JP3722642B2 - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP3722642B2
JP3722642B2 JP12087199A JP12087199A JP3722642B2 JP 3722642 B2 JP3722642 B2 JP 3722642B2 JP 12087199 A JP12087199 A JP 12087199A JP 12087199 A JP12087199 A JP 12087199A JP 3722642 B2 JP3722642 B2 JP 3722642B2
Authority
JP
Japan
Prior art keywords
acoustic wave
electrode
surface acoustic
substrate
piezoelectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12087199A
Other languages
Japanese (ja)
Other versions
JP2000312127A (en
Inventor
佳史 山形
雅之 船見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP12087199A priority Critical patent/JP3722642B2/en
Publication of JP2000312127A publication Critical patent/JP2000312127A/en
Application granted granted Critical
Publication of JP3722642B2 publication Critical patent/JP3722642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば携帯電話等の移動体通信機器に用いられ、弾性表面波フィルタやデュプレクサ等の弾性表面波装置に関する。
【0002】
【従来技術とその課題】
現在、移動体通信機器に用いられる弾性表面波フィルタは、激化する携帯電話端末の小型化のために、極限までに低実装面積で低重量且つ低背であることが望まれている。
【0003】
従来、図9(a)〜(c)に示す弾性表面波フィルタJ1は、主として励振電極が形成された圧電性の単結晶から成る基板102と、それを封止実装するセラミックパッケージ108から成る。
【0004】
基板102には、アルミニウムやアルミニウム−銅合金等から成る櫛歯状の弾性表面波共振子電極(励振電極)103、入出力電極113a,113bとグランド電極(図示せず)、及びそれらの接続電極が同一面に形成されている。
【0005】
励振電極103には、その上面に保護膜104が形成されており、ごみなどの異物の付着や腐食を防止している。基板102は樹脂110によりセラミックパッケージ108の底部に固定され、基板102上の入出力電極とグランド電極(図示せず)が、セラミックパッケージ108の入出力端子電極113a,113bへ、それぞれワイヤー114を用いて導通接続されている。
【0006】
ワイヤー114を接続する部分には、接続の安定性確保のため保護膜は形成されない。基板102は弾性体であるので、自由振動を確保する空間105が必要である。このため、上部にリッド109が設けられ、外部から水分や湿気が入ることによる振動ダンピングを防止するように、セラミックパッケージ108と樹脂110により気密封止されている。特に、水分等の浸入は圧電基板が四ホウ酸リチウム単結晶等の場合には潮解性があるので信頼性等の点で深刻な問題となる。
【0007】
このような弾性表面波フィルタにおいては、基板102とセラミックパッケージ108との電気的接続をワイヤー114により行っており、この分の高さが小型化の妨げとなっていた。また、セラミックパッケージ108は基板102に比べ非常に大きく、例えば1辺当たり約1.5〜2.1mmも大型化し、底面積にいたっては約3倍にもなっていた。
【0008】
さらに、図9(a)に示すように、セラミックパッケージ108内部のグランド端子電極113bが、幅の狭い端面グランド電極を介して、図9(c)に示すように、セラミックパッケージ108の裏面に接続されているためインダクタ成分が発生しており、図10に円部で示すように、通過帯域(ハッチング部分)の低周波側、及び4〜6GHzにおける減衰特性が劣化していた。
【0009】
また、図11(a)〜(c)に示すような弾性表面波フィルタJ2は、基板102上の入出力電極103aとグランド電極(図示せず)とを、金属製のバンプ111を介してセラミックパッケージ108上の端子電極113a,113bへ接続し、バンプ111と端子電極113a,113bとの接続強度の低さを補うため導電性の樹脂112により補強を行っている。また、導電性樹脂112はバンプ111の平坦度の悪さを吸収する役目も担っている。以上の構造により、ワイヤーのループ高さの分だけ低背化を図ることができる。
【0010】
しかしながら、セラミックパッケージ108の底面積が小型になることにより裏面の入出力端子電極113aの間隔gが狭くなり、この電極間に容量が発生している。このため、図12に円部で示すように、通過帯域(ハッチング部分)の高周波側、及び3GHz近傍の減衰特性が劣化していた。また、依然としてセラミックパッケージ108がフィルタ形状の大部分を占め、小型,軽量,低背化の妨げとなっていた。
【0011】
そこで本発明は、減衰特性を損なわずに、究極的に小型化が可能で信頼性の優れた弾性表面波装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決するために、本発明の弾性表面波装置は、励振電極、入出力電極および接地用電極を形成した圧電基板の下面側を回路基板上に実装するようにした弾性表面波装置であって、前記圧電基板の側面を下面に対し鋭角に形成するとともに、該圧電基板の上面及び側面に導電性の保護膜を被着形成しており、前記接地用電極を前記圧電基板の下面の外周部に前記励振電極を取り囲むとともに前記保護膜に接するように形成したことを特徴とする。
【0013】
【発明の実施の形態】
以下に、本発明に係る弾性表面波装置の実施形態について図面に基づいて詳細に説明する。
【0014】
図1に弾性表面波装置として弾性表面波フィルタ1の実装構造の断面図を、図2にその電極構造を示す。弾性表面波フィルタ1は、例えばタンタル酸リチウム単結晶、ランガサイト型結晶構造を有する単結晶(例えば、ランタン−ガリウム−ニオブ系単結晶)、四ホウ酸リチウム単結晶等の圧電基板2の下面2aに励振電極等の電極3が形成されている。すなわち、圧電基板2の下面2aに、後記する励振電極である櫛歯状の共振子電極3cの複数が、例えばラダー型回路に接続されており、その接続電極3d,入出力電極3a,接地用電極3bの上に、シリコンや酸化シリコン等の半導電性または絶縁性の電極保護膜4が形成されている。また、圧電基板2の上面2c及び側面2bには、導電性の保護膜である金属薄膜12が薄膜形成法により被着形成され、耐候性に富む構造のチップ弾性表面波フィルタを実現している。
【0015】
ここで、圧電基板2の上面及び側面に形成する保護膜は、外濫電波(高調波等)をシールドするために、導電性であるが、さらに気密性を確保することができ、成膜を簡便且つ容易にする上で金属とするのがよい。金属薄膜12を形成するに当たり、チップ弾性表面波フィルタを個々にダイシングにて切り離しを行った後、蒸着法によりAl,Au,Ti,Cr等から成る1種以上の金属を成膜するかAl膜とCu膜との積層構造,W膜とAu膜の積層構造等を形成する。
【0016】
ダイシングで切り離した圧電基板2の側面にも、金属薄膜12を適度な厚みで構成させる必要があるが、この成膜は蒸着法で行うのが最も簡便である。このとき、蒸着粒子は被蒸着面へほぼ垂直方向に成膜されるため、圧電基板2の側面が垂直の場合は均一な成膜が困難である。
【0017】
そこで、本発明ではチップ弾性表面波フィルタを個々にダイシングにて切り離す際に、ダイシングの歯の形状が凸状(例えばV字状)のものを用い、素子端部にテーパを形成しながら切り離す。そして、圧電基板2の上面と側面に膜厚500Å〜10μmの金属薄膜12を形成する。ここで、膜厚を上記範囲にしたのは、500Å未満とすると圧電基板2の側面や上面端部等において成膜が困難となり耐候性に信頼が保てず、10μmを超えると金属薄膜12と圧電基板2の線膨張係数の差により低温で圧縮応力、または高温で引っ張り応力が発生し温度特性に悪影響を及ぼすからである。
【0018】
また、図1及び図6(1)で明示した圧電基板2の下面2aと側面2bとの成す角度(テーパ角)θは、45〜80度である。
【0019】
上記のようにして構成した弾性表面波フィルタ1は、圧電基板2の下面側もしくは側面に、共振子電極3cを取り囲む接地用電極3bを形成して回路基板6上に実装する。そして、回路基板6の表面と共振子電極3cの表面との間hが、弾性表面波の波長以上の距離に設定されている。
【0020】
なお、図1において8は導電性樹脂等から成る導電性の接着材であり、9はフィルタ基板10上に形成した金属等から成る接続パッドであり、11はビア電極、13は外部取り出し電極である。そして、このように構成された弾性表面波フィルタ1を外部回路基板に実装するようにする。また、図3に示すように、図1のフィルタ基板10の代わりに、直接、ガラスエポキシ等から成る回路基板6に、圧電基板2の下面2a側をフェースダウン実装するようにした弾性表面波フィルタ1’(フィルタ基板10の代わりに回路基板6を用いた以外は弾性表面波フィルタ1と構成は同様)を構成してもよい。
【0021】
ここで、入出力電極3aと接地用電極3bは同一プロセスにて形成されているので、これらの電極は平坦度に優れている。また、半導電性または絶縁性から成る電極保護膜4よりも入出力電極と接地用電極が突出しているので、自由振動のための空間5を保つことができ、このままフィルタ基板10若しくは回路基板6へフェースダウンで実装することが可能である。また、接地用電極3bが基板2の全周囲に形成されているので気密性も確保される。
【0022】
また、チップ弾性表面波フィルタの圧電基板の上面及び側面に金属薄膜を形成しているので、RF(Radio Frequency)ブロックでの不要な電磁波の遮断が可能である。
【0023】
なお、本発明ではラダー型フィルタについて説明したが、共振器型や伝搬型のフィルタやフィルタ以外のデュプレクサ等の弾性表面波装置についても、励振電極を有するものであればよく、本発明の要旨を逸脱しない範囲で適宜変更し実施が可能である。
【0024】
【実施例】
以下、本発明に係るチップ弾性表面波フィルタを作製した具体的実施例について説明する。
【0025】
図5(a)〜(h)、及び図6(i)〜(m)は、それぞれチップ弾性表面波フィルタの製造プロセスを示す模式的な断面図である。なお、製造にはステッパー(縮小投影露光機)及びRIE(Reactive Ion Etching)装置を用いフォトリソグラフィーを行った。
【0026】
(1)まず、基板2(タンタル酸リチウム単結晶の42°Yカット)をアセトン・IPA等を使用して超音波洗浄を施し、有機成分の除去を行った。次に、クリーンオーブンによって充分に基板乾燥を行った後、図5(a)に示すように、電極3の成膜を行った。電極3の成膜にはスパッタリング装置を使用し、Al−Cu(2重量%)合金から成る電極3を成膜した。この電極膜厚は約2000Åとした。
【0027】
(2)図5(b)に示すように、フォトレジスト7を約0.5μmの厚みにスピンコートにより塗布した。
【0028】
(3)図5(c)に示すように、ステッパーにより所望形状にパターンニングを行い、現像装置にて不要部分のフォトレジスト7をアルカリ現像液で溶解させ、所望レジストパターンを形成した。
【0029】
(4)図5(d)に示すように、RIE装置により電極3を所望パターンにエッチングを行った。
【0030】
(5)図5(e)に示すように、フォトレジスト7を剥離しパターンニングを終了した。
【0031】
(6)図5(f)に示すように、SiO2 から成る電極保護膜4をスパッタリング装置にて250Åの厚みに成膜した。
【0032】
(7)図5(g)に示すように、フォトレジスト7を厚み約3μmで全面に再度塗布した。
【0033】
(8)図5(h)に示すように、入出力電極3a及び接地用電極3bを形成する基板2のフォトレジスト7の一部を感光させ削除した。
【0034】
(9)図6(i)に示すように、入出力電極3aと接地用電極3bを形成する基板2のSiO2 電極保護膜4をCDEにより除去した。
【0035】
(10)図6(j)に示すように、Al電極を電極保護膜4よりも厚くなるよう2μmの厚みに蒸着法により成膜した。
【0036】
(11)図6(k)に示すように、フォトレジスト7とともにフォトレジスト上の電極材料をリフトオフにより除去した。。
【0037】
(12)図6(l)に示すように、ウエハをダイシングラインに沿ってV字型の歯を用いてダイシングし、チップ端部のテーパ角θが45°〜80°となるように分割しチップを完成させた。
【0038】
次に、実装について説明する。
【0039】
(13)図6(m)に示すように、上記チップをフィルタ基板10にフェースダウン実装し、入出力電極3aとグランド電極3bを基板上の電極とを導電性樹脂(図示せず)により接続した。
【0040】
(14)図1に示すように、圧電基板2の上面2c及び側面2bにAlを蒸着により厚み1000Å形成した。
【0041】
(15)最後に、フィルタ基板10をチップに合わせてダイシングにより個片に分割して個々のフィルタ1を完成させた。
【0042】
上記の実装には、接地用電極3bの外周及び入出力電極部に、銀フィラーを90〜93重量%、又は81〜86重量%含有させた、反応性ポリエステル系樹脂又はエポキシ系樹脂をスクリーン印刷法にて塗布し、一旦、80℃,1時間程度の仮硬化を行い、次いで、120〜225℃,10〜60分で硬化させて実装を行った。
【0043】
上記弾性表面波フィルタの実装構造によれば、金属材により圧電基板外周部を取り囲んでおり、また基板2の周囲を接地用電極3bで取り囲こむようにしているので、気密性も同時に確保できた。また、入出力電極3aと接地用電極3bは同一プロセスにて形成されているので、平坦度に優れており導通信頼性を極めて高くすることができる。また、空間5の高さは2μm程度に確保されており、この高さは弾性表面波フィルタの中心周波数における波長とほぼ同等であり、これ以上の空間高さがあれば弾性表面波の振動を妨げることがない。
【0044】
このようにして得られたチップ弾性表面波フィルタの電気特性は、図4に示すように、従来生じていた減衰特性の劣化が無く、良好な減衰特性を得ることができた。また、通過帯域(ハッチング部分)よりも高周波側では20dB以上の減衰量を得ることができ、しかも通過帯域近傍の減衰特性の劣化もなかった。
【0045】
従来構成と比較して良好な減衰特性が得られたのは、従来のセラミックパッケージを不要とすることにより、不要なインダクタンスが発生しないこと、及びセラミックパッケージがないために、幅が広い入出力端子電極が不要で、回路基板との導通接続するだけの入出力電極で済むため、入出力間電極の対向距離が広く、発生容量が小さくなること等が考えられる。
【0046】
また、本発明のチップ弾性表面波フィルタにおいては、図2に表示d(対向間隔)で示す箇所において、入出力3aと接地用電極3bの対向容量による特性劣化が懸念されるが、これについては全く問題がないことを確認した。この箇所の容量により変化するのは主としてVSWR(定在波比)であり、VSWRに変化がなければ減衰特性については全く問題はないことが判明した。
【0047】
図7は対向間隔dとその箇所に生じる容量Cの関係を示すグラフである。対向間隔dが20μm以下になると急激に発生する容量が大きくなることを示している。dが20μmにおける容量は約0.14pFであるので、この場合のVSWRの変化は、図8に示すように高々0.08であることがわかった。したがって、対向間隔dは20μm以上あれば特性の劣化がないことが確認できた。
【0048】
【発明の効果】
本発明の弾性表面波装置によれば、圧電基板の側面が下面に対し鋭角に形成されているとともに、圧電基板の上面及び側面に保護膜が被着されているので、究極的に小型化,低背化が可能となり、圧電基板の破損を極力防止するとともに、保護膜を薄膜形成法にて均一に成膜することができる。
【0049】
さらに、保護膜として導電性である金属材料を用いることにより、保護膜の形成が容易である上に、不要な電磁波等をシールドすることができ、しかも気密性を十分に確保することが可能な、製造容易で信頼性に優れた弾性表面波装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る弾性表面波装置の実装構造を模式的に示す断面図である。
【図2】本発明に係る他の弾性表面波装置の電極構造を模式的に示す平面図である。
【図3】本発明に係る他の弾性表面波装置の実装構造を模式的に示す断面図である。
【図4】(a)〜(c)は、それぞれ本発明の弾性表面波装置の電気特性を説明する線図である。
【図5】(a)〜(h)は、それぞれ本発明の弾性表面波装置の製造工程を説明する断面図である。
【図6】(i)〜(m)は、それぞれ本発明の弾性表面波装置の製造工程を説明する断面図である。
【図7】本発明の弾性表面波装置の対向間隔と容量との関係を示す線図である。
【図8】本発明の弾性表面波装置の対向容量とVSWRとの関係を示す線図である。
【図9】従来の弾性表面波フィルタを説明する図であり、(a)は封止していない状態の上視図、(b)は下視図、(c)は(a)のA−A線拡大断面図である。
【図10】(a)〜(c)は、ぞれぞれ従来の弾性表面波フィルタの電気特性を説明する線図である。
【図11】従来の他の弾性表面波フィルタを説明する図であり、(a)は封止していない状態の上視図、(b)は下視図、(c)は(a)のB−B線拡大断面図である。
【図12】(a)〜(c)は、ぞれぞれ従来の他の弾性表面波フィルタの電気特性を説明する線図である。
【符号の説明】
1,1’:チップ弾性表面波フィルタ(弾性表面波装置)
2:圧電基板
3:電極
3a:入出力電極
3b:接地用電極
3c:共振子電極(励振電極)
3d:接続電極
4:電極保護膜
5:空間
6:回路基板
7:フォトレジスト
8:接着材
9:接続パッド
10:フィルタ基板
11:ビア電極
12:金属薄膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface acoustic wave device such as a surface acoustic wave filter and a duplexer, which is used in mobile communication devices such as a mobile phone.
[0002]
[Prior art and its problems]
At present, surface acoustic wave filters used in mobile communication devices are desired to have a low mounting area, a low weight, and a low height to the limit in order to miniaturize mobile phone terminals.
[0003]
Conventionally, the surface acoustic wave filter J1 shown in FIGS. 9A to 9C is mainly composed of a substrate 102 made of a piezoelectric single crystal on which excitation electrodes are formed, and a ceramic package 108 for sealingly mounting the substrate.
[0004]
A substrate 102 includes a comb-like surface acoustic wave resonator electrode (excitation electrode) 103 made of aluminum, aluminum-copper alloy, etc., input / output electrodes 113a and 113b, a ground electrode (not shown), and connection electrodes thereof. Are formed on the same surface.
[0005]
A protective film 104 is formed on the top surface of the excitation electrode 103 to prevent foreign substances such as dust from attaching and corroding. The substrate 102 is fixed to the bottom of the ceramic package 108 by a resin 110, and input / output electrodes and a ground electrode (not shown) on the substrate 102 are respectively connected to the input / output terminal electrodes 113a and 113b of the ceramic package 108 using wires 114. Are connected.
[0006]
A protective film is not formed on the portion where the wire 114 is connected in order to ensure the stability of the connection. Since the board | substrate 102 is an elastic body, the space 105 which ensures free vibration is required. For this reason, a lid 109 is provided on the upper portion, and hermetically sealed with the ceramic package 108 and the resin 110 so as to prevent vibration damping due to moisture or moisture entering from the outside. In particular, the entry of moisture and the like is a serious problem in terms of reliability and the like since it has deliquescence when the piezoelectric substrate is a lithium tetraborate single crystal or the like.
[0007]
In such a surface acoustic wave filter, the substrate 102 and the ceramic package 108 are electrically connected by the wire 114, and this height hinders miniaturization. Further, the ceramic package 108 is much larger than the substrate 102, for example, about 1.5 to 2.1 mm in size per side, and the bottom area is about three times as large.
[0008]
Further, as shown in FIG. 9A, the ground terminal electrode 113b in the ceramic package 108 is connected to the back surface of the ceramic package 108 through the narrow end face ground electrode as shown in FIG. 9C. Therefore, an inductor component is generated, and the attenuation characteristics at the low frequency side of the pass band (hatched portion) and at 4 to 6 GHz are deteriorated as indicated by a circle in FIG.
[0009]
Further, the surface acoustic wave filter J2 as shown in FIGS. 11A to 11C is formed by connecting the input / output electrode 103a and the ground electrode (not shown) on the substrate 102 with a ceramic bump 111 therebetween. It is connected to the terminal electrodes 113a and 113b on the package 108, and is reinforced with a conductive resin 112 to compensate for the low connection strength between the bump 111 and the terminal electrodes 113a and 113b. Further, the conductive resin 112 also plays a role of absorbing the poor flatness of the bumps 111. With the above structure, the height can be reduced by the height of the wire loop.
[0010]
However, since the bottom area of the ceramic package 108 is reduced, the gap g between the input / output terminal electrodes 113a on the back surface is reduced, and a capacitance is generated between the electrodes. For this reason, as indicated by a circle in FIG. 12, the attenuation characteristics on the high frequency side of the pass band (hatched portion) and in the vicinity of 3 GHz have deteriorated. Further, the ceramic package 108 still occupies most of the filter shape, which hinders the reduction in size, weight, and height.
[0011]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a surface acoustic wave device that can be miniaturized and is highly reliable without impairing attenuation characteristics.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, a surface acoustic wave device according to the present invention is a surface acoustic wave device in which a lower surface side of a piezoelectric substrate on which an excitation electrode, an input / output electrode and a ground electrode are formed is mounted on a circuit board. The side surface of the piezoelectric substrate is formed at an acute angle with respect to the lower surface, and a conductive protective film is formed on the upper surface and the side surface of the piezoelectric substrate, and the ground electrode is formed on the lower surface of the piezoelectric substrate. It is characterized in that it is formed so as to surround the excitation electrode in an outer peripheral portion and to be in contact with the protective film.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a surface acoustic wave device according to the present invention will be described below in detail with reference to the drawings.
[0014]
FIG. 1 shows a sectional view of a mounting structure of a surface acoustic wave filter 1 as a surface acoustic wave device, and FIG. 2 shows an electrode structure thereof. The surface acoustic wave filter 1 includes a lower surface 2a of a piezoelectric substrate 2 such as a lithium tantalate single crystal, a single crystal having a langasite-type crystal structure (for example, a lanthanum-gallium-niobium single crystal), or a lithium tetraborate single crystal. In addition, an electrode 3 such as an excitation electrode is formed. That is, a plurality of comb-shaped resonator electrodes 3c, which are excitation electrodes described later, are connected to the lower surface 2a of the piezoelectric substrate 2, for example, in a ladder circuit, and the connection electrodes 3d, input / output electrodes 3a, and grounding electrodes are connected. A semiconductive or insulating electrode protective film 4 such as silicon or silicon oxide is formed on the electrode 3b. In addition, a thin metal film 12 that is a conductive protective film is formed on the upper surface 2c and the side surface 2b of the piezoelectric substrate 2 by a thin film forming method, thereby realizing a chip surface acoustic wave filter having a structure with excellent weather resistance. .
[0015]
Here, the protective film formed on the upper surface and the side surface of the piezoelectric substrate 2 is conductive in order to shield outflow radio waves (such as harmonics), but can further ensure airtightness, and can form a film. For simplicity and ease, it is preferable to use a metal. In forming the metal thin film 12, the chip surface acoustic wave filter is individually separated by dicing, and then one or more kinds of metals made of Al, Au, Ti, Cr, etc. are formed by vapor deposition or an Al film. And a Cu film, a W film and an Au film, and the like.
[0016]
Although it is necessary to form the metal thin film 12 with an appropriate thickness also on the side surface of the piezoelectric substrate 2 separated by dicing, this film formation is most easily performed by a vapor deposition method. At this time, since the vapor deposition particles are formed in a direction substantially perpendicular to the surface to be vapor-deposited, uniform film formation is difficult when the side surface of the piezoelectric substrate 2 is vertical.
[0017]
Therefore, in the present invention, when the chip surface acoustic wave filter is individually separated by dicing, a dicing tooth having a convex shape (for example, a V shape) is used, and the chip surface acoustic wave filter is separated while forming a taper at the end portion of the element. Then, a metal thin film 12 having a thickness of 500 μm to 10 μm is formed on the upper surface and side surfaces of the piezoelectric substrate 2. Here, the film thickness is within the above range because if it is less than 500 mm, film formation becomes difficult on the side surface and upper surface edge of the piezoelectric substrate 2 and the weather resistance cannot be maintained, and if it exceeds 10 μm, the metal thin film 12 and This is because a difference in linear expansion coefficient of the piezoelectric substrate 2 causes a compressive stress at a low temperature or a tensile stress at a high temperature, which adversely affects the temperature characteristics.
[0018]
Further, the angle (taper angle) θ formed between the lower surface 2a and the side surface 2b of the piezoelectric substrate 2 clearly shown in FIGS. 1 and 6A is 45 to 80 degrees.
[0019]
The surface acoustic wave filter 1 configured as described above is mounted on the circuit board 6 by forming the grounding electrode 3 b surrounding the resonator electrode 3 c on the lower surface or side surface of the piezoelectric substrate 2. The distance h between the surface of the circuit board 6 and the surface of the resonator electrode 3c is set to a distance equal to or greater than the wavelength of the surface acoustic wave.
[0020]
In FIG. 1, 8 is a conductive adhesive made of conductive resin, 9 is a connection pad made of metal or the like formed on the filter substrate 10, 11 is a via electrode, and 13 is an external extraction electrode. is there. The surface acoustic wave filter 1 configured as described above is mounted on an external circuit board. As shown in FIG. 3, a surface acoustic wave filter in which the lower surface 2a side of the piezoelectric substrate 2 is directly face-down mounted on a circuit substrate 6 made of glass epoxy or the like instead of the filter substrate 10 of FIG. 1 ′ (same configuration as the surface acoustic wave filter 1 except that the circuit board 6 is used instead of the filter board 10) may be configured.
[0021]
Here, since the input / output electrode 3a and the grounding electrode 3b are formed by the same process, these electrodes are excellent in flatness. In addition, since the input / output electrodes and the grounding electrode protrude from the electrode protection film 4 made of semiconductive or insulating material, the space 5 for free vibration can be maintained, and the filter substrate 10 or the circuit substrate 6 remains as it is. It can be mounted face down. Further, since the grounding electrode 3b is formed all around the substrate 2, airtightness is ensured.
[0022]
Moreover, since the metal thin film is formed on the upper surface and the side surface of the piezoelectric substrate of the chip surface acoustic wave filter, unnecessary electromagnetic waves can be blocked by an RF (Radio Frequency) block.
[0023]
Although the ladder type filter has been described in the present invention, a surface acoustic wave device such as a resonator type or propagation type filter or a duplexer other than a filter may be used as long as it has an excitation electrode. Changes and modifications can be made as appropriate without departing from the scope.
[0024]
【Example】
Hereinafter, specific examples in which the chip surface acoustic wave filter according to the present invention was produced will be described.
[0025]
FIGS. 5A to 5H and FIGS. 6I to 6M are schematic cross-sectional views showing the manufacturing process of the chip surface acoustic wave filter, respectively. In the manufacture, photolithography was performed using a stepper (reduction projection exposure apparatus) and an RIE (Reactive Ion Etching) apparatus.
[0026]
(1) First, the substrate 2 (42 ° Y cut of lithium tantalate single crystal) was subjected to ultrasonic cleaning using acetone / IPA or the like to remove organic components. Next, after the substrate was sufficiently dried by a clean oven, the electrode 3 was formed as shown in FIG. A sputtering apparatus was used to form the electrode 3, and the electrode 3 made of an Al—Cu (2 wt%) alloy was formed. The electrode film thickness was about 2000 mm.
[0027]
(2) As shown in FIG. 5B, a photoresist 7 was applied to a thickness of about 0.5 μm by spin coating.
[0028]
(3) As shown in FIG. 5C, patterning was performed to a desired shape with a stepper, and unnecessary portions of the photoresist 7 were dissolved with an alkaline developer using a developing device to form a desired resist pattern.
[0029]
(4) As shown in FIG. 5D, the electrode 3 was etched into a desired pattern by an RIE apparatus.
[0030]
(5) As shown in FIG. 5E, the photoresist 7 was peeled off and the patterning was completed.
[0031]
(6) As shown in FIG. 5F, the electrode protective film 4 made of SiO 2 was formed to a thickness of 250 mm by a sputtering apparatus.
[0032]
(7) As shown in FIG. 5G, the photoresist 7 was applied again to the entire surface with a thickness of about 3 μm.
[0033]
(8) As shown in FIG. 5H, a portion of the photoresist 7 on the substrate 2 on which the input / output electrodes 3a and the grounding electrode 3b are formed was exposed and removed.
[0034]
(9) As shown in FIG. 6I, the SiO 2 electrode protective film 4 on the substrate 2 on which the input / output electrodes 3a and the grounding electrode 3b are formed was removed by CDE.
[0035]
(10) As shown in FIG. 6 (j), an Al electrode was formed to a thickness of 2 μm by vapor deposition so as to be thicker than the electrode protective film 4.
[0036]
(11) As shown in FIG. 6K, the electrode material on the photoresist together with the photoresist 7 was removed by lift-off. .
[0037]
(12) As shown in FIG. 6 (l), the wafer is diced along the dicing line using V-shaped teeth and divided so that the taper angle θ of the chip end is 45 ° to 80 °. The chip was completed.
[0038]
Next, implementation will be described.
[0039]
(13) As shown in FIG. 6 (m), the chip is mounted face-down on the filter substrate 10, and the input / output electrode 3a and the ground electrode 3b are connected to the electrode on the substrate by a conductive resin (not shown). did.
[0040]
(14) As shown in FIG. 1, a thickness of 1000 mm was formed on the upper surface 2c and side surface 2b of the piezoelectric substrate 2 by vapor deposition of Al.
[0041]
(15) Finally, the filter substrate 10 was matched with the chip and divided into individual pieces by dicing to complete individual filters 1.
[0042]
In the above mounting, a reactive polyester resin or epoxy resin containing 90 to 93% by weight or 81 to 86% by weight of silver filler in the outer periphery and the input / output electrode part of the ground electrode 3b is screen-printed. It was applied by the method, temporarily cured at 80 ° C. for about 1 hour, and then cured at 120 to 225 ° C. for 10 to 60 minutes for mounting.
[0043]
According to the mounting structure of the surface acoustic wave filter, the outer peripheral portion of the piezoelectric substrate is surrounded by the metal material, and the periphery of the substrate 2 is surrounded by the grounding electrode 3b, so that airtightness can be secured at the same time. Further, since the input / output electrode 3a and the grounding electrode 3b are formed by the same process, the flatness is excellent and the conduction reliability can be extremely increased. Further, the height of the space 5 is secured to about 2 μm, and this height is almost equal to the wavelength at the center frequency of the surface acoustic wave filter. If there is a space height higher than this, the vibration of the surface acoustic wave is caused. There is no hindrance.
[0044]
As shown in FIG. 4, the electrical characteristics of the chip surface acoustic wave filter obtained in this way were not deteriorated in the attenuation characteristics that had occurred in the past, and good attenuation characteristics could be obtained. Further, an attenuation amount of 20 dB or more can be obtained on the higher frequency side than the pass band (hatched portion), and the attenuation characteristics in the vicinity of the pass band were not deteriorated.
[0045]
Good attenuation characteristics were obtained compared to the conventional configuration because the conventional ceramic package is not required, unnecessary inductance is not generated, and there is no ceramic package, so the input / output terminals are wide. Since no electrode is required and only an input / output electrode that is conductively connected to the circuit board is required, it is conceivable that the facing distance between the input / output electrodes is wide and the generated capacity is reduced.
[0046]
Further, in the surface acoustic wave filter of the present invention, there is a concern about characteristic deterioration due to the opposing capacitance between the input / output 3a and the grounding electrode 3b at the position indicated by d (opposite spacing) in FIG. It was confirmed that there was no problem at all. It is VSWR (standing wave ratio) that changes depending on the capacitance at this point, and it has been found that there is no problem with the attenuation characteristics if there is no change in VSWR.
[0047]
FIG. 7 is a graph showing the relationship between the facing distance d and the capacitance C generated at that location. It is shown that when the facing distance d is 20 μm or less, the capacity generated suddenly increases. Since the capacitance when d is 20 μm is about 0.14 pF, it has been found that the change in VSWR in this case is 0.08 at most, as shown in FIG. Therefore, it was confirmed that there was no deterioration in characteristics when the facing distance d was 20 μm or more.
[0048]
【The invention's effect】
According to the surface acoustic wave device of the present invention, the side surface of the piezoelectric substrate is formed at an acute angle with respect to the lower surface, and the protective film is deposited on the upper surface and the side surface of the piezoelectric substrate. It is possible to reduce the height, prevent damage to the piezoelectric substrate as much as possible, and form a protective film uniformly by a thin film forming method.
[0049]
Further, by using a conductive metal material as the protective film, the protective film can be easily formed, unnecessary electromagnetic waves can be shielded, and sufficient airtightness can be secured. Therefore, it is possible to provide a surface acoustic wave device that is easy to manufacture and excellent in reliability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a mounting structure of a surface acoustic wave device according to the present invention.
FIG. 2 is a plan view schematically showing an electrode structure of another surface acoustic wave device according to the present invention.
FIG. 3 is a cross-sectional view schematically showing a mounting structure of another surface acoustic wave device according to the present invention.
FIGS. 4A to 4C are diagrams illustrating the electrical characteristics of the surface acoustic wave device according to the present invention. FIG.
FIGS. 5A to 5H are cross-sectional views illustrating manufacturing steps of the surface acoustic wave device of the present invention.
6 (a) to 6 (m) are cross-sectional views illustrating manufacturing steps of the surface acoustic wave device of the present invention.
FIG. 7 is a diagram showing a relationship between a facing distance and a capacity of the surface acoustic wave device of the present invention.
FIG. 8 is a diagram showing the relationship between the counter capacitance and the VSWR of the surface acoustic wave device of the present invention.
9A and 9B are diagrams for explaining a conventional surface acoustic wave filter, in which FIG. 9A is a top view in a non-sealed state, FIG. 9B is a bottom view, and FIG. It is an A line expanded sectional view.
FIGS. 10A to 10C are diagrams for explaining electrical characteristics of a conventional surface acoustic wave filter, respectively.
11A and 11B are diagrams for explaining another conventional surface acoustic wave filter, in which FIG. 11A is a top view in an unsealed state, FIG. 11B is a bottom view, and FIG. It is a BB line expanded sectional view.
FIGS. 12A to 12C are diagrams illustrating electrical characteristics of other conventional surface acoustic wave filters, respectively.
[Explanation of symbols]
1, 1 ': Chip surface acoustic wave filter (surface acoustic wave device)
2: Piezoelectric substrate 3: Electrode 3a: Input / output electrode 3b: Ground electrode 3c: Resonator electrode (excitation electrode)
3d: Connection electrode 4: Electrode protective film 5: Space 6: Circuit board 7: Photoresist 8: Adhesive 9: Connection pad 10: Filter substrate 11: Via electrode 12: Metal thin film

Claims (1)

励振電極、入出力電極および接地用電極を形成した圧電基板の下面側を回路基板上に実装するようにした弾性表面波装置であって、前記圧電基板の側面を下面に対し鋭角に形成するとともに、該圧電基板の上面及び側面に導電性の保護膜を被着形成しており、前記接地用電極を前記圧電基板の下面の外周部に前記励振電極を取り囲むとともに前記保護膜に接するように形成したことを特徴とする弾性表面波装置。A surface acoustic wave device in which a lower surface side of a piezoelectric substrate on which an excitation electrode , an input / output electrode and a grounding electrode are formed is mounted on a circuit board, and the side surface of the piezoelectric substrate is formed at an acute angle with respect to the lower surface. A conductive protective film is formed on the upper and side surfaces of the piezoelectric substrate, and the grounding electrode is formed on the outer periphery of the lower surface of the piezoelectric substrate so as to surround the excitation electrode and to be in contact with the protective film. A surface acoustic wave device.
JP12087199A 1999-04-28 1999-04-28 Surface acoustic wave device Expired - Fee Related JP3722642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12087199A JP3722642B2 (en) 1999-04-28 1999-04-28 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12087199A JP3722642B2 (en) 1999-04-28 1999-04-28 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2000312127A JP2000312127A (en) 2000-11-07
JP3722642B2 true JP3722642B2 (en) 2005-11-30

Family

ID=14797024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12087199A Expired - Fee Related JP3722642B2 (en) 1999-04-28 1999-04-28 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP3722642B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299996A (en) * 2001-03-30 2002-10-11 Kyocera Corp Electronic component device
KR100431180B1 (en) * 2001-12-07 2004-05-12 삼성전기주식회사 Method of packaging surface acoustic wave device
JP2003298392A (en) * 2002-03-29 2003-10-17 Fujitsu Media Device Kk Filter chip and filter device
JP3923368B2 (en) * 2002-05-22 2007-05-30 シャープ株式会社 Manufacturing method of semiconductor device
DE10325281B4 (en) * 2003-06-04 2018-05-17 Snaptrack, Inc. Electroacoustic component and method of manufacture
US7397327B2 (en) 2004-04-08 2008-07-08 Murata Manufacturing Co., Ltd. Surface acoustic wave filter and method of producing the same
JPWO2006001125A1 (en) 2004-06-25 2008-04-17 株式会社村田製作所 Piezoelectric device
US7332986B2 (en) 2004-06-28 2008-02-19 Kyocera Corporation Surface acoustic wave apparatus and communications equipment
WO2007114390A1 (en) * 2006-03-31 2007-10-11 Kyocera Corporation Elastic surface wave element, elastic surface wave device, and communication device
US8004370B2 (en) 2006-03-31 2011-08-23 Kyocera Corporation Surface acoustic wave element, surface acoustic wave apparatus, and communication apparatus
JP5558158B2 (en) * 2009-03-27 2014-07-23 京セラ株式会社 Surface acoustic wave device and manufacturing method thereof
JP6164879B2 (en) * 2013-03-08 2017-07-19 セイコーインスツル株式会社 Package, piezoelectric vibrator, oscillator, electronic equipment and radio clock
KR102588795B1 (en) 2016-02-18 2023-10-13 삼성전기주식회사 Acoustic resonator and manufacturing method thereof
CN115021706A (en) * 2022-07-15 2022-09-06 深圳新声半导体有限公司 Surface acoustic wave filter based on piezoelectric material

Also Published As

Publication number Publication date
JP2000312127A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
JP6290850B2 (en) Elastic wave device and elastic wave module
JP3677409B2 (en) Surface acoustic wave device and manufacturing method thereof
JP4460612B2 (en) Surface acoustic wave device and manufacturing method thereof
JP3722642B2 (en) Surface acoustic wave device
US7102272B2 (en) Piezoelectric component and method for manufacturing the same
JP4518877B2 (en) Surface acoustic wave device
JP2000196400A (en) Mounting structure for surface acoustic wave device
JP2004153580A (en) Surface acoustic wave device
JP3716123B2 (en) Surface acoustic wave device
JP2001345673A (en) Surface acoustic wave device
JP4454410B2 (en) Surface acoustic wave device, method of manufacturing the same, and communication device
CN110495098B (en) Electronic component and module provided with same
JP4458954B2 (en) Surface acoustic wave device, method of manufacturing the same, and communication device
JP4467403B2 (en) Surface acoustic wave element and communication apparatus
JPH10163797A (en) Surface acoustic wave device
JP4454411B2 (en) Surface acoustic wave device, method of manufacturing the same, and communication device
JPH10215142A (en) Surface acoustic wave device
JP4514571B2 (en) Surface acoustic wave device, method of manufacturing the same, and communication device
JP4514572B2 (en) Surface acoustic wave device and communication device
JP2004235896A (en) Surface acoustic wave device
JP2001077658A (en) Surface acoustic wave device
JP3652067B2 (en) Surface acoustic wave device
JP4514562B2 (en) Surface acoustic wave device and communication device
CN117713741A (en) Film surface acoustic wave filter and manufacturing method thereof
JP2004207998A (en) Electronic component and electronic apparatus using this electronic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees