JPS5815705B2 - Heat recovery method in power generation equipment - Google Patents

Heat recovery method in power generation equipment

Info

Publication number
JPS5815705B2
JPS5815705B2 JP49073722A JP7372274A JPS5815705B2 JP S5815705 B2 JPS5815705 B2 JP S5815705B2 JP 49073722 A JP49073722 A JP 49073722A JP 7372274 A JP7372274 A JP 7372274A JP S5815705 B2 JPS5815705 B2 JP S5815705B2
Authority
JP
Japan
Prior art keywords
power generation
heat
load
absorption
chiller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49073722A
Other languages
Japanese (ja)
Other versions
JPS513039A (en
Inventor
英勇 小松原
広太郎 野田
秋一 高田
宏 上田
喜久雄 小垣外
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Ebara Corp
Original Assignee
Meidensha Corp
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Ebara Corp filed Critical Meidensha Corp
Priority to JP49073722A priority Critical patent/JPS5815705B2/en
Publication of JPS513039A publication Critical patent/JPS513039A/ja
Publication of JPS5815705B2 publication Critical patent/JPS5815705B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Central Air Conditioning (AREA)

Description

【発明の詳細な説明】 本発明は発電設備の廃熱を回収利用する熱回収方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat recovery method for recovering and utilizing waste heat from power generation equipment.

従来発電設備においては単に必要な電力を得ることのみ
が目的とされ、発電設備1の発電機原動機からの廃熱は
第1図に示す如く徒らに大気や冷却水に放熱されていた
In conventional power generation equipment, the purpose was simply to obtain the necessary electric power, and the waste heat from the generator prime mover of the power generation equipment 1 was wasted into the atmosphere or cooling water, as shown in FIG.

しかし発電設備1の熱効率は10〜40%程度であり、
残りの60〜90%ものエネルギーは廃熱として棄てら
れていた。
However, the thermal efficiency of power generation equipment 1 is about 10 to 40%,
The remaining 60-90% of the energy was wasted as waste heat.

この為小規模の発電設備においては電力コストは非常に
高く、とうてい買電にたちうちできるものではなく、電
力の供給を受けられない地域用や、非常用発電設備程度
にしか使用されなかった。
For this reason, the cost of electricity for small-scale power generation facilities was extremely high, and it was not possible to buy electricity right away, so it was only used for areas without electricity supply or as emergency power generation facilities.

この廃熱を有効利用するために、併設した吸収冷凍機に
供給して利用をはかることが考えられているが、制御が
複雑であったり、運転が不安定であったり、また機器が
大型になり設備費がかさむ、などの欠点があった。
In order to effectively utilize this waste heat, it has been considered to supply it to an attached absorption chiller, but the control is complicated, the operation is unstable, and the equipment is large. However, there were disadvantages such as high equipment costs.

発明者らは、これらの欠点を除くため研究を重ね、小規
模の発電設備においては給電対象の区域内の需要電力の
うち、変動電力は殆んど冷房装置の消費電力により占め
られ、他の動力や照明などの消費電力はほぼ一定であり
、従って発電量の増減は、はぼ冷房装置の消費電力の増
減に対しリニヤ−に行なわれることに着目し、検討を重
ね本発明に想到するに致つだものである。
The inventors conducted extensive research to eliminate these drawbacks, and found that in small-scale power generation facilities, of the power demand within the area to be supplied, most of the fluctuating power is accounted for by the power consumption of the cooling equipment, and other power consumption is We focused on the fact that the power consumption of motive power, lighting, etc. is almost constant, and therefore the amount of power generated increases or decreases linearly with the increase or decrease in the power consumption of the air conditioner, and after repeated studies we came up with the present invention. It is a sure thing.

本願発明の技術的思想は、冷熱媒流体の流れに対し、高
温側に配備した吸収冷凍機の加熱源を、系外からではな
く、同じ系内の、低温側に配備した圧縮式冷凍機の動力
をまかなう発電設備の廃熱よりの回収熱に求めることに
あり、これを具体化した構成を備えることにより、従来
のものの上記の欠点を除き、制御機構を簡略化し、かつ
系の安定化をはかり、さらに吸収冷凍機を小型化し、設
備費の低減をはかることができ、小規模の発電設備にお
いても、実用的、経済的な運転が可能となる、発電設備
における熱回収方法を提供することを目的としている。
The technical idea of the present invention is that the heating source of an absorption refrigerator placed on the high temperature side with respect to the flow of refrigerant fluid is not sourced from outside the system, but is a compression type refrigerator placed on the low temperature side within the same system. The goal is to recover heat from the waste heat of the power generation equipment that supplies the power, and by providing a configuration that embodies this, the above-mentioned drawbacks of conventional ones can be eliminated, the control mechanism can be simplified, and the system can be stabilized. To provide a heat recovery method for power generation equipment, which can reduce the size of scales and absorption refrigerators, reduce equipment costs, and enable practical and economical operation even in small-scale power generation equipment. It is an object.

本発明は、圧縮式冷凍機の動力金倉む電力需要をまかな
う発電設備の熱回収方法において、該発電設備からの廃
熱を回収して吸収冷凍機の発生器の加熱源として用い、
冷房負荷からの戻り冷熱媒体を先ず前記吸収冷凍機に導
いて冷却し、次に前記圧縮式冷凍機に導いて冷却し、そ
の後に前記冷房負荷に供給することを特徴とする発電設
備における熱回収方法である。
The present invention provides a heat recovery method for a power generation facility that meets the power demand of a compression chiller, including recovering waste heat from the power generation facility and using it as a heating source for a generator of an absorption chiller.
Heat recovery in a power generation facility, characterized in that the cold medium returned from the cooling load is first guided to the absorption chiller and cooled, then guided to the compression chiller and cooled, and then supplied to the cooling load. It's a method.

本発明を実施例につき図面を参照して説明する第2図に
は、発電設備1の原動機、発電機などの廃熱(排気ガス
および冷却水に吸収器れた熱)を熱回収装置2によって
回収し、熱源として利用し熱効率の改善をはかった場合
の熱収支の例を示す。
FIG. 2, which describes an embodiment of the present invention with reference to the drawings, shows waste heat (heat absorbed in exhaust gas and cooling water) of a prime mover, generator, etc. of a power generation facility 1 being collected by a heat recovery device 2. An example of the heat balance when recovered and used as a heat source to improve thermal efficiency is shown below.

第3図は実施例の主な構成を示すもので、発電設備1は
発電機3と原動機4とより成り、該発電設備1より生ず
る廃熱を回収する熱回収装置2と共に発電セットを形成
し、吸収冷凍機5と、該吸収冷凍機5の下流側に直列に
連絡した圧縮式冷凍機6とで冷凍機セットを形成し、熱
交換器Tを主体とする加熱、給湯セットを備え、冷却塔
8、循環ポンプ9などの附属機器と適当なパイピングで
連絡しエネルギー回収システムを形成したものである。
FIG. 3 shows the main configuration of the embodiment. The power generation equipment 1 consists of a generator 3 and a prime mover 4, and forms a power generation set together with a heat recovery device 2 that recovers waste heat generated from the power generation equipment 1. , an absorption refrigerator 5 and a compression refrigerator 6 connected in series on the downstream side of the absorption refrigerator 5 form a refrigerator set, which is equipped with a heating and hot water supply set mainly including a heat exchanger T, and a cooling It is connected to attached equipment such as a tower 8 and a circulation pump 9 through appropriate piping to form an energy recovery system.

区域内の電力負荷に必要な電力を得るために、発電設備
1の原動機4、発電機3を運転する場合発生する廃熱は
、排気ガス、冷却水、冷却風などにより運ばれ熱回収装
置2において熱媒に移動し熱媒の蒸気を発生する。
In order to obtain the electric power necessary for the electric power load in the area, the waste heat generated when operating the prime mover 4 and generator 3 of the power generation equipment 1 is transported by exhaust gas, cooling water, cooling air, etc., and is transferred to the heat recovery device 2. , it moves to the heating medium and generates vapor of the heating medium.

冷房時にはこの蒸気は配管11を経て吸収冷凍機5に導
かれ、発生器12に入り熱源として利用され、受液器2
1を経て再び熱回収装置2に戻される 即ち、吸収冷凍機5の加熱源として、系外でなく、同じ
系内の、低温側に配備した圧縮式冷凍機の動力をまかな
う発電設備の廃熱よりの回収熱を用いている。
During cooling, this steam is led to the absorption refrigerator 5 through the pipe 11, enters the generator 12, is used as a heat source, and is sent to the receiver 2.
1 and then returned to the heat recovery device 2. In other words, waste heat from the power generating equipment is used as a heating source for the absorption chiller 5 to power the compression chiller installed on the low-temperature side within the same system, rather than outside the system. The recovered heat is used.

吸収冷凍機5には凝縮器13と吸収器14との間に液冷
媒をバイパスするバイパス15と配管11の圧力により
作動するバイパス弁16とを備えている。
The absorption refrigerator 5 is provided with a bypass 15 for bypassing the liquid refrigerant between the condenser 13 and the absorber 14, and a bypass valve 16 operated by the pressure of the pipe 11.

発電セットで回収する廃熱量が、冷房・負荷のために吸
収冷凍機5で消費する熱量よりも犬である場合には、配
管11内の蒸気圧が上昇する。
When the amount of waste heat recovered by the power generation set is greater than the amount of heat consumed by the absorption refrigerator 5 for cooling and load, the vapor pressure in the pipe 11 increases.

この圧力上昇によりバイパス弁16を開き、吸収冷凍機
5の見掛は上の負荷を増加させて廃熱を吸収する。
This pressure increase opens the bypass valve 16, increasing the apparent load on the absorption refrigerator 5 and absorbing waste heat.

従来発電セットの廃熱と吸収冷凍機の熱消費との間には
不平衡があり、この余しよう廃熱を系外に排出するのに
別の熱交換器、冷却塔などを必要とし、また、吸収冷凍
機の負荷に見合う熱量のほかに、系外へ排出する分の熱
量を制御する制御機器を要した。
Conventionally, there is an imbalance between the waste heat of the power generation set and the heat consumption of the absorption chiller, and a separate heat exchanger, cooling tower, etc. is required to discharge this surplus waste heat to the outside of the system. In addition to the amount of heat required to meet the load of the absorption chiller, a control device was required to control the amount of heat discharged outside the system.

このため余分な専用の熱交換器、冷却塔および非常に複
雑で高価な制御装置を必要とし、設備費の上昇の原、因
となっていた。
This requires extra dedicated heat exchangers, cooling towers, and extremely complex and expensive control equipment, contributing to increased equipment costs.

これに対し本実施例では従来の吸収冷凍機に安価な制御
弁および少々の配管を設けたバイパス弁付吸収冷凍機(
既設の冷凍機にも容易に設けられる)を応用することに
より、発電セラ、トの余しよう廃熱を、吸収冷凍機の余
った能力を充分に利用して(吸収冷凍機が部分負荷状態
であれば吸収冷凍機は全能力を持つ)吸収冷凍機のサイ
クルケ通して吸収冷凍機の冷却塔より糸外へ排出可能と
なり、排熱専用の熱交換器、冷却塔、制御機器を必要と
せず経済的であり、かつ運転制御も容易となるメリット
を有する。
In contrast, in this embodiment, an absorption refrigerator with a bypass valve (
By applying the residual waste heat of the generator cellar and (If the absorption chiller has full capacity, the absorption chiller has full capacity.) Through the cycle of the absorption chiller, exhaust heat can be discharged from the cooling tower of the absorption chiller to the outside, making it economical as there is no need for a heat exchanger, cooling tower, or control equipment dedicated to waste heat. , and has the advantage of easy operation control.

冷凍負荷用の冷熱媒流体(冷水)系統においては、第4
図に示す如く、吸収冷凍機5と圧縮式冷凍機6とが直列
に挿入され、吸収冷凍機5は圧縮式冷凍機6よりも、冷
水の売りに関し高温側(上流側)に配備されている。
In the refrigerant fluid (chilled water) system for refrigeration loads, the fourth
As shown in the figure, an absorption refrigerating machine 5 and a compression refrigerating machine 6 are inserted in series, and the absorption refrigerating machine 5 is placed on the high temperature side (upstream side) of the compression refrigerating machine 6 for selling cold water. .

これにより、次の如き効果を奏することができる。As a result, the following effects can be achieved.

(1)吸収冷凍機5の小型化がはかれる。(1) The absorption refrigerator 5 can be made smaller.

吸収冷凍機5は冷水出口温度の高低により冷凍容量が増
減する。
The refrigerating capacity of the absorption refrigerator 5 increases or decreases depending on the temperature of the cold water outlet.

一定冷凍容量を確保することに対し、冷水出口温度が高
い方が吸収冷凍機5のサイズを小さくすることができる
In contrast to ensuring a constant refrigeration capacity, the size of the absorption refrigerator 5 can be made smaller if the cold water outlet temperature is higher.

冷熱媒流体の流れに対して圧縮式冷凍機6よりも吸収式
冷凍機5を上流側に配置することにより、冷水出口温度
は高温となり、小型化をはかることができる。
By arranging the absorption refrigerator 5 on the upstream side of the compression refrigerator 6 with respect to the flow of the refrigerating medium fluid, the cold water outlet temperature becomes high, and miniaturization can be achieved.

(2)吸収冷凍機5において、負荷回路からの制御機構
即ち、冷水出口温度制御機構の省略が可能となり、制御
機構が簡単となり、しかも系75E6己平衡型となり極
めて安定である。
(2) In the absorption refrigerator 5, the control mechanism from the load circuit, that is, the chilled water outlet temperature control mechanism can be omitted, the control mechanism becomes simple, and the system 75E6 is self-balanced, which is extremely stable.

冷房負荷がある場合、安定した冷房運転を行なうには、
負荷状態に応じて冷凍機セットの容量制御を行なうこと
が必要である。
To ensure stable cooling operation when there is a cooling load,
It is necessary to control the capacity of the refrigerator set depending on the load condition.

直列に二つの冷凍機が配備されている場合には負荷に供
給される冷水の温度は制御せねばならぬので、少なくと
も下流側(低温側)の圧縮式冷凍機6に卦いては容量制
御による冷水出口温度制御が行なわれなければならず、
この冷水出自温度制御により、冷房負荷の増減に応じて
圧縮式冷凍機6の容量が増減し、その消費動力が増減す
る。
When two refrigerators are installed in series, the temperature of the cold water supplied to the load must be controlled, so at least the downstream (low-temperature side) compression refrigerator 6 must be controlled by capacity control. Chilled water outlet temperature control shall be carried out;
Through this cold water source temperature control, the capacity of the compression refrigerator 6 increases or decreases in accordance with an increase or decrease in the cooling load, and its power consumption increases or decreases.

一方、小規模の発電設備においては、給電対象の区域内
の需要電力は、冷房装置の電力以外例えば他の動力、照
明などはほぼ一定であるので、発電量の増減は、はぼ圧
縮式冷凍機6の消費動力の増減によりおこる。
On the other hand, in small-scale power generation facilities, the power demand within the area to which electricity is supplied, other than the power for the cooling equipment, for example, other motive power, lighting, etc., is almost constant, so the increase or decrease in the amount of power generation depends on the This occurs due to an increase or decrease in the power consumption of machine 6.

即ち、冷房負荷の増減があれば、圧縮式冷凍機6の消費
動力に増減があり、従って発電量の増減を起“こす。
That is, if there is an increase or decrease in the cooling load, there will be an increase or decrease in the power consumption of the compression refrigerator 6, which will cause an increase or decrease in the amount of power generation.

発電量が増減すれば排熱量も増減し、従って熱回収装置
2における発生蒸気圧も昇降し、吸収冷凍機5へ供給さ
れる蒸気の圧力及び温度が昇降する。
As the amount of power generation increases or decreases, the amount of exhaust heat also increases or decreases, and therefore the steam pressure generated in the heat recovery device 2 also increases or decreases, and the pressure and temperature of the steam supplied to the absorption refrigerator 5 increases or decreases.

このときの発電機3の負荷変動と発生蒸気圧との関係は
第5図に示す如く、はぼ直線関係となる。
At this time, the relationship between the load fluctuation of the generator 3 and the generated steam pressure is almost a linear relationship, as shown in FIG.

一方、吸収冷凍機5は、圧縮式冷凍機6と共に冷房負荷
を負担するものであるカ・ら、冷房負荷の増減に応じて
吸収冷凍機5の冷凍容量も増減させる必要がある。
On the other hand, since the absorption refrigerator 5 bears the cooling load together with the compression refrigerator 6, it is necessary to increase or decrease the refrigerating capacity of the absorption refrigerator 5 in accordance with an increase or decrease in the cooling load.

吸収冷凍機5の冷凍容量を増減させるには加熱用の蒸気
圧(温度)の昇降を行なう。
To increase or decrease the refrigerating capacity of the absorption refrigerator 5, the heating vapor pressure (temperature) is increased or decreased.

この場合吸収冷凍機5に負担せしめるべき負荷変動と、
それに必要な蒸気圧との関係は、第5図に示す如くほぼ
直線関係となるしかして発電機負荷変動二発生蒸気圧の
関係の直線は、吸収冷凍機負荷変動:必要蒸気圧の関係
の直線(吸収冷凍機負荷特性)によくマツチする。
In this case, the load fluctuation that should be borne by the absorption chiller 5,
The relationship between the required steam pressure and the required steam pressure is almost a straight line as shown in Figure 5.The straight line between the generator load fluctuation and the generated steam pressure is the straight line between the absorption chiller load fluctuation and the required steam pressure. (absorption chiller load characteristics).

負荷17の増減があると、先ず圧縮式冷凍機6の容量が
制御され(後述の如く、吸収冷凍機5においては、冷水
温度制御などの如き負荷回路からの制御を行なわない)
、圧縮式冷凍機6の消費動力が増減し、発電量が増減し
、排熱量が増減し、発生蒸気圧が増減し、吸収冷凍機5
の冷凍容量が増減する。
When the load 17 increases or decreases, the capacity of the compression refrigerator 6 is first controlled (as described later, the absorption refrigerator 5 is not controlled from the load circuit, such as chilled water temperature control).
, the power consumption of the compression refrigerator 6 increases or decreases, the amount of power generation increases or decreases, the amount of exhaust heat increases or decreases, the generated steam pressure increases or decreases, and the absorption refrigerator 5 increases or decreases.
refrigeration capacity increases or decreases.

しかして吸収冷凍機の負荷特性は前述の如く発電機負荷
変動(即ち圧縮式冷凍機6の負荷変動)と発生蒸気圧と
の関係とよくマツチするから、吸収冷凍機5においては
負荷回路からの容量制御を全く行なわなくとも、適正な
冷凍容量が自動的に得られ、系の自己平衡が保たれる。
As mentioned above, the load characteristics of the absorption chiller match well with the relationship between the generator load fluctuation (that is, the load variation of the compression chiller 6) and the generated vapor pressure. Appropriate refrigeration capacity is automatically obtained and the system maintains self-equilibrium without any capacity control.

従って吸収冷凍機における複雑な制御機構が極めて簡単
となり、設備費も低減するばかりでなく、系が自己安定
型となり、運転が著しく安定となる。
Therefore, the complicated control mechanism in the absorption refrigerator becomes extremely simple, and not only the equipment cost is reduced, but also the system becomes self-stabilizing, and the operation becomes extremely stable.

若し、吸収冷凍機5を圧縮式冷凍機6の下流側(低温側
)に配備した場合を仮定すれば、上述の利点と逆の欠点
を生ずる。
If it is assumed that the absorption refrigerator 5 is disposed on the downstream side (low temperature side) of the compression refrigerator 6, disadvantages opposite to the above-mentioned advantages will arise.

即ち、(1)に関しては吸収冷凍機5のサイズが大きく
なる。
That is, regarding (1), the size of the absorption refrigerator 5 increases.

(2)に関しては、吸収冷凍機5が下流側に配備される
と、負荷変動に対しても、所定の温度の冷水を安定して
負荷に供給せねばならぬために、二つの冷凍機セットの
出口即ち下流側の吸収冷凍機5の冷水出口温度を検出し
て、吸収冷凍機5の容量制御(例えば発生器12への加
熱蒸気の大口弁流量制御など)が行なわれなければなら
ない。
Regarding (2), when the absorption chiller 5 is installed downstream, it is necessary to stably supply chilled water at a predetermined temperature to the load even when the load fluctuates, so two chiller sets are required. The temperature at the outlet of the absorption chiller 5, that is, the chilled water outlet temperature of the absorption chiller 5 on the downstream side, must be detected to control the capacity of the absorption chiller 5 (for example, controlling the large valve flow rate of heated steam to the generator 12).

しかしてこの場合に圧縮式冷凍機6は負荷回路からの制
御は行なわないと仮定してみる。
However, in this case, let us assume that the compression refrigerator 6 is not controlled from the load circuit.

・このような状態で負荷が増減すると吸収冷凍
機5への蒸気の供給量を増減して、冷凍能力を増減する
ような操作が行なわれようとする。
- If the load increases or decreases in such a state, the amount of steam supplied to the absorption chiller 5 will be increased or decreased to increase or decrease the refrigerating capacity.

しかしながら、圧縮式冷凍機6は負荷回路からの制御を
行なっていないので、冷凍容量の増減はなく、従って消
費動力、発電量、排熱量の増減もなく一定のエネルギが
吸収冷凍機5に与えられる。
However, since the compression chiller 6 is not controlled by the load circuit, there is no increase or decrease in its refrigeration capacity, and therefore constant energy is given to the absorption chiller 5 without any increase or decrease in power consumption, power generation, or amount of exhaust heat. .

負荷増の場合、吸収冷凍機5に送るエネルギは増大せし
めねばならない。
In the case of an increase in load, the energy delivered to the absorption refrigerator 5 must be increased.

しかしながらこのエネルギは一定であるので不足を生じ
、自己平衡を保つことができない。
However, since this energy is constant, there is a shortage and it is not possible to maintain self-balance.

従って高温側の圧縮式冷凍機6に対しても負荷回路から
の制御を行なう必要があり、結局吸収冷凍機5にも、圧
縮式冷凍機6にも共に負荷回路からの制御機構即ち冷水
出口温度制御機構が必要となり構造が複雑となる。
Therefore, it is necessary to control the compression chiller 6 on the high temperature side from the load circuit, and in the end, both the absorption chiller 5 and the compression chiller 6 require a control mechanism from the load circuit, that is, the chilled water outlet temperature. A control mechanism is required, making the structure complicated.

また、逆に負荷域の場合も、圧縮式冷凍機の容量が一定
ならば、消費動力、発電量、排熱量の減少がなく、吸収
冷凍機5に与えるエネルギは依然として減少せず、吸収
冷凍機5に負担せしめるべき冷凍容量に対し過大のエネ
ルギを与え続けることになる。
Conversely, even in the load range, if the capacity of the compression chiller is constant, there will be no decrease in power consumption, power generation, or exhaust heat, and the energy given to the absorption chiller 5 will still not decrease. This means that excessive energy will continue to be applied to the refrigeration capacity that should be burdened by the refrigerator.

この過大のエネルギは、負荷に対して過剰の電力を供給
して生じたもので、この過大エネルギは系外に排出され
るので、無駄なエネルギロスを生ずることになる。
This excessive energy is generated by supplying excessive power to the load, and this excessive energy is discharged outside the system, resulting in unnecessary energy loss.

このロスを防ぐためには圧縮式冷凍機6に対しても負荷
回路からの制御を行なう必要があり、結局両冷凍機とも
負荷回路からの制御機構即ち冷水出口温度制御機構を必
要とし、また、負荷に応じた両者の切り換え機構も必要
となり、構造が極めて複雑となる。
In order to prevent this loss, it is necessary to control the compression chiller 6 from the load circuit, and both chillers ultimately require a control mechanism from the load circuit, that is, a chilled water outlet temperature control mechanism. A mechanism for switching between the two is also required, making the structure extremely complicated.

以上が(1)及び(2)の効果に関する説明である。The above is the explanation regarding the effects (1) and (2).

暖房負荷や温水負荷用の糸路につき説明する。The yarn paths for heating loads and hot water loads will be explained.

加熱、給湯時には、熱回収装置2からの蒸気は熱交換器
7に導かれ、熱回収装置2にて回収した熱を、暖房負荷
としての負荷18、或いは温水負荷としての給湯19用
の温水に与える。
During heating and hot water supply, steam from the heat recovery device 2 is guided to the heat exchanger 7, and the heat recovered by the heat recovery device 2 is converted into hot water for a load 18 as a heating load or a hot water supply 19 as a hot water load. give.

熱媒を直接負荷側に流すことは熱媒の管理上好ましくな
いし、また熱媒の種類によって社人畜に有害なケースも
考えられるので、上述の如く熱交換器Tを用いて間接式
とすることが望ましい。
It is not desirable for heat medium management to flow directly to the load side, and depending on the type of heat medium, it may be harmful to employees, employees, and animals, so an indirect method using heat exchanger T as described above is recommended. is desirable.

この熱交換器7にはヒートバランサが設けられ管路20
により冷却塔8と連絡される。
This heat exchanger 7 is provided with a heat balancer, and the pipe line 20
It is connected to the cooling tower 8 by.

負荷が減少し廃熱量とのバランスが失われた場合温水ま
だは温風などの2次側熱媒の温度が過昇するので、この
ヒートバランサにより放熱をする。
If the load decreases and the balance with the amount of waste heat is lost, the temperature of the secondary heat medium such as hot water or hot air will rise excessively, so the heat balancer is used to radiate heat.

本実施例のシステムにおいては、発電設備1の廃熱を熱
回収装置2で回収し、これを吸収冷凍機5、給湯19、
空気調和設備やプロセス用の負荷18の熱源として利用
、あるいは間接的に冷房や冷凍などの負荷17の冷熱源
として利用して総合効率が高められ、最高75係程度に
まで高めることもできるものである。
In the system of this embodiment, the waste heat of the power generation equipment 1 is recovered by the heat recovery device 2, and is transferred to the absorption refrigerator 5, the hot water supply 19,
It can be used as a heat source for loads 18 for air conditioning equipment and processes, or indirectly as a cold source for loads 17 such as air conditioners and refrigeration, to increase overall efficiency, and can even be increased to a maximum coefficient of 75. be.

また、発電負荷が増大し、発電設備よりの廃熱が増大し
ても、冷却サイクルの場合は吸収冷凍機5に設けたバイ
パス15により、また加熱サイクルの場合にはヒートバ
ランサにより自動的に過負荷を防ぐことができ安全円滑
に運転が行なえ、る。
In addition, even if the power generation load increases and the waste heat from the power generation equipment increases, the bypass 15 installed in the absorption chiller 5 in the case of a cooling cycle or the heat balancer in the case of a heating cycle will automatically overheat the power. Load can be prevented, allowing safe and smooth operation.

一般に発電用原動機の廃熱は、普通、温水(90℃前後
)としてしか利用していないが、本実施例システムでは
原動機の加熱された冷却水を原動機の排気で再加熱して
廃熱を蒸気として回収し、廃熱の回収率を入力に対する
割合で15%から40チに大巾に増大させることが可能
となり、しかも廃熱を蒸気として回収することができだ
ため廃熱を加熱、暖房用としてだけでなく、吸収冷凍機
を運転できるのでターボ冷凍機の容量並びに発電機の容
量を小さくすることができ、全体の設備を低減すること
ができ、従来必要としていた余分な専用の熱交換器、冷
却器および非常に複雑で高価な制御装置を不要とし発電
設備の余剰廃熱を吸収冷凍機の余った能力を充分に利用
して吸収冷凍機のサイクルを通して吸収冷凍機の冷却塔
より糸外へ排出可能となり排熱専用の熱交換器、冷却器
、制御機器を省略し、且つ運転管理も容易となって、し
かも総合的な効率を75チまで高めることができ省エネ
ルギー、低公害にもなり、従来棄てていた廃熱のうち可
成りの量を給湯、暖房、プロセス用などの熱源として用
いたり、冷房や冷凍のだめの冷熱源として間接的に利用
したり、総合効率を高め、運転費の低減が図れ、従って
小規模な発電設備に対しても充分経済的に引合う。
Generally, the waste heat of the prime mover for power generation is normally used only as hot water (around 90°C), but in this example system, the heated cooling water of the prime mover is reheated by the exhaust gas of the prime mover, and the waste heat is converted into steam. This makes it possible to greatly increase the recovery rate of waste heat from 15% to 40% of input, and since waste heat can be recovered as steam, waste heat can be used for heating and space heating. In addition to being able to operate an absorption chiller, the capacity of the centrifugal chiller and generator can be reduced, reducing the overall equipment and eliminating the need for an extra dedicated heat exchanger that was previously required. , it eliminates the need for coolers and extremely complex and expensive control devices, and makes full use of the excess capacity of the absorption chiller to transfer surplus waste heat from the power generating equipment to the outside through the absorption chiller's cooling tower through the absorption chiller cycle. This makes it possible to eliminate heat exchangers, coolers, and control equipment dedicated to exhaust heat, and it also makes operation management easier.In addition, the overall efficiency can be increased to 75 cm, resulting in energy savings and low pollution. A considerable amount of the waste heat that was previously discarded can be used as a heat source for hot water supply, space heating, process use, etc., or used indirectly as a cold source for cooling and freezing tanks, increasing overall efficiency and reducing operating costs. Therefore, it is economically attractive even for small-scale power generation facilities.

本発明により、吸収冷凍機の小型化がはかれ、吸収冷凍
機における負荷回路からの制御が不要となり、制御機構
が簡単となり、しかも系が自己平衡型となって運転が安
定化する発電設備における熱回収システムを提供するこ
とができ、実用上極めて大なる効果を奏することができ
る。
The present invention enables miniaturization of absorption chillers, eliminates the need for control from the load circuit in the absorption chiller, simplifies the control mechanism, and makes the system self-balancing for stable operation in power generation equipment. A heat recovery system can be provided, which can have extremely great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の発電設備における熱収支である。 第2図ないし第5図は本発明の実施例に関する図面で、
第2図は基本サイクルの熱収支図、第3図はシステム全
体の構成を示す構成図、第4図は冷1水系路における冷
凍セットの構成図、第5図は発電負荷と蒸気圧、吸収冷
凍機負荷と蒸気圧との関係を示すグラフである。 1・・・・・・発電設備、2・・・・・・熱回収装置、
3・・・・・・発電機、4・・・・・・原動機、5・・
・・・・吸収冷凍機、6・・・・・・圧縮式冷凍機、T
・・・・・・熱交換器、12・・四発生器、13・・・
・・・凝縮器、14・・・・・・吸収器、15・・・・
市くイパス、16・・・・・・バイパス弁。
Figure 1 shows the heat balance in conventional power generation equipment. 2 to 5 are drawings relating to embodiments of the present invention,
Figure 2 is a heat balance diagram of the basic cycle, Figure 3 is a configuration diagram showing the overall system configuration, Figure 4 is a configuration diagram of the refrigeration set in the cold 1 water system, and Figure 5 is the power generation load, steam pressure, and absorption diagram. It is a graph showing the relationship between refrigerator load and vapor pressure. 1...Power generation equipment, 2...Heat recovery device,
3... Generator, 4... Prime mover, 5...
...Absorption refrigerator, 6...Compression refrigerator, T
...Heat exchanger, 12...Four generators, 13...
... Condenser, 14 ... Absorber, 15 ...
City pass, 16...Bypass valve.

Claims (1)

【特許請求の範囲】 1 圧縮式冷凍機の動力を含む電力需要をまかなう発電
設備の熱回収方法において、該発電設備からの廃熱を回
収して吸収冷凍機の発生器の加熱源□として用い、冷房
負荷からの戻り冷熱媒体を先ず前記吸収冷凍機に導いて
雨却し、次に前記圧縮式冷凍機に導いて階動し、その後
に前記冷房負荷に襖絵することを特徴とする発電設備に
おける熱回収方法。 2 圧縮式冷凍機の動力を含む電力需要をまかなう発電
設備の熱回収方法において、該発電設備からの廃熱を回
収して吸収冷凍機の発生器の加熱源として用い、冷房負
荷からの戻り冷熱媒体を先ず前記吸収冷凍機に導いて冷
却し、次に前記圧縮式冷凍機に導いて冷却し、その後に
前記冷房負荷に供給し、さらに、前記発電設備からの廃
熱を、暖房負荷からの温熱媒体と熱交換せしめて該温熱
媒体を加熱することを特徴とする発電設備における熱回
収方法。
[Scope of Claims] 1. A heat recovery method for a power generation facility that covers the electricity demand including the power of a compression chiller, in which waste heat from the power generation facility is recovered and used as a heating source for a generator of an absorption chiller. , a power generation characterized in that the return cold heat medium from the cooling load is first guided to the absorption chiller and rained down, then guided to the compression chiller and moved, and then applied to the cooling load. Heat recovery method in equipment. 2. In a heat recovery method for power generation equipment that covers the electricity demand including the power of a compression chiller, waste heat from the power generation equipment is recovered and used as a heating source for the generator of the absorption chiller, and the cold heat returned from the cooling load is recovered. The medium is first led to the absorption refrigerator for cooling, then to the compression refrigerator for cooling, and then supplied to the cooling load, and furthermore, the waste heat from the power generation equipment is transferred to the heating load. A heat recovery method in a power generation facility, characterized by heating the thermal medium by exchanging heat with the thermal medium.
JP49073722A 1974-06-27 1974-06-27 Heat recovery method in power generation equipment Expired JPS5815705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49073722A JPS5815705B2 (en) 1974-06-27 1974-06-27 Heat recovery method in power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49073722A JPS5815705B2 (en) 1974-06-27 1974-06-27 Heat recovery method in power generation equipment

Publications (2)

Publication Number Publication Date
JPS513039A JPS513039A (en) 1976-01-12
JPS5815705B2 true JPS5815705B2 (en) 1983-03-26

Family

ID=13526387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49073722A Expired JPS5815705B2 (en) 1974-06-27 1974-06-27 Heat recovery method in power generation equipment

Country Status (1)

Country Link
JP (1) JPS5815705B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108628U (en) * 1983-12-27 1985-07-24 タキロン株式会社 Folding plate mounting device
JPS60179727U (en) * 1984-05-09 1985-11-29 三晃金属工業株式会社 Bracket
JPS61108421U (en) * 1984-12-14 1986-07-09

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195961U (en) * 1982-06-21 1983-12-26 日新ハイボルテ−ジ株式会社 ion source device
JPS62299677A (en) * 1986-06-18 1987-12-26 大阪瓦斯株式会社 Cooling device
JPH04251170A (en) * 1990-12-20 1992-09-07 Ebara Corp Refrigerating device and operation method thereof in cogeneration system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3301000A (en) * 1965-02-15 1967-01-31 Borg Warner Combination vapor compression and absorption refrigeration system
US3314246A (en) * 1965-10-22 1967-04-18 Borg Warner Capacity control for refrigeration systems
JPS492241A (en) * 1972-04-26 1974-01-10

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48108440U (en) * 1972-03-18 1973-12-14

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3301000A (en) * 1965-02-15 1967-01-31 Borg Warner Combination vapor compression and absorption refrigeration system
US3314246A (en) * 1965-10-22 1967-04-18 Borg Warner Capacity control for refrigeration systems
JPS492241A (en) * 1972-04-26 1974-01-10

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108628U (en) * 1983-12-27 1985-07-24 タキロン株式会社 Folding plate mounting device
JPS60179727U (en) * 1984-05-09 1985-11-29 三晃金属工業株式会社 Bracket
JPS61108421U (en) * 1984-12-14 1986-07-09

Also Published As

Publication number Publication date
JPS513039A (en) 1976-01-12

Similar Documents

Publication Publication Date Title
US4813242A (en) Efficient heater and air conditioner
US4380909A (en) Method and apparatus for co-generation of electrical power and absorption-type heat pump air conditioning
CN113818934B (en) Adjustable combined cooling and power system and process and operation method thereof
US4307577A (en) Air conditioning system making use of waste heat
CN114353037A (en) Heat accumulating type steam supply system and winery with same
US3041853A (en) Refrigerating process and apparatus for the same
US5579652A (en) Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
JPS5815705B2 (en) Heat recovery method in power generation equipment
CN115306507B (en) Mobile vehicle-mounted power supply system
JPS5829397Y2 (en) Air conditioning equipment
WO1997041396A1 (en) Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
CN210289855U (en) Steam turbine lubricating oil quick auxiliary cooling device of steam power plant
KR20190080176A (en) Cng charging station with trigeneration system and operating method of that
US3175371A (en) Refrigeration process and apparatus for the same
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
CN211082000U (en) Organic Rankine and reverse Carnot cycle coupled waste heat recovery system
JPS6187908A (en) Combined device of power generation, refrigeration, and heat pump cycle
JPH02146208A (en) Compound heat utilizing plant
JP2000282895A (en) Intake air cooling device and method for gas turbine
CN216281670U (en) Hot water supply system
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
JP4100462B2 (en) Heat utilization system
JPS5912843B2 (en) Heat recovery equipment in power generation equipment
JP3986633B2 (en) Heat utilization system
US2781640A (en) Steam drive prime mover system