JP2009198290A - Flaw detection method and detector - Google Patents

Flaw detection method and detector Download PDF

Info

Publication number
JP2009198290A
JP2009198290A JP2008039802A JP2008039802A JP2009198290A JP 2009198290 A JP2009198290 A JP 2009198290A JP 2008039802 A JP2008039802 A JP 2008039802A JP 2008039802 A JP2008039802 A JP 2008039802A JP 2009198290 A JP2009198290 A JP 2009198290A
Authority
JP
Japan
Prior art keywords
defect
target pixel
comparison target
value
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008039802A
Other languages
Japanese (ja)
Other versions
JP5088165B2 (en
Inventor
Koichi Kojima
広一 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008039802A priority Critical patent/JP5088165B2/en
Publication of JP2009198290A publication Critical patent/JP2009198290A/en
Application granted granted Critical
Publication of JP5088165B2 publication Critical patent/JP5088165B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw detection method capable of enhancing the flaw detection sensitivity of an inspection target. <P>SOLUTION: The flaw detection method includes the flaw emphasizing treatment process and the flaw detecting process. The flaw emphasizing treatment process includes the process ST20 for forming a smoothed image from a photographed image, the process ST21 for successively selecting an inspection target pixel, the process ST22 for dividing a plurality of comparing target pixels, which are arranged to the periphery of the noticing pixel of the smoothed image corresponding to the inspection target pixel into a plurality of comparing target pixel groups to set them, the process ST23 for determining brightness difference data being the difference between the respective comparing target pixels of the comparing target pixel groups and the respective brightness values of the inspection target pixels and calculating the minimum brightness difference becoming minimum in its value at intervals of the comparing target pixel groups, and the process ST24 for setting the minimum brightness difference becoming maximum in its value in the minimum brightness difference calculated at intervals of the comparing target pixel groups. The flaw detecting process discriminates a flaw from the feature quantity of a flaw candidate region constituted of the flaw candidate pixels extracted by comparing a flaw emphasizing value with a threshold value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被検査物を撮像した画像を処理することで、被検査物の傷やシミ等によって前記撮像画像に低コントラストで表示される欠陥を、精度よくかつ自動的に検出する欠陥検出方法及び装置に関する。   The present invention relates to a defect detection method for accurately and automatically detecting a defect displayed at a low contrast on the captured image due to scratches or spots on the inspection object by processing an image obtained by imaging the inspection object. And an apparatus.

被検査物の欠陥を検出する欠陥検出方法として、被検査物を撮像した画像を処理して欠陥検出を行う方法が知られている(例えば、特許文献1参照)。   As a defect detection method for detecting a defect of an inspection object, a method of performing defect detection by processing an image obtained by imaging the inspection object is known (for example, see Patent Document 1).

特許文献1は、空間フィルタを用いて欠陥を検査する方法であり、空間フィルタの注目画素を基準として予め決定した所定位置に位置する画素群の濃度を抽出し、その抽出した画素群の濃度がある一定の範囲内に入っていれば、そこに欠陥が存在すると判断して平滑化処理を行わず、エッジを強調する微分処理の空間フィルタを適用し、それ以外であれば欠陥が存在しないとして、平滑化処理を適用、微分処理を適用しないことにより、ノイズ成分の乗った画像から欠陥を検出する方法である。   Patent Document 1 is a method for inspecting a defect using a spatial filter, in which the density of a pixel group located at a predetermined position determined in advance with reference to the target pixel of the spatial filter is extracted, and the density of the extracted pixel group is If it is within a certain range, it is judged that there is a defect and smoothing processing is not performed, and a differential processing spatial filter that emphasizes edges is applied. Otherwise, it is assumed that there is no defect. In this method, a defect is detected from an image with a noise component by applying a smoothing process and not applying a differentiation process.

特開2004−333223号公報JP 2004-333223 A

しかしながら、特許文献1に記載の方法では、欠陥検出をある濃度値の範囲内で判断しているため、場所によって欠陥の濃度が異なる場合、例えば画像に照明ムラなどのシェーディングが乗っている場合には、適用することが困難である。   However, in the method described in Patent Document 1, since defect detection is determined within a certain density value range, when the density of the defect differs depending on the location, for example, when shading such as uneven illumination is on the image. Is difficult to apply.

本発明は、上述のような課題に鑑みてなされたものであり、シェーディングの影響を軽減できて被検査物の欠陥検出の感度を向上することができる欠陥検出方法及び装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a defect detection method and apparatus that can reduce the influence of shading and improve the sensitivity of defect detection of an inspection object. And

本発明の欠陥検出方法は、被検査物を撮像した撮像画像に対して欠陥強調処理を行う欠陥強調処理工程と、前記欠陥強調処理工程で得られた各画素の欠陥強調値に基づいて欠陥を検出する欠陥検出工程とを有し、前記欠陥強調処理工程は、前記撮像画像に対して平滑化処理を行って平滑化画像を作成する平滑化画像作成工程と、前記撮像画像において検査対象画素を順次選定する検査対象画素選定工程と、選定された検査対象画素に対応する平滑化画像の着目画素から所定距離離れた比較対象画素を前記着目画素の周囲に複数配置し、これらの比較対象画素を複数の比較対象画素群に分けて設定する比較対象画素群設定工程と、比較対象画素群に含まれる各比較対象画素の輝度値と、前記検査対象画素の輝度値との差である輝度差データを求め、それらの輝度差データのうち、値が最小となる最小輝度差を比較対象画素群毎に求める最小輝度差算出工程と、比較対象画素群毎に算出された最小輝度差のうち、値が最大となる最小輝度差を前記検査対象画素の欠陥強調値とする欠陥強調値算出工程とを備え、前記欠陥検出工程は、前記検査対象画素での欠陥強調値を所定の閾値と比較して欠陥候補画素を抽出し、その欠陥候補画素によって構成される欠陥候補領域の特徴量から欠陥を判別することを特徴とする。   According to the defect detection method of the present invention, a defect enhancement processing step for performing defect enhancement processing on a captured image obtained by imaging an inspection object, and a defect based on a defect enhancement value of each pixel obtained in the defect enhancement processing step. A defect detection step for detecting, wherein the defect enhancement processing step performs a smoothing process on the captured image to create a smoothed image, and an inspection target pixel in the captured image. A plurality of comparison target pixels that are separated from the target pixel of the smoothed image corresponding to the selected inspection target pixel by a predetermined distance are arranged around the target pixel, and the comparison target pixels are sequentially selected. Luminance difference data that is a difference between a comparison target pixel group setting step that is set separately for a plurality of comparison target pixel groups, a luminance value of each comparison target pixel included in the comparison target pixel group, and a luminance value of the inspection target pixel Seeking Among the luminance difference data, the minimum luminance difference calculation step for obtaining the minimum luminance difference for which the value is minimum for each comparison target pixel group, and the minimum luminance difference calculated for each comparison target pixel group has the maximum value. A defect enhancement value calculation step that uses the minimum luminance difference as a defect enhancement value of the inspection target pixel, and the defect detection step compares the defect enhancement value at the inspection target pixel with a predetermined threshold value to obtain a defect candidate A feature is that a pixel is extracted, and a defect is determined from a feature amount of a defect candidate region constituted by the defect candidate pixel.

なお、検査対象画素および比較対象画素は、例えば、被検査物を撮像したCCDカメラの撮像画素単位で設定すればよい。
本発明では、欠陥強調処理工程において、撮像画像で選定された検査対象画素に対応する着目画素を平滑化画像に設定し、前記検査対象画素の輝度値と、前記着目画素の周囲に複数配置された平滑化画像の比較対象画素の輝度値との差である輝度差データを求め、各輝度差データのうち、値が最小となる最小輝度差を選択して前記検査対象画素の欠陥強調値としているので、検査対象画素を含み、かつ、比較対象画素は含まない欠陥、例えば面状のシミ欠陥を検出できる。
すなわち、検査対象画素部分に欠陥がなく、周囲の画素と輝度差が無い場合には、前記最小輝度差は非常に小さい値になる。また、検査対象画素に欠陥があっても、その欠陥がいずれかの比較対象画素部分まで広がっている場合には、その欠陥部分に含まれる検査対象画素および比較対象画素の輝度差は殆ど無いため、前記最小輝度差も非常に小さい値になる。
一方、検査対象画素に欠陥が存在し、かつ、周囲の比較対象画素には欠陥が無い場合、つまりシミ欠陥が比較対象画素で囲まれるエリア内に納まっている場合には、検査対象画素の輝度値は、いずれの比較対象画素の輝度値とも差があるため、最小輝度差も比較的大きな値になる。これにより、比較対象画素で囲まれるエリア内に納まる大きさのシミ欠陥が存在する場合に、最小輝度差は比較的大きな値となり、欠陥が強調されることになる。
In addition, what is necessary is just to set an inspection object pixel and a comparison object pixel in the imaging pixel unit of the CCD camera which imaged the to-be-inspected object, for example.
In the present invention, in the defect enhancement processing step, the target pixel corresponding to the inspection target pixel selected in the captured image is set as a smoothed image, and a plurality of luminance values of the inspection target pixel and the periphery of the target pixel are arranged. Brightness difference data that is a difference from the brightness value of the comparison target pixel of the smoothed image is obtained, and the minimum brightness difference that minimizes the value is selected from the brightness difference data as the defect enhancement value of the inspection target pixel. Therefore, it is possible to detect a defect including the inspection target pixel and not including the comparison target pixel, for example, a planar spot defect.
That is, when there is no defect in the inspection target pixel portion and there is no luminance difference with the surrounding pixels, the minimum luminance difference is a very small value. Further, even if the inspection target pixel has a defect, if the defect extends to any of the comparison target pixel portions, there is almost no luminance difference between the inspection target pixel and the comparison target pixel included in the defective portion. The minimum luminance difference is also a very small value.
On the other hand, if the inspection target pixel has a defect and the surrounding comparison target pixel has no defect, that is, if the spot defect is within the area surrounded by the comparison target pixel, the luminance of the inspection target pixel Since the value is different from the luminance value of any comparison target pixel, the minimum luminance difference is also a relatively large value. As a result, when there is a spot defect having a size that can be accommodated in the area surrounded by the comparison target pixels, the minimum luminance difference becomes a relatively large value, and the defect is emphasized.

また、本発明では、前記複数の比較対象画素を、複数の比較対象画素群に分けているので、シミ欠陥のほかに線欠陥も検出できる。すなわち、複数の比較対象画素の少なくとも一つと、検出対象画素とに重なる線欠陥がある場合、その線欠陥上の各画素の輝度値の差は小さいため、前記最小輝度差も小さな値となり、欠陥を検出することができない。
一方、本発明のように、複数の比較対象画素を、複数の比較対象画素群に分け、各比較対象画素群毎に最小輝度差を算出している場合、各比較対象画素の位置が異なるため、一方の比較対象画素群の比較対象画素に線欠陥が重なってその線欠陥を検出できなくても、他の比較対象画素群の比較対象画素は前記線欠陥と重ならず、その線欠陥を検出できる。
このため、複数の比較対象画素群で算出された各最小輝度差の最大値を、検査対象画素の欠陥強調値とすれば、シェーディングの影響を受けることなく、シミ欠陥および線欠陥の両方の欠陥を強調できる。特に、線欠陥は、いずれかの比較対象画素群で検出できなくても、他の比較対象画素群で検出できるため、線欠陥の角度による検出感度のムラは生じず、検出感度を向上することができる。
また、本発明では、シミ欠陥および線欠陥の両方を同時に検出できるため、シミ欠陥検出フィルタと線欠陥検出フィルタとを別々に用意して検出する場合に比べて、欠陥検出時間も短縮できる。
In the present invention, since the plurality of comparison target pixels are divided into a plurality of comparison target pixel groups, a line defect can be detected in addition to a spot defect. That is, when there is a line defect that overlaps at least one of the plurality of comparison target pixels and the detection target pixel, the difference in luminance value of each pixel on the line defect is small, so the minimum luminance difference is also a small value. Cannot be detected.
On the other hand, when the plurality of comparison target pixels are divided into a plurality of comparison target pixel groups and the minimum luminance difference is calculated for each comparison target pixel group as in the present invention, the position of each comparison target pixel is different. Even if the line defect overlaps the comparison target pixel of one comparison target pixel group and the line defect cannot be detected, the comparison target pixel of the other comparison target pixel group does not overlap the line defect, and the line defect is not detected. It can be detected.
For this reason, if the maximum value of each minimum luminance difference calculated for a plurality of comparison target pixel groups is used as the defect enhancement value of the inspection target pixel, both the spot defect and the line defect defect are not affected by shading. Can be emphasized. In particular, even if a line defect cannot be detected by any of the comparison target pixel groups, it can be detected by other comparison target pixel groups, so that detection sensitivity unevenness due to the angle of the line defect does not occur and detection sensitivity is improved. Can do.
In the present invention, since both a spot defect and a line defect can be detected simultaneously, the defect detection time can be shortened as compared with the case where a spot defect detection filter and a line defect detection filter are separately prepared and detected.

さらに、検査対象点を設定する画像として撮像画像を用いているので、例えば、平滑化処理等を行った画像において検査対象点を設定した場合に比べ、平滑化処理等により欠陥の成分を弱めることがない。
また、輝度比較画素は平滑化画像に設定しているので、ノイズ成分の影響を受けることなく欠陥成分を強調することが可能となる。
すなわち、比較対象画素も撮像画像に設定した場合、検査対象画素に欠陥が存在していても、その周囲の比較対象画素部分にノイズが存在し、検査対象画素と同程度の輝度値(濃度値)であると、検査対象画素と比較対象画素との輝度差が殆ど無くなり、欠陥部分の検査対象画素を選定しても、その欠陥を検出できない。
これに対し、本発明では、比較対象画素を平滑化画像に設定しているため、比較対象画素におけるノイズの影響を軽減でき、欠陥成分を確実に強調することができ、欠陥成分の検出漏れを防止できる。
Furthermore, since the captured image is used as the image for setting the inspection target point, for example, compared to the case where the inspection target point is set in the image subjected to the smoothing process or the like, the defect component is weakened by the smoothing process or the like. There is no.
In addition, since the luminance comparison pixel is set to a smoothed image, it is possible to enhance the defect component without being affected by the noise component.
That is, when the comparison target pixel is also set as a captured image, even if a defect exists in the inspection target pixel, noise exists in the surrounding comparison target pixel portion, and a luminance value (density value) comparable to that of the inspection target pixel. ), There is almost no difference in luminance between the inspection target pixel and the comparison target pixel, and the defect cannot be detected even if the inspection target pixel in the defective portion is selected.
On the other hand, in the present invention, since the comparison target pixel is set to a smoothed image, the influence of noise on the comparison target pixel can be reduced, the defect component can be surely emphasized, and detection failure of the defect component can be prevented. Can be prevented.

さらに、欠陥強調処理工程では、欠陥成分だけでなくノイズ成分についても同時に強調し欠陥候補となるが、欠陥検出工程において、欠陥候補の特徴量からノイズ成分と欠陥成分とを分離できるので、欠陥を特定して検出することができる。
なお、欠陥候補領域は、互いに隣接する欠陥候補画素をまとめて一つの欠陥候補領域と設定すればよい。
また、欠陥候補領域の特徴量としては、例えば、欠陥候補領域の面積が予め設定された閾値以上であれば欠陥成分と判定し、閾値未満であればノイズ成分と判定すればよい。さらに、面積以外に、欠陥候補領域の平均輝度、最大輝度等も考慮して判別してもよい。
このように、本発明においては、欠陥候補領域の面積等の特徴量によって欠陥成分であるか判別しているので、ノイズ成分を分離して欠陥成分だけを抽出することができる。
Furthermore, in the defect enhancement processing step, not only the defect component but also the noise component is simultaneously enhanced to become a defect candidate, but in the defect detection step, the noise component and the defect component can be separated from the feature amount of the defect candidate. It can be identified and detected.
The defect candidate area may be set as one defect candidate area by collecting defect candidate pixels adjacent to each other.
Further, as the feature amount of the defect candidate region, for example, if the area of the defect candidate region is equal to or larger than a preset threshold, it is determined as a defect component, and if it is less than the threshold, it is determined as a noise component. Further, in addition to the area, the determination may be made in consideration of the average luminance, the maximum luminance, and the like of the defect candidate region.
In this way, in the present invention, since it is determined whether or not the defect component is based on the feature amount such as the area of the defect candidate region, it is possible to extract only the defect component by separating the noise component.

本発明の欠陥検出方法において、前記比較対象画素群設定工程は、前記複数の比較対象画素として、4×n個(nは2以上の整数)の比較対象画素を選定し、これらの比較対象画素を、検査対象画素を中心とする円周方向において90度間隔で配置された4個の比較対象画素毎に選択して各比較対象画素群を設定することが好ましい。   In the defect detection method of the present invention, in the comparison target pixel group setting step, 4 × n (n is an integer of 2 or more) comparison target pixels are selected as the plurality of comparison target pixels, and these comparison target pixels are selected. Is preferably selected for each of four comparison target pixels arranged at intervals of 90 degrees in the circumferential direction centering on the inspection target pixel, and each comparison target pixel group is set.

なお、4×n個の比較対象画素の具体的な個数は、検査対象画素および比較対象画素間の距離に基づいて設定すればよく、通常は、8個、12個、16個のいずれかに設定すればよい。
また、検査対象画素および比較対象画素の距離は、検出対象となるシミ欠陥の大きさに基づいて設定すればよく、通常は、各画素間の距離を4〜40画素程度、例えば7画素にすればよい。
Note that the specific number of the 4 × n comparison target pixels may be set based on the distance between the inspection target pixel and the comparison target pixel, and is usually any of 8, 12, or 16 You only have to set it.
Further, the distance between the inspection target pixel and the comparison target pixel may be set based on the size of the spot defect to be detected. Usually, the distance between the pixels is set to about 4 to 40 pixels, for example, 7 pixels. That's fine.

さらに、比較対象画素は、検査対象画素の周囲に円周上にかつ等間隔に配置することが好ましい。すなわち、各比較対象画素および検査対象画素を結ぶ線分と、その比較対象画素に隣接する他の比較対象画素および検査対象画素を結ぶ線分とがなす角度が、各比較対象画素において同一であることが好ましい。
従って、例えば、8個の比較対象画素が設けられている場合には、検査対象画素を中心とする円周方向に45度間隔で配置すればよい。この場合、検査対象画素を中心とする円周方向に1つおきに選択した4つの検査対象画素つまり90度間隔で配置された4つの検査対象画素により第1比較対象画素群を構成し、これらの第1比較対象画素群に含まれない他の4つの検査対象画素により第2比較対象画素群を構成すればよい。
同様に、12個の比較対象画素が設けられている場合には、検査対象画素を中心とする円周方向に30度間隔で配置すればよい。この場合、検査対象画素を中心とする円周方向に2つおきに選択した4つの検査対象画素つまり90度間隔で配置された4つの検査対象画素により第1〜3の比較対象画素群をそれぞれ構成すればよい。
同様に、16個の比較対象画素が設けられている場合には、検査対象画素を中心とする円周方向に22.5度間隔で配置すればよい。この場合、検査対象画素を中心とする円周方向に3つおきに選択した4つの検査対象画素つまり90度間隔で配置された4つの検査対象画素により第1〜4の比較対象画素群をそれぞれ構成すればよい。
Furthermore, it is preferable that the comparison target pixels are arranged on the circumference and at equal intervals around the inspection target pixel. That is, an angle formed by a line segment connecting each comparison target pixel and the inspection target pixel and a line segment connecting another comparison target pixel and the inspection target pixel adjacent to the comparison target pixel is the same in each comparison target pixel. It is preferable.
Therefore, for example, when eight comparison target pixels are provided, they may be arranged at intervals of 45 degrees in the circumferential direction centering on the inspection target pixel. In this case, a first comparison target pixel group is configured by four inspection target pixels selected every other circumferential direction around the inspection target pixel, that is, four inspection target pixels arranged at intervals of 90 degrees. What is necessary is just to comprise a 2nd comparison object pixel group by the other four test object pixels which are not contained in this 1st comparison object pixel group.
Similarly, when 12 comparison target pixels are provided, they may be arranged at intervals of 30 degrees in the circumferential direction centering on the inspection target pixel. In this case, the first to third comparison target pixel groups are respectively formed by four inspection target pixels selected every two in the circumferential direction centering on the inspection target pixel, that is, four inspection target pixels arranged at intervals of 90 degrees. What is necessary is just to comprise.
Similarly, when 16 comparison target pixels are provided, they may be arranged at intervals of 22.5 degrees in the circumferential direction centering on the inspection target pixel. In this case, each of the first to fourth comparison target pixel groups is composed of four inspection target pixels selected every third in the circumferential direction around the inspection target pixel, that is, four inspection target pixels arranged at intervals of 90 degrees. What is necessary is just to comprise.

検査対象画素を中心とする円周方向に90度間隔に配置された4つの比較対象画素により各比較対象画素群を構成しているので、最小限の数の比較対象画素でシミ欠陥の有無を検出できるとともに、ある比較対象画素群において検査対象画素を挟んで点対称位置に配置された2つの比較対象画素を通る線欠陥があり、その線欠陥を検出できない場合でも、他の比較対象画素群によって前記線欠陥を確実に検出することができる。   Since each comparison target pixel group is composed of four comparison target pixels arranged at intervals of 90 degrees in the circumferential direction centering on the inspection target pixel, the presence or absence of a spot defect is confirmed with a minimum number of comparison target pixels. Even if there is a line defect that passes through two comparison target pixels arranged at point-symmetrical positions with respect to the inspection target pixel in a certain comparison target pixel group and the line defect cannot be detected, another comparison target pixel group Thus, the line defect can be reliably detected.

本発明の欠陥検出方法において、前記比較対象画素群設定工程は、前記複数の比較対象画素として、検査対象画素を中心とする円周方向において45度間隔で配置された8個の比較対象画素を選定し、これらの8個の比較対象画素を、検査対象画素を中心とする円周方向において90度間隔で配置された4個の比較対象画素毎に選択して第1比較対象画素群および第2比較対象画素群を設定してもよい。
例えば、検査対象画素を挟んで上下および左右に設けられた4つの比較対象画素によって第1比較対象画素群を構成し、検査対象画素を挟んで右斜め上、右斜め下、左斜め上、左斜め下に設けられた4つの比較対象画素によって第2比較対象画素群を構成すればよい。
4個の比較対象画素を備える2つの比較対象画素群を設定すれば、最小限の比較対象画素によってシミ欠陥および線欠陥を検出できる。このため、フィルタによる欠陥検出処理も短時間で行うことができる。
In the defect detection method of the present invention, the comparison target pixel group setting step includes, as the plurality of comparison target pixels, eight comparison target pixels arranged at intervals of 45 degrees in a circumferential direction centering on the inspection target pixel. These eight comparison target pixels are selected for each of four comparison target pixels arranged at intervals of 90 degrees in the circumferential direction centering on the inspection target pixel, and the first comparison target pixel group and the first comparison target pixel group Two comparison target pixel groups may be set.
For example, a first comparison target pixel group is configured by four comparison target pixels provided on the upper and lower sides and the left and right sides of the inspection target pixel, and the upper right side, the lower right side, the upper left side, and the left side of the inspection target pixel. The second comparison target pixel group may be configured by four comparison target pixels provided obliquely below.
If two comparison target pixel groups each including four comparison target pixels are set, it is possible to detect a spot defect and a line defect with a minimum comparison target pixel. For this reason, the defect detection process by a filter can also be performed in a short time.

本発明の欠陥検出方法において、前記最小輝度差算出工程は、欠陥部分の輝度が、周囲の輝度よりも高くなる明欠陥を検出する場合には、前記検査対象画素の輝度値から比較対象画素の輝度値を引いて輝度差データを求め、それらの輝度差データの最小輝度差を求め、欠陥部分の輝度が、周囲の輝度よりも低くなる暗欠陥を検出する場合には、前記比較対象画素の輝度値から検査対象画素の輝度値を引いて輝度差データを求め、それらの輝度差データの最小輝度差を求めることが好ましい。   In the defect detection method of the present invention, the minimum luminance difference calculating step detects a bright defect in which the luminance of the defective portion is higher than the surrounding luminance, from the luminance value of the inspection target pixel. When the luminance difference data is obtained by subtracting the luminance value, the minimum luminance difference of the luminance difference data is obtained, and a dark defect in which the luminance of the defective portion is lower than the surrounding luminance is detected, the comparison target pixel It is preferable to obtain luminance difference data by subtracting the luminance value of the pixel to be inspected from the luminance value, and obtain the minimum luminance difference of the luminance difference data.

本発明においては、検査対象画素の輝度値から比較対象画素の輝度値を引いて求めた各輝度差データの最小値を前記検査対象画素の明欠陥用の欠陥強調値とし、比較対象画素の輝度値から検査対象画素の輝度値を引いて求めた各輝度差データの最小値を前記検査対象画素の暗欠陥用の欠陥強調値としているので、明欠陥および暗欠陥を精度良く検出できる。   In the present invention, the minimum value of each luminance difference data obtained by subtracting the luminance value of the comparison target pixel from the luminance value of the inspection target pixel is used as the defect enhancement value for the bright defect of the inspection target pixel, and the luminance of the comparison target pixel Since the minimum value of each luminance difference data obtained by subtracting the luminance value of the inspection target pixel from the value is used as the defect emphasis value for dark defect of the inspection target pixel, it is possible to detect the bright defect and the dark defect with high accuracy.

本発明の欠陥検出装置は、被検査物を撮像した撮像画像に対して欠陥強調処理を行う欠陥強調処理手段と、前記欠陥強調処理手段で得られた各画素の欠陥強調値に基づいて欠陥を検出する欠陥検出手段とを有し、前記欠陥強調処理手段は、前記撮像画像に対して平滑化処理を行って平滑化画像を作成する平滑化画像作成手段と、前記撮像画像において検査対象画素を順次選定する検査対象画素選定手段と、選定された検査対象画素に対応する平滑化画像の着目画素から所定距離離れた比較対象画素を前記着目画素の周囲に複数配置し、これらの比較対象画素を複数の比較対象画素群に分けて設定する比較対象画素群設定手段と、比較対象画素群に含まれる各比較対象画素の輝度値と、前記検査対象画素の輝度値との差である輝度差データを求め、それらの輝度差データのうち、値が最小となる最小輝度差を比較対象画素群毎に求める最小輝度差算出手段と、比較対象画素群毎に算出された最小輝度差のうち、値が最大となる最小輝度差を前記検査対象画素の欠陥強調値とする欠陥強調値算出手段とを備え、前記欠陥検出手段は、前記検査対象画素での欠陥強調値を所定の閾値と比較して欠陥候補画素を抽出し、その欠陥候補画素によって構成される欠陥候補領域の特徴量から欠陥を判別することを特徴とする。
この欠陥検出装置においても、前記欠陥検出方法と同様の作用効果を奏することができる。
A defect detection apparatus according to the present invention includes a defect enhancement processing unit that performs defect enhancement processing on a captured image obtained by capturing an inspection object, and a defect based on a defect enhancement value of each pixel obtained by the defect enhancement processing unit. Defect detection means for detecting, and the defect enhancement processing means performs smoothing processing on the captured image to create a smoothed image, and inspection target pixels in the captured image. A plurality of comparison target pixels that are separated from the target pixel of the smoothed image corresponding to the selected inspection target pixel by a predetermined distance are arranged around the target pixel, and the comparison target pixels are sequentially selected. Luminance difference data that is a difference between a comparison target pixel group setting unit that is set to be divided into a plurality of comparison target pixel groups, a luminance value of each comparison target pixel included in the comparison target pixel group, and a luminance value of the inspection target pixel Seeking Among the brightness difference data, the minimum brightness difference calculating means for obtaining the minimum brightness difference with the smallest value for each comparison target pixel group, and the minimum brightness difference calculated for each comparison target pixel group has the largest value. And a defect enhancement value calculation unit that uses the minimum luminance difference to be a defect enhancement value of the inspection target pixel, and the defect detection unit compares the defect enhancement value at the inspection target pixel with a predetermined threshold value to obtain a defect candidate. A feature is that a pixel is extracted, and a defect is determined from a feature amount of a defect candidate region constituted by the defect candidate pixel.
This defect detection apparatus can also provide the same operational effects as the defect detection method.

図1は本発明の実施形態に係る欠陥検出装置の構成を示すブロック図である。
本実施形態の欠陥検出装置は、フレキシブル基板や、液晶パネル(TFTパネル)、半導体ウェハなどの被検査物1の欠陥を検出するものであり、被検査物表面の傷や汚れなどを検査する外観検査を行うことができる。被検査物1は、XYステージ2上に載置され、平面的に移動可能に構成されている。
欠陥検出装置は、顕微鏡4、CCDカメラ5、コンピュータ装置6、表示装置7を備えている。
FIG. 1 is a block diagram showing a configuration of a defect detection apparatus according to an embodiment of the present invention.
The defect detection apparatus according to the present embodiment detects defects of the inspection object 1 such as a flexible substrate, a liquid crystal panel (TFT panel), a semiconductor wafer, and the like, and inspects the surface of the inspection object for scratches and dirt. Inspection can be performed. The inspection object 1 is placed on the XY stage 2 and configured to be movable in a plane.
The defect detection device includes a microscope 4, a CCD camera 5, a computer device 6, and a display device 7.

顕微鏡4は、被検査物1を拡大してCCDカメラ5で撮影するために設けられており、被検査物1の欠陥を検出するために十分な倍率を有するものが用いられている。
CCDカメラ5は、顕微鏡4を介して被検査物1を撮影する撮像手段である。
コンピュータ装置6は、CCDカメラ5を制御し、被検査物1を検出する画像処理手段である。表示装置7は、コンピュータ装置6に接続された液晶ディスプレイなどの表示装置である。
The microscope 4 is provided for enlarging the inspection object 1 and photographing it with the CCD camera 5, and a microscope having a sufficient magnification for detecting a defect of the inspection object 1 is used.
The CCD camera 5 is an imaging unit that images the inspection object 1 through the microscope 4.
The computer device 6 is image processing means for controlling the CCD camera 5 and detecting the inspection object 1. The display device 7 is a display device such as a liquid crystal display connected to the computer device 6.

コンピュータ装置6は、画像入力手段60と、欠陥強調処理手段61と、欠陥抽出手段62と、欠陥判別手段63とから構成されている。   The computer device 6 includes an image input unit 60, a defect enhancement processing unit 61, a defect extraction unit 62, and a defect determination unit 63.

コンピュータ装置6の画像入力手段60には、CCDカメラ5で撮像された取込画像の画像データが入力される。その取込画像は図示しない記憶手段に記憶される。従って、画像入力手段60によってCCDカメラ5を用いて検査対象を撮像する画像取得工程(撮像工程)が実施される。   Image data of the captured image captured by the CCD camera 5 is input to the image input means 60 of the computer device 6. The captured image is stored in a storage means (not shown). Accordingly, an image acquisition process (imaging process) is performed in which the image input means 60 images the inspection object using the CCD camera 5.

欠陥強調処理手段61は、取得した画像に対して欠陥強調処理を行う欠陥強調処理工程を実施するものであり、平滑化画像作成手段610と、検査対象画素選定手段611と、比較対象画素群設定手段612と、最小輝度差算出手段613と、欠陥強調値算出手段614とを備える。   The defect enhancement processing unit 61 performs a defect enhancement processing step of performing defect enhancement processing on the acquired image, and includes a smoothed image creation unit 610, an inspection target pixel selection unit 611, and a comparison target pixel group setting. Means 612, minimum luminance difference calculation means 613, and defect enhancement value calculation means 614 are provided.

平滑化画像作成手段610は、撮像画像に対して平滑化処理を行って平滑化画像を作成する平滑化画像作成工程を実施するものである。
検査対象画素選定手段611は、撮像画像において検査対象画素を順次選定する検査対象画素選定工程を実施するものである。
比較対象画素群設定手段612は、撮像画像において選定された検査対象画素に対応する平滑化画像の着目画素を設定し、平滑化画像において、前記着目画素から所定距離離れた比較対象画素を前記着目画素の周囲に複数配置し、これらの比較対象画素を複数の比較対象画素群に分けて設定する比較対象画素群設定工程を実施するものである。
最小輝度差算出手段613は、比較対象画素群に含まれる各比較対象画素の輝度値と、前記検査対象画素の輝度値との差である輝度差データを求め、それらの輝度差データのうち、値が最小となる最小輝度差を比較対象画素群毎に求める最小輝度差算出工程を実施するものである。
欠陥強調値算出手段614は、比較対象画素群毎に算出された最小輝度差のうち、値が最大となる最小輝度差を前記検査対象画素の欠陥強調値とする欠陥強調値算出工程を実施するものである。
The smoothed image creating means 610 performs a smoothed image creating step of creating a smoothed image by performing a smoothing process on the captured image.
The inspection target pixel selection unit 611 performs an inspection target pixel selection step of sequentially selecting inspection target pixels in the captured image.
The comparison target pixel group setting unit 612 sets the target pixel of the smoothed image corresponding to the inspection target pixel selected in the captured image, and sets the target pixel of the comparison target pixel that is a predetermined distance away from the target pixel in the smoothed image. A plurality of comparison target pixels are arranged around the pixels, and a comparison target pixel group setting step is performed in which these comparison target pixels are divided and set into a plurality of comparison target pixel groups.
The minimum luminance difference calculating unit 613 obtains luminance difference data that is a difference between the luminance value of each comparison target pixel included in the comparison target pixel group and the luminance value of the inspection target pixel, and among the luminance difference data, A minimum luminance difference calculating step for obtaining a minimum luminance difference having a minimum value for each comparison target pixel group is performed.
The defect emphasis value calculating means 614 performs a defect emphasis value calculating step in which the minimum luminance difference having the maximum value among the minimum luminance differences calculated for each comparison target pixel group is used as the defect emphasis value of the inspection target pixel. Is.

なお、欠陥には、他の画素部分に対して輝度値が高い明欠陥と、輝度値が低い暗欠陥とがある。このため、本実施形態の欠陥強調値算出手段614は、明欠陥用の欠陥強調値と、暗欠陥用の欠陥強調値とをそれぞれ別々に算出するように構成されている。   The defect includes a bright defect having a higher luminance value than other pixel portions and a dark defect having a lower luminance value. For this reason, the defect enhancement value calculation means 614 of the present embodiment is configured to separately calculate the defect enhancement value for bright defects and the defect enhancement value for dark defects.

欠陥抽出手段62は、欠陥強調処理手段61で処理された結果を所定の閾値と比較して欠陥候補を抽出する。なお、閾値としては、明欠陥閾値と、暗欠陥閾値とが設定され、明欠陥強調結果を明欠陥閾値と比較することで明欠陥領域が抽出され、暗欠陥強調結果を暗欠陥閾値と比較することで暗欠陥領域が抽出される。
また、欠陥強調処理手段61で処理された画像に対し、メディアンフィルタなどを適用してノイズ除去処理を行ってから、欠陥抽出手段62による欠陥候補抽出処理を実行してもよい。
The defect extraction unit 62 extracts defect candidates by comparing the result processed by the defect enhancement processing unit 61 with a predetermined threshold. As the threshold values, a bright defect threshold value and a dark defect threshold value are set, a bright defect region is extracted by comparing the bright defect enhancement result with the bright defect threshold value, and the dark defect enhancement result is compared with the dark defect threshold value. Thus, the dark defect area is extracted.
Alternatively, the defect candidate extraction process by the defect extraction unit 62 may be executed after applying a median filter or the like to the image processed by the defect enhancement processing unit 61 to perform noise removal processing.

欠陥判別手段63は、抽出した各欠陥領域の面積、平均輝度、最大輝度などに基づいて欠陥を判別し、さらにその欠陥のランクを評価し、今回の検査対象がどの欠陥ランクに該当するかを分類する欠陥判別処理を実行する。   The defect discriminating means 63 discriminates the defect based on the area, average luminance, maximum luminance, etc. of each extracted defect area, further evaluates the rank of the defect, and determines which defect rank the current inspection object corresponds to. A defect discrimination process to be classified is executed.

次に、本発明の実施の形態による欠陥検出装置の動作について説明する。
図2はこの実施の形態の欠陥検出装置の動作を説明するためのフローチャートである。図2に示す動作はコンピュータ装置6上で実行されるプログラムにより実現されている。
Next, the operation of the defect detection apparatus according to the embodiment of the present invention will be described.
FIG. 2 is a flowchart for explaining the operation of the defect detection apparatus of this embodiment. The operation shown in FIG. 2 is realized by a program executed on the computer device 6.

まず、被検査物1がXYステージ2にセットされると、コンピュータ装置6の画像入力手段60は、被検査物1の画像をCCDカメラ5で撮影し、その撮影データの画像を取り込む画像取得工程(撮像工程)を行う(ST1)。このとき撮影データは、図示しないA/D変換器により、例えば、4096階調(12ビット)のデジタルデータとして、コンピュータ装置6に取り込まれる。
なお、被検査物1が液晶パネルなどの表示パネルの場合、表示パネル上に特定の画像パターンを表示させ、欠陥を検出しやすいようにしてもよい。例えば、暗欠陥を検出しやすいように全画面を白表示する全白画面パターン、明欠陥を検出しやすいように全画面を黒表示する全黒画面パターン、中間調の画面パターン等があり、検出したい欠陥種類に応じて適宜設定すればよい。
First, when the inspection object 1 is set on the XY stage 2, the image input means 60 of the computer device 6 captures an image of the inspection object 1 with the CCD camera 5 and captures an image of the captured data. (Imaging step) is performed (ST1). At this time, the photographing data is taken into the computer device 6 as digital data of 4096 gradations (12 bits) by an A / D converter (not shown).
When the inspection object 1 is a display panel such as a liquid crystal panel, a specific image pattern may be displayed on the display panel so that defects can be easily detected. For example, there are an all-white screen pattern that displays the entire screen in white so that dark defects can be easily detected, an all-black screen pattern that displays all screens in black so that bright defects can be easily detected, and a halftone screen pattern. What is necessary is just to set suitably according to the defect kind to want.

次に、欠陥強調処理手段61は、取得された画像に対して欠陥を強調する欠陥強調処理工程を行う(ST2)。この欠陥強調処理工程ST2は、低コントラストの欠陥はそのままでは検出が難しいために、画像の中の欠陥を強調する処理を行うものである。欠陥強調処理工程ST2は、図3に示す処理フローで実施される。   Next, the defect emphasis processing means 61 performs a defect emphasis processing step for emphasizing defects on the acquired image (ST2). In this defect enhancement processing step ST2, since it is difficult to detect a low-contrast defect as it is, a process for emphasizing the defect in the image is performed. The defect enhancement processing step ST2 is performed according to the processing flow shown in FIG.

欠陥強調処理手段61は、まず、平滑化画像作成手段610により、撮像画像に対して平滑化フィルタを適用し、平滑化画像を作成する(ST20)。
ここで、撮像画像に適用する平滑化フィルタとしては、局所平均フィルタやメディアンフィルタ等のノイズ成分をカットできるフィルタであればよい。また、適用する平滑化フィルタのサイズについても、例えば3×3画素サイズのものでもよいし、それ以上のサイズのものでもよい。
First, the defect enhancement processing means 61 applies a smoothing filter to the captured image by the smoothed image creating means 610 to create a smoothed image (ST20).
Here, the smoothing filter applied to the captured image may be a filter that can cut noise components such as a local average filter and a median filter. In addition, the size of the smoothing filter to be applied may be, for example, a 3 × 3 pixel size or a larger size.

次に、検査対象画素選定手段611により、撮像画像において、検査対象となる検査対象画素を選定する検査対象画素選定工程を実行する(ST21)。
本実施形態では、CCDカメラ5の各撮像画素単位で対象画素を選定するようにされている。
Next, the inspection target pixel selection unit 611 executes an inspection target pixel selection step of selecting an inspection target pixel to be inspected in the captured image (ST21).
In the present embodiment, the target pixel is selected for each imaging pixel unit of the CCD camera 5.

次に、欠陥強調処理手段61は、比較対象画素群設定手段612により、比較対象画素群設定工程を実行する(ST22)。
すなわち、比較対象画素群設定手段612は、図4に示すように、平滑化画像において、着目画素Oを中心とする円周方向に8個の比較対象画素S1〜S8を設定し、さらに、これらの比較対象画素S1〜S8を2つの比較対象画素群に分けて設定している。
なお、前記着目画素Oは、検査対象画素選定工程ST21において選定された撮像画像の検査対象画素に対し、同じ座標位置にある平滑化画像の画素を選定して設定される。
Next, the defect enhancement processing means 61 executes the comparison target pixel group setting step by the comparison target pixel group setting means 612 (ST22).
That is, the comparison target pixel group setting unit 612 sets eight comparison target pixels S1 to S8 in the circumferential direction around the target pixel O in the smoothed image as shown in FIG. The comparison target pixels S1 to S8 are divided into two comparison target pixel groups.
Note that the target pixel O is set by selecting a pixel of the smoothed image at the same coordinate position with respect to the inspection target pixel of the captured image selected in the inspection target pixel selection step ST21.

本実施形態では、各比較対象画素S1〜S8は、平滑化画像において、着目画素Oを中心とする円周方向に45度間隔で配置される。
具体的には、着目画素Oを挟んで上下(縦方向)に比較対象画素S1,S5が配置され、着目画素Oを挟んで左右(横方向)に比較対象画素S7,S3が配置されている。また、着目画素Oを挟んで斜め方向(右斜め上から左斜め下方向)に比較対象画素S2,S6が配置され、着目画素Oを挟んで斜め方向(左斜め上から右斜め下方向)に比較対象画素S8,S4が配置されている。
そして、各比較対象画素S1およびS5、比較対象画素S2およびS6、比較対象画素S3およびS7、比較対象画素S4およびS8は、着目画素Oを中心とした点対称位置に設定されている。
In the present embodiment, each of the comparison target pixels S1 to S8 is arranged at an interval of 45 degrees in the circumferential direction around the target pixel O in the smoothed image.
Specifically, the comparison target pixels S1 and S5 are arranged vertically (vertical direction) with the target pixel O in between, and the comparison target pixels S7 and S3 are arranged right and left (horizontal direction) with the target pixel O in between. . Further, the comparison target pixels S2 and S6 are arranged in an oblique direction (upper right and downward left) with the target pixel O in between, and in an oblique direction (upward left and downward in the right direction) with the target pixel O in between. Comparison target pixels S8 and S4 are arranged.
The comparison target pixels S1 and S5, the comparison target pixels S2 and S6, the comparison target pixels S3 and S7, and the comparison target pixels S4 and S8 are set at point-symmetric positions with the target pixel O as the center.

なお、着目画素Oと比較対象画素S1〜S8の距離は、検出対象となる欠陥の大きさに応じて設定される。すなわち、本実施形態では、着目画素Oに対応する検査対象画素と比較対象画素S1〜S8との輝度差で欠陥を強調するため、欠陥は比較対象画素S1〜S8で囲まれるエリア内に納まる大きさでなければ検出できない。従って、検出したい欠陥の大きさによって、前記着目画素Oと比較対象画素S1〜S8の距離を設定すればよい。
本実施形態では、着目画素Oから約7画素離れた位置に略円形状に各比較対象画素S1〜S8を配置している。
The distance between the target pixel O and the comparison target pixels S1 to S8 is set according to the size of the defect to be detected. That is, in this embodiment, since the defect is emphasized by the luminance difference between the inspection target pixel corresponding to the target pixel O and the comparison target pixels S1 to S8, the defect is large within an area surrounded by the comparison target pixels S1 to S8. Otherwise it cannot be detected. Therefore, the distance between the target pixel O and the comparison target pixels S1 to S8 may be set according to the size of the defect to be detected.
In the present embodiment, the comparison target pixels S1 to S8 are arranged in a substantially circular shape at a position about 7 pixels away from the pixel of interest O.

そして、比較対象画素群設定手段612は、これらの比較対象画素S1〜S8を、2つの比較対象画素群に分けて設定する。すなわち、円周方向に1つおきとなる比較対象画素S1,S3,S5,S7により第1の比較対象画素群を設定し、残りの比較対象画素S2,S4,S6,S8により第2の比較対象画素群を設定する。   Then, the comparison target pixel group setting unit 612 sets these comparison target pixels S1 to S8 separately into two comparison target pixel groups. That is, the first comparison target pixel group is set by the comparison target pixels S1, S3, S5, and S7 that are alternately arranged in the circumferential direction, and the second comparison is performed by the remaining comparison target pixels S2, S4, S6, and S8. A target pixel group is set.

次に、欠陥強調処理手段61は、最小輝度差算出手段613により、各比較対象画素群ごとに比較対象画素S1〜S8を1画素ずつ選択し、選択した画素の輝度値(平滑化画像における輝度値)と検査対象画素の輝度値(撮像画像における輝度値)との差である輝度差データを求め、それらの輝度差データのうち、値が最小となる最小輝度差を求める最小輝度差算出工程を実行する(ST23)。   Next, the defect enhancement processing unit 61 selects the comparison target pixels S1 to S8 one by one for each comparison target pixel group by the minimum luminance difference calculation unit 613, and the luminance value of the selected pixel (the luminance in the smoothed image). Value) and luminance value data which is the difference between the luminance value of the pixel to be inspected (luminance value in the captured image) and a minimum luminance difference calculating step for obtaining a minimum luminance difference having the smallest value among the luminance difference data Is executed (ST23).

具体的には、最小輝度差算出手段613は、まず第1の比較対象画素群の各画素を順次1画素ずつ選択しながら、検査対象画素の輝度値から各比較対象画素S1,S3,S5,S7の輝度値を引いて輝度差データFを求める。すなわち、検査対象画素の輝度値を「O1」、比較対象画素S1,S3,S5,S7の各輝度値を「S1,S3,S5,S7」とした際に、以下の式1〜4を用いて輝度差データF1,F3,F5,F7を算出する。   Specifically, the minimum luminance difference calculating unit 613 first selects each pixel of the first comparison target pixel group one by one, and then compares each comparison target pixel S1, S3, S5 from the luminance value of the inspection target pixel. The luminance difference data F is obtained by subtracting the luminance value of S7. That is, when the luminance value of the inspection target pixel is “O1” and the luminance values of the comparison target pixels S1, S3, S5, and S7 are “S1, S3, S5, and S7”, the following formulas 1 to 4 are used. The luminance difference data F1, F3, F5, and F7 are calculated.

F1=O1−S1 (式1)
F3=O1−S3 (式2)
F5=O1−S5 (式3)
F7=O1−S7 (式4)
F1 = O1-S1 (Formula 1)
F3 = O1-S3 (Formula 2)
F5 = O1-S5 (Formula 3)
F7 = O1-S7 (Formula 4)

次に、最小輝度差算出手段613は、以下の式5を用いて、第1の比較対象画素群の各輝度差データF1,F3,F5,F7のうち、値が最小となる最小輝度差D1を求める。
D1=Min(F1,F3,F5,F7) (式5)
Next, the minimum luminance difference calculation unit 613 uses Equation 5 below to calculate the minimum luminance difference D1 having the smallest value among the luminance difference data F1, F3, F5, and F7 of the first comparison target pixel group. Ask for.
D1 = Min (F1, F3, F5, F7) (Formula 5)

次に、最小輝度差算出手段613は、第2の比較対象画素群の各画素を順次1画素ずつ選択しながら、検査対象画素の輝度値から各比較対象画素S2,S4,S6,S8の輝度値を引いて輝度差データFを求める。すなわち、検査対象画素の輝度値を「O1」、比較対象画素S2,S4,S6,S8の各輝度値を「S2,S4,S6,S8」とした際に、以下の式6〜9を用いて輝度差データF2,F4,F6,F8を算出する。
さらに、最小輝度差算出手段613は、以下の式10を用いて、第2の比較対象画素群の各輝度差データF2,F4,F6,F8のうち、値が最小となる最小輝度差D2を求める。
Next, the minimum luminance difference calculation means 613 sequentially selects each pixel of the second comparison target pixel group one by one, and then calculates the luminance of each comparison target pixel S2, S4, S6, S8 from the luminance value of the inspection target pixel. The luminance difference data F is obtained by subtracting the value. That is, when the luminance value of the inspection target pixel is “O1” and the luminance values of the comparison target pixels S2, S4, S6, and S8 are “S2, S4, S6, and S8”, the following formulas 6 to 9 are used. The luminance difference data F2, F4, F6, F8 are calculated.
Further, the minimum luminance difference calculation means 613 uses the following equation 10 to calculate the minimum luminance difference D2 having the minimum value among the luminance difference data F2, F4, F6, and F8 of the second comparison target pixel group. Ask.

F2=O1−S2 (式6)
F4=O1−S4 (式7)
F6=O1−S6 (式8)
F8=O1−S8 (式9)
D2=Min(F2,F4,F6,F8) (式10)
F2 = O1-S2 (Formula 6)
F4 = O1-S4 (Formula 7)
F6 = O1-S6 (Formula 8)
F8 = O1-S8 (Formula 9)
D2 = Min (F2, F4, F6, F8) (Formula 10)

次に、欠陥強調処理手段61は、欠陥強調値算出手段614により、第1および第2の比較対象画素群ごとに算出した最小輝度差D1,D2のうち、値が大きいものを検査対象画素の位置の欠陥強調値とする欠陥強調処理工程を実行する(ST24)。   Next, the defect emphasis processing means 61 uses the defect emphasis value calculation means 614 to calculate the smallest luminance difference D1, D2 calculated for each of the first and second comparison target pixel groups as the inspection target pixel. A defect emphasis process is performed with the position defect emphasis value (ST24).

なお、上記の式1〜4,式6〜9は、背景(周囲の画素)よりも明るい明欠陥を強調するための計算式であり、検査対象画素の輝度値O1から比較対象画素S1〜S8の輝度値S1〜S8を引いて輝度差データF1〜F8を求めていた。
これに対し、背景よりも暗い暗欠陥を強調する場合には、逆に比較対象画素S1〜S8の輝度値S1〜S8から検査対象画素の輝度値O1を引いて輝度差データF1〜F8を求めればよい。具体的には次の式11〜18を用いて輝度差データF1〜F8を求めればよい。
The above formulas 1 to 4 and formulas 6 to 9 are calculation formulas for emphasizing bright defects brighter than the background (surrounding pixels), and the comparison target pixels S1 to S8 are calculated from the luminance value O1 of the inspection target pixel. The luminance difference data F1 to F8 are obtained by subtracting the luminance values S1 to S8.
On the other hand, when dark defects that are darker than the background are emphasized, the luminance difference data F1 to F8 can be obtained by subtracting the luminance value O1 of the inspection target pixel from the luminance values S1 to S8 of the comparison target pixels S1 to S8. That's fine. Specifically, the luminance difference data F1 to F8 may be obtained using the following formulas 11 to 18.

F1=S1−O1 (式11)
F3=S3−O1 (式12)
F5=S5−O1 (式13)
F7=S7−O1 (式14)
F2=S2−O1 (式15)
F4=S4−O1 (式16)
F6=S6−O1 (式17)
F8=S8−O1 (式18)
F1 = S1-O1 (Formula 11)
F3 = S3-O1 (Formula 12)
F5 = S5-O1 (Formula 13)
F7 = S7-O1 (Formula 14)
F2 = S2-O1 (Formula 15)
F4 = S4-O1 (Formula 16)
F6 = S6-O1 (Formula 17)
F8 = S8-O1 (Formula 18)

欠陥強調処理手段61は、図3に示すように、取得した画像の全体にわたって欠陥強調処理が済んだか否かを判断し(ST25)、処理済みでない場合には、検査対象画素を移動させて別の検査対象画素を選定し(ST21)、比較対象画素群設定工程ST22、最小輝度差算出工程ST23、欠陥強調値算出工程ST24を行う。すなわち、検査対象画素をCCDカメラ5の撮像画素単位に設定しているため、検査対象画素を撮像画素毎に順次移動して各工程ST21〜24を順次行えばよい。   As shown in FIG. 3, the defect enhancement processing means 61 determines whether or not the defect enhancement processing has been completed over the entire acquired image (ST25). Inspection target pixels are selected (ST21), and a comparison target pixel group setting step ST22, a minimum luminance difference calculation step ST23, and a defect enhancement value calculation step ST24 are performed. That is, since the inspection target pixel is set for each imaging pixel of the CCD camera 5, the inspection target pixel may be sequentially moved for each imaging pixel, and the steps ST21 to ST24 may be sequentially performed.

一方、ST25において処理済みであった場合には、欠陥強調処理手段61は、各画素毎に算出した欠陥強調値による欠陥強調画像を生成する(ST26)。すなわち、明欠陥用の欠陥強調値により明欠陥強調画像を生成し、暗欠陥用の欠陥強調値により暗欠陥強調画像を生成する。なお、欠陥強調処理手段61は、明欠陥あるいは暗欠陥のいずれか一方の欠陥強調値しか算出していない場合には、算出した欠陥強調値による欠陥強調画像のみを生成する。
以上により欠陥強調処理工程ST2が終了する。
On the other hand, if the processing has been completed in ST25, the defect enhancement processing means 61 generates a defect enhanced image using the defect enhancement value calculated for each pixel (ST26). That is, a bright defect-enhanced image is generated with a defect enhancement value for bright defects, and a dark defect-enhanced image is generated with a defect enhancement value for dark defects. In addition, the defect emphasis processing unit 61 generates only the defect emphasis image based on the calculated defect emphasis value when only the defect emphasis value of either the bright defect or the dark defect is calculated.
Thus, the defect enhancement processing step ST2 is completed.

欠陥強調処理工程ST2が終了すると、図2に示すように、欠陥強調処理手段61の欠陥抽出手段62は、欠陥強調処理工程ST2で得られた欠陥強調画像に対して、欠陥を切り出す閾値を設定し、欠陥候補を抽出する欠陥候補抽出工程を実行する(ST3)。
すなわち、欠陥抽出手段62は、明欠陥強調画像が生成されている場合には明欠陥を切り出す閾値を設定し、暗欠陥強調画像が生成されている場合には暗欠陥を切り出す閾値を設定し、各欠陥強調画像から各欠陥候補の領域を切り出す。この際、欠陥抽出手段62は、明欠陥強調結果に対しては明欠陥閾値以上の領域を明欠陥領域として検出し、暗欠陥強調結果に対しては暗欠陥閾値以上の領域を暗欠陥領域として検出する。
ここで、各閾値は、画像の状況に合わせて最適な値を設定すればよい。例えば、欠陥強調画像の平均値と、その標準偏差を求め、以下の式で閾値を設定してもよい。
When the defect emphasis processing step ST2 is completed, as shown in FIG. 2, the defect extraction means 62 of the defect emphasis processing means 61 sets a threshold for cutting out the defect with respect to the defect enhancement image obtained in the defect enhancement processing step ST2. Then, a defect candidate extraction step for extracting defect candidates is executed (ST3).
That is, the defect extraction unit 62 sets a threshold for cutting out a bright defect when a bright defect emphasized image is generated, and sets a threshold for cutting out a dark defect when a dark defect emphasized image is generated, A region for each defect candidate is cut out from each defect-enhanced image. At this time, the defect extraction means 62 detects a region above the bright defect threshold as a bright defect region for the bright defect enhancement result, and sets a region above the dark defect threshold as the dark defect region for the dark defect enhancement result. To detect.
Here, each threshold value may be set to an optimum value according to the situation of the image. For example, the average value of the defect-enhanced image and its standard deviation may be obtained, and the threshold value may be set using the following equation.

明欠陥閾値 wslevel=avr(明)+α1・σ(明)+β1
暗欠陥閾値 bslevel=avr(暗)+α2・σ(暗)+β2
Bright defect threshold wslevel = avr (bright) + α1 · σ (bright) + β1
Dark defect threshold bslevel = avr (dark) + α2 · σ (dark) + β2

ここで、avr(明)、avr(暗)は各欠陥強調画像の平均値、σ(明)、σ(暗)は各欠陥強調画像の標準偏差、α1,α2,β1,β2は任意の数で検査対象となる画像の状況で適宜決定される。
また、各欠陥強調画像には負になる部分も存在しているが、その負になる部分は、明欠陥強調では暗欠陥の成分、暗欠陥強調では明欠陥の成分であるので、平均値や標準偏差を計算する場合には、負の値を省いて計算している。
Here, avr (bright) and avr (dark) are the average values of the defect-enhanced images, σ (bright) and σ (dark) are the standard deviations of the defect-enhanced images, and α1, α2, β1, and β2 are arbitrary numbers. Thus, it is appropriately determined depending on the situation of the image to be inspected.
Each defect-enhanced image also has a negative part. The negative part is a dark defect component in bright defect enhancement and a bright defect component in dark defect enhancement. When calculating the standard deviation, the negative value is omitted.

次に、欠陥判別手段63は、強調画像から抽出された明欠陥抽出画像と、暗欠陥抽出画像に対し、Blob処理を行い、欠陥候補として切り出した領域の面積と、平均輝度、最大輝度を求める。そして、欠陥判別手段63は、これらの特徴量の中の面積を、予め設定した閾値と比較し、面積が閾値以上の欠陥候補領域は欠陥成分と判定し、閾値未満の欠陥候補領域はノイズ成分と判定する欠陥判別工程を実施する(ST4)。
さらに、欠陥判別手段63は、欠陥判別工程ST4において、欠陥成分として分離された領域の面積と平均輝度、最大輝度に基づいて欠陥ランクを求める。
この欠陥判別手段63で求められた欠陥成分および欠陥ランクは、表示装置7に表示され、検査員は被検査物1の欠陥ランクを容易に把握することができる。
Next, the defect discriminating means 63 performs a blob process on the bright defect extracted image and the dark defect extracted image extracted from the emphasized image, and obtains the area of the region cut out as a defect candidate, the average luminance, and the maximum luminance. . Then, the defect discriminating means 63 compares the area in these feature quantities with a preset threshold value, determines that a defect candidate area whose area is equal to or larger than the threshold value is a defect component, and a defect candidate area less than the threshold value is a noise component. A defect discrimination step for judging that is carried out (ST4).
Further, the defect determination means 63 obtains a defect rank based on the area, average luminance, and maximum luminance of the regions separated as defect components in the defect determination step ST4.
The defect component and the defect rank obtained by the defect determination means 63 are displayed on the display device 7 so that the inspector can easily grasp the defect rank of the inspection object 1.

次に、本実施形態による検出感度を確認するために、検査対象画像に対して本手法を適用した検証結果について説明する。なお、比較例として、撮像画像に検査対象画素および比較対象画素S1〜S8の両方を設定し、比較対象画素S1〜S8の輝度値と検査対象画素の輝度値との差を求め、その輝度差データの最小値を欠陥強調値とする比較例1と、撮像画像に対してメディアン処理を行い、この処理後の画像に対して比較例1と同じ処理を行って欠陥強調値を求めた比較例2についても説明する。   Next, a verification result obtained by applying the present technique to the inspection target image in order to confirm the detection sensitivity according to the present embodiment will be described. As a comparative example, both the inspection target pixel and the comparison target pixels S1 to S8 are set in the captured image, the difference between the luminance value of the comparison target pixels S1 to S8 and the luminance value of the inspection target pixel is obtained, and the luminance difference Comparative Example 1 in which the minimum value of the data is the defect enhancement value, and Comparative Example in which the median process is performed on the captured image, and the same process as that of Comparative Example 1 is performed on the image after this process to obtain the defect enhancement value 2 will also be described.

図5は検査対象画像100である。検査対象画像100には、周囲に比べて暗く表示された暗欠陥が存在する。すなわち、比較的大きな面積のシミ状の暗欠陥101と、細長い線状の暗欠陥102である。これらの暗欠陥101,102以外の暗い部分はノイズ成分である。
図6は、検査対象画像100に対して、比較例1の処理を行った処理結果の画像である。この比較例1の処理結果では、暗欠陥101,102を十分に検出できておらず、かつ、ノイズ成分も検出しているため、各欠陥101、102をノイズ成分と区別して検出することができない。
図7は、検査対象画像100に対して、比較例2の処理を行った処理結果の画像である。この比較例2の処理結果では、ノイズ成分を除去し、かつ、面積の広い欠陥101は検出できているが、細長い欠陥102は、一部分が細かく分離して検出されており、その他の部分は検出できておらず、結果として欠陥102全体を検出することができない。このため、比較例2は、欠陥の形状によっては欠陥を検出することができず、特に線欠陥を確実に検出することができない。
FIG. 5 shows an inspection target image 100. The inspection target image 100 has dark defects that are displayed darker than the surrounding area. That is, there are a spot-like dark defect 101 having a relatively large area and an elongated linear dark defect 102. Dark portions other than these dark defects 101 and 102 are noise components.
FIG. 6 is an image of a processing result obtained by performing the processing of Comparative Example 1 on the inspection target image 100. In the processing result of Comparative Example 1, since the dark defects 101 and 102 are not sufficiently detected and the noise component is also detected, the defects 101 and 102 cannot be detected separately from the noise component. .
FIG. 7 is an image of a processing result obtained by performing the processing of Comparative Example 2 on the inspection target image 100. In the processing result of Comparative Example 2, it is possible to remove the noise component and detect the defect 101 having a large area, but the elongated defect 102 is detected by being separated finely and the other part is detected. As a result, the entire defect 102 cannot be detected. For this reason, the comparative example 2 cannot detect a defect depending on the shape of the defect, and particularly cannot detect a line defect reliably.

図8は、検査対象画像100に対して、本実施形態の手法による暗欠陥強調用のフィルタを適用し、欠陥抽出手段62によって欠陥候補抽出工程ST3を実行した暗欠陥強調画像120である。本実施形態のように、第1および第2の比較対象画素群ごとに最小輝度差D1,D2を求め、いずれか大きい値のものを欠陥強調値とすれば、ノイズも一緒に検出されているが、シミ欠陥および線欠陥の各暗欠陥101,102も検出できている。
そして、この暗欠陥強調画像120に対し、欠陥判別手段63によって欠陥判別工程ST4を実行すると、図9に示すように、ノイズ成分を除去でき、検出対象であった各暗欠陥101,102のみを検出でき、本実施形態の有効性を検証できた。
FIG. 8 shows a dark defect enhanced image 120 obtained by applying the dark defect enhancing filter according to the method of the present embodiment to the inspection target image 100 and executing the defect candidate extracting step ST3 by the defect extracting unit 62. As in this embodiment, if the minimum luminance difference D1, D2 is obtained for each of the first and second comparison target pixel groups and the larger one is used as the defect enhancement value, noise is also detected together. However, the dark defects 101 and 102 of the spot defect and the line defect can also be detected.
Then, when the defect determination step ST4 is performed on the dark defect enhanced image 120 by the defect determination unit 63, as shown in FIG. 9, the noise component can be removed, and only the dark defects 101 and 102 that are detection targets are removed. It was detected and the effectiveness of the present embodiment was verified.

本実施形態によれば、次のような効果がある。
(1)欠陥強調処理手段61は、平滑化画像において、撮像画像の検査対象画素に対応する着目画素Oの周囲に複数の上記比較対象画素S1〜S8を配置し、かつ、これらの上記比較対象画素S1〜S8を2つの比較対象画素群に分けて設定し、撮像画像における検査対象画素の輝度値と、平滑化画像における各比較対象画素S1〜S8の輝度値との差を求め、比較対象画素群ごとに輝度差データが最も小さい最小輝度差D1,D2を算出し、これらの最小輝度差D1,D2のうち、値が大きいものを検査対象画素の欠陥強調値としている。
このため、各比較対象画素群において最小輝度差を求めることで、前記検査対象画素を含み、かつ、比較対象画素で囲まれる領域内にあるシミ欠陥と、各検査対象画素およびいずれかの比較対象画素を通る線欠陥以外の線欠陥とを強調することができ、検査対象画像に照明ムラなどのシェーディングが乗っていても、問題なく欠陥を検出でき、誤検出を低減させることができる。
そして、各比較対象画素群は、比較対象画素の位置が互いに異なるため、一方の比較対象画素群では強調できない線欠陥も、他方の比較対象画素群において強調できるため、各比較対象画素群の最小輝度差のうち、値が大きいものを検査対象画素の欠陥強調値とすることで、シミ欠陥および線欠陥を強調して検出することができる。
このため、本実施形態では、線欠陥の角度によって検出できたり、できなかったりすることが無く、欠陥方向による検出感度の差を補うことが可能となり、欠陥の検出感度を向上できる。
その上、シミ欠陥および線欠陥の両方を同時に検出できるため、シミ欠陥検出用フィルタによるシミ欠陥検出処理と、線欠陥検出用フィルタによる線欠陥検出処理とをそれぞれ別々に行う場合に比べて、欠陥検出処理時間も短縮することができる。
According to this embodiment, there are the following effects.
(1) The defect enhancement processing means 61 arranges the plurality of comparison target pixels S1 to S8 around the pixel of interest O corresponding to the inspection target pixel of the captured image in the smoothed image, and the comparison target. The pixels S1 to S8 are divided into two comparison target pixel groups and set, and the difference between the luminance value of the inspection target pixel in the captured image and the luminance value of each of the comparison target pixels S1 to S8 in the smoothed image is obtained. The minimum luminance differences D1 and D2 having the smallest luminance difference data are calculated for each pixel group, and among these minimum luminance differences D1 and D2, the largest value is used as the defect enhancement value of the inspection target pixel.
For this reason, by obtaining a minimum luminance difference in each comparison target pixel group, a stain defect in the region including the inspection target pixel and surrounded by the comparison target pixel, each inspection target pixel, and any comparison target Line defects other than the line defects passing through the pixels can be emphasized, and even if shading such as illumination unevenness is on the inspection target image, the defects can be detected without any problem, and erroneous detection can be reduced.
Since each comparison target pixel group is different in the position of the comparison target pixel, a line defect that cannot be emphasized in one comparison target pixel group can be emphasized in the other comparison target pixel group. By using a luminance difference having a larger value as the defect enhancement value of the pixel to be inspected, it is possible to emphasize and detect a spot defect and a line defect.
For this reason, in this embodiment, it cannot detect or cannot be detected depending on the angle of the line defect, it is possible to compensate for the difference in detection sensitivity depending on the defect direction, and the defect detection sensitivity can be improved.
In addition, since both a spot defect and a line defect can be detected at the same time, the defect detection process using the spot defect detection filter and the line defect detection process using the line defect detection filter are performed in a different manner. The detection processing time can also be shortened.

(2)また、検査対象画素は撮像画像に設定し、その輝度値も撮像画像から求めているので、平滑化画像から検査対象画素の輝度値を求める場合に比べ、平滑化処理によって欠陥の成分を弱めることがない。
一方、比較対象画素S1〜S8は平滑化画像に設定し、それらの輝度値も平滑化画像から求めているので、ノイズ成分の影響を受けることなく欠陥成分を強調することができる。
従って、本実施形態では、検査対象画素の輝度値は、欠陥成分が弱まっていない撮像画像から取得し、比較対象画素の輝度値は、ノイズ成分の影響を軽減した平滑化画像から取得しているので、欠陥成分を確実に強調することができ、欠陥成分の検出漏れを防止できる。
(2) Further, since the inspection target pixel is set in the captured image and the luminance value is obtained from the captured image, the defect component is obtained by the smoothing process as compared with the case where the luminance value of the inspection target pixel is obtained from the smoothed image. Will not weaken.
On the other hand, since the comparison target pixels S1 to S8 are set to a smoothed image and their luminance values are also obtained from the smoothed image, the defect component can be emphasized without being affected by the noise component.
Therefore, in this embodiment, the luminance value of the inspection target pixel is acquired from a captured image in which the defect component is not weakened, and the luminance value of the comparison target pixel is acquired from a smoothed image in which the influence of the noise component is reduced. Therefore, the defect component can be surely emphasized, and detection failure of the defect component can be prevented.

(3)さらに、欠陥強調処理手段61による欠陥強調処理工程ST2では、欠陥成分だけでなくノイズ成分についても同時に強調し欠陥候補となるが、欠陥判別手段63による欠陥判別工程ST4において、欠陥候補の特徴量、例えば欠陥候補の面積がある閾値未満の欠陥候補をノイズ成分とし、閾値以上の面積のものを欠陥成分として分離しているので、欠陥成分を特定して検出することができる。 (3) Further, in the defect emphasis processing step ST2 by the defect emphasis processing means 61, not only the defect component but also the noise component are simultaneously enhanced to become defect candidates. However, in the defect discrimination process ST4 by the defect discrimination means 63, the defect candidate Since a defect candidate whose feature amount, for example, the area of the defect candidate is less than a threshold, is separated as a noise component, and a defect candidate having an area larger than the threshold is separated as a defect component, the defect component can be identified and detected.

(4)本実施形態では、検査対象画素(着目画素O)と比較対象画素S1〜S8の距離を適宜設定することで、強調可能なシミ欠陥の大きさを設定できるので、検出したいサイズのシミ欠陥を容易にかつ高精度に検出できる。 (4) In this embodiment, by appropriately setting the distance between the inspection target pixel (target pixel O) and the comparison target pixels S1 to S8, the size of the spot defect that can be emphasized can be set. Defects can be detected easily and with high accuracy.

(5)本実施形態では、欠陥強調値は、検査対象画素の輝度値と、比較対象画素S1〜S8の輝度値との差で算出され、検査対象画素および比較対象画素S1〜S8間にある点の輝度値は利用されていない。このため、シミ欠陥が、比較対象画素S1〜S8で囲まれるエリアよりも小さく、かつ検査対象画素を含むものであれば、欠陥のサイズがある程度変化しても、従来の検査員の目視による判定と同様に欠陥を検出できる。このため、検査対象画素および比較対象画素S1〜S8の距離サイズはあまり細かく設定する必要が無く、容易に設定できる。 (5) In the present embodiment, the defect enhancement value is calculated by the difference between the luminance value of the inspection target pixel and the luminance value of the comparison target pixels S1 to S8, and is between the inspection target pixel and the comparison target pixels S1 to S8. The luminance value of the point is not used. Therefore, if the spot defect is smaller than the area surrounded by the comparison target pixels S1 to S8 and includes the inspection target pixel, even if the size of the defect changes to some extent, the determination by visual inspection of the conventional inspector Defects can be detected in the same way. For this reason, it is not necessary to set the distance size between the inspection target pixel and the comparison target pixels S1 to S8 so finely and can be easily set.

(6)各比較対象画素群における最小輝度差D1,D2を求めて欠陥強調値とし、この欠陥強調値が所定の閾値以上の場合に、欠陥候補と認定しているので、欠陥の誤検出を低減することができる。 (6) The minimum luminance difference D1 and D2 in each comparison target pixel group is obtained and used as a defect enhancement value. When this defect enhancement value is equal to or greater than a predetermined threshold value, it is recognized as a defect candidate. Can be reduced.

(7)さらに、最小輝度差算出手段613においては、明欠陥強調値を算出する式と、暗欠陥を算出する式とをそれぞれ別々に設定しているので、明欠陥や暗欠陥の欠陥部分をそれぞれ精度良く強調することができ、欠陥抽出手段62で明欠陥用の閾値と、暗欠陥用の閾値とでそれぞれ抽出することで、明欠陥および暗欠陥の両方を簡単にかつ精度良く検出することができる。このため、各種の欠陥を簡単な処理で効率的に検出することができる。 (7) Furthermore, in the minimum luminance difference calculation means 613, since the formula for calculating the bright defect enhancement value and the formula for calculating the dark defect are set separately, the defect portion of the bright defect and the dark defect is determined. Each can be emphasized with high precision, and both the bright defect and the dark defect can be detected easily and accurately by extracting the light defect threshold value and the dark defect threshold value with the defect extraction means 62, respectively. Can do. For this reason, various defects can be efficiently detected by a simple process.

(8)欠陥判別手段63により、抽出された欠陥のランクを分類できるので、欠陥の客観的なランク付けを短時間に行うことができ、検査者は欠陥の度合いを容易に判断でき、良品かどうかの判定を短時間で容易にすることができる。 (8) Since the rank of the extracted defect can be classified by the defect discriminating means 63, the objective ranking of the defect can be performed in a short time, and the inspector can easily determine the degree of the defect, and it is a non-defective product. The determination of whether or not can be facilitated in a short time.

なお、本発明は、前記実施形態に限らない。
例えば、欠陥を強調するためのフィルタにおける検査対象画素(着目画素O)と比較対象画素S1〜S8との距離は、前記実施形態のものに限らず、検出対象となるシミ欠陥の大きさに応じて設定すればよい。また、フィルタサイズは一定とし、検出対象となる画像を縮小等して処理を行うことで、検出対象となる欠陥サイズを変更しても良い。
The present invention is not limited to the above embodiment.
For example, the distance between the inspection target pixel (target pixel O) and the comparison target pixels S1 to S8 in the filter for emphasizing the defect is not limited to that of the above embodiment, but depends on the size of the spot defect to be detected. Can be set. Further, the defect size to be detected may be changed by performing processing by reducing the size of the image to be detected while the filter size is constant.

また、様々な欠陥サイズに対応するために、検査対象画素(着目画素O)および比較対象画素S1〜S8の距離を異ならせた複数のフィルタを用意し、これらのフィルタを同じ画像に適用して各サイズの欠陥強調画像を取得し、それらの欠陥強調画像の同じ位置の画素の強調値を比較して最大となる値を選択し、1枚に合成して欠陥強調画像としてもよい。このような構成によれば、複数のサイズのシミ欠陥や線欠陥をまとめてかつ容易に検出することができる。   In order to deal with various defect sizes, a plurality of filters having different distances between the inspection target pixel (target pixel O) and the comparison target pixels S1 to S8 are prepared, and these filters are applied to the same image. It is also possible to acquire defect-enhanced images of each size, compare the emphasis values of the pixels at the same position in the defect-enhanced images, select the maximum value, and combine them into one to create a defect-enhanced image. According to such a configuration, spot defects and line defects of a plurality of sizes can be detected together and easily.

さらに、前記実施形態では、8個の比較対象画素S1〜S8を設け、これらの比較対象画素S1〜S8を2つの比較対象画素群に分けて設定していたが、欠陥強調フィルタとしては、前記実施形態のものに限らない。
例えば、図10に示すように、12個の比較対象画素S11〜S14,S21〜S24,S31〜S34を設け、検査対象画素(着目画素O)を中心とする円周方向において90度間隔で配置された各比較対象画素S11〜S14,S21〜S24,S31〜S34毎に比較対象画素群を構成して、3つの比較対象画素群を設けた欠陥強調フィルタを用いてもよい。
Furthermore, in the above embodiment, eight comparison target pixels S1 to S8 are provided, and these comparison target pixels S1 to S8 are divided into two comparison target pixel groups. It is not limited to that of the embodiment.
For example, as shown in FIG. 10, twelve comparison target pixels S11 to S14, S21 to S24, and S31 to S34 are provided and arranged at intervals of 90 degrees in the circumferential direction centering on the inspection target pixel (target pixel O). A defect enhancement filter in which a comparison target pixel group is configured for each of the comparison target pixels S11 to S14, S21 to S24, and S31 to S34 may be used.

さらに、図11に示すように、16個の比較対象画素S11〜S14,S21〜S24,S31〜S34,S41〜S44を設け、検査対象画素(着目画素O)を中心とする円周方向において90度間隔で配置された各比較対象画素S11〜S14,S21〜S24,S31〜S34,S41〜S44毎に比較対象画素群を構成して、4つの比較対象画素群を設けた欠陥強調フィルタを用いてもよい。   Furthermore, as shown in FIG. 11, 16 comparison target pixels S11 to S14, S21 to S24, S31 to S34, and S41 to S44 are provided, and 90 in the circumferential direction centering on the inspection target pixel (target pixel O). A comparison target pixel group is configured for each of the comparison target pixels S11 to S14, S21 to S24, S31 to S34, and S41 to S44 arranged at intervals of degrees, and a defect enhancement filter provided with four comparison target pixel groups is used. May be.

また、前記実施形態や図10,11に示す変形例では、各比較対象画素群には4つの比較対象画素を配置し、これらの比較対象画素は互いに円周方向に90度間隔で配置されていたが、各比較対象画素の間隔は90度間隔のものに限定されない。但し、4つの比較対象画素を設けて90度間隔に配置すれば、各比較対象画素を等間隔に配置でき、欠陥を効率的に検出できる。   In the embodiment and the modifications shown in FIGS. 10 and 11, four comparison target pixels are arranged in each comparison target pixel group, and these comparison target pixels are arranged at intervals of 90 degrees in the circumferential direction. However, the interval between the pixels to be compared is not limited to 90 ° intervals. However, if four comparison target pixels are provided and arranged at intervals of 90 degrees, the respective comparison target pixels can be arranged at equal intervals, and defects can be detected efficiently.

さらに、前記実施形態や図10,11に示す変形例では、各比較対象画素群には4つの比較対象画素を配置していたが、図12に示すように、16個の比較対象画素S11〜S18,S21〜S28を設け、検査対象画素(着目画素O)を中心とする円周方向において1つおきに配置された各比較対象画素S11〜S18,S21〜S28毎に比較対象画素群を構成し、それぞれ8個の比較対象画素を有する2つの比較対象画素群を設定してもよい。
この場合、各比較対象画素群において各比較対象画素S11〜S18、S21〜S28は45度間隔で配置されるため、90度間隔で配置される前記実施形態などに比べると、検出できる線欠陥の幅寸法が小さくなる。つまり、線欠陥を検出する場合には、線欠陥が各比較対象画素間の隙間を通る必要がある。このため、45度間隔で比較対象画素が配置されると、それらの隙間を通る線欠陥の幅寸法も小さくなる。従って、検出する線欠陥の幅寸法を制限する場合には、図12のようなフィルタを利用すればよい。
Further, in the modified example shown in the embodiment and FIGS. 10 and 11, four comparison target pixels are arranged in each comparison target pixel group. However, as shown in FIG. S18, S21 to S28 are provided, and a comparison target pixel group is configured for each of the comparison target pixels S11 to S18 and S21 to S28 arranged every other in the circumferential direction centering on the inspection target pixel (target pixel O). Alternatively, two comparison target pixel groups each having eight comparison target pixels may be set.
In this case, since the comparison target pixels S11 to S18 and S21 to S28 are arranged at intervals of 45 degrees in each comparison target pixel group, the line defects that can be detected are compared with the above-described embodiment arranged at intervals of 90 degrees. The width dimension becomes smaller. That is, when detecting a line defect, it is necessary for the line defect to pass through a gap between each comparison target pixel. For this reason, when the comparison target pixels are arranged at intervals of 45 degrees, the width dimension of the line defect passing through the gap is also reduced. Therefore, when limiting the width dimension of the line defect to be detected, a filter as shown in FIG. 12 may be used.

なお、比較対象画素の数は、特に検査対象画素(着目画素O)と比較対象画素との距離に応じて設定すればよい。すなわち、検査対象画素(着目画素O)と比較対象画素との距離を大きくした場合には、各比較対象画素同士の間隔が広がるため、比較対象画素を適宜増やして欠陥を適切に検出できるようにすることが好ましい。
但し、比較対象画素が増えると、その分、処理に時間が掛かるため、比較対象画素の数は、8,12,16個のいずれかが好ましい。
The number of comparison target pixels may be set according to the distance between the inspection target pixel (target pixel O) and the comparison target pixel. That is, when the distance between the inspection target pixel (target pixel O) and the comparison target pixel is increased, the interval between the comparison target pixels is widened, so that the comparison target pixels can be appropriately increased so that the defect can be detected appropriately. It is preferable to do.
However, as the number of comparison target pixels increases, the processing takes time correspondingly, and therefore the number of comparison target pixels is preferably 8, 12, or 16.

また、前記実施形態では、欠陥判別手段63で欠陥部分の面積などに基づいて欠陥ランクを判別していたが、他の方法・手順で欠陥を判別してもよい。要するに、欠陥判別手段63は、欠陥強調処理手段61で強調された欠陥に基づいてそれが欠陥に該当するか否かを判断できるものであればよい。   In the above-described embodiment, the defect determination unit 63 determines the defect rank based on the area of the defect portion or the like, but the defect may be determined by another method / procedure. In short, the defect discriminating unit 63 only needs to be able to determine whether or not it corresponds to a defect based on the defect emphasized by the defect enhancement processing unit 61.

本発明は、被検査物1の撮像画像に、周囲と輝度差がある部分があれば検出できる。このため、本発明は、フレキシブル基板などにおける異物欠陥検出や、被検査物表面の傷や汚れの検出や、各種表示装置の輝度シミ欠陥や色シミ欠陥の検出等に広く利用できる。   The present invention can detect if the captured image of the object to be inspected 1 has a portion having a luminance difference from the surrounding. For this reason, the present invention can be widely used for detecting foreign object defects on flexible substrates, detecting scratches and dirt on the surface of an object to be inspected, detecting brightness spot defects and color spot defects in various display devices, and the like.

本発明の実施の形態による画面の欠陥検出装置の構成図。The block diagram of the defect detection apparatus of the screen by embodiment of this invention. 同欠陥検出装置の動作を説明するためのフローチャート。The flowchart for demonstrating operation | movement of the defect detection apparatus. 欠陥強調処理工程の動作を説明するためのフローチャート。The flowchart for demonstrating operation | movement of a defect emphasis processing process. 撮像画像に対する検査対象画素および比較対象画素の配置例を示す図。The figure which shows the example of arrangement | positioning of the test object pixel with respect to a captured image, and a comparison object pixel. 本実施形態で検出される撮像画像の例を示す図。The figure which shows the example of the captured image detected by this embodiment. 比較例1による欠陥強調画像の例を示す図。FIG. 10 is a diagram illustrating an example of a defect-emphasized image according to Comparative Example 1. 比較例2による欠陥強調画像の例を示す図。The figure which shows the example of the defect emphasis image by the comparative example 2. FIG. 本実施形態による欠陥強調画像の例を示す図。The figure which shows the example of the defect emphasis image by this embodiment. 本実施形態による欠陥候補抽出処理後の画像の例を示す図。The figure which shows the example of the image after the defect candidate extraction process by this embodiment. 欠陥強調フィルタの変形例を示す図。The figure which shows the modification of a defect emphasis filter. 欠陥強調フィルタの他の変形例を示す図。The figure which shows the other modification of a defect emphasis filter. 欠陥強調フィルタの他の変形例を示す図。The figure which shows the other modification of a defect emphasis filter.

符号の説明Explanation of symbols

1…被検査物、2…XYステージ、4…顕微鏡、5…CCDカメラ、6…コンピュータ装置、7…表示装置、60…画像入力手段、61…欠陥強調処理手段、62…欠陥抽出手段、63…欠陥判別手段、610…平滑化画像作成手段、611…検査対象画素選定手段、612…比較対象画素群設定手段、613…最小輝度差算出手段、614…欠陥強調値算出手段。   DESCRIPTION OF SYMBOLS 1 ... Inspection object, 2 ... XY stage, 4 ... Microscope, 5 ... CCD camera, 6 ... Computer apparatus, 7 ... Display apparatus, 60 ... Image input means, 61 ... Defect emphasis processing means, 62 ... Defect extraction means, 63 ... defect determination means, 610 ... smoothed image creation means, 611 ... inspection target pixel selection means, 612 ... comparison target pixel group setting means, 613 ... minimum luminance difference calculation means, 614 ... defect enhancement value calculation means.

Claims (5)

被検査物を撮像した撮像画像に対して欠陥強調処理を行う欠陥強調処理工程と、
前記欠陥強調処理工程で得られた各画素の欠陥強調値に基づいて欠陥を検出する欠陥検出工程とを有し、
前記欠陥強調処理工程は、
前記撮像画像に対して平滑化処理を行って平滑化画像を作成する平滑化画像作成工程と、
前記撮像画像において検査対象画素を順次選定する検査対象画素選定工程と、
選定された検査対象画素に対応する平滑化画像の着目画素から所定距離離れた比較対象画素を前記着目画素の周囲に複数配置し、これらの比較対象画素を複数の比較対象画素群に分けて設定する比較対象画素群設定工程と、
比較対象画素群に含まれる各比較対象画素の輝度値と、前記検査対象画素の輝度値との差である輝度差データを求め、それらの輝度差データのうち、値が最小となる最小輝度差を比較対象画素群毎に求める最小輝度差算出工程と、
比較対象画素群毎に算出された最小輝度差のうち、値が最大となる最小輝度差を前記検査対象画素の欠陥強調値とする欠陥強調値算出工程とを備え、
前記欠陥検出工程は、前記検査対象画素での欠陥強調値を所定の閾値と比較して欠陥候補画素を抽出し、その欠陥候補画素によって構成される欠陥候補領域の特徴量から欠陥を判別することを特徴とする欠陥検出方法。
A defect enhancement processing step of performing defect enhancement processing on a captured image obtained by imaging the inspection object; and
A defect detection step of detecting a defect based on the defect enhancement value of each pixel obtained in the defect enhancement processing step,
The defect emphasis processing step includes
A smoothed image creating step of creating a smoothed image by performing a smoothing process on the captured image;
An inspection pixel selection step for sequentially selecting inspection pixels in the captured image;
A plurality of comparison target pixels separated from the target pixel of the smoothed image corresponding to the selected inspection target pixel by a predetermined distance are arranged around the target pixel, and the comparison target pixels are divided into a plurality of comparison target pixel groups and set. A comparison target pixel group setting step,
The luminance difference data that is the difference between the luminance value of each comparison target pixel included in the comparison target pixel group and the luminance value of the inspection target pixel is obtained, and the minimum luminance difference that minimizes the value among the luminance difference data Calculating a minimum luminance difference for each comparison target pixel group,
A defect enhancement value calculating step in which, among the minimum luminance differences calculated for each comparison target pixel group, a minimum luminance difference having a maximum value is a defect enhancement value of the inspection target pixel, and
The defect detection step extracts a defect candidate pixel by comparing a defect emphasis value at the inspection target pixel with a predetermined threshold, and determines a defect from a feature amount of a defect candidate region constituted by the defect candidate pixel. A defect detection method characterized by the above.
請求項1に記載の欠陥検出方法において、
前記比較対象画素群設定工程は、
前記複数の比較対象画素として、4×n個(nは2以上の整数)の比較対象画素を選定し、
これらの比較対象画素を、検査対象画素を中心とする円周方向において90度間隔で配置された4個の比較対象画素毎に選択して各比較対象画素群を設定することを特徴とする欠陥検出方法。
The defect detection method according to claim 1,
The comparison target pixel group setting step includes:
As the plurality of comparison target pixels, 4 × n (n is an integer of 2 or more) comparison target pixels are selected,
A defect characterized in that these comparison target pixels are selected for each of four comparison target pixels arranged at intervals of 90 degrees in the circumferential direction centering on the inspection target pixel, and each comparison target pixel group is set. Detection method.
請求項2に記載の欠陥検出方法において、
前記比較対象画素群設定工程は、
前記複数の比較対象画素として、検査対象画素を中心とする円周方向において45度間隔で配置された8個の比較対象画素を選定し、
これらの8個の比較対象画素を、検査対象画素を中心とする円周方向において90度間隔で配置された4個の比較対象画素毎に選択して第1比較対象画素群および第2比較対象画素群を設定することを特徴とする欠陥検出方法。
The defect detection method according to claim 2,
The comparison target pixel group setting step includes:
As the plurality of comparison target pixels, eight comparison target pixels arranged at intervals of 45 degrees in a circumferential direction centering on the inspection target pixel are selected.
These eight comparison target pixels are selected for each of four comparison target pixels arranged at intervals of 90 degrees in the circumferential direction centering on the inspection target pixel, and the first comparison target pixel group and the second comparison target pixel A defect detection method characterized by setting a pixel group.
請求項1から請求項3のいずれかに記載の欠陥検出方法において、
前記最小輝度差算出工程は、
欠陥部分の輝度が、周囲の輝度よりも高くなる明欠陥を検出する場合には、前記検査対象画素の輝度値から比較対象画素の輝度値を引いて輝度差データを求め、それらの輝度差データの最小輝度差を求め、
欠陥部分の輝度が、周囲の輝度よりも低くなる暗欠陥を検出する場合には、前記比較対象画素の輝度値から検査対象画素の輝度値を引いて輝度差データを求め、それらの輝度差データの最小輝度差を求めることを特徴とする欠陥検出方法。
In the defect detection method in any one of Claims 1-3,
The minimum luminance difference calculation step includes:
When detecting a bright defect in which the luminance of the defective portion is higher than the surrounding luminance, the luminance difference data is obtained by subtracting the luminance value of the comparison target pixel from the luminance value of the inspection target pixel. Find the minimum brightness difference of
When detecting a dark defect in which the luminance of the defective portion is lower than the surrounding luminance, the luminance difference data is obtained by subtracting the luminance value of the pixel to be inspected from the luminance value of the comparison target pixel. A defect detection method characterized in that a minimum luminance difference is obtained.
被検査物を撮像した撮像画像に対して欠陥強調処理を行う欠陥強調処理手段と、
前記欠陥強調処理手段で得られた各画素の欠陥強調値に基づいて欠陥を検出する欠陥検出手段とを有し、
前記欠陥強調処理手段は、
前記撮像画像に対して平滑化処理を行って平滑化画像を作成する平滑化画像作成手段と、
前記撮像画像において検査対象画素を順次選定する検査対象画素選定手段と、
選定された検査対象画素に対応する平滑化画像の着目画素から所定距離離れた比較対象画素を前記着目画素の周囲に複数配置し、これらの比較対象画素を複数の比較対象画素群に分けて設定する比較対象画素群設定手段と、
比較対象画素群に含まれる各比較対象画素の輝度値と、前記検査対象画素の輝度値との差である輝度差データを求め、それらの輝度差データのうち、値が最小となる最小輝度差を比較対象画素群毎に求める最小輝度差算出手段と、
比較対象画素群毎に算出された最小輝度差のうち、値が最大となる最小輝度差を前記検査対象画素の欠陥強調値とする欠陥強調値算出手段とを備え、
前記欠陥検出手段は、前記検査対象画素での欠陥強調値を所定の閾値と比較して欠陥候補画素を抽出し、その欠陥候補画素によって構成される欠陥候補領域の特徴量から欠陥を判別することを特徴とする欠陥検出装置。
Defect enhancement processing means for performing defect enhancement processing on a captured image obtained by imaging the inspection object;
A defect detection means for detecting a defect based on the defect enhancement value of each pixel obtained by the defect enhancement processing means,
The defect enhancement processing means includes
A smoothed image creating means for creating a smoothed image by performing a smoothing process on the captured image;
Inspection target pixel selection means for sequentially selecting inspection target pixels in the captured image;
A plurality of comparison target pixels separated from the target pixel of the smoothed image corresponding to the selected inspection target pixel by a predetermined distance are arranged around the target pixel, and the comparison target pixels are divided into a plurality of comparison target pixel groups and set. Comparison target pixel group setting means,
The luminance difference data that is the difference between the luminance value of each comparison target pixel included in the comparison target pixel group and the luminance value of the inspection target pixel is obtained, and the minimum luminance difference that minimizes the value among the luminance difference data A minimum luminance difference calculating means for obtaining for each comparison target pixel group,
Among the minimum luminance differences calculated for each comparison target pixel group, a defect enhancement value calculation unit that sets a minimum luminance difference that has a maximum value as a defect enhancement value of the inspection target pixel,
The defect detection means extracts a defect candidate pixel by comparing a defect emphasis value at the inspection target pixel with a predetermined threshold value, and determines a defect from a feature amount of a defect candidate region constituted by the defect candidate pixel. A defect detection apparatus characterized by the above.
JP2008039802A 2008-02-21 2008-02-21 Defect detection method and defect detection apparatus Expired - Fee Related JP5088165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039802A JP5088165B2 (en) 2008-02-21 2008-02-21 Defect detection method and defect detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039802A JP5088165B2 (en) 2008-02-21 2008-02-21 Defect detection method and defect detection apparatus

Publications (2)

Publication Number Publication Date
JP2009198290A true JP2009198290A (en) 2009-09-03
JP5088165B2 JP5088165B2 (en) 2012-12-05

Family

ID=41141949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039802A Expired - Fee Related JP5088165B2 (en) 2008-02-21 2008-02-21 Defect detection method and defect detection apparatus

Country Status (1)

Country Link
JP (1) JP5088165B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163804A (en) * 2010-02-05 2011-08-25 Seiko Epson Corp Foreign matter detection device and method
WO2014084056A1 (en) * 2012-11-27 2014-06-05 シャープ株式会社 Testing device, testing method, testing program, and recording medium
WO2014083921A1 (en) * 2012-11-29 2014-06-05 シャープ株式会社 Defect determination device, device for creating correspondence information, defect determination method, and method for creating correspondence information
CN105607313A (en) * 2016-03-16 2016-05-25 武汉华星光电技术有限公司 Method and system for processing pixel defects
US10679336B2 (en) 2018-01-25 2020-06-09 Samsung Electronics Co., Ltd. Detecting method, detecting apparatus, and computer readable storage medium
CN113884538A (en) * 2021-10-18 2022-01-04 沈阳工业大学 Infrared thermal image detection method for micro defects in large wind turbine blade
JP7137880B1 (en) 2021-12-02 2022-09-15 株式会社岩崎電機製作所 Image processing device, image processing method, and image processing program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304286A (en) * 1996-05-21 1997-11-28 Canon Inc Apparatus and method for detection-processing of flaw
JPH10232206A (en) * 1997-02-19 1998-09-02 Hitachi Ltd Method and device for detecting metal surface discontinuity
JP2008014842A (en) * 2006-07-06 2008-01-24 Seiko Epson Corp Method and apparatus for detecting stain defects

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304286A (en) * 1996-05-21 1997-11-28 Canon Inc Apparatus and method for detection-processing of flaw
JPH10232206A (en) * 1997-02-19 1998-09-02 Hitachi Ltd Method and device for detecting metal surface discontinuity
JP2008014842A (en) * 2006-07-06 2008-01-24 Seiko Epson Corp Method and apparatus for detecting stain defects

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163804A (en) * 2010-02-05 2011-08-25 Seiko Epson Corp Foreign matter detection device and method
WO2014084056A1 (en) * 2012-11-27 2014-06-05 シャープ株式会社 Testing device, testing method, testing program, and recording medium
WO2014083921A1 (en) * 2012-11-29 2014-06-05 シャープ株式会社 Defect determination device, device for creating correspondence information, defect determination method, and method for creating correspondence information
CN105607313A (en) * 2016-03-16 2016-05-25 武汉华星光电技术有限公司 Method and system for processing pixel defects
CN105607313B (en) * 2016-03-16 2019-01-11 武汉华星光电技术有限公司 The processing method and processing system of picture element flaw
US10679336B2 (en) 2018-01-25 2020-06-09 Samsung Electronics Co., Ltd. Detecting method, detecting apparatus, and computer readable storage medium
CN113884538A (en) * 2021-10-18 2022-01-04 沈阳工业大学 Infrared thermal image detection method for micro defects in large wind turbine blade
JP7137880B1 (en) 2021-12-02 2022-09-15 株式会社岩崎電機製作所 Image processing device, image processing method, and image processing program
JP2023082342A (en) * 2021-12-02 2023-06-14 株式会社岩崎電機製作所 Image processing device, image processing method, and image processing program

Also Published As

Publication number Publication date
JP5088165B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP4882529B2 (en) Defect detection method and defect detection apparatus
JP5088165B2 (en) Defect detection method and defect detection apparatus
JP2007285754A (en) Flaw detection method and flaw detector
JP2005172559A (en) Method and device for detecting line defect on panel
JP2006170922A (en) Visual inspection method and its apparatus
JP2006170921A (en) Visual inspection method and its apparatus
KR101828536B1 (en) Method and apparatus of panel inspection
JP2011008482A (en) Defect detection method, defect detection device and defect detection program
JP2009036582A (en) Inspection method, inspection device and inspection program of plane display panel
JP2006258713A (en) Method and apparatus for detecting stain defect
JP2005165387A (en) Method and device for detecting stripe defective of picture and display device
JP5257063B2 (en) Defect detection method and defect detection apparatus
JP2008014842A (en) Method and apparatus for detecting stain defects
JP5239275B2 (en) Defect detection method and defect detection apparatus
JP6628185B2 (en) Inspection method for transparent objects
JP4520880B2 (en) Blot inspection method and blot inspection apparatus
JP2009281759A (en) Color filter defect inspection method, inspection apparatus, and color filter manufacturing method using it
JP2008171142A (en) Spot defect detection method and device
JP2016212488A (en) Inspection system, inspection method, program, and storage medium
JP2007285868A (en) Luminance gradient detection method, flaw detection method, luminance gradient detector and flaw detector
JP2005140655A (en) Method of detecting stain flaw, and stain flaw detector
JP4403036B2 (en) Soot detection method and apparatus
JP2001028059A (en) Method and device for color unevenness inspection
JP6114559B2 (en) Automatic unevenness detector for flat panel display
JP2006145228A (en) Unevenness defect detecting method and unevenness defect detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5088165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees