JP2009536705A - Method and apparatus - Google Patents

Method and apparatus Download PDF

Info

Publication number
JP2009536705A
JP2009536705A JP2009508487A JP2009508487A JP2009536705A JP 2009536705 A JP2009536705 A JP 2009536705A JP 2009508487 A JP2009508487 A JP 2009508487A JP 2009508487 A JP2009508487 A JP 2009508487A JP 2009536705 A JP2009536705 A JP 2009536705A
Authority
JP
Japan
Prior art keywords
gas phase
circuit
liquid phase
energy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009508487A
Other languages
Japanese (ja)
Inventor
ルネ ミットゥン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rm Energy AS
Original Assignee
Rm Energy AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rm Energy AS filed Critical Rm Energy AS
Publication of JP2009536705A publication Critical patent/JP2009536705A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

エネルギー転送システムは、転送媒体のための密閉回路(20)を包含し、凝縮器/吸収器(22)、液体ポンプ(24)、蒸発器(26)、過熱器(28)及びエネルギー消費装置(30)を含む。回路は低圧側(32)及び高圧側(34)を有し、媒体は、高圧側(34)で液相から気相に変換され、低圧側(32)で戻る。凝縮器/吸収器(22)は、例えば石炭粉末やナノチューブのような固形材料の吸収性物質を含み、モジュールユニットを形成するために蒸発器(26)と結合してもよい。The energy transfer system includes a closed circuit (20) for the transfer medium and includes a condenser / absorber (22), a liquid pump (24), an evaporator (26), a superheater (28) and an energy consuming device ( 30). The circuit has a low pressure side (32) and a high pressure side (34), and the medium is converted from the liquid phase to the gas phase on the high pressure side (34) and returns on the low pressure side (32). The condenser / absorber (22) contains solid material absorbent material, such as coal powder or nanotubes, and may be coupled to the evaporator (26) to form a module unit.

Description

本発明は、エネルギーを転送するための方法及び装置に関する。   The present invention relates to a method and apparatus for transferring energy.

エネルギー転送サイクルは、蒸発装置に供給された熱によって液体が気化されることが知られており、こうして生成された蒸気は、特にタービンのような蒸気エンジンを駆動するために、エネルギーを出力するのに使用され、タービンからの蒸気出力は、復水装置内で凝縮され、そして、こうして生成された液体は、蒸発装置へポンプで送り戻される。そのようなシステムは、例えばBE−A−895,148;DE−A−3,445,785;GB−A−9160/1899;及びGB−A−1535154に開示されている。   Energy transfer cycles are known to cause liquids to be vaporized by the heat supplied to the evaporator, and the steam thus generated outputs energy, particularly for driving steam engines such as turbines. The steam output from the turbine is condensed in the condensing unit, and the liquid thus produced is pumped back to the evaporator unit. Such systems are disclosed, for example, in BE-A-895,148; DE-A-3,445,785; GB-A-9160 / 1899; and GB-A-1535154.

循環媒体を低揮発性液体と高揮発性液体との混合物の形態とし、後者の液体を凝縮器/吸収器で凝縮し、ここで後者の液体を低揮発性液体へ吸収し戻すことが知られている。そのようなシステムは、EP−A−181,275;EP−A−328,103;GB−A−294,882;JP−A−56−083,504;JP−A−56−132,410;JP−A−05−059,908;及びUS−A−5,007,240に開示されている。   It is known to make the circulating medium in the form of a mixture of low and high volatility liquids, condensing the latter liquid with a condenser / absorber, where the latter liquid is absorbed back into the low volatility liquid. ing. Such systems are EP-A-181,275; EP-A-328,103; GB-A-294,882; JP-A-56-083,504; JP-A-56-132,410; JP-A-05-059,908; and US-A-5,007,240.

本発明の1つの様相によれば、回路を通して流体物質を流れさせ、そして順次、前記物質が比較的高圧の下では、源からエネルギーを入力することにより前記物質を液相から気相へ変換し、前記物質が比較的低圧の下では、エネルギーを出力することにより前記物質を前記気相から前記液相へ変換する、エネルギーを転送する方法が提供されている。   According to one aspect of the present invention, a fluid material is flowed through a circuit, and sequentially converts the material from a liquid phase to a gas phase by inputting energy from a source under relatively high pressure. A method of transferring energy is provided in which the material is converted from the gas phase to the liquid phase by outputting energy when the material is at a relatively low pressure.

本発明の他の様相によれば、回路と、流体物質を前記回路の中で変位させるようにする変位装置と、源からエネルギーを入力することにより前記物質を液相から気相へ変換させるようにする前記回路内の蒸発装置と、エネルギーを出力することにより前記物質を前記気相から前記液相へ変換させるようにする前記回路内の凝縮装置とを包含しており、前記変位装置が、前記液相に直接作用するポンプを含み、前記ポンプが前記凝縮装置の下流且つ前記蒸発装置の上流にある、エネルギーを転送するための装置が提供されている。   According to another aspect of the present invention, a circuit, a displacement device for displacing a fluid substance in the circuit, and converting the substance from a liquid phase to a gas phase by inputting energy from a source. An evaporation device in the circuit, and a condensing device in the circuit for converting the substance from the gas phase to the liquid phase by outputting energy, the displacement device comprising: An apparatus for transferring energy is provided that includes a pump that acts directly on the liquid phase, wherein the pump is downstream of the condenser and upstream of the evaporator.

本発明により、供給された全エネルギーにおける利用可能な割合を増加させること、換言すると、システムに供給された全エネルギーにおける、変換の達成で失われる割合を減少させることが可能となる。   The present invention makes it possible to increase the percentage of available energy in the total energy supplied, in other words to reduce the percentage lost in achieving conversion in the total energy supplied to the system.

有益的には、凝縮装置は、固形材料の吸収剤を有する凝縮器/吸収器の形態である。これは、媒体混合物を使用するシステムに比べ、混合物を蒸気と液体へ分離するために熱を与える必要が回避される利点がある。   Beneficially, the condensing device is in the form of a condenser / absorber with a solid material absorbent. This has the advantage that the need to apply heat to separate the mixture into vapor and liquid is avoided compared to systems that use media mixtures.

さらに、本発明システムは、凝縮装置を蒸発装置と組み合わせて、単一の組立体、好適にはモジュールユニットとすることにより、比較的簡素化することができる。   Furthermore, the system according to the invention can be relatively simplified by combining the condensing device with an evaporation device into a single assembly, preferably a modular unit.

図1は、先行技術の冷凍システムを示す概略図である。FIG. 1 is a schematic diagram showing a prior art refrigeration system. 図2は、本発明によるシステムの実施例の概略図である。FIG. 2 is a schematic diagram of an embodiment of a system according to the present invention. 図3は、図2のシステムの様々な適用を示す概略図である。FIG. 3 is a schematic diagram illustrating various applications of the system of FIG. 図4は、図2の実施例の一形式を詳細に示す概略図である。FIG. 4 is a schematic diagram illustrating in detail one form of the embodiment of FIG. 図5は、図2の実施例の他の形式を詳細に示す概略図である。FIG. 5 is a schematic diagram detailing another form of the embodiment of FIG.

本発明を明確且つ完全に開示するために、以下本発明の実施例について添付図面を参照して詳述する。   In order to clearly and completely disclose the present invention, embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

図1に関し、システムは、圧縮機4、凝縮器6、膨張弁8及び蒸発器10を直列に含む密閉回路2を包含する。回路2は、例えば物質R22(単一のハイドロクロロフルオロカーボン)のような冷媒へ熱エネルギーを入力する蒸発器10を含んでいる低圧側12と、冷媒から熱エネルギーを放出させる凝縮器6を含んでいる高圧側14とを有する。このシステムの欠点は、かなりのパワー入力を必要とし且つ嵩張って高価である気相圧縮機4が必要となることである。この先行技術のシステムでは、圧縮機4は気相冷媒の圧力を増加させ、その後、気相冷媒が凝縮器6で液相に変換され、この凝縮器から熱エネルギーが放出され、冷媒は膨張弁8に達し、この膨張弁は、圧力降下に起因する物質への冷却効果を有していて、部分的に気相及び部分的に液相への物質の変換を生じさせる。蒸発器10では、冷たい液体物質が外部から熱エネルギーを受け取り、物質はその気相で圧縮機4に供給される。こうして、物質は、低圧の下ではその液相からその気相へ変換され、高圧の下ではその気相からその液相へ変換される。   With reference to FIG. 1, the system includes a closed circuit 2 that includes a compressor 4, a condenser 6, an expansion valve 8, and an evaporator 10 in series. Circuit 2 includes a low pressure side 12 that includes an evaporator 10 that inputs thermal energy to a refrigerant, such as the substance R22 (single hydrochlorofluorocarbon), and a condenser 6 that releases the thermal energy from the refrigerant. Having a high pressure side 14. The disadvantage of this system is that it requires a gas phase compressor 4 that requires significant power input and is bulky and expensive. In this prior art system, the compressor 4 increases the pressure of the gas phase refrigerant, after which the gas phase refrigerant is converted into the liquid phase by the condenser 6, the heat energy is released from the condenser, and the refrigerant is an expansion valve. 8, the expansion valve has a cooling effect on the material due to the pressure drop, causing the conversion of the material partially into the gas phase and partially into the liquid phase. In the evaporator 10, a cold liquid material receives heat energy from the outside, and the material is supplied to the compressor 4 in its gas phase. Thus, the substance is converted from its liquid phase to its gas phase under low pressure and from its gas phase to its liquid phase under high pressure.

図2に関し、このシステムも密閉回路20を含んでいるが、このシステムは、凝縮器/吸収器組合せ22、液体ポンプ24、蒸発器26、過熱器28及びエネルギー消費装置30を含んでおり、エネルギー消費装置はタービン、プロペラ、ピストン−シリンダ駆動装置あるいはガス機関であってよい。また、回路20は低圧側32及び高圧側34を有するが、物質は、高圧側34ではその液相からその気相へ、そして低圧側32ではその気相からその液相へ変換される。損失を無視すると、周囲環境から気相の物質が熱エネルギーを受け取り得る過熱器28への熱入力は、エネルギー消費装置30で消費される。回路20内の物質は、過熱器28に熱エネルギーを供給する周囲の源の温度よりも低い少なくとも30℃である大気圧の蒸発温度レベルを有するすべての適宜の物質であってよい。周囲の源は、地面付近の空気、あるいは海、湖又は河川の水であってよい。好適には、蒸発温度レベルは、源の温度よりもかなり低く、例えば、水では少なくとも5℃低く、空気では少なくとも10℃低い。そのような物質の例はR22,二酸化炭素及び窒素である。   With respect to FIG. 2, this system also includes a closed circuit 20, which includes a condenser / absorber combination 22, a liquid pump 24, an evaporator 26, a superheater 28, and an energy consuming device 30, and energy. The consuming device may be a turbine, a propeller, a piston-cylinder drive or a gas engine. The circuit 20 also has a low pressure side 32 and a high pressure side 34, but material is converted from its liquid phase to its gas phase on the high pressure side 34 and from its gas phase to its liquid phase on the low pressure side 32. Neglecting the loss, the heat input to the superheater 28 where the gas phase material can receive thermal energy from the surrounding environment is consumed by the energy consuming device 30. The material in the circuit 20 may be any suitable material having an atmospheric pressure evaporation temperature level that is at least 30 ° C. lower than the temperature of the ambient source supplying thermal energy to the superheater 28. The ambient source may be air near the ground, or sea, lake or river water. Preferably, the evaporation temperature level is much lower than the source temperature, for example at least 5 ° C lower for water and at least 10 ° C lower for air. Examples of such materials are R22, carbon dioxide and nitrogen.

このシステムの利点は、圧縮機4に相応する液体ポンプ24が、回路を回って物質を駆動するための原動力を供給し、圧縮機4よりはるかに少ない所要電力を有し、さらに、よりコンパクトで安価である。   The advantage of this system is that the liquid pump 24 corresponding to the compressor 4 provides the motive force to drive the material around the circuit, has much less power requirements than the compressor 4, and is more compact. Inexpensive.

図3に関し、これは、過熱器28への熱エネルギー入力が、外気から、あるいは、河川又は海からのような周囲の水からであってよいことを示している。特に、過熱器28は、建物、特にホテルのような大きな建物の空気調和装置の冷水器に代えることができる。また、図は、エネルギー消費装置30が発電機38、船舶用プロペラ40を駆動してもよく、あるいは、車両42のエンジンに代えてもよいことを示している。発電機38は、ホテル36、家屋44及び/又はポンプ24に供給するのに使用されてよい。   With respect to FIG. 3, this indicates that the thermal energy input to the superheater 28 may be from outside air or from ambient water, such as from a river or sea. In particular, the superheater 28 can be replaced by a water cooler of an air conditioner in a building, particularly a large building such as a hotel. Moreover, the figure shows that the energy consuming apparatus 30 may drive the generator 38 and the marine propeller 40 or may be replaced with the engine of the vehicle 42. The generator 38 may be used to supply the hotel 36, the house 44 and / or the pump 24.

図4に関し、凝縮器/吸収器22は、例えば木炭又石炭の粉末あるいはナノチューブのような毛細管性質の固形材料の吸収性物質48を入れたシェル46を含む。シェル46及び吸収性物質48を通って、コイル50の形状をなす蒸発器26が延びている。従って、凝縮器/吸収器22及び蒸発器26は、4つの入口及び出口だけを備えた組立体を構成する。コイル50に接している吸収性物質48の作用は、吸収性物質に入る物質の飽和蒸気圧を低減することである。コイル50の内部では、吸収性物質48内で存在するよりも高圧力の下で気相が生起される。   Referring to FIG. 4, the condenser / absorber 22 includes a shell 46 containing a solid material absorbent material 48 of capillary nature, such as charcoal or coal powder or nanotubes. Extending through the shell 46 and absorbent material 48 is an evaporator 26 in the form of a coil 50. Thus, the condenser / absorber 22 and the evaporator 26 constitute an assembly with only four inlets and outlets. The action of the absorbent material 48 in contact with the coil 50 is to reduce the saturated vapor pressure of the material entering the absorbent material. Inside the coil 50, a gas phase is created under a higher pressure than is present in the absorbent material 48.

通常、熱力学サイクルでは、凝縮器圧力は蒸発器圧力よりも高いが、図4に示されるシステムでは、吸収性物質48を使用しているために、凝縮器圧力は蒸発器圧力よりも低い。吸収性物質48内での蒸気の凝縮の間に放出される熱エネルギーは、蒸発器26のための熱要求を平均させる。コイル50の内面面積は、過熱器28への蒸気の質量流量を決定する大きな要因である。回路内のガス状物質の温度が周囲温度よりも低いので、過熱器28は、外気又は水から回路内の物質へ熱エネルギーを転送する。過熱された蒸気は、圧力調整ソレノイド弁52を介してタービン30に入る。タービン30からの低圧の出力蒸気は、凝縮器/吸収器22に入って凝縮され、従って熱エネルギーを放出する。タービン30は、発電機38を駆動するのに使用され、この発電機は、タービン30による電力発生よりもはるかに少ない電力消費、例えばタービンで発生された電力の10%〜15%の電力消費をもつ圧縮機54を駆動する。圧縮機54は、液体リザーバ56に、回路20内の最低圧力を生起する。シェル46の底部には、液体の凝縮液のためのリザーバ56への流れ接続部57がある。凝縮液が吸収性物質48を通り過ぎると、液体の一部は直ちに蒸発し、質量流量の約10%である「フラッシュ」蒸気を生じる。圧縮機54は、リザーバ56からこの「フラッシュ」蒸気を抜き出し、そして、補助凝縮器58及び膨張弁60を経て、これらアイテムの援助で、「フラッシュ」蒸気を液体の凝縮液に変換し、これをリザーバ56に送出する。液体ポンプ62は、リザーバ56内の凝縮液を逆止弁64を介してコイル50へ送る。ポンプ62はギヤ又は遠心ポンプであってよい。圧縮機54は、装置30から機械的に、あるいは、スイッチ68及び70を経て発電機38又は外部電源66から電気的に駆動されてよい。圧力逃し弁72はタービン30及びソレノイド弁52をバイパスする。   Normally, in the thermodynamic cycle, the condenser pressure is higher than the evaporator pressure, but in the system shown in FIG. 4, the condenser pressure is lower than the evaporator pressure because of the use of the absorbent material 48. The thermal energy released during vapor condensation within the absorbent material 48 averages the heat demand for the evaporator 26. The inner surface area of the coil 50 is a major factor that determines the mass flow rate of steam to the superheater 28. Since the temperature of the gaseous substance in the circuit is lower than the ambient temperature, the superheater 28 transfers thermal energy from the outside air or water to the substance in the circuit. The superheated steam enters the turbine 30 via the pressure regulating solenoid valve 52. The low pressure output steam from the turbine 30 enters the condenser / absorber 22 and is condensed, thus releasing thermal energy. The turbine 30 is used to drive a generator 38 that produces much less power consumption than that generated by the turbine 30, for example, 10% to 15% of the power generated by the turbine. The compressor 54 having the same is driven. The compressor 54 creates a minimum pressure in the circuit 20 in the liquid reservoir 56. At the bottom of the shell 46 is a flow connection 57 to a reservoir 56 for liquid condensate. As the condensate passes through the absorbent material 48, a portion of the liquid immediately evaporates, producing a “flash” vapor that is approximately 10% of the mass flow rate. The compressor 54 draws this “flash” vapor from the reservoir 56 and, through the auxiliary condenser 58 and expansion valve 60, with the assistance of these items, converts the “flash” vapor into a liquid condensate that is Delivered to reservoir 56. The liquid pump 62 sends the condensate in the reservoir 56 to the coil 50 via the check valve 64. The pump 62 may be a gear or a centrifugal pump. The compressor 54 may be driven mechanically from the device 30 or electrically from the generator 38 or external power source 66 via switches 68 and 70. The pressure relief valve 72 bypasses the turbine 30 and the solenoid valve 52.

図5に示される形式は、多くの点で図4のものとは異なる。第1に、特にシステムの始動位相中に稼動する補助回路61は、リザーバ56を含む代わりに、リザーバ56の内部に主過冷却器を形成する蒸発器74を含み、その結果、回路61は回路20から完全に独立するとともに、「フラッシュ」蒸気はリザーバ56自体の内部で凝縮される。さらに、液体は、リザーバ56内の補助過冷却器76を介し、ポンプ62によりコイル50へ送られ、これにより、ポンプ62による液体の加熱が中和される。その上、装置30は出力歯車箱及び動力軸78を有する。さらに、装置30からの低圧蒸気出力は、配管を介する代わりに、シェル46の頂部へ直接入る。   The format shown in FIG. 5 differs from that of FIG. 4 in many respects. First, the auxiliary circuit 61 that operates, particularly during the startup phase of the system, includes an evaporator 74 that forms a main subcooler within the reservoir 56, instead of including the reservoir 56, so that the circuit 61 is a circuit. While completely independent from 20, the “flash” vapor is condensed within the reservoir 56 itself. Further, the liquid is sent to the coil 50 by the pump 62 via the auxiliary subcooler 76 in the reservoir 56, thereby neutralizing the liquid heating by the pump 62. In addition, the device 30 has an output gearbox and a power shaft 78. Further, the low pressure steam output from the device 30 enters the top of the shell 46 directly instead of via piping.

Claims (14)

回路を通して流体物質を流れさせ、そして順次、前記物質が比較的高圧の下では、源からエネルギーを入力することにより前記物質を液相から気相へ変換し、前記物質が比較的低圧の下では、エネルギーを出力することにより前記物質を前記気相から前記液相へ変換する、エネルギーを転送する方法。   The fluid material is caused to flow through the circuit and, in turn, when the material is at a relatively high pressure, converting the material from a liquid phase to a gas phase by inputting energy from a source, and when the material is at a relatively low pressure, A method of transferring energy, wherein the substance is converted from the gas phase to the liquid phase by outputting energy. 前記気相から前記液相への前記物質の前記変換が、前記気相の飽和蒸気圧を低減させることからなり、前記気相から前記液相への前記物質の前記変換が、固形の吸収剤を利用して前記気相を吸着する、請求項1記載の方法。   The conversion of the substance from the gas phase to the liquid phase comprises reducing the saturated vapor pressure of the gas phase, and the conversion of the substance from the gas phase to the liquid phase is a solid absorbent. The method according to claim 1, wherein the gas phase is adsorbed by using the method. 前記物質が、周囲の水である前記源の温度よりも少なくとも5℃低い、前記液相と大気圧の前記気相との間の遷移温度レベルを有する、請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the substance has a transition temperature level between the liquid phase and the gas phase at atmospheric pressure that is at least 5 ° C lower than the temperature of the source which is ambient water. 前記物質が、外気である前記源の温度よりも少なくとも10℃低い、前記液相と大気圧の前記気相との間の遷移温度レベルを有する、請求項1又は2記載の方法。   The method of claim 1 or 2, wherein the substance has a transition temperature level between the liquid phase and the gas phase at atmospheric pressure that is at least 10 ° C lower than the temperature of the source that is ambient air. 回路と、流体物質を前記回路の中で変位させるようにする変位装置と、源からエネルギーを入力することにより前記物質を液相から気相へ変換させるようにする前記回路内の蒸発装置と、エネルギーを出力することにより前記物質を前記気相から前記液相へ変換させるようにする前記回路内の凝縮装置とを包含しており、前記変位装置が、前記液相に直接作用するポンプを含み、前記ポンプが前記凝縮装置の下流且つ前記蒸発装置の上流にある、エネルギーを転送するための装置。   A circuit, a displacement device for displacing fluid material in the circuit, and an evaporation device in the circuit for converting the material from a liquid phase to a gas phase by inputting energy from a source; A condensing device in the circuit for converting the substance from the gas phase to the liquid phase by outputting energy, wherein the displacement device includes a pump acting directly on the liquid phase A device for transferring energy, wherein the pump is downstream of the condenser and upstream of the evaporator. 前記凝縮装置が、前記気相の飽和蒸気圧を低減し、前記気相のための固形の吸収剤を含む、請求項5記載の装置。   The apparatus of claim 5, wherein the condensing device reduces a saturated vapor pressure of the gas phase and includes a solid absorbent for the gas phase. 前記凝縮装置が前記蒸発装置に接している、請求項6記載の装置。   The apparatus according to claim 6, wherein the condenser is in contact with the evaporator. 前記吸収剤が前記蒸発装置に接している、請求項7記載の装置。   The apparatus of claim 7, wherein the absorbent is in contact with the evaporator. 前記回路内に、前記蒸発装置の下流で前記気相のための過熱装置と、前記過熱装置の下流でエネルギー消費装置とをさらに包含し、前記凝縮装置が前記エネルギー消費装置の下流にある、請求項5ないし8のいずれか1項に記載の装置。   The circuit further includes a superheater for the gas phase downstream of the evaporator and an energy consuming device downstream of the superheater, wherein the condensing device is downstream of the energy consuming device. Item 9. The apparatus according to any one of Items 5 to 8. 前記エネルギー消費装置が駆動装置を含む、請求項9記載の装置。   The apparatus of claim 9, wherein the energy consuming device comprises a drive. 気相−液相変換装置を含み、前記凝縮装置から流れる前記気相を前記液相へ変換する補助回路をさらに包含する、請求項10記載の装置。   The apparatus according to claim 10, further comprising an auxiliary circuit including a gas phase-liquid phase conversion device and converting the gas phase flowing from the condensing device into the liquid phase. 前記補助回路が、最初に記載の回路と流体連通する、請求項11記載の装置。   The apparatus of claim 11, wherein the auxiliary circuit is in fluid communication with the circuit of the beginning. 前記補助回路が、最初に記載の回路と流体連通していない、請求項11記載の装置。   The apparatus of claim 11, wherein the auxiliary circuit is not in fluid communication with the initially described circuit. 前記ポンプの下流に過冷却器をさらに包含する、請求項5ないし13のいずれか1項に記載の装置。   14. An apparatus according to any one of claims 5 to 13, further comprising a subcooler downstream of the pump.
JP2009508487A 2006-05-11 2007-05-10 Method and apparatus Withdrawn JP2009536705A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0609349.6A GB0609349D0 (en) 2006-05-11 2006-05-11 Method and apparatus
PCT/GB2007/001709 WO2007132183A2 (en) 2006-05-11 2007-05-10 Method and apparatus for a vapor cycle with a condenser containing a sorbent

Publications (1)

Publication Number Publication Date
JP2009536705A true JP2009536705A (en) 2009-10-15

Family

ID=36637309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009508487A Withdrawn JP2009536705A (en) 2006-05-11 2007-05-10 Method and apparatus

Country Status (9)

Country Link
US (1) US20090293516A1 (en)
EP (1) EP2069612A2 (en)
JP (1) JP2009536705A (en)
CN (1) CN101529056B (en)
AU (1) AU2007251367A1 (en)
GB (1) GB0609349D0 (en)
NO (1) NO20085152L (en)
RU (1) RU2008149082A (en)
WO (1) WO2007132183A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519024A (en) * 2010-02-09 2013-05-23 ジボ ナタージー ケミカル インダストリー カンパニー リミテッド Temperature difference engine device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR200802291A2 (en) * 2008-04-04 2009-10-21 �Nce Alpay Energy converter.
US8915083B2 (en) 2008-10-14 2014-12-23 George Erik McMillan Vapor powered engine/electric generator
JP2010101233A (en) * 2008-10-23 2010-05-06 Hiroshi Kubota Engine operated by refrigerant
WO2011007197A1 (en) * 2009-07-15 2011-01-20 Michael Kangwana Lowgen low grade energy power generation system
NZ596481A (en) * 2011-11-16 2014-10-31 Jason Lew Method and apparatus for utilising air thermal energy to output work, refrigeration and water
US20130312415A1 (en) * 2012-05-28 2013-11-28 Gennady Sergeevich Dubovitskiy Method for converting of warmth environment into mechanical energy and electricity
US9657723B1 (en) * 2014-03-26 2017-05-23 Lockheed Martin Corporation Carbon nanotube-based fluidized bed heat transfer media for concentrating solar power applications

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB294882A (en) * 1927-07-30 1929-09-12 Gen Electric Improvements in and relating to vapour engines
US4333313A (en) * 1979-02-06 1982-06-08 Ecological Energy Systems, Inc. Gas powered, closed loop power system and process for using same
US4291232A (en) * 1979-07-09 1981-09-22 Cardone Joseph T Liquid powered, closed loop power generating system and process for using same
US4489563A (en) * 1982-08-06 1984-12-25 Kalina Alexander Ifaevich Generation of energy
JPH0658107B2 (en) * 1984-05-26 1994-08-03 日揮株式会社 Energy conversion device using metal hydride
US4573321A (en) * 1984-11-06 1986-03-04 Ecoenergy I, Ltd. Power generating cycle
DE3518276C1 (en) * 1985-05-22 1991-06-27 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn Process for operating a heat pump system and suitable heat pump system for carrying out this process
DE3532093C1 (en) * 1985-09-09 1987-04-09 Schiedel Gmbh & Co Discontinuous sorption storage device with solid absorber
EP0328103A1 (en) * 1988-02-12 1989-08-16 Babcock-Hitachi Kabushiki Kaisha Hybrid rankine cycle system
JPH02146208A (en) * 1988-11-24 1990-06-05 Hitachi Ltd Compound heat utilizing plant
GB9123794D0 (en) * 1991-11-08 1992-01-02 Atkinson Stephen Vapour absorbent compositions
US5249436A (en) * 1992-04-09 1993-10-05 Indugas, Inc. Simplified, low cost absorption heat pump
CN1098493A (en) * 1993-08-05 1995-02-08 北京市西城区新开通用试验厂 A kind of cross absorption solar energy air conditioner
US5456086A (en) * 1994-09-08 1995-10-10 Gas Research Institute Valving arrangement and solution flow control for generator absorber heat exchanger (GAX) heat pump
US5557936A (en) * 1995-07-27 1996-09-24 Praxair Technology, Inc. Thermodynamic power generation system employing a three component working fluid
TW325516B (en) * 1996-04-25 1998-01-21 Chugoku Electric Power Compression/absorption combined type heat pump
JP2002098436A (en) * 2000-09-22 2002-04-05 Daikin Ind Ltd Freezing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519024A (en) * 2010-02-09 2013-05-23 ジボ ナタージー ケミカル インダストリー カンパニー リミテッド Temperature difference engine device
KR101464351B1 (en) * 2010-02-09 2014-11-24 쯔보 네이터지 케미컬 인더스트리 컴퍼니 리미티드 Temperature differential engine device
US9140242B2 (en) 2010-02-09 2015-09-22 Zibo Natergy Chemical Industry Co., Ltd. Temperature differential engine device

Also Published As

Publication number Publication date
AU2007251367A1 (en) 2007-11-22
WO2007132183A2 (en) 2007-11-22
WO2007132183A3 (en) 2009-04-16
NO20085152L (en) 2008-12-10
CN101529056B (en) 2013-05-01
CN101529056A (en) 2009-09-09
GB0609349D0 (en) 2006-06-21
EP2069612A2 (en) 2009-06-17
RU2008149082A (en) 2010-06-20
US20090293516A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP2009536705A (en) Method and apparatus
US7735325B2 (en) Power generation methods and systems
US5555738A (en) Ammonia absorption refrigeration cycle for combined cycle power plant
JP6660095B2 (en) Apparatus for controlling a closed loop operating according to a Rankine cycle and method of using the same
US20110088399A1 (en) Combined Cycle Power Plant Including A Refrigeration Cycle
WO2022166384A1 (en) Carbon dioxide gas-liquid phase change-based energy storage apparatus capable of converting heat energy into mechanical energy
JP2007146766A (en) Heat cycle device and compound heat cycle power generation device
CN112880451A (en) CO based on supplemental external energy2Gas-liquid phase change energy storage device and method
WO2000071944A1 (en) A semi self sustaining thermo-volumetric motor
JP2005533972A (en) Cascading closed-loop cycle power generation
US9816399B2 (en) Air start steam engine
WO2001094757A1 (en) Absorption power cycle with two pumped absorbers
JP2006348876A (en) Steam supply system and power generation plant
WO2010048100A2 (en) Ultra-high-efficiency engines and corresponding thermodynamic system
WO2017112875A1 (en) Systems, methods, and apparatuses for implementing a closed low grade heat driven cycle to produce shaft power and refrigeration
US8997516B2 (en) Apparatus for air conditioning or water production
CA2707459A1 (en) A closed thermodynamic system for producing electric power
JP2003278598A (en) Exhaust heat recovery method and device for vehicle using rankine cycle
US8640465B2 (en) Combined heat, ice, power, and steam system
JP2011208569A (en) Temperature difference power generation device
JP4666641B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
JP5312644B1 (en) Air conditioning power generation system
US20080092542A1 (en) Graham Power, a new method of generating power
US11624307B2 (en) Bottoming cycle power system
KR20210104067A (en) District heating network including heat pump unit and heat pump unit

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803