FIG. 3A is a perspective view and FIG. 3B is a cross-sectional view taken along line AA ′ of FIG.
FIG. 4 is a longitudinal sectional view of a conventional multilayer piezoelectric actuator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric body 1a ... Columnar laminated body 2 ... Internal electrode 4 ... External electrode 4b ... Glass rich layer 5 ... Projection-like conductive terminal

Claims (3)

圧電体と内部電極とを交互に積層してなる柱状積層体と、該柱状積層体の側面に設けられ、前記内部電極が一層おきに交互に接続された一対の外部電極とを具備してなる積層型圧電素子であって、
前記内部電極の端部に一層おきに前記柱状積層体の側面から突出し、銀を主成分とする突起状導電性端子が設けられ、該突起状導電性端子がとガラスを含有する外部電極中に埋設され、
前記外部電極は、前記柱状積層体の表面に形成されたガラスリッチ層と、該ガラスリッチ層の表面に形成され、ガラスリッチ層よりもガラス成分が少なくかつ空隙が多い多孔質層とを備え
前記突起状導電性端子は、その根元部分が前記ガラスリッチ層に埋設され、前記根元部分よりも先端側が前記多孔質層に埋設されていることを特徴とする積層型圧電素子。
A columnar laminated body formed by alternately laminating piezoelectric bodies and internal electrodes, and a pair of external electrodes provided on the side surfaces of the columnar laminated body and having the internal electrodes alternately connected every other layer. A laminated piezoelectric element,
Protruding from the side surface of the columnar laminate every other layer on the end portion of the internal electrode, silver protruding conductive terminals mainly provided with external electrodes projecting Okoshijo conductive terminals containing silver and glass Buried inside,
The external electrode includes a glass-rich layer formed on the surface of the columnar laminate, and a porous layer formed on the surface of the glass-rich layer, having a glass component less than the glass-rich layer and having many voids ,
The projecting conductive terminal has a root portion embedded in the glass-rich layer, and a tip side of the base portion is embedded in the porous layer .
前記外部電極の空隙率が30〜70%であることを特徴とする請求項1記載の積層型圧電素子。  2. The multilayer piezoelectric element according to claim 1, wherein the porosity of the external electrode is 30 to 70%. 突起状導電性端子が、内部電極の端部に拡散接合していることを特徴とする請求項1又は2記載の積層型圧電素子。  3. The multilayer piezoelectric element according to claim 1, wherein the protruding conductive terminal is diffusion bonded to the end of the internal electrode.
JP2002259390A 2002-09-04 2002-09-04 Multilayer piezoelectric element Expired - Fee Related JP3929858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259390A JP3929858B2 (en) 2002-09-04 2002-09-04 Multilayer piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259390A JP3929858B2 (en) 2002-09-04 2002-09-04 Multilayer piezoelectric element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006086269A Division JP4493619B2 (en) 2006-03-27 2006-03-27 Manufacturing method of multilayer piezoelectric element

Publications (2)

Publication Number Publication Date
JP2004103621A JP2004103621A (en) 2004-04-02
JP3929858B2 true JP3929858B2 (en) 2007-06-13

Family

ID=32260431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259390A Expired - Fee Related JP3929858B2 (en) 2002-09-04 2002-09-04 Multilayer piezoelectric element

Country Status (1)

Country Link
JP (1) JP3929858B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004027519D1 (en) 2003-09-24 2010-07-15 Kyocera Corp MULTILAYER PIEZOELECTRIC COMPONENT
EP2037511A3 (en) * 2003-09-24 2009-04-22 Kyocera Corporation Multilayer piezoelectric element
JP4931334B2 (en) * 2004-05-27 2012-05-16 京セラ株式会社 Injection device
US8339017B2 (en) * 2005-08-29 2012-12-25 Kyocera Corporation Multi-layer piezoelectric element and injection apparatus using the same
JP2007149995A (en) 2005-11-28 2007-06-14 Fujifilm Corp Laminated piezoelectric element and its manufacturing method
JP2007189164A (en) * 2006-01-16 2007-07-26 Tdk Corp Stacked piezoelectric element, process for fabrication thereof, and conductor paste
TWI628678B (en) * 2016-04-21 2018-07-01 Tdk 股份有限公司 Electronic component
US11296272B2 (en) * 2017-07-20 2022-04-05 Taiyo Yuden Co., Ltd. Multilayer piezoelectric element, piezoelectric vibration apparatus, and electronic device

Also Published As

Publication number Publication date
JP2004103621A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP4864899B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
US8004155B2 (en) Multi-layer piezoelectric element
JP4931334B2 (en) Injection device
JPWO2007026687A1 (en) Laminated piezoelectric element and ejection device using the same
JP4808915B2 (en) Multilayer piezoelectric element and injection device
JP3929858B2 (en) Multilayer piezoelectric element
JP4290946B2 (en) Multilayer piezoelectric element and injection device
JP4480371B2 (en) Multilayer piezoelectric element and injection device
JP3667289B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP3730893B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP4817610B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE USING THE SAME
JP4493619B2 (en) Manufacturing method of multilayer piezoelectric element
JP2001210886A (en) Stacked type piezoelectric actuator
JP4498300B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP3990595B2 (en) Multilayer piezoelectric element and injection device
JP2011176343A (en) Laminated piezoelectric element, and method of manufacturing the same
JP3909275B2 (en) Multilayer piezoelectric element and injection device
JP3909276B2 (en) Multilayer piezoelectric element and injection device
JP4290947B2 (en) Multilayer piezoelectric element and injection device
JP4498299B2 (en) Manufacturing method of multilayer piezoelectric element
JP3909274B2 (en) Multilayer piezoelectric element and injection device
JP3990613B2 (en) Multilayer piezoelectric element and injection device
JP2003218416A (en) Laminated piezoelectric device and injection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070307

R150 Certificate of patent or registration of utility model

Ref document number: 3929858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees