JPH02146208A - Compound heat utilizing plant - Google Patents

Compound heat utilizing plant

Info

Publication number
JPH02146208A
JPH02146208A JP29455388A JP29455388A JPH02146208A JP H02146208 A JPH02146208 A JP H02146208A JP 29455388 A JP29455388 A JP 29455388A JP 29455388 A JP29455388 A JP 29455388A JP H02146208 A JPH02146208 A JP H02146208A
Authority
JP
Japan
Prior art keywords
cooling
water
steam
condenser
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29455388A
Other languages
Japanese (ja)
Inventor
Jun Araki
荒木 順
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29455388A priority Critical patent/JPH02146208A/en
Publication of JPH02146208A publication Critical patent/JPH02146208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To aim at improvement of thermal efficiency by utilizing condensed water from a condenser as a heat resource of an absorption refrigerating machine and cooling and condensing of discharged steam from a steam turbine by its returning water in a title plant comprising a power generation installation and an air-conditioning installation. CONSTITUTION:A recovery boiler 2 is installed at the exhaust gas line of a gas turbine 1, steam generated here is supplied to a steam turbine 3 to generate power to drive a generator 4. Steam from the steam turbine 3 is cooled and condensed at a condenser 5 and is returned to the recovery boiler 2 by a feed pump 6 as condensed water. A part of the condensed water is supplied to an absorption refrigerating machine 8b by a circulating pump 7, refrigerant in the machine is utilized as a heat resource for making cooling water which is used to make cooling medium in the machine to be evaporated and condensed. Condensed water from the refrigerating machine is recovered to the condenser 5. The refrigerating machine 8 is combined with cooling water installations such as a cooling load 9, a cooling tower 10 and a cooling water pump 11, etc.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、動力発電設備と冷暖房設備から成る複合熱利
用プラントに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a combined heat utilization plant comprising power generation equipment and air conditioning equipment.

〔従来の技術〕[Conventional technology]

複合熱利用プラントは、大別して燃料の燃焼により原動
機の駆動、又は、発電などを行なうめj力設備と、それ
ら動力機関からの排ガス、又は、温排水などの排熱エネ
ルギを再度動力として回収する従属熱利用設備から構成
される。
Combined heat utilization plants are broadly divided into power equipment that drives a prime mover or generates electricity by burning fuel, and equipment that recovers waste heat energy such as exhaust gas or heated waste water from these power engines to be used as power again. Consists of subordinate heat utilization equipment.

従来、この種のプラントでは熱効率の向上を目的として
様々な熱回収装置が設けられ余剰の熱エネルギの回収を
行なう手法が実用化されてきた。
Conventionally, various heat recovery devices have been installed in this type of plant for the purpose of improving thermal efficiency, and methods for recovering surplus thermal energy have been put into practical use.

そして、それら排熱回収方法に関連するものとして、例
えば、特開昭61−279706号公報に示されるよう
に、内燃機関の排気ガス中の熱エネルギをボイラによっ
て発生蒸気として回収し、蒸気タービンを駆動し電力を
得るプラント構成のものがある。
As related to these exhaust heat recovery methods, for example, as shown in Japanese Patent Application Laid-Open No. 61-279706, thermal energy in the exhaust gas of an internal combustion engine is recovered as generated steam by a boiler, and a steam turbine is activated. There is a plant configuration that drives and obtains electric power.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、複合熱利用プラントでは、経済性の面で、例え
ば、火力発電プラントのように大容量の単一熱利用プラ
ントに比べて熱効率が大巾に土建るものでなければ設備
として成り立たなくなるため、いかに動力設備からの余
剰エネルギを最大限に、且つ、有効的に回収し、再利用
するかが重要なポイントとなる。
However, in terms of economy, a combined heat utilization plant will not be viable as a facility unless its thermal efficiency is significantly higher than that of a large-capacity single heat utilization plant such as a thermal power plant, for example. An important point is how to maximize and effectively recover and reuse surplus energy from power equipment.

前述の従来技術では、内燃機関の排熱により再度発電を
行ない熱利用を図っているか、一方、まだ蒸気タービン
の排出蒸気のもつ熱エネルギか、復水器で冷却水によっ
てプラントサイクル外部に捨てられてしまっている。
In the above-mentioned conventional technology, the exhaust heat of the internal combustion engine is used to generate electricity again to utilize the heat, while the heat energy of the exhaust steam of the steam turbine is still being disposed of by cooling water in the condenser to the outside of the plant cycle. It's gone.

通常、復水器で冷却水側に捨てられる熱エネルギは蒸気
タービン入口熱エネルギの約60〜80%におよぶ多量
のものであり、この観点から、前述の従来技術では、熱
エネルギを有効利用しているとは言えず、不満の残るも
のであった。
Normally, the thermal energy that is discarded to the cooling water side in the condenser is a large amount, about 60 to 80% of the thermal energy at the steam turbine inlet. It cannot be said that the results are satisfactory, and there remains some dissatisfaction.

本発明の目的は、熱利用プラントの蒸気タービン部にお
いて、復水器で失なわれる熱損失エネルギをも有効に回
収し、プラント全体の熱効率を向上させることにある。
An object of the present invention is to effectively recover heat loss energy lost in a condenser in a steam turbine section of a heat utilization plant, thereby improving the thermal efficiency of the entire plant.

(課題を解決するための手段〕 上記目的は、蒸気タービンの復水器での凝縮復水を吸収
式冷凍機に熱源温水として供給し、そして冷凍機からの
出口水を復水器に戻す復水の再循環システムを設けるこ
とによって達成される。
(Means for solving the problem) The above purpose is to supply the condensed water in the condenser of the steam turbine to the absorption chiller as heat source hot water, and to return the outlet water from the chiller to the condenser. This is achieved by providing a water recirculation system.

(作用〕 蒸気タービンの場合は、タービン排出蒸気を冷却凝縮す
るために低温の冷却水によって蒸気のもつ潜熱をうばい
とる必要があるか、一方、吸収式冷凍機では、冷房用の
冷水をつくるため、逆に、熱エネルギを与える必要があ
る。
(Function) In the case of a steam turbine, in order to cool and condense the turbine exhaust steam, it is necessary to remove the latent heat of the steam with low-temperature cooling water.On the other hand, in an absorption refrigerator, in order to produce cold water for cooling, On the contrary, it is necessary to provide thermal energy.

このように蒸気タービン復水器と冷凍機の熱エネルギ授
受は逆作用的関連があり、これを復水器と冷凍機間の復
水再W環により、従来、熱損失となっていた蒸気タービ
ンの排熱エネルギを冷房のための熱エネルギに変換しよ
うとするものである。
In this way, there is an inverse relationship between the exchange of thermal energy between the steam turbine condenser and the refrigerator, and the condensate re-circulation between the condenser and the refrigerator reduces the amount of heat that would otherwise be lost to the steam turbine. The aim is to convert waste heat energy into heat energy for cooling.

下記にその熱エネルギ授受のプロセスを示す。■熱源水
として冷凍機へ供給される復水器復水は、冷凍機で熱エ
ネルギをうばわれ戻り水の温度は下がる。■戻り低温水
を復水器に導き復水器内部へ噴出させ、直接、接触冷却
によってタービンの排出蒸気の冷却凝縮を行なう。■低
温水はタービン排出蒸気から与えられた熱エネルギによ
って温度が上昇し、再び、熱源温水として冷凍機に送ら
れる。
The process of transferring thermal energy is shown below. ■Condenser The condensate water is supplied to the refrigerator as a heat source water, and the heat energy of the condensate is absorbed by the refrigerator, which lowers the temperature of the return water. ■The returned low-temperature water is led to the condenser and is ejected into the condenser to directly cool and condense the steam discharged from the turbine through contact cooling. ■The temperature of the low-temperature water rises due to thermal energy given from the turbine exhaust steam, and it is sent to the refrigerator again as heat source hot water.

(実施例〕 以下、本発明の一実施例を第1図によって説明する。(Example〕 An embodiment of the present invention will be described below with reference to FIG.

第1図は、ガスタービン1の排ガスラインに回収ボイラ
2を設置し排ガス中の残存熱エネルギを発生蒸気として
熱回収し、その蒸気を蒸気タービン3に導き発電機4で
発電を行なう典型的な熱回収発電プラントと、冷房負荷
9に対して冷水を供給し熱吸収を行なう冷凍機8、及び
、クーリングタワー10、冷却水ポンプ11等の冷却水
設備から成る吸収式冷凍機設備とを組合せた、複合熱利
用プラントを示す。
Figure 1 shows a typical system in which a recovery boiler 2 is installed in the exhaust gas line of a gas turbine 1, heat is recovered from residual thermal energy in the exhaust gas as generated steam, and the steam is guided to a steam turbine 3 where a generator 4 generates electricity. It combines a heat recovery power generation plant, a refrigerator 8 that supplies chilled water to a cooling load 9 and absorbs heat, and absorption chiller equipment consisting of cooling water equipment such as a cooling tower 10 and a cooling water pump 11. A combined heat utilization plant is shown.

蒸気タービン3の排出蒸気は、復水器5で冷却凝縮され
給水ポンプ6で回収ボイラ2へ発生蒸気の補給水として
送水される。
The exhaust steam from the steam turbine 3 is cooled and condensed in a condenser 5, and is sent to the recovery boiler 2 by a feed water pump 6 as make-up water for generated steam.

一方、復水の一部は、循環ポンプ7によって冷凍機8に
も送られ、冷凍機通過後、再び、復水器5に回収される
。この復水器5と冷凍機8間の水馬@環サイクルは、下
記の機能を行なうものである。
On the other hand, a part of the condensate is also sent to the refrigerator 8 by the circulation pump 7, and after passing through the refrigerator, is recovered to the condenser 5 again. This water horse @ ring cycle between the condenser 5 and the refrigerator 8 performs the following functions.

吸収式冷凍機は、機内の冷媒を蒸発凝縮させ冷房用冷水
をつくるために、はぼ、85℃の温水を熱源として必要
となる。従って、蒸気タービン復水器の復水を冷凍機の
熱源温水として使用するために復水器は、タービン排出
蒸気凝縮後の復水温度が85℃となる飽和器内圧力を保
持できる冷却容量をもつものとして決められる。
Absorption refrigerators require hot water at approximately 85°C as a heat source in order to evaporate and condense the refrigerant inside the machine to create cold water for air conditioning. Therefore, in order to use the condensate of the steam turbine condenser as the heat source hot water for the refrigerator, the condenser must have a cooling capacity that can maintain the pressure inside the saturator such that the condensate temperature after condensing the turbine exhaust steam is 85°C. It can be determined as having.

このようにして得られた85℃の温水は、冷凍機に供給
された際に、熱エネルギが冷凍機でうばわれ出口水とし
ては、はぼ、80℃の低温水として戻ってくる。復水器
は、その冷却タイプとして、蒸気に冷却水を直接的に接
触させ、蒸気を冷却凝縮する直接々触型復水器であり、
冷凍機からの低温戻り水を冷却水源として復水器内に噴
霧し、タービン排出蒸気を冷却するものである。この時
、復水器内で冷凍機の戻り水は、蒸気の熱エネルギをう
ばうことよって温度は85℃まで上昇し、再び、冷凍機
へ送水される。
When the hot water at 85°C thus obtained is supplied to the refrigerator, the thermal energy is lost in the refrigerator and the water returns as outlet water at a low temperature of 80°C. The condenser is a direct contact type condenser that cools and condenses steam by bringing cooling water into direct contact with steam.
The low-temperature return water from the refrigerator is used as a cooling water source and is sprayed into the condenser to cool the turbine exhaust steam. At this time, the temperature of the water returned from the refrigerator in the condenser increases to 85° C. by absorbing the thermal energy of the steam, and the water is sent to the refrigerator again.

この様に、復水器と冷凍機は閉サイクルの温水再循環に
より、熱エネルギの授受を行なうもので本実施例によれ
ば、下記効果がある。
In this way, the condenser and the refrigerator exchange heat energy through closed-cycle hot water recirculation, and this embodiment has the following effects.

(1)従来、蒸気タービンの排出蒸気の冷却凝縮のため
に供給される冷却水によってプラント外部に捨て去られ
ていた熱エネルギか、100%有効に冷房用の冷凍機の
熱源として回収でき、全体複合熱利用プラントとしての
効率が向上する。
(1) Thermal energy that was conventionally wasted outside the plant by cooling water supplied for cooling and condensing the exhaust steam of the steam turbine can be 100% effectively recovered as a heat source for the cooling chiller, and the total The efficiency of the combined heat utilization plant will improve.

(2)蒸気タービン復水器のための専用の冷却水供給設
備が不要となり、建設費の低減が図れる。
(2) A dedicated cooling water supply facility for the steam turbine condenser is not required, reducing construction costs.

ここで、上記(1)項のプラント効率面での効果に関し
、その向上程度について第2図により詳しく説明する。
Here, regarding the effect in terms of plant efficiency in the above item (1), the degree of improvement will be explained in detail with reference to FIG. 2.

第2図は、全投入エネルギに対する有効活用エネルギと
損失エネルギの状態を表わす熱精算図を示す。
FIG. 2 shows a thermal balance chart showing the state of effectively utilized energy and lost energy with respect to the total input energy.

実施例の第1図に示すプラント構成において、原動機で
あるガスタービンへ燃料として投入した熱エネルギを1
00%とした場合、従来型の蒸気タービンまでの熱回収
プラントでは、第2図の破線に示すように、熱回収率は
、電力発生骨として約27%と非常に小さく、一方復水
器では冷却水損失として約35%と非常に大きな熱エネ
ルギが捨てられてしまっている。
In the plant configuration shown in FIG. 1 of the example, the thermal energy input as fuel to the gas turbine, which is the prime mover, is
00%, in a conventional heat recovery plant up to a steam turbine, the heat recovery rate is very small at about 27% for power generation, as shown by the broken line in Figure 2, while in a condenser it is A very large amount of heat energy, approximately 35%, is wasted as cooling water loss.

これを1本実施例のように冷凍機へ熱回収を行なった場
合では、実線で示すように発生電力としての熱回収に加
え冷凍機での冷房負荷としての熱回収があり、その熱回
収率の合計は、実に、約50%にもおよび、プラント効
率が大1[1に向上していることが判る。尚、本試算で
は、供給エネルギに対する実有効冷房負荷の冷凍機の効
率が加味されているため全体効率を下げているか、蒸気
タービン側では、受入れた熱エネルギを100%多目的
に利用している。
When heat is recovered to the refrigerator as in this embodiment, in addition to the heat recovered as generated power, there is also heat recovery as a cooling load in the refrigerator, as shown by the solid line, and the heat recovery rate is In fact, the total amount is about 50%, and it can be seen that the plant efficiency has been improved by a large 1 [1]. In addition, in this trial calculation, the efficiency of the refrigerator with the actual effective cooling load relative to the supplied energy is taken into account, so the overall efficiency is lowered, or the steam turbine side uses 100% of the received thermal energy for multiple purposes.

第3図は、第2図に対し暖房用負荷を加えた変形実施例
を示す。
FIG. 3 shows a modified example of FIG. 2 in which a heating load is added.

第2図と同様なプラント構成で、本例では循環ポンプ7
の出口の復水の一部が暖房負荷にも供給され、戻り水は
冷凍ta8と同じく復水器5に回収されている。この暖
房負荷と復水器5との関連、及び、作用等は、第2図に
よる実施例で述べたと同様である。
The plant configuration is similar to that shown in Fig. 2, and in this example, the circulation pump 7
A part of the condensed water at the outlet is also supplied to the heating load, and the return water is collected in the condenser 5 like the frozen TA8. The relationship between the heating load and the condenser 5, and its functions are the same as those described in the embodiment shown in FIG.

又、本例では、更に、冷凍機の冷却用クーリングタワー
10からの冷却水が復水器5にも供給され熱交チューブ
13を経て、再び、クーリングタワー10に戻る冷却水
ライン設備が設けられている。
In addition, in this example, cooling water line equipment is further provided in which the cooling water from the cooling tower 10 for cooling the refrigerator is also supplied to the condenser 5 and returns to the cooling tower 10 again through the heat exchanger tube 13. .

本実施例は、地域冷暖房用熱併給プラントとしての構成
に適合しており、時期的に変化する冷房及び暖房負荷に
対し第4図に示す運転特性をもつ。
This embodiment is suitable for the configuration as a cogeneration plant for district heating and cooling, and has the operating characteristics shown in FIG. 4 with respect to cooling and heating loads that change over time.

第4図で(A)は、年間各月毎の冷房負荷と暖房負荷の
一般的な要求量の変移を示す。そして(B)に、これら
冷暖房需要と地域設備の他の電力需要を加えた地域設備
全体としての合計地域電力需要を実線に示す。本実施例
では、実際には、前述したように冷暖房負荷は蒸気ター
ビンの排熱を利用して賄うので、地域電力需要は(B)
中の二点鎖線のように減少する。そして熱利用プラント
では破線に示すような発電を行なうから、外部電力会社
から買電すべき量は、二点鎖線カーブから破線カーブの
各電力量を差引いたハツチングで示した量のようになり
、安定した運転特性になり、受電装置を小さく出来るメ
リットがある。次に、(C)は、熱利用プラントを定格
連続運転した場合の、蒸気タービン排出蒸気のもつ熱エ
ネルギと(A)に示す冷暖房負荷に相応した冷暖房施設
への供給エネルギを示す。
In FIG. 4, (A) shows changes in the general required amount of cooling load and heating load for each month of the year. In (B), the solid line shows the total regional power demand for the entire regional facility, which is the sum of these heating and cooling demands and other power demands of the regional facility. In this example, as mentioned above, the heating and cooling load is actually covered using the exhaust heat of the steam turbine, so the local power demand is (B).
It decreases as shown by the two-dot chain line in the middle. Since the heat utilization plant generates power as shown by the dashed line, the amount of electricity that should be purchased from the external power company is the amount shown by the hatching, which is obtained by subtracting each amount of electricity in the dashed line curve from the two-dot chain line curve. This has the advantage of providing stable operating characteristics and allowing the power receiving device to be made smaller. Next, (C) shows the thermal energy of the steam turbine exhaust steam and the energy supplied to the air-conditioning facility corresponding to the air-conditioning load shown in (A) when the heat utilization plant is operated continuously at the rated value.

これら熱エネルギの差、即ちハツチング部熱量は余剰の
エネルギであり、蒸気タービン復水器で他からの冷却水
によって冷却、復水化してやる必要がある。この場合は
、冷却水の必要時期か、冷凍機の負荷が小さい時、又は
、冷凍機が休転している時期でもあるので、冷凍機用の
クーリングタワー水の一部、又は、全量を復水器の冷却
水として利用可能である。このため、復水器は直接接触
型ではあるか、内部に熱交換用冷却チューブをも配しク
ーリングタワー水を冷凍機バイパスにより冷却水として
供給し、余剰タービン排出蒸気の冷却を行なう。勿論、
熱利用プラントの発電量、即ち、蒸気タービンの排出熱
エネルギを、冷暖房への供給エネルギに見合った量とす
る運転も可能であり、この場合、復水器での冷却水損失
は小さく高プラント熱効率を維持できる。
The difference in these thermal energies, that is, the heat amount of the hatching part, is surplus energy, which needs to be cooled and condensed using cooling water from another source in the steam turbine condenser. In this case, since it is the time when cooling water is required, the load on the refrigerator is small, or the refrigerator is inactive, some or all of the cooling tower water for the refrigerator is condensed. It can be used as cooling water for containers. For this reason, the condenser is either a direct contact type or has a cooling tube for heat exchange inside, and the cooling tower water is supplied as cooling water by bypassing the refrigerator to cool excess turbine exhaust steam. Of course,
It is also possible to operate the heat utilization plant so that the power generation amount, that is, the exhaust heat energy of the steam turbine, is commensurate with the energy supplied to air conditioning.In this case, the cooling water loss in the condenser is small and the plant thermal efficiency is high. can be maintained.

本実施例では、この様に従来蒸気タービン排気の冷却に
よって捨て去っていた熱エネルギを多目的に熱回収を行
なうとの他、冷凍機用クーリングタワー冷却水設備を併
用することによって地域設備の電力、又は、熱需要に応
じた運転上のフレキシビリティを持つことが可能である
In this embodiment, in addition to recovering the thermal energy that was conventionally wasted by cooling the steam turbine exhaust for a multipurpose purpose, the cooling tower cooling water equipment for the refrigerator is also used to generate electricity for local equipment, or It is possible to have operational flexibility according to heat demand.

【発明の効果〕【Effect of the invention〕

本発明によれば、蒸気タービン排出蒸気の持つ残存熱エ
ネルギを地域冷暖設備への熱源として再利用でき、且つ
、熱併給プラントとして大巾な熱利用効率の向上が図れ
る。
According to the present invention, the residual thermal energy of the steam turbine exhaust steam can be reused as a heat source for district cooling and heating equipment, and the heat utilization efficiency can be greatly improved as a cogeneration plant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の複合熱利用プラントの系統
図、第2図はプラント熱効率の従来技術との比較説明図
、第3図は本発明の他の実施例の系統図、第4図は電力
需要と発電量又は冷暖房負荷等との関連図である。 1・・・ガスタービン、2・・・回収ボイラ、3・・・
蒸気タービン、4・・・発電機、5・・・復水器、6・
・・給水ポンプ、7・・・@環ポンプ、8・・・吸収式
冷凍機、9・・・冷房負荷、10・・・クーリングタワ
ー、11・・・冷却水ポンプ、12・・・暖房負荷、1
3・・・冷却水チューブ。 第1図 第2図 (α) 五盈 (で) 五り胆 第 図 弔 図 ろ ? 月
FIG. 1 is a system diagram of a combined heat utilization plant according to an embodiment of the present invention, FIG. Figure 4 is a diagram showing the relationship between electric power demand, power generation amount, heating and cooling load, etc. 1... Gas turbine, 2... Recovery boiler, 3...
Steam turbine, 4... Generator, 5... Condenser, 6...
... Water supply pump, 7 ... @ ring pump, 8 ... Absorption refrigerator, 9 ... Cooling load, 10 ... Cooling tower, 11 ... Cooling water pump, 12 ... Heating load, 1
3...Cooling water tube. Figure 1 Figure 2 (α) Gorin (de) Gorin Diagram Funeral Map? Month

Claims (1)

【特許請求の範囲】 1、復水型蒸気タービンを含むコジエネプラントにおい
て、 前記復水型蒸気タービンの排出蒸気のもつ熱エネルギを
吸収式冷凍機の負荷又は暖房負荷に再利用するため、復
水器からの復水をその熱源として供給し、且つ、それら
戻り水によつて蒸気タービン排出蒸気の冷却、凝縮を行
なうことを特徴とする複合熱利用プラント。 2、前記復水器と前記吸収式冷凍機又は暖房機の相互間
には復水が再循環する循環ラインが設けられている特許
請求項第1項記載の複合熱利用プラント。 3、前記復水器は、前記吸収式冷凍機又は前記暖房機か
らの戻り水と直接接触により蒸気タービン排出蒸気を冷
却、凝縮する直接接触型か、補助的に間接接触により冷
却を行なう冷却チューブをも配備された複合型である特
許請求項第1項記載の複合熱利用プラント。
[Scope of Claims] 1. In a cogeneration plant including a condensing steam turbine, a condensing system is used to reuse the thermal energy of the exhaust steam of the condensing steam turbine for the load of an absorption chiller or the heating load. A combined heat utilization plant characterized in that condensate from a water heater is supplied as a heat source, and the return water is used to cool and condense steam discharged from a steam turbine. 2. The combined heat utilization plant according to claim 1, wherein a circulation line for recirculating condensate is provided between the condenser and the absorption chiller or heater. 3. The condenser is either a direct contact type that cools and condenses the steam turbine exhaust steam through direct contact with the return water from the absorption chiller or the heater, or a cooling tube that cools the steam turbine auxiliary through indirect contact. The combined heat utilization plant according to claim 1, which is a combined type in which a combined heat utilization plant is also provided with.
JP29455388A 1988-11-24 1988-11-24 Compound heat utilizing plant Pending JPH02146208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29455388A JPH02146208A (en) 1988-11-24 1988-11-24 Compound heat utilizing plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29455388A JPH02146208A (en) 1988-11-24 1988-11-24 Compound heat utilizing plant

Publications (1)

Publication Number Publication Date
JPH02146208A true JPH02146208A (en) 1990-06-05

Family

ID=17809281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29455388A Pending JPH02146208A (en) 1988-11-24 1988-11-24 Compound heat utilizing plant

Country Status (1)

Country Link
JP (1) JPH02146208A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112345A (en) * 2004-10-15 2006-04-27 Mitsui Eng & Shipbuild Co Ltd Method and device for decomposing gas-hydrate in gas turbine combined power generation system
WO2007132183A3 (en) * 2006-05-11 2009-04-16 Rm Energy As Method and apparatus for a vapor cycle with a condenser containing a sorbent
CN103790658A (en) * 2014-02-26 2014-05-14 刘朋云 Dual-element combined heat pump power generation system
CN103967544A (en) * 2014-05-19 2014-08-06 山东泓奥电力科技有限公司 Waste heat utilization system of gas-steam combined cycle generator set
CN104763484A (en) * 2015-01-29 2015-07-08 河北省电力勘测设计研究院 High backpressure heat supplying combined generating method for air-cooling steam turbine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112345A (en) * 2004-10-15 2006-04-27 Mitsui Eng & Shipbuild Co Ltd Method and device for decomposing gas-hydrate in gas turbine combined power generation system
WO2007132183A3 (en) * 2006-05-11 2009-04-16 Rm Energy As Method and apparatus for a vapor cycle with a condenser containing a sorbent
CN103790658A (en) * 2014-02-26 2014-05-14 刘朋云 Dual-element combined heat pump power generation system
CN103967544A (en) * 2014-05-19 2014-08-06 山东泓奥电力科技有限公司 Waste heat utilization system of gas-steam combined cycle generator set
CN104763484A (en) * 2015-01-29 2015-07-08 河北省电力勘测设计研究院 High backpressure heat supplying combined generating method for air-cooling steam turbine

Similar Documents

Publication Publication Date Title
Ibrahim et al. Improvement of gas turbine performance based on inlet air cooling systems: A technical review
KR101544221B1 (en) Integrated cooling heating and power systems
FI102405B (en) Method for improving the total useful energy production of a thermal power plant i and a power plant with a liquid-cooled thermal power plant
US6422019B1 (en) Apparatus for augmenting power produced from gas turbines
CN107905897B (en) Gas turbine circulating flue gas waste heat recovery and inlet air cooling combined system and method
GB2280224A (en) Method of and apparatus for augmenting power produced from gas turbines
US6119445A (en) Method of and apparatus for augmenting power produced from gas turbines
KR101499810B1 (en) Hybrid type condenser system
JPH02146208A (en) Compound heat utilizing plant
JP3696931B2 (en) Power generation facility using liquid air
CN103775140A (en) Improved electricity generation system with pump assisting in condensing and cooling and electricity generation method of electricity generation system
CN207715201U (en) A kind of double ORC afterheat utilizing systems of Vehicular internal combustion engine
JP3520927B2 (en) Power generator
Erickson et al. Absorption refrigeration cycle turbine inlet conditioning
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
CN211082000U (en) Organic Rankine and reverse Carnot cycle coupled waste heat recovery system
JP6666148B2 (en) Electrical installation having a cooled fuel cell with an absorption heat engine
JPS5815705B2 (en) Heat recovery method in power generation equipment
JPS58138213A (en) Power generation device
JPH0443802A (en) Exhaust heat recovery steam turbine type energy system
JP2000097047A (en) Heat and electricity combination supply system and heat- accumulation quantity controlling method of heat- accumulator applied thereto
JP2020183854A (en) Cogeneration generator having heat engine with fuel evaporation cooling function
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
CN103775141A (en) Improved steam condensing type steam turbine electricity generation system with pump assisting in cooling and electricity generation method of electricity generation system
CN109827352B (en) Cold, hot and pure water quadruple supply system and combined supply method