JP3730893B2 - LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE - Google Patents

LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE Download PDF

Info

Publication number
JP3730893B2
JP3730893B2 JP2001287705A JP2001287705A JP3730893B2 JP 3730893 B2 JP3730893 B2 JP 3730893B2 JP 2001287705 A JP2001287705 A JP 2001287705A JP 2001287705 A JP2001287705 A JP 2001287705A JP 3730893 B2 JP3730893 B2 JP 3730893B2
Authority
JP
Japan
Prior art keywords
inactive
shrinkage
piezoelectric element
adjustment layer
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001287705A
Other languages
Japanese (ja)
Other versions
JP2003101092A (en
Inventor
成信 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001287705A priority Critical patent/JP3730893B2/en
Publication of JP2003101092A publication Critical patent/JP2003101092A/en
Application granted granted Critical
Publication of JP3730893B2 publication Critical patent/JP3730893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、積層型圧電素子及びその製法並びに噴射装置に関し、例えば、自動車用燃料噴射装置、光学装置等の精密位置決め装置や振動防止用の駆動素子等に用いられる積層型圧電素子及びその製法並びに噴射装置に関するものである。
【0002】
【従来技術】
従来、積層型圧電素子として、圧電体と内部電極を交互に積層した積層型圧電アクチュエータが知られている。積層型圧電アクチュエータには、同時焼成タイプと、圧電磁器と内部電極板を交互に積層したスタックタイプとの2種類に分類されており、低電圧化、製造コスト低減の面から考慮すると、同時焼成タイプの積層型圧電アクチュエータが薄層化に対して有利であるために、その優位性を示しつつある。
【0003】
図5は、従来の積層型圧電アクチュエータを示すもので、このアクチュエータでは、圧電体51と内部電極52が交互に積層されて活性部53が形成され、その積層方向における両端面には不活性部55が積層され、これにより柱状積層体が構成されている。内部電極52は、その一方の端部が左右交互に絶縁体61で被覆され、その上から帯状外部電極70が内部電極52と左右各々一層おきに導通するように形成されている。帯状外部電極70上には、さらにリード線76が半田77により固定されている。
【0004】
このような積層型圧電アクチュエータでは、従来、セラミックグリーンシートに内部電極ペーストを印刷し、この内部電極ペーストが塗布されたグリーンシートを複数積層して活性部成形体を作製し、内部電極ペーストが塗布されていない上記セラミックグリーンシートを複数積層して形成された不活性部成形体を、活性部成形体の上下面に積層して、柱状積層成形体を作製し、これを焼成して柱状積層体を作製していた。
【0005】
【発明が解決しようとする課題】
しかしながら、上記積層型圧電アクチュエータでは、グリーンシートと内部電極ペーストを交互に積層して作製された活性部成形体と、グリーンシートを複数積層して作製された不活性部成形体とを積層して、同時焼成するため、活性部成形体と不活性部成形体の焼成収縮率が異なることに起因して、焼成後に活性部と不活性部との間にデラミネーションやクラック等が発生するという問題があった。
【0006】
即ち、活性部成形体中のグリーンシートは内部電極ペーストに挟まれているため、内部電極ペースト中の銀やパラジウム等の貴金属の触媒作用により焼結が促進され、内部電極ペーストに挟まれていない不活性部成形体中のグリーンシートよりも焼成時の収縮量が大きくなり、活性部と不活性部の間にデラミネーションやクラック等が発生するという問題があった。また、デラミネーションやクラック等が発生しないまでも、活性部と不活性部の間に残留応力が生じ、アクチュエータを駆動させた際の破損の原因となるという問題があった。
【0007】
このような問題を解決するために特開昭63−288074号公報には、不活性部を形成するグリーンシートに銀を添加することが開示されているが、この方法では、銀の分散量に対して不活性部の収縮挙動が敏感であるため、活性部と不活性部の焼成収縮を完全に合致させるのは困難であった。
【0008】
また、銀成分の添加量が多いと不活性部の絶縁性が低下し、不活性部まで延設されている一対の外部電極間で導通が生じやすいといった問題があった。
【0009】
さらに、この方法では2種類のグリーンシートを用意しなければならず、工程が煩雑になるといった問題があった。
【0010】
また、特開平9−270540号公報では、不活性部が、圧電体と、外部電極に接続されない金属層とを交互に積層して構成されているが、この方法では、金属層が不活性部の外面に露出しないようにパターン制御する必要があり、工程が複雑であるとともに、活性部と不活性部の界面近傍が、中央部では焼成収縮率が実質的に同一となるものの、外周部では金属層が形成されていないため収縮率を同一にすることができず、未だ活性部と不活性部の間に残留応力が生じ、アクチュエータを駆動させた際の破損の原因となるという問題があった。
【0011】
本発明は、活性部と不活性部の界面に生じる焼成時の残留応力を低減し、駆動時においても活性部と不活性部との界面における破損を抑制できる耐久性に優れた積層型圧電素子及びその製法並びに噴射装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明積層型圧電素子は、複数の圧電体と複数の内部電極とを交互に積層してなり、圧電体が変位する活性部、及び該活性部の積層方向の両端部にそれぞれ設けられ、変位しない不活性部からなる柱状積層体と、該柱状積層体の側面に設けられ、前記内部電極が一層おきに交互に電気的に接続される一対の外部電極とを具備してなるとともに、前記活性部と前記不活性部とが同時焼成される積層型圧電素子であって、前記不活性部が、圧電体と、金属粒子を含有する収縮調整層とを交互に積層してなるとともに、該収縮調整層のうち少なくとも一層の端部が前記不活性部側面に露出していることを特徴とする。
【0016】
このような積層型圧電素子では、焼結性を向上する金属粒子が不活性部の外周部にまで存在することになり、収縮調整層の金属粒子が不活性部の外周部の焼結性を向上し、活性部と不活性部の界面近傍の収縮率を全域にわたって実質的に同一とすることができる。
【0017】
本発明の積層型圧電素子では、収縮調整層のシート抵抗値が106Ω/□以上であることが望ましい。これにより、不活性部の高い絶縁性を維持できる。
【0018】
また、収縮調整層が、金属粒子5〜50体積%と圧電体粒子50〜95体積%からなることが望ましい。金属粒子を5〜50体積%、残部を圧電体粒子とすることにより、不活性部の高い絶縁性を維持できるとともに、金属粒子による焼結性向上を図ることができ、不活性部の収縮率を活性部の収縮率に合わせることができる。
【0019】
さらに、収縮調整層を構成する金属粒子が、内部電極を構成する金属粒子と同一であることが望ましい。これにより、不活性部の焼成時の収縮挙動を活性部の収縮挙動に合わせることができ、焼成時に活性部と不活性部の界面及びその近傍においてデラミネーションやクラックが発生することを防止できる。
【0020】
また、柱状積層体の外部電極形成面に露出している収縮調整層の端部及び内部電極の端部にそれぞれ突起状導電部材が設けられており、該突起状導電部材が外部電極に接続されていることが望ましい。収縮調整層の端部を柱状積層体の外部電極形成面に露出させておくことにより、柱状積層体の外部電極形成面近傍においても不活性部と活性部の収縮差から生じる応力の発生を効果的に防ぐことができ、耐久性を大きく向上させることができる。
【0021】
また、柱状積層体の外部電極形成面に露出している収縮調整層の端部及び内部電極の端部にそれぞれ突起状導電部材を設け、該突起状導電部材を外部電極に接続することにより、柱状積層体の外部電極形成面に露出している内部電極の端部のみならず、収縮調整層の端部までもが突起状導電部材を介して外部電極に接続されているため、積層型圧電素子を高電界下で連続して駆動させた場合でも、外部電極と内部電極が断線することがなく、耐久性を大幅に向上できる。
【0022】
本発明の積層型圧電素子の製法は、内部電極パターンが形成されたセラミックグリーンシートを複数積層してなる活性部成形体の積層方向の両端部に、金属粉末を含有する収縮調整層用パターンが形成されたセラミックグリーンシートを複数積層してなり、側面に収縮調整層用パターンのうち少なくとも一層の端部が露出する不活性部成形体をそれぞれ設けてなる柱状積層成形体を作製する工程と、該柱状積層成形体を焼成して柱状積層体を作製する工程と、該柱状積層体の側面に、内部電極が一層おきに交互に電気的に接続される一対の外部電極を形成する工程とを具備してなるものである。
【0023】
このような製法によれば、内部電極と圧電体を交互に複数枚積層した活性部と、収縮調整層と圧電体を交互に複数枚積層した不活性部との焼成収縮率を近似させることができるため、焼成時に活性部と不活性部の界面及びその近傍にデラミネーションやクラック等の問題が発生するのを防ぐことができる。金属粉末は銀−パラジウムや銀−白金などの複数の金属の合金粉末であっても良い。
【0024】
本発明の噴射装置は、噴射孔を有する収納容器と、該収納容器内に収容された上記した積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備するものである。
【0025】
このような噴射装置では、上記したように、積層型圧電素子自体において活性部と不活性部界面に生じる焼成時の残留応力をなくし、耐久性を大幅に向上できるため、噴射装置の耐久性をも向上できる。
【0026】
【発明の実施の形態】
図1は本発明の積層型圧電アクチュエータからなる積層型圧電素子の一実施例を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図である。
【0027】
本発明の積層型圧電素子は、図1に示すように、柱状積層体1aの対向する側面にそれぞれ正極及び負極の外部電極4を形成して構成されている。該柱状積層体1aは、圧電体1と内部電極2とを交互に複数層積層された活性部8と、この活性部8の積層方向両端面に形成された不活性部9とから構成されている。
【0028】
内部電極2は、その端部が柱状積層体1aの外部電極4形成面に一層おきに露出しており、この露出部分にそれぞれ突起状導電部材7が形成され、これらの突起状導電部材7に金属板からなる外部電極4が接合され、これにより、それぞれの外部電極4に、内部電極2が一層おきに電気的に接続されている。一方、外部電極4と接続されていない内部電極2の端部は絶縁体3で被覆されている。さらに、外部電極4にはリード線6が半田等で接続固定されている。
【0029】
圧電体1は、例えば、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3(以下PZTと略す)、或いはチタン酸バリウムBaTiO3を主成分とする圧電セラミック材料等で形成されている。この圧電セラミックスは、その圧電特性を示す圧電歪み定数d33が高いものが望ましい。
【0030】
また、活性部8中の圧電体1の厚み、つまり内部電極2間の距離は50〜250μmが望ましい。これは、積層型圧電アクチュエータは電圧を印加してより大きな変位量を得るために、積層数を増加させる方法がとられるが、積層数を増加させた場合に活性部8中の圧電体1の厚みが厚すぎるとアクチュエータの小型化、低背化ができなくなり、一方、活性部8中の圧電体1の厚みが薄すぎると絶縁破壊しやすいからである。
【0031】
活性部8中の圧電体1の間には厚み0.5〜10μmの内部電極2が配されているが、この内部電極2は銀−パラジウム等の金属材料で形成されており、活性部8中の各圧電体1に所定の電圧を印加し、圧電体1に逆圧電効果による変位を起こさせる作用をなす。
【0032】
また、柱状積層体1aにおける活性部8側面の外部電極4形成面には、一層おきに深さ50〜500μm積層方向の幅30〜200μmの溝が形成されており、この溝内にガラス、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シリコーンゴム等が充填されて絶縁体3が形成されている。このように内部電極2の端部は一層おきに互い違いに溝内に充填された絶縁体3によって絶縁され、内部電極2の絶縁されていない他方の端部は突起状導電部材7を介して板状の外部電極4と接続されている。
【0033】
なお、突起状導電部材7は、アクチュエータの伸縮によって生じる応力を十分に吸収するという点から、ヤング率の低い銀、若しくは銀が主成分の合金が望ましい。また、突起状導電部材7の突出高さhは、アクチュエータの伸縮によって生じる応力を十分に吸収するという点から、活性部8中の圧電体1厚みの1/20以上であることが望ましい。特には突出高さhは、15〜50μmが望ましい。
【0034】
さらに、外部電極4を構成する板状導電部材の厚みtは、アクチュエータの伸縮に追従し、外部電極4と突起状導電部材7の間、若しくは突起状導電部材7と内部電極2の間で断線を生じないという点から、50μm以下であることが望ましい。
【0035】
また、板状の外部電極4は、銀、ニッケル、銅、金、アルミニウム等の導電性を備えた金属及びそれらの合金からなり、このうち、突起状導電部材7との接合強度が強く、ヤング率が低いという点から、銀、若しくは銀が主成分の合金が望ましい。
【0036】
なお、絶縁体3は、柱状積層体1aとの接合を強固とするために、柱状積層体1aの変位に対して追従する弾性率が低い材料、具体的にはシリコーンゴム等からなることが好適である。
【0037】
柱状積層体1aの対向する側面にはそれぞれ板状導電部材からなる外部電極4が突起状導電部材7を介して接続固定されており、該外部電極4には、積層されている内部電極2が一層おきに電気的に接続されている。この板状導電部材からなる外部電極4は、接続されている活性部8中の各内部電極2に圧電体1を逆圧電効果により変位させるに必要な電圧を共通に供給する作用をなす。
【0038】
さらに、外部電極4にはリード線6が半田により接続固定されている。このリード線6は外部電極4を外部の電圧供給部に接続する作用をなす。
【0039】
そして、本発明では、活性部8と不活性部9の界面近傍の密度が、界面近傍全域にわたって実質的に同一とされている。ここで、活性部9とは、圧電体1が内部電極2に挟まれており、外部電極4に電圧を印加することにより圧電体1が変位する部分のことで、不活性部9とは、外部電極4に電圧を印加しても変位しない部分のことをいう。ここで、実質的に同一とは、活性部8と不活性部9との密度差が5%以内であることである。即ち、活性部8の密度と不活性部9の密度の差を活性部8の密度で割った商が5%以内であることである。また、活性部8の密度とは活性部8に含まれる圧電体1と内部電極2とを合わせた積層体の密度のことをいう。なお、活性部8と不活性部9の密度差は、焼成時の残留応力を減少させるという点から2%以内が好ましい。また、活性部8と不活性部9の界面近傍のみならず、活性部8全体と不活性部9全体の密度が実質的に同一であることが最も良い。
【0040】
即ち、活性部8の密度と不活性部9の密度を実質的に等しくすることにより、焼成時の活性部8と不活性部9の収縮率が実質的に等しくなり、焼成時に活性部8と不活性部9の界面若しくはその近傍でのデラミネーションやクラック等の発生を防ぐことができる。また、活性部8と不活性部9の収縮率を実質的に等しくできるため、活性部8と不活性部9の界面及びその近傍に残留応力が発生するのを防ぐことができ、アクチュエータを駆動させた場合においても、活性部8と不活性部9の界面及びその近傍で破損することがなく、高い信頼性を得ることができる。
【0041】
また、本発明では、不活性部9が、活性部8の圧電体と同一の圧電体9aと、金属粒子を含有する収縮調整層9bとを交互に積層して構成され、全ての収縮調整層9bの外周端部が不活性部9側面に露出している。尚、収縮調整層9bの少なくとも一層の外周端部が不活性部9側面に露出していれば良い。また、収縮調整層9bの外周端部の一部が不活性部9側面に露出していても良く、例えば、収縮調整層9bの外周端部が、外部電極4が形成される不活性部9側面のみに露出していても良い。活性部8と不活性部9の界面及びその近傍の応力発生を低減するという点からは、図1に示したように、全ての収縮調整層9bの外周端部が不活性部9の4側面に露出していることが望ましい。尚、収縮調整層9bの全外周部は露出しているが破線で示した。
【0042】
不活性部9を構成する収縮調整層9bは、シート抵抗値が106Ω/□以上であることが望ましい。即ち、圧電体9aと金属粒子が分散してなる収縮調整層9bとを複数枚交互に積層して不活性部9を形成することにより、収縮調整層9b中の金属粒子の影響で不活性部9中の圧電体9aの焼結が促進され、不活性部9中の圧電体9aの収縮率を活性部8中の内部電極2に挟まれた圧電体1の収縮率と実質的に等しくすることができる。
【0043】
収縮調整層9bの金属粒子は、銀粒子や、銀−パラジウム及び銀−白金などの複数の金属の合金粒子とされている。
【0044】
不活性部9中の圧電体9aの厚みは、活性部8中の圧電体1の厚みと同一であることが望ましい。また、収縮調整層5bの厚みは0.5〜10μmが好ましい。
【0045】
また、収縮調整層9bのシート抵抗値は106Ω/□以上とされている。これにより、不活性部9の絶縁性を低下させることがなく、高い絶縁性を維持できる。尚、シート抵抗値とは、被測定体の抵抗値に被測定体の幅を乗じ、長さで割ったものである。換言すれば、被測定体の体積固有抵抗を被測定体の厚みで割ったものである。
【0046】
さらに、本発明では、不活性部9の絶縁性を低下させることなく、不活性部9の収縮率を活性部8の収縮率に合わせるために前記収縮調整層5を金属粒子5〜50体積%と残部が圧電体粒子50〜95体積%とで形成されていることが望ましい。これにより、収縮調整層9bのシート抵抗値を106Ω/□以上とすることができる。
【0047】
また、本発明では、収縮調整層9bを構成する金属粒子が内部電極2を構成する金属粒子と同一とされている。収縮調整層9bの金属粒子が内部電極2を構成する金属粒子と同一であることにより、不活性部9の焼成時の収縮挙動を活性部8の収縮挙動に合わせることができ、焼成時に活性部8と不活性部9の界面及びその近傍でのデラミネーションやクラックの発生等を防止することができる。
【0048】
さらに、本発明では、柱状積層体1aの外部電極4の形成面近傍においても不活性部9と活性部8の焼成時の収縮差から生じる応力の発生を防ぐために、収縮調整層9bの端部が柱状積層体1aの外部電極4形成面に露出している。
【0049】
即ち、柱状積層体1aの外部電極4形成面に収縮調整層9bの端部を露出させておくことにより、柱状積層体1aの外部電極4形成面近傍においても活性部8と不活性部9との焼成収縮率を等しくすることができ、活性部8と不活性部9の外部電極4形成面近傍での界面及びその近傍で焼成時に応力が発生するのを防ぐことができる。
【0050】
また、本発明では、柱状積層体1aの外部電極4形成面に露出している収縮調整層9bの端部及び内部電極2の端部がそれぞれ突起状導電部材7を介して板状導電部材からなる外部電極4に接続されている。このように、柱状積層体1aの外部電極4の形成面に露出している活性部8の内部電極2の端部だけではなく、不活性部9中の収縮調整層5の端部までもが突起状導電部材7を介して板状の外部電極4に接続固定されることにより、アクチュエータを高電界下で連続に駆動させた場合においても、内部電極2と突起状導電部材7若しくは突起状導電部材7と外部電極4が断線することがなく、高信頼性を備えたアクチュエータを提供することができる。
【0051】
本発明の積層型圧電アクチュエータの製法について説明する。
【0052】
まず、PZT等の圧電セラミックスの仮焼粉末と、アクリル系、ブチラール系等の有機高分子から成るバインダーと、DBP(フタル酸ジオチル)、DOP(フタル酸ジブチル)等の可塑剤とを混合してスラリーを作製し、該スラリーを周知のドクターブレード法やカレンダーロール法等のテープ成型法により圧電体1となるセラミックグリーンシートを作製する。
【0053】
次に、銀−パラジウムからなる金属粉末にバインダー、可塑剤等を添加混合して内部電極ペーストを作製し、これを各セラミックグリーンシートの上面にスクリーン印刷等によって1〜40μmの厚みに印刷し、グリーンシート上に内部電極パターンを形成する。
【0054】
これとは別に、銀−パラジウムからなる金属粉末5〜50体積%と、残部が圧電体1と同一のセラミック仮焼粉末50〜95体積%からなる混合物に、バインダー、可塑剤等を添加混合して収縮調整層ペーストを作製し、これを前記セラミックグリーンシートの上面にスクリーン印刷等によって1〜40μmの厚みに印刷し、グリーンシート上に収縮調整層パターンを形成する。
【0055】
ここで、収縮調整層ペースト中の金属粉末の混合比を5〜50体積%としたのは、金属粉末が5体積%より少ない場合には、焼成時に金属粉末が不活性部9中の圧電体9aに与える影響が少なくなり、不活性部9中の圧電体9aの焼結促進効果が小さく活性部8中の圧電体1との収縮率が異なってしまう傾向があり、一方、金属粉末が50体積%より多い場合には、収縮調整層5に含まれる金属粒子が多くなるために不活性部9の絶縁性が低下する傾向があるからである。
【0056】
即ち、収縮調整層ペースト中に含まれる金属粒子を5〜50体積%とすることにより、不活性部9の絶縁性を低下させることなく、不活性部9の焼成時の収縮率を活性部8の収縮率に合わせることができる。さらには、焼成時の不活性部9と活性部8の収縮挙動を一致させることにより、焼成時の残留応力をなくし、また、高温における絶縁性の低下を防ぐという点から、好ましくは収縮調整層ペーストに含まれる金属粒子は10〜30体積%の範囲が良い。
【0057】
なお、収縮調整層ペースト中に含まれる金属粒子は、複数の金属成分からなる合金粒子であっても良い。また、活性部8中の内部電極2に挟まれた圧電体1と不活性部9中の収縮調整層9bに挟まれた圧電体9aとの焼成時の収縮挙動を有効的に合わせるために、収縮調整層ペースト中に含まれる金属粒子は、内部電極ペースト中に含まれる金属粒子と同一であることが望ましい。
【0058】
そして、上面に内部電極パターンが形成されたセラミックグリーンシートを複数枚積層して活性部8となる活性部成形体を作製し、この活性部成形体の積層方向の両端面に、収縮調整層パターンが形成されたセラミックグリーンシートを複数枚それぞれ積層して形成された不活性部成形体を積層し、活性部成形体の積層方向両端面に不活性部成形体が積層された柱状積層成形体を得る。この際、内部電極パターンの全外周端部、収縮調整層パターンの全外周端部が柱状積層成形体の4側面に露出している。
【0059】
その後、この柱状積層成形体について所定の温度で脱バインダーを行った後、900〜1200℃で焼成することによって、図1に示したように、内部電極の全外周端部、収縮調整層9bの全外周端部が4側面に露出した柱状積層体1aが作製される。
【0060】
その後、柱状積層体1aの外部電極4形成側面に、ダイシング装置等により一層おきに溝を形成する。この溝が形成された柱状積層体1aの外部電極4形成側面と、板状導電部材からなる外部電極4との間に銀粉末とガラス粉末からなる銀ガラスペーストを介在させ、外部電極4と柱状積層体1aを2〜80kPaの圧力で圧接した状態で700〜900℃で熱処理することにより、前記銀ガラスペースト中のガラスが溶融し、溶融したガラス中に存在する銀成分が、内部電極2の端部及び収縮調整層5の端部に集合し、柱状積層体1aの側面から突出する突起状導電部材7が形成されるとともに、この突起状導電部材7に、柱状積層体1aと外部電極4との間に隙間を形成した状態で板状導電部材からなる外部電極4が接合される。
【0061】
その後、溝部に絶縁体3を充填し、リード線6を外部電極4に接続することにより本発明の積層型圧電アクチュエータが完成する。
【0062】
そして、リード線6を介して一対の外部電極4に0.1〜3kV/mmの直流電圧を印加し、柱状積層体1aを分極処理することによって、製品としての積層型圧電アクチュエータが完成し、リード線6を外部の電圧供給部に接続し、リード線6及び外部電極4を介して内部電極2に電圧を印加させれば、各圧電体1は逆圧電効果によって大きく変位し、これによって例えばエンジンに燃料を噴射供給する自動車用燃料噴射弁として機能する。
【0063】
以上のように構成された積層型圧電アクチュエータは、活性部8と不活性部9の密度を実質的に等しくすることができるため、焼成時の活性部8と不活性部9の収縮率が実質的に等しくなり、焼成時に活性部8と不活性部9の界面及びその近傍でのデラミネーションやクラック等の発生といった問題が生じるのを防ぐことができ、、アクチュエータを駆動させた場合においても活性部8と不活性部9の界面及びその近傍で破損することがなく、耐久性を大きく向上させることができる。
【0064】
本発明の積層型圧電素子は、上記態様に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば、板状導電部材からなる外部電極4の外側に導電性補助部材を形成しても良い。この場合には、板状導電部材の外面に導電性補助部材を設けることによりアクチュエータに大電流を投入し、高速で駆動させる場合においても、大電流を導電性補助部材に流すことができ、外部電極4に流れる電流を低減でき、外部電極4が局所発熱を起こし断線することを防ぐことができ、耐久性を大幅に向上させることができる。
【0065】
なお、導電性補助部材はアクチュエータの伸縮に追従し、駆動中に該導電性補助部材の断線を防ぐ点から、フレキシブルな導電性接着剤や導電性コイル、若しくは導電性波板、若しくは導電性繊維集合体(ウール状)であることが望ましい。特には、抵抗値及びヤング率が低く、伸縮性に富み、また、アクチュエータの断面積を小さくできるという点から、材質が銀の導電性波板が望ましい。
【0066】
図2は、本発明の噴射装置を示すもので、図において符号31は収納容器を示している。この収納容器31の一端には噴射孔33が設けられ、また収納容器31内には、噴射孔33を開閉することができるニードルバルブ35が収容されている。
【0067】
噴射孔33には燃料通路37が連通可能に設けられ、この燃料通路37は外部の燃料供給源に連結され、燃料通路37に常時一定の高圧で燃料が供給されている。従って、ニードルバルブ35が噴射孔33を開放すると、燃料通路37に供給されていた燃料が一定の高圧で内燃機関の図示しない燃料室内に噴出されるように形成されている。
【0068】
また、ニードルバルブ35の上端部は直径が大きくなっており、収納容器31に形成されたシリンダ39と摺動可能なピストン41となっている。そして、収納容器31内には、上記した圧電アクチュエータ43が収納されている。
【0069】
このような噴射装置では、圧電アクチュエータ43が電圧を印加されて伸長すると、ピストン41が押圧され、ニードルバルブ35が噴射孔33を閉塞し、燃料の供給が停止される。また、電圧の印加が停止されると圧電アクチュエータ43が収縮し、皿バネ45がピストン41を押し返し、噴射孔33が燃料通路37と連通して燃料の噴射が行われるようになっている。
【0070】
【実施例】
実施例1
まず、PZTの仮焼粉末を含むセラミックグリーンシートの上面に、銀−パラジウム合金とバインダーからなる内部電極ペーストを印刷して内部電極パターンが形成されたものを300層積層し、活性部成形体を作製した。
【0071】
一方、前記セラミックグリーンシートの上面に収縮調整層ペーストを印刷して収縮調整層パターンが形成されたものを10層積層し、2つの不活性層成形体を作製し、これらの不活性層成形体を、活性部成形体の積層方向両端面にそれぞれ積層し、四角柱状の柱状積層成形体を形成した。
【0072】
不活性層成形体の4側面に10層の収縮調整層パターンの外周端部を露出させ、活性部成形体の4側面に300層の内部電極パターンの外周端部を露出させた。
【0073】
収縮調整層ペーストは、内部電極を形成する銀−パラジウム合金粉末20体積%と、前記セラミックグリーンシートに含まれるPZT仮焼粉末と同一のもの80体積%とからなる固形分に、バインダーを加えて作製した。
【0074】
その後、柱状積層成形体を400℃で脱バインダー処理を行い、大気中1050℃で焼成して柱状積層体を得た。
【0075】
なお、活性部中の圧電体の厚みは150μm、内部電極の厚みは3μmであった。また、不活性部中の圧電体の厚みは150μm、収縮調整層の厚みは3μmであった。
【0076】
その後、活性部の外部電極形成側面における内部電極の露出部分に、ダイシング装置より一層おきに幅50μm深さ200μmの溝を形成した。そして、前記溝が形成された柱状積層体の外部電極形成側面と、銀を主成分とする板状導電部材からなる外部電極との間に銀粉末とガラス粉末からなる銀ガラスペーストを介在させ、30kPaの圧力で圧接した状態で900℃で熱処理することにより、活性部の内部電極の端部及び不活性部の収縮調整層に端部に、柱状積層体の側面から突出する突起状導電部材を形成するとともに、該突起状導電部材に外部電極を接合した。
【0077】
その後、活性部の溝内に絶縁体としてシリコーンゴムを充填し、外部電極にリード線を接続した。
【0078】
その後、正極及び負極の外部電極にリード線を介して3kV/mmの直流電界を15分間印加して分極処理を行い、図1に示すような積層型圧電アクチュエータを作製した。
【0079】
得られた積層型圧電アクチュエータでは、圧電体と内部電極からなる活性部と、圧電体と収縮調整層からなる不活性部の密度は、実質的に同一であった。また、収縮調整層のシート抵抗を絶縁抵抗計で測定したところ、8×108Ω/□であった。
【0080】
得られた積層型圧電アクチュエータに150Vの直流電圧を印加した結果、積層方向に40μmの変位量が得られた。さらに、このアクチュエータに室温で0〜+150Vの交流電圧を60Hzの周波数にて印加し駆動試験を行った結果、5×1010サイクルまで駆動したところ40μmの変位量が得られ、活性部と不活性部の界面及びその近傍にクラック等の異常は見られなかった。
実施例2
次に、収縮調整層を構成する銀−パラジウム合金と圧電体の体積比率を変化させた以外は、実施例1と同様の柱状積層体を作製した。得られた柱状積層体について、活性部と不活性部を切り離し、それぞれの密度をアルキメデス法により測定し、活性部と不活性部の密度差を算出した。また、活性部と不活性部の境界及びその近傍でのデラミネーションとクラックの発生状況について調べた。さらに、不活性部中の収縮調整層のシート抵抗を測定した。
【0081】
図3に活性部と不活性部の密度差と、活性部と不活性部の境界及びその近傍でのデラミネーション及びクラックの不良率の関係を示す。活性部と不活性部の密度差は、活性部と不活性部の密度の差を、活性部の密度で割った値を百分率で表したものである。活性部と不活性部の密度差が大きくなるほど、デラミネーションやクラックによる不良が多くなることが判る。
【0082】
また、収縮調整層中の銀−パラジウム合金の体積%と、密度差及び収縮調整層のシート抵抗の関係を図4に示す。収縮調整層中の金属成分が5体積%より小さい場合には、嵩密度差が5%より大きくなり、デラミネーションやクラック等の不良が多発することが判る。また、収縮調整層中の金属成分が50体積%より大きい場合には、収縮調整層のシート抵抗値が106Ωより小さくなり、不活性部の絶縁性が低下してしまうことが判る。
【0083】
即ち、収縮調整層中の金属成分量が本発明で規定した範囲の5〜50体積%の場合には、実質的に活性部と不活性部の密度が等しくなり、不活性部と活性部境界及びその近傍でのデラミネーションやクラック等の不良が発生するのを防ぐことができ、かつ、不活性部の絶縁性の低下がないことが判る。
実施例3
さらに、実施例2と同様な方法で得られた柱状積層体に、実施例1と同様な方法で外部電極形成を行い、積層型圧電アクチュエータを作製した。得られた積層型圧電アクチュエータに室温で0〜+150Vの交流電圧を60Hzの周波数にて印加し駆動試験を行った。得られた結果を表1に示す。
【0084】
【表1】

Figure 0003730893
【0085】
この表1から、収縮調整層中の金属成分量が5体積%より少ない試料では、駆動時に活性部と不活性部の境界で破損が生じてしまっている。一方、収縮調整層中の金属成分量が60体積%以上の試料では、駆動時に絶縁破壊するか、若しくは初期状態で絶縁不良だった。一方、収縮調整層中の金属成分量が5〜50体積%の試料では、1×109まで駆動しても、破損、絶縁破壊等の異常は見られなかった。
【0086】
【発明の効果】
本発明の積層型圧電素子によれば、焼結性を向上する金属粒子が不活性部の外周部にまで存在することになり、収縮調整層の金属粒子が不活性部の外周部の焼結性を向上し、焼成時の活性部と不活性部の収縮率が実質的に等しくなり、焼成時に活性部と不活性部の界面及びその近傍でのデラミネーションやクラック等の発生をなくし、アクチュエータを駆動させた場合においても活性部と不活性部の界面及びその近傍で破損することがない高信頼性を備えた積層型圧電素子を提供することができる。
【図面の簡単な説明】
【図1】本発明の積層型圧電素子を示すもので、(a)は斜視図、(b)は(a)のA−A’線に沿った縦断面図である。
【図2】本発明の噴射装置を示す説明図である。
【図3】活性部と不活性部の密度差と、不良率の関係を示すグラフである。
【図4】収縮調整層中の金属成分の割合と、活性部と不活性部の密度差及び収縮調整層のシート抵抗の関係を示すグラフである。
【図5】従来の積層型圧電アクチュエータの縦断面図である。
【符号の説明】
1、9a・・・圧電体
1a・・・柱状積層体
2・・・内部電極
4・・・外部電極
9b・・・収縮調整層
8・・・活性部
9・・・不活性部
31・・・収納容器
33・・・噴射孔
35・・・バルブ
43・・・圧電アクチュエータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer piezoelectric element, a method for manufacturing the same, and an injection device, for example, a multilayer piezoelectric element used for a precision positioning device such as an automobile fuel injection device and an optical device, a drive element for vibration prevention, and a method for manufacturing the same. The present invention relates to an injection device.
[0002]
[Prior art]
Conventionally, as a multilayer piezoelectric element, a multilayer piezoelectric actuator in which piezoelectric bodies and internal electrodes are alternately stacked is known. Multilayer piezoelectric actuators are classified into two types: the simultaneous firing type and the stack type in which piezoelectric ceramics and internal electrode plates are alternately laminated. Since the multilayer piezoelectric actuator of the type is advantageous for thinning, its superiority is being shown.
[0003]
FIG. 5 shows a conventional multilayer piezoelectric actuator. In this actuator, piezoelectric bodies 51 and internal electrodes 52 are alternately stacked to form active portions 53, and inactive portions are formed on both end surfaces in the stacking direction. 55 is laminated | stacked and the columnar laminated body is comprised by this. The internal electrode 52 is formed so that one end thereof is alternately covered with the insulator 61 on the left and right sides, and the strip-like external electrode 70 is electrically connected to the internal electrode 52 every two layers on the left and right. On the strip-shaped external electrode 70, a lead wire 76 is further fixed with solder 77.
[0004]
In such a multilayer piezoelectric actuator, conventionally, an internal electrode paste is printed on a ceramic green sheet, and a plurality of green sheets coated with the internal electrode paste are stacked to produce an active part molded body, and the internal electrode paste is applied. An inactive part molded body formed by laminating a plurality of ceramic green sheets that are not laminated is laminated on the upper and lower surfaces of the active part molded body to produce a columnar laminated molded body, which is fired to form a columnar laminated body Was making.
[0005]
[Problems to be solved by the invention]
However, in the multilayer piezoelectric actuator, an active part molded body produced by alternately laminating green sheets and internal electrode paste and an inactive part molded body produced by laminating a plurality of green sheets are laminated. Because of the simultaneous firing, there is a problem that delamination, cracks, etc. occur between the active part and the inactive part after firing due to the difference in firing shrinkage between the active part shaped body and the inactive part shaped body. was there.
[0006]
That is, since the green sheet in the active part molded body is sandwiched between internal electrode pastes, sintering is promoted by the catalytic action of noble metals such as silver and palladium in the internal electrode paste, and is not sandwiched between internal electrode pastes. There was a problem that the shrinkage amount at the time of firing was larger than that of the green sheet in the inactive part molded body, and delamination, cracks and the like were generated between the active part and the inactive part. In addition, even if delamination or cracks do not occur, there is a problem that residual stress is generated between the active portion and the inactive portion, causing damage when the actuator is driven.
[0007]
In order to solve such a problem, Japanese Patent Laid-Open No. 63-288074 discloses that silver is added to a green sheet that forms an inactive portion. On the other hand, since the shrinkage behavior of the inactive part is sensitive, it is difficult to completely match the firing shrinkage of the active part and the inactive part.
[0008]
Further, when the amount of the silver component added is large, the insulating property of the inactive part is lowered, and there is a problem that conduction is likely to occur between a pair of external electrodes extending to the inactive part.
[0009]
Furthermore, this method has a problem that two types of green sheets have to be prepared, and the process becomes complicated.
[0010]
In Japanese Patent Laid-Open No. 9-270540, the inactive portion is formed by alternately laminating piezoelectric bodies and metal layers that are not connected to external electrodes. In this method, the metal layer is inactive portions. It is necessary to control the pattern so that it is not exposed to the outer surface of the material, and the process is complicated, and the vicinity of the interface between the active part and the inactive part is substantially the same in the central part but the firing shrinkage rate is substantially the same. Since the metal layer is not formed, the shrinkage rate cannot be made the same, and there is still a problem that residual stress is generated between the active part and the inactive part, causing damage when the actuator is driven. It was.
[0011]
The present invention reduces the residual stress at the time of firing that occurs at the interface between the active part and the inactive part, and suppresses the breakage at the interface between the active part and the inactive part even during driving. And a manufacturing method thereof and an injection device.
[0015]
[Means for Solving the Problems]
The present inventionofThe laminated piezoelectric element is formed by alternately laminating a plurality of piezoelectric bodies and a plurality of internal electrodes, and is provided at each of the active portion where the piezoelectric body is displaced and at both ends in the laminating direction of the active portion. A columnar laminate including an active portion; and a pair of external electrodes provided on a side surface of the columnar laminate, the internal electrodes being alternately electrically connected every other layer, and the active portion; A multilayer piezoelectric element in which the inactive part is simultaneously fired, wherein the inactive part is formed by alternately laminating piezoelectric bodies and shrinkage adjustment layers containing metal particles, and the shrinkage adjustment layer Of these, at least one layer end is exposed on the side surface of the inactive part.
[0016]
In such a multilayer piezoelectric element, the metal particles that improve the sinterability are present up to the outer peripheral portion of the inactive portion, and the metal particles of the shrinkage adjusting layer have the sinterability of the outer peripheral portion of the inactive portion. As a result, the shrinkage rate in the vicinity of the interface between the active part and the inactive part can be made substantially the same over the entire region.
[0017]
In the multilayer piezoelectric element of the present invention, the sheet resistance value of the shrinkage adjustment layer is 106It is desirable that it is Ω / □ or more. Thereby, the high insulation of an inactive part can be maintained.
[0018]
Moreover, it is desirable that the shrinkage adjusting layer is composed of 5 to 50% by volume of metal particles and 50 to 95% by volume of piezoelectric particles. By making the metal particles 5 to 50% by volume and the balance being piezoelectric particles, it is possible to maintain high insulation of the inactive part and to improve the sinterability by the metal particles, and the shrinkage rate of the inactive part Can be matched to the contraction rate of the active part.
[0019]
Furthermore, it is desirable that the metal particles constituting the shrinkage adjusting layer are the same as the metal particles constituting the internal electrode. Thereby, the shrinkage behavior during firing of the inactive part can be matched with the shrinkage behavior of the active part, and delamination and cracks can be prevented from occurring at the interface between the active part and the inactive part and in the vicinity thereof.
[0020]
Protruding conductive members are respectively provided at the end of the shrinkage adjustment layer and the end of the internal electrode exposed on the external electrode forming surface of the columnar laminate, and the protruding conductive member is connected to the external electrode. It is desirable that By exposing the edge of the shrinkage adjustment layer to the external electrode formation surface of the columnar laminate, it is effective to generate stress caused by the shrinkage difference between the inactive portion and the active portion even in the vicinity of the external electrode formation surface of the columnar laminate. Therefore, the durability can be greatly improved.
[0021]
Further, by providing a protruding conductive member at each of the end of the shrinkage adjustment layer and the end of the internal electrode exposed on the external electrode forming surface of the columnar laminate, and connecting the protruding conductive member to the external electrode, Since not only the end of the internal electrode exposed on the external electrode formation surface of the columnar laminate but also the end of the shrinkage adjustment layer is connected to the external electrode via the protruding conductive member, the laminated piezoelectric Even when the element is continuously driven under a high electric field, the external electrode and the internal electrode are not disconnected, and the durability can be greatly improved.
[0022]
The manufacturing method of the multilayer piezoelectric element of the present invention is such that a pattern for a shrinkage adjustment layer containing metal powder is formed on both ends in the stacking direction of an active part molded body formed by stacking a plurality of ceramic green sheets on which internal electrode patterns are formed. A step of producing a columnar laminate formed by laminating a plurality of formed ceramic green sheets and providing an inactive part formed body in which at least one end of the shrinkage adjustment layer pattern is exposed on the side surface; Firing the columnar laminated molded body to produce a columnar laminated body, and forming a pair of external electrodes on the side surfaces of the columnar laminated body in which internal electrodes are alternately electrically connected every other layer. It is provided.
[0023]
According to such a manufacturing method, it is possible to approximate the firing shrinkage ratio between the active portion in which a plurality of internal electrodes and piezoelectric bodies are alternately laminated and the inactive portion in which a plurality of shrinkage adjustment layers and piezoelectric bodies are alternately laminated. Therefore, it is possible to prevent problems such as delamination and cracks from occurring at and near the interface between the active part and the inactive part during firing. The metal powder may be an alloy powder of a plurality of metals such as silver-palladium and silver-platinum.
[0024]
An injection device according to the present invention includes a storage container having an injection hole, the laminated piezoelectric element housed in the storage container, and a valve that ejects liquid from the injection hole by driving the laminated piezoelectric element. It has.
[0025]
In such an injection device, as described above, since the residual stress at the time of firing generated at the interface between the active portion and the inactive portion in the multilayer piezoelectric element itself can be eliminated and the durability can be greatly improved, the durability of the injection device can be improved. Can also be improved.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B show an embodiment of a multilayer piezoelectric element comprising a multilayer piezoelectric actuator according to the present invention. FIG. 1A is a perspective view, and FIG. 1B is a longitudinal section along the line AA 'in FIG. FIG.
[0027]
As shown in FIG. 1, the multilayer piezoelectric element of the present invention is configured by forming positive and negative external electrodes 4 on opposite side surfaces of a columnar laminate 1a. The columnar laminate 1a includes an active portion 8 in which a plurality of piezoelectric bodies 1 and internal electrodes 2 are alternately laminated, and inactive portions 9 formed on both end surfaces of the active portion 8 in the stacking direction. Yes.
[0028]
The end portions of the internal electrodes 2 are exposed on the external electrode 4 forming surface of the columnar laminate 1a every other layer, and projecting conductive members 7 are formed on the exposed portions, respectively. The external electrodes 4 made of a metal plate are joined, whereby the internal electrodes 2 are electrically connected to each external electrode 4 every other layer. On the other hand, the end of the internal electrode 2 that is not connected to the external electrode 4 is covered with an insulator 3. Furthermore, a lead wire 6 is connected and fixed to the external electrode 4 with solder or the like.
[0029]
The piezoelectric body 1 is made of, for example, lead zirconate titanate Pb (Zr, Ti) O.Three(Hereinafter abbreviated as PZT) or barium titanate BaTiOThreeIt is formed with the piezoelectric ceramic material etc. which have as a main component. This piezoelectric ceramic has a piezoelectric strain constant d indicating its piezoelectric characteristics.33A high value is desirable.
[0030]
The thickness of the piezoelectric body 1 in the active portion 8, that is, the distance between the internal electrodes 2 is preferably 50 to 250 μm. In order to obtain a larger displacement amount by applying a voltage to the stacked piezoelectric actuator, a method of increasing the number of stacked layers is used, but when the number of stacked layers is increased, the piezoelectric body 1 in the active portion 8 is increased. This is because if the thickness is too large, the actuator cannot be reduced in size and height, and if the thickness of the piezoelectric body 1 in the active portion 8 is too thin, dielectric breakdown tends to occur.
[0031]
An internal electrode 2 having a thickness of 0.5 to 10 μm is disposed between the piezoelectric bodies 1 in the active part 8. The internal electrode 2 is formed of a metal material such as silver-palladium, and the active part 8. A predetermined voltage is applied to each of the piezoelectric bodies 1 in the middle, thereby causing the piezoelectric body 1 to be displaced by the inverse piezoelectric effect.
[0032]
In addition, a groove having a depth of 50 to 500 μm and a width of 30 to 200 μm in the stacking direction is formed on the surface of the columnar laminate 1a on the side surface of the active portion 8 where the external electrode 4 is formed. The insulator 3 is formed by filling a resin, a polyimide resin, a polyamideimide resin, a silicone rubber, or the like. Thus, the end portions of the internal electrode 2 are insulated by the insulators 3 alternately filled in the grooves every other layer, and the other non-insulated end portion of the internal electrode 2 is inserted through the projecting conductive member 7. The external electrode 4 is connected.
[0033]
The protruding conductive member 7 is preferably made of silver having a low Young's modulus or an alloy containing silver as a main component from the viewpoint of sufficiently absorbing the stress generated by the expansion and contraction of the actuator. In addition, the protrusion height h of the protruding conductive member 7 is desirably 1/20 or more of the thickness of the piezoelectric body 1 in the active portion 8 from the viewpoint of sufficiently absorbing the stress generated by the expansion and contraction of the actuator. In particular, the protrusion height h is desirably 15 to 50 μm.
[0034]
Further, the thickness t of the plate-like conductive member that constitutes the external electrode 4 follows the expansion and contraction of the actuator, and is disconnected between the external electrode 4 and the protruding conductive member 7 or between the protruding conductive member 7 and the internal electrode 2. It is desirable that the thickness is 50 μm or less from the viewpoint of preventing the occurrence of.
[0035]
The plate-like external electrode 4 is made of a metal having conductivity such as silver, nickel, copper, gold, and aluminum, and an alloy thereof. Among these, the bonding strength with the protruding conductive member 7 is high, and the Young In view of the low rate, silver or an alloy containing silver as a main component is desirable.
[0036]
The insulator 3 is preferably made of a material having a low elastic modulus that follows the displacement of the columnar laminate 1a, specifically, silicone rubber or the like, in order to strengthen the bonding with the columnar laminate 1a. It is.
[0037]
External electrodes 4 made of a plate-like conductive member are connected and fixed to the opposing side surfaces of the columnar laminate 1a via protruding conductive members 7, and the laminated internal electrodes 2 are attached to the external electrodes 4. Every other layer is electrically connected. The external electrode 4 made of this plate-like conductive member serves to commonly supply a voltage necessary for displacing the piezoelectric body 1 by the inverse piezoelectric effect to each internal electrode 2 in the active portion 8 connected thereto.
[0038]
Furthermore, a lead wire 6 is connected and fixed to the external electrode 4 with solder. The lead wire 6 serves to connect the external electrode 4 to an external voltage supply unit.
[0039]
And in this invention, the density of the interface vicinity of the active part 8 and the inactive part 9 is made substantially the same over the interface vicinity whole area. Here, the active portion 9 is a portion in which the piezoelectric body 1 is sandwiched between the internal electrodes 2 and the piezoelectric body 1 is displaced by applying a voltage to the external electrode 4. This refers to a portion that is not displaced even when a voltage is applied to the external electrode 4. Here, “substantially the same” means that the density difference between the active portion 8 and the inactive portion 9 is within 5%. That is, the quotient obtained by dividing the difference between the density of the active part 8 and the density of the inactive part 9 by the density of the active part 8 is within 5%. Further, the density of the active portion 8 refers to the density of a laminate including the piezoelectric body 1 and the internal electrode 2 included in the active portion 8. The density difference between the active portion 8 and the inactive portion 9 is preferably within 2% from the viewpoint of reducing the residual stress during firing. Moreover, it is best that the density of not only the vicinity of the interface between the active portion 8 and the inactive portion 9 but also the entire active portion 8 and the entire inactive portion 9 are substantially the same.
[0040]
That is, by making the density of the active part 8 and the density of the inactive part 9 substantially equal, the shrinkage rate of the active part 8 and the inactive part 9 during firing becomes substantially equal, It is possible to prevent the occurrence of delamination or cracks at the interface of the inactive portion 9 or in the vicinity thereof. Further, since the contraction rate of the active portion 8 and the inactive portion 9 can be made substantially equal, it is possible to prevent the residual stress from being generated at the interface between the active portion 8 and the inactive portion 9 and in the vicinity thereof, thereby driving the actuator. Even in this case, the active portion 8 and the inactive portion 9 are not damaged at the interface and in the vicinity thereof, and high reliability can be obtained.
[0041]
In the present invention, the inactive portion 9 is configured by alternately laminating the same piezoelectric body 9 a as the piezoelectric body of the active portion 8 and the shrinkage adjustment layer 9 b containing metal particles, and all the shrinkage adjustment layers are formed. The outer peripheral end portion of 9b is exposed on the side surface of the inactive portion 9. It should be noted that at least one outer peripheral end portion of the shrinkage adjustment layer 9b may be exposed on the side surface of the inactive portion 9. Further, a part of the outer peripheral end portion of the shrinkage adjustment layer 9b may be exposed on the side surface of the inactive portion 9. For example, the outer peripheral end portion of the shrinkage adjustment layer 9b is the inactive portion 9 where the external electrode 4 is formed. It may be exposed only on the side. From the viewpoint of reducing the stress generation at the interface between the active portion 8 and the inactive portion 9 and in the vicinity thereof, the outer peripheral end portions of all the shrinkage adjusting layers 9b are the four side surfaces of the inactive portion 9 as shown in FIG. It is desirable to be exposed. In addition, although the whole outer peripheral part of the shrinkage | contraction adjustment layer 9b is exposed, it showed with the broken line.
[0042]
The shrinkage adjustment layer 9b constituting the inactive portion 9 has a sheet resistance value of 106It is desirable that it is Ω / □ or more. That is, the inactive portion 9 is formed under the influence of the metal particles in the shrinkage adjusting layer 9b by alternately laminating a plurality of the piezoelectric bodies 9a and the shrinkage adjusting layers 9b in which metal particles are dispersed to form the inactive portion 9. Sintering of the piezoelectric body 9a in 9 is promoted, and the contraction rate of the piezoelectric body 9a in the inactive portion 9 is made substantially equal to the contraction rate of the piezoelectric body 1 sandwiched between the internal electrodes 2 in the active portion 8. be able to.
[0043]
The metal particles of the shrinkage adjustment layer 9b are silver particles or alloy particles of a plurality of metals such as silver-palladium and silver-platinum.
[0044]
The thickness of the piezoelectric body 9 a in the inactive portion 9 is desirably the same as the thickness of the piezoelectric body 1 in the active portion 8. The thickness of the shrinkage adjustment layer 5b is preferably 0.5 to 10 μm.
[0045]
The sheet resistance value of the shrinkage adjustment layer 9b is 106Ω / □ or more. Thereby, high insulation can be maintained, without reducing the insulation of the inactive part 9. The sheet resistance value is obtained by multiplying the resistance value of the measured object by the width of the measured object and dividing the result by the length. In other words, the volume resistivity of the measured object is divided by the thickness of the measured object.
[0046]
Furthermore, in the present invention, the shrinkage adjusting layer 5 is made to have a metal particle content of 5 to 50% by volume in order to match the shrinkage rate of the inactive part 9 with the shrinkage rate of the active part 8 without reducing the insulating property of the inactive part 9. It is desirable that the balance is formed of 50 to 95% by volume of the piezoelectric particles. As a result, the sheet resistance value of the shrinkage adjustment layer 9b is 10.6Ω / □ or more.
[0047]
In the present invention, the metal particles constituting the shrinkage adjustment layer 9 b are the same as the metal particles constituting the internal electrode 2. Since the metal particles of the shrinkage adjusting layer 9b are the same as the metal particles constituting the internal electrode 2, the shrinkage behavior of the inactive portion 9 during firing can be matched with the shrinkage behavior of the active portion 8, and the active portion during firing. It is possible to prevent the occurrence of delamination, cracks, and the like at the interface between 8 and the inactive portion 9 and in the vicinity thereof.
[0048]
Furthermore, in the present invention, the end portion of the shrinkage adjustment layer 9b is used in order to prevent generation of stress due to a shrinkage difference during firing of the inactive portion 9 and the active portion 8 even in the vicinity of the formation surface of the external electrode 4 of the columnar laminate 1a. Are exposed on the surface of the columnar laminate 1a where the external electrodes 4 are formed.
[0049]
That is, by exposing the end of the shrinkage adjusting layer 9b to the surface of the columnar laminate 1a where the external electrode 4 is formed, the active portion 8 and the inactive portion 9 are also formed in the vicinity of the surface of the columnar laminate 1a where the external electrode 4 is formed. It is possible to make the firing shrinkage ratios equal to each other, and it is possible to prevent stress from being generated during firing at and near the interface between the active portion 8 and the inactive portion 9 in the vicinity of the surface where the external electrode 4 is formed.
[0050]
Moreover, in this invention, the edge part of the shrinkage | contraction adjustment layer 9b exposed to the external electrode 4 formation surface of the columnar laminated body 1a and the edge part of the internal electrode 2 are respectively separated from the plate-like conductive member via the protruding conductive member 7. Connected to the external electrode 4. Thus, not only the end of the internal electrode 2 of the active part 8 exposed on the surface on which the external electrode 4 of the columnar laminated body 1a is exposed, but also the end of the shrinkage adjustment layer 5 in the inactive part 9. Even when the actuator is continuously driven under a high electric field by being connected and fixed to the plate-like external electrode 4 via the protruding conductive member 7, the internal electrode 2 and the protruding conductive member 7 or the protruding conductive The member 7 and the external electrode 4 are not disconnected, and an actuator having high reliability can be provided.
[0051]
A method for producing the multilayer piezoelectric actuator of the present invention will be described.
[0052]
First, a calcined powder of piezoelectric ceramics such as PZT, a binder made of an organic polymer such as acrylic or butyral, and a plasticizer such as DBP (diethyl phthalate) or DOP (dibutyl phthalate) are mixed. A slurry is prepared, and a ceramic green sheet to be the piezoelectric body 1 is prepared from the slurry by a tape molding method such as a well-known doctor blade method or calendar roll method.
[0053]
Next, an internal electrode paste is prepared by adding and mixing a binder, a plasticizer, and the like to metal powder composed of silver-palladium, and this is printed on the upper surface of each ceramic green sheet to a thickness of 1 to 40 μm by screen printing or the like. An internal electrode pattern is formed on the green sheet.
[0054]
Separately, a binder, a plasticizer, and the like are added to and mixed with a mixture of 5 to 50% by volume of metal powder made of silver-palladium and 50 to 95% by volume of the same ceramic calcined powder as the piezoelectric body 1. A shrinkage adjustment layer paste is prepared, and this is printed on the upper surface of the ceramic green sheet to a thickness of 1 to 40 μm by screen printing or the like to form a shrinkage adjustment layer pattern on the green sheet.
[0055]
Here, the mixing ratio of the metal powder in the shrinkage adjustment layer paste was set to 5 to 50% by volume because when the metal powder was less than 5% by volume, the metal powder was in the inactive portion 9 during firing. 9a is less affected, the sintering promoting effect of the piezoelectric body 9a in the inactive portion 9 is small, and the contraction rate with the piezoelectric body 1 in the active portion 8 tends to be different, whereas the metal powder is 50%. This is because when the amount is more than volume%, the amount of metal particles contained in the shrinkage adjustment layer 5 increases, and the insulating property of the inactive portion 9 tends to decrease.
[0056]
That is, by setting the metal particles contained in the shrinkage adjustment layer paste to 5 to 50% by volume, the shrinkage rate during firing of the inactive part 9 is reduced without reducing the insulating property of the inactive part 9. The shrinkage rate can be adjusted. Furthermore, it is preferable that the shrinkage behavior of the inactive part 9 and the active part 8 at the time of firing is matched to eliminate residual stress at the time of firing and to prevent deterioration of insulation at high temperature. The metal particles contained in the paste are preferably in the range of 10 to 30% by volume.
[0057]
The metal particles contained in the shrinkage adjustment layer paste may be alloy particles composed of a plurality of metal components. In order to effectively match the shrinkage behavior during firing of the piezoelectric body 1 sandwiched between the internal electrodes 2 in the active portion 8 and the piezoelectric body 9a sandwiched between the shrinkage adjustment layers 9b in the inactive portion 9, The metal particles contained in the shrinkage adjustment layer paste are preferably the same as the metal particles contained in the internal electrode paste.
[0058]
Then, a plurality of ceramic green sheets having internal electrode patterns formed on the upper surface are laminated to produce an active part molded body that becomes the active part 8, and a shrinkage adjustment layer pattern is formed on both end surfaces in the stacking direction of the active part molded body. A columnar laminate formed by laminating a plurality of ceramic green sheets each having a layer formed thereon, and laminating inactive part formed bodies on both end surfaces in the stacking direction of the active part formed body. obtain. At this time, the entire outer peripheral end of the internal electrode pattern and the entire outer peripheral end of the shrinkage adjustment layer pattern are exposed on the four side surfaces of the columnar laminated molded body.
[0059]
Then, after debinding at a predetermined temperature for this columnar laminated molded body, by firing at 900 to 1200 ° C., as shown in FIG. 1, the entire outer peripheral end of the internal electrode, the shrinkage adjustment layer 9b A columnar laminate 1a is produced in which the outer peripheral end portions are exposed on the four side surfaces.
[0060]
Thereafter, grooves are formed in every other layer on the side surface of the columnar laminate 1a where the external electrodes 4 are formed using a dicing apparatus or the like. A silver glass paste made of silver powder and glass powder is interposed between the side surface where the external electrode 4 is formed of the columnar laminated body 1a in which the groove is formed and the external electrode 4 made of a plate-like conductive member. By heat-treating the laminated body 1a at 700 to 900 ° C. in a state where the laminated body 1a is pressed at a pressure of 2 to 80 kPa, the glass in the silver glass paste is melted, and the silver component present in the molten glass is A projecting conductive member 7 is formed which gathers at the end and the end of the shrinkage adjustment layer 5 and protrudes from the side surface of the columnar stacked body 1 a. The projecting conductive member 7 has a columnar stacked body 1 a and an external electrode 4. The external electrode 4 made of a plate-like conductive member is joined in a state where a gap is formed therebetween.
[0061]
Thereafter, the insulator 3 is filled in the groove, and the lead wire 6 is connected to the external electrode 4 to complete the multilayer piezoelectric actuator of the present invention.
[0062]
Then, by applying a direct current voltage of 0.1 to 3 kV / mm to the pair of external electrodes 4 via the lead wires 6 to polarize the columnar laminated body 1a, a laminated piezoelectric actuator as a product is completed, When the lead wire 6 is connected to an external voltage supply unit and a voltage is applied to the internal electrode 2 via the lead wire 6 and the external electrode 4, each piezoelectric body 1 is greatly displaced by the reverse piezoelectric effect, and for example, It functions as an automobile fuel injection valve that supplies fuel to the engine.
[0063]
In the multilayer piezoelectric actuator configured as described above, since the densities of the active portion 8 and the inactive portion 9 can be made substantially equal, the contraction rate of the active portion 8 and the inactive portion 9 during firing is substantially reduced. It is possible to prevent the occurrence of problems such as delamination and cracks at and near the interface between the active portion 8 and the inactive portion 9 during firing, and it is active even when the actuator is driven. The durability can be greatly improved without being damaged at the interface between the portion 8 and the inactive portion 9 and in the vicinity thereof.
[0064]
The multilayer piezoelectric element of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention. For example, the external electrode 4 made of a plate-like conductive member can be changed. A conductive auxiliary member may be formed outside. In this case, by providing a conductive auxiliary member on the outer surface of the plate-like conductive member, a large current can be supplied to the conductive auxiliary member even when a large current is supplied to the actuator and driven at high speed. The current flowing through the electrode 4 can be reduced, the external electrode 4 can be prevented from causing local heat generation and disconnection, and the durability can be greatly improved.
[0065]
Note that the conductive auxiliary member follows the expansion and contraction of the actuator and prevents disconnection of the conductive auxiliary member during driving, so that a flexible conductive adhesive, conductive coil, conductive corrugated plate, or conductive fiber is used. An aggregate (wool shape) is desirable. In particular, a conductive corrugated sheet made of silver is desirable because it has a low resistance value and Young's modulus, is highly stretchable, and can reduce the sectional area of the actuator.
[0066]
FIG. 2 shows an injection device according to the present invention. In the figure, reference numeral 31 denotes a storage container. An injection hole 33 is provided at one end of the storage container 31, and a needle valve 35 that can open and close the injection hole 33 is stored in the storage container 31.
[0067]
A fuel passage 37 is provided in the injection hole 33 so as to be able to communicate. The fuel passage 37 is connected to an external fuel supply source, and fuel is always supplied to the fuel passage 37 at a constant high pressure. Therefore, when the needle valve 35 opens the injection hole 33, the fuel supplied to the fuel passage 37 is formed to be injected into a fuel chamber (not shown) of the internal combustion engine at a constant high pressure.
[0068]
Further, the upper end portion of the needle valve 35 has a large diameter, and serves as a piston 41 slidable with a cylinder 39 formed in the storage container 31. In the storage container 31, the piezoelectric actuator 43 described above is stored.
[0069]
In such an injection device, when the piezoelectric actuator 43 is extended by applying a voltage, the piston 41 is pressed, the needle valve 35 closes the injection hole 33, and the supply of fuel is stopped. When the application of voltage is stopped, the piezoelectric actuator 43 contracts, the disc spring 45 pushes back the piston 41, and the injection hole 33 communicates with the fuel passage 37 so that fuel is injected.
[0070]
【Example】
Example 1
First, on the top surface of a ceramic green sheet containing PZT calcined powder, 300 layers of internal electrode patterns formed by printing an internal electrode paste made of a silver-palladium alloy and a binder were laminated, and an active part molded body was formed. Produced.
[0071]
On the other hand, ten layers of layers on which the shrinkage adjustment layer pattern is formed by printing the shrinkage adjustment layer paste on the upper surface of the ceramic green sheet are laminated to produce two inactive layer formed bodies. Were stacked on both end faces in the stacking direction of the active part molded body to form a quadrangular columnar columnar stacked molded body.
[0072]
The outer peripheral ends of the 10-layer shrinkage adjustment layer pattern were exposed on the four side surfaces of the inactive layer molded body, and the outer peripheral end portions of the 300-layer internal electrode pattern were exposed on the four side surfaces of the active portion molded body.
[0073]
The shrinkage adjustment layer paste is obtained by adding a binder to a solid content composed of 20% by volume of a silver-palladium alloy powder forming an internal electrode and 80% by volume of the same PZT calcined powder contained in the ceramic green sheet. Produced.
[0074]
Thereafter, the columnar laminate was subjected to binder removal treatment at 400 ° C. and fired at 1050 ° C. in the atmosphere to obtain a columnar laminate.
[0075]
The thickness of the piezoelectric body in the active part was 150 μm, and the thickness of the internal electrode was 3 μm. Further, the thickness of the piezoelectric body in the inactive portion was 150 μm, and the thickness of the shrinkage adjustment layer was 3 μm.
[0076]
Thereafter, a groove having a width of 50 μm and a depth of 200 μm was formed in the exposed portion of the internal electrode on the external electrode forming side surface of the active portion every other layer than the dicing apparatus. Then, a silver glass paste made of silver powder and glass powder is interposed between the external electrode forming side surface of the columnar laminate in which the groove is formed and an external electrode made of a plate-like conductive member mainly composed of silver, By performing heat treatment at 900 ° C. in a pressure contact state at a pressure of 30 kPa, a protruding conductive member protruding from the side surface of the columnar laminate is formed at the end of the inner electrode of the active portion and the shrinkage adjustment layer of the inactive portion. While forming, an external electrode was joined to the projecting conductive member.
[0077]
Thereafter, silicone rubber as an insulator was filled in the groove of the active part, and a lead wire was connected to the external electrode.
[0078]
Then, a 3 kV / mm direct current electric field was applied to the positive and negative external electrodes via lead wires for 15 minutes to perform polarization treatment, and a multilayer piezoelectric actuator as shown in FIG. 1 was produced.
[0079]
In the obtained multilayer piezoelectric actuator, the density of the active portion composed of the piezoelectric body and the internal electrode and the density of the inactive portion composed of the piezoelectric body and the shrinkage adjustment layer were substantially the same. Further, when the sheet resistance of the shrinkage adjusting layer was measured with an insulation resistance meter, 8 × 108It was Ω / □.
[0080]
As a result of applying a DC voltage of 150 V to the obtained multilayer piezoelectric actuator, a displacement of 40 μm was obtained in the stacking direction. Furthermore, as a result of conducting a drive test by applying an AC voltage of 0 to +150 V to this actuator at a frequency of 60 Hz at room temperature, 5 × 10 5TenWhen driven until the cycle, a displacement of 40 μm was obtained, and no abnormalities such as cracks were found at the interface between the active part and the inactive part and in the vicinity thereof.
Example 2
Next, a columnar laminate similar to that of Example 1 was prepared except that the volume ratio of the silver-palladium alloy and the piezoelectric body constituting the shrinkage adjustment layer was changed. About the obtained columnar laminated body, the active part and the inactive part were separated, the density of each was measured by the Archimedes method, and the density difference between the active part and the inactive part was calculated. In addition, the delamination and crack generation conditions at the boundary between the active part and the inactive part and in the vicinity thereof were examined. Furthermore, the sheet resistance of the shrinkage adjustment layer in the inactive part was measured.
[0081]
FIG. 3 shows the relationship between the density difference between the active part and the inactive part, and the delamination and crack defect rate at and near the boundary between the active part and the inactive part. The density difference between the active part and the inactive part is a percentage obtained by dividing the difference in density between the active part and the inactive part by the density of the active part. It can be seen that the larger the density difference between the active part and the inactive part, the more defects due to delamination and cracks.
[0082]
FIG. 4 shows the relationship between the volume% of the silver-palladium alloy in the shrinkage adjustment layer, the density difference, and the sheet resistance of the shrinkage adjustment layer. It can be seen that when the metal component in the shrinkage adjusting layer is smaller than 5% by volume, the bulk density difference becomes larger than 5%, and defects such as delamination and cracks frequently occur. When the metal component in the shrinkage adjustment layer is greater than 50% by volume, the sheet resistance value of the shrinkage adjustment layer is 106It can be seen that it becomes smaller than Ω, and the insulating property of the inactive part is lowered.
[0083]
That is, when the amount of the metal component in the shrinkage adjusting layer is 5 to 50% by volume within the range specified in the present invention, the density of the active part and the inactive part is substantially equal, and the boundary between the inactive part and the active part. It can be seen that defects such as delamination and cracks in the vicinity thereof can be prevented from occurring, and that the insulating properties of the inactive portion are not deteriorated.
Example 3
Further, external electrodes were formed on the columnar laminate obtained by the same method as in Example 2 by the same method as in Example 1 to produce a multilayer piezoelectric actuator. A drive test was performed by applying an AC voltage of 0 to +150 V to the obtained multilayer piezoelectric actuator at a frequency of 60 Hz at room temperature. The obtained results are shown in Table 1.
[0084]
[Table 1]
Figure 0003730893
[0085]
From Table 1, in the sample in which the amount of the metal component in the shrinkage adjusting layer is less than 5% by volume, the breakage occurs at the boundary between the active part and the inactive part during driving. On the other hand, in the sample in which the amount of the metal component in the shrinkage adjustment layer was 60% by volume or more, the dielectric breakdown occurred during driving or the insulation was poor in the initial state. On the other hand, in the sample in which the metal component amount in the shrinkage adjustment layer is 5 to 50% by volume, 1 × 109No abnormality such as breakage or dielectric breakdown was found even when driven up to.
[0086]
【The invention's effect】
According to the multilayer piezoelectric element of the present invention,The metal particles that improve the sinterability are present even on the outer periphery of the inactive part, and the metal particles in the shrinkage adjustment layer improve the sinterability of the outer peripheral part of the inactive part.The shrinkage ratio between the active part and the inactive part during firing became substantially equal, and the occurrence of delamination and cracks at the interface between and in the vicinity of the active part and inactive part during firing was eliminated, and the actuator was driven. Even in this case, it is possible to provide a multilayer piezoelectric element having high reliability that does not break at the interface between the active portion and the inactive portion and in the vicinity thereof.
[Brief description of the drawings]
1A and 1B show a multilayer piezoelectric element of the present invention, in which FIG. 1A is a perspective view and FIG. 1B is a longitudinal sectional view taken along line A-A ′ of FIG.
FIG. 2 is an explanatory view showing an injection device of the present invention.
FIG. 3 is a graph showing a relationship between a density difference between an active part and an inactive part and a defect rate.
FIG. 4 is a graph showing the relationship between the ratio of the metal component in the shrinkage adjustment layer, the density difference between the active part and the inactive part, and the sheet resistance of the shrinkage adjustment layer.
FIG. 5 is a longitudinal sectional view of a conventional multilayer piezoelectric actuator.
[Explanation of symbols]
1, 9a ... Piezoelectric material
1a ... Columnar laminate
2 ... Internal electrode
4 ... External electrode
9b ... Shrinkage adjustment layer
8 ... Active part
9: Inactive part
31 ... Storage container
33 ... Injection hole
35 ... Valve
43 ... Piezoelectric actuator

Claims (7)

複数の圧電体と複数の内部電極とを交互に積層してなり、圧電体が変位する活性部、及び該活性部の積層方向の両端部にそれぞれ設けられ、変位しない不活性部からなる柱状積層体と、該柱状積層体の側面に設けられ、前記内部電極が一層おきに交互に電気的に接続される一対の外部電極とを具備してなるとともに、前記活性部と前記不活性部とが同時焼成される積層型圧電素子であって、前記不活性部が、圧電体と、金属粒子を含有する収縮調整層とを交互に積層してなるとともに、該収縮調整層のうち少なくとも一層の端部が前記不活性部側面に露出していることを特徴とする積層型圧電素子。A plurality of piezoelectric bodies and a plurality of internal electrodes are alternately stacked, and a columnar stack composed of active portions where the piezoelectric bodies are displaced, and inactive portions that are provided at both ends in the stacking direction of the active portions and are not displaced. And a pair of external electrodes that are provided on the side surface of the columnar laminated body and in which the internal electrodes are alternately electrically connected every other layer, and the active portion and the inactive portion include A multilayer piezoelectric element that is simultaneously fired, wherein the inactive portion is formed by alternately laminating piezoelectric bodies and shrinkage adjustment layers containing metal particles, and at least one end of the shrinkage adjustment layer. The laminated piezoelectric element is characterized in that a portion is exposed on a side surface of the inactive portion. 収縮調整層のシート抵抗値が10Ω/□以上であることを特徴とする請求項記載の積層型圧電素子。Laminated piezoelectric element according to claim 1, wherein the sheet resistance of the contraction adjustment layer is equal to or is 10 6 Ω / □ or more. 収縮調整層が、金属粒子5〜50体積%と圧電体粒子50〜95体積%からなることを特徴とする請求項1又は2記載の積層型圧電素子。 3. The multilayer piezoelectric element according to claim 1, wherein the shrinkage adjustment layer is composed of 5 to 50% by volume of metal particles and 50 to 95% by volume of piezoelectric particles. 収縮調整層を構成する金属粒子が、内部電極を構成する金属粒子と同一であることを特徴とする請求項乃至のうちいずれかに記載の積層型圧電素子。Shrinkage metal particles constituting the control layer, multi-layer piezoelectric element according to any one of claims 1 to 3, characterized in that it is identical to the metal particles constituting the inner electrode. 柱状積層体の外部電極形成面に露出している収縮調整層の端部及び内部電極の端部にそれぞれ突起状導電部材が設けられており、該突起状導電部材が外部電極に接続されていることを特徴とする請求項乃至のうちいずれかに記載の積層型圧電素子。Protruding conductive members are respectively provided at the ends of the shrinkage adjustment layer and the internal electrodes exposed on the external electrode forming surface of the columnar laminate, and the protruding conductive members are connected to the external electrodes. The multilayer piezoelectric element according to claim 1 , wherein the multilayer piezoelectric element is any one of claims 1 to 4 . 内部電極パターンが形成されたセラミックグリーンシートを複数積層してなる活性部成形体の積層方向の両端部に、金属粉末を含有する収縮調整層用パターンが形成されたセラミックグリーンシートを複数積層してなり、側面に収縮調整層用パターンのうち少なくとも一層の端部が露出する不活性部成形体をそれぞれ設けてなる柱状積層成形体を作製する工程と、該柱状積層成形体を焼成して柱状積層体を作製する工程と、該柱状積層体の側面に、内部電極が一層おきに交互に電気的に接続される一対の外部電極を形成する工程とを具備してなることを特徴とする積層型圧電素子の製法。A plurality of ceramic green sheets each having a pattern for a shrinkage adjustment layer containing metal powder are laminated on both ends in the stacking direction of an active part molded body formed by stacking a plurality of ceramic green sheets on which internal electrode patterns are formed. A step of producing a columnar laminate formed by providing at least one inactive portion formed from the pattern for shrinkage adjustment layer on the side surface, and firing the columnar laminate for columnar lamination. A laminated type comprising: a step of forming a body; and a step of forming a pair of external electrodes in which internal electrodes are alternately electrically connected every other layer on a side surface of the columnar laminated body. Production method of piezoelectric elements. 噴射孔を有する収納容器と、該収納容器内に収容された請求項1乃至のうちいずれかに記載の積層型圧電素子と、該積層型圧電素子の駆動により前記噴射孔から液体を噴出させるバルブとを具備してなることを特徴とする噴射装置。A storage container having an injection hole, the multilayer piezoelectric element according to any one of claims 1 to 5 accommodated in the storage container, and a liquid is ejected from the injection hole by driving the multilayer piezoelectric element. An injection device comprising a valve.
JP2001287705A 2001-09-20 2001-09-20 LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE Expired - Fee Related JP3730893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001287705A JP3730893B2 (en) 2001-09-20 2001-09-20 LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001287705A JP3730893B2 (en) 2001-09-20 2001-09-20 LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE

Publications (2)

Publication Number Publication Date
JP2003101092A JP2003101092A (en) 2003-04-04
JP3730893B2 true JP3730893B2 (en) 2006-01-05

Family

ID=19110472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001287705A Expired - Fee Related JP3730893B2 (en) 2001-09-20 2001-09-20 LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE

Country Status (1)

Country Link
JP (1) JP3730893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207632A (en) * 2002-12-26 2004-07-22 Kyocera Corp Ceramic electronic component,its manufacturing method, and injecting device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202574A1 (en) * 2001-02-15 2002-09-12 Ceramtec Ag Piezoceramic multi-layer actuator with a transition area between the active area and the inactive head and foot areas
JP4989019B2 (en) * 2003-04-28 2012-08-01 京セラ株式会社 Ceramic substrate, piezoelectric actuator substrate, piezoelectric actuator and manufacturing method thereof
JP4817610B2 (en) * 2004-03-29 2011-11-16 京セラ株式会社 LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE USING THE SAME
WO2006073018A1 (en) * 2005-01-06 2006-07-13 Murata Manufacturing Co., Ltd. Method for manufacturing piezoelectric actuator, and piezoelectric actuator
JP5116250B2 (en) * 2006-04-11 2013-01-09 キヤノン株式会社 Multilayer piezoelectric element, method for manufacturing the same, and vibration wave driving device
JP5329544B2 (en) 2008-07-29 2013-10-30 京セラ株式会社 Fuel injection system
US8857413B2 (en) 2009-10-28 2014-10-14 Kyocera Corporation Multi-layer piezoelectric element, and injection device and fuel injection system using the same
US9287486B2 (en) 2011-01-21 2016-03-15 Kyocera Corporation Multi-layer piezoelectric element, and piezoelectric actuator, injection device, and fuel injection system provided with same
JP2015185666A (en) * 2014-03-24 2015-10-22 株式会社日本セラテック Method for manufacturing piezoelectric element
JP2017011125A (en) * 2015-06-23 2017-01-12 京セラ株式会社 Lamination type piezoelectric element and injection device including the same and fuel injection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207632A (en) * 2002-12-26 2004-07-22 Kyocera Corp Ceramic electronic component,its manufacturing method, and injecting device

Also Published As

Publication number Publication date
JP2003101092A (en) 2003-04-04

Similar Documents

Publication Publication Date Title
JP4933554B2 (en) Multilayer piezoelectric element, injection apparatus and fuel injection system using the same, and method for manufacturing multilayer piezoelectric element
EP1732146A1 (en) Multilayer piezoelectric element and its manufacturing method
EP1753039A1 (en) Multilayer piezoelectric element and its manufacturing method
JP5050165B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
WO2007037377A1 (en) Laminated piezoelectric element and jetting apparatus using same
JP3730893B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
WO2006001334A1 (en) Multilayer electronic component and injection system using same
EP1686633B1 (en) Multilayer piezoelectric device
JP3860746B2 (en) Multilayer piezoelectric element and injection device
JP4817610B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE USING THE SAME
JP3667289B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP4373643B2 (en) LAMINATED PIEZOELECTRIC ELEMENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP3598057B2 (en) Multilayer piezoelectric element and injection device
JP4498300B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP3921171B2 (en) CERAMIC ELECTRONIC COMPONENT, ITS MANUFACTURING METHOD, AND INJECTION DEVICE
JP4299807B2 (en) Multilayer piezoelectric element and injection device
JP3872349B2 (en) Manufacturing method of multilayer piezoelectric element
JP4868707B2 (en) Multilayer piezoelectric element and injection device
JP4942461B2 (en) Ceramic electronic component and injection device
JP3909275B2 (en) Multilayer piezoelectric element and injection device
JP3909276B2 (en) Multilayer piezoelectric element and injection device
JP4290947B2 (en) Multilayer piezoelectric element and injection device
JP3894861B2 (en) Multilayer piezoelectric element and injection device
JP3990613B2 (en) Multilayer piezoelectric element and injection device
JP3909274B2 (en) Multilayer piezoelectric element and injection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051007

R150 Certificate of patent or registration of utility model

Ref document number: 3730893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees