JP2007187581A - Range finder and ranging method - Google Patents

Range finder and ranging method Download PDF

Info

Publication number
JP2007187581A
JP2007187581A JP2006006655A JP2006006655A JP2007187581A JP 2007187581 A JP2007187581 A JP 2007187581A JP 2006006655 A JP2006006655 A JP 2006006655A JP 2006006655 A JP2006006655 A JP 2006006655A JP 2007187581 A JP2007187581 A JP 2007187581A
Authority
JP
Japan
Prior art keywords
axis
light
axis direction
distance
measurement object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006006655A
Other languages
Japanese (ja)
Other versions
JP4760391B2 (en
Inventor
Hideaki Inoue
秀昭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2006006655A priority Critical patent/JP4760391B2/en
Publication of JP2007187581A publication Critical patent/JP2007187581A/en
Application granted granted Critical
Publication of JP4760391B2 publication Critical patent/JP4760391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve measurement precision of a distance to an object to be measured. <P>SOLUTION: LD modules 11, 12 project light so that two light projection spots P2, P1 are formed at symmetrical positions sandwiching the z-axis on a flat surface S1 at a predetermined position away from the origin. A camera 13 receives the two light projection spots formed by light-projection of the LD modules 11, 12 on the object arranged in the z-axis direction. A distance acquiring section 14 compares a position relation between the light projection spots P1, P2 at a position of 4 m away from the origin with a position relation of the two light projection spots on the object, which is obtained by light receipt of the camera 13, and determines a distance between the original and the object. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、測距装置及び測距方法に関するものである。   The present invention relates to a distance measuring device and a distance measuring method.

測定対象物までの距離を測定する測距装置として、三角測距法を用いたものがある(例えば、特許文献1参照)。
かかる三角測距法のほとんどは、投光型基線長三角測距法と二重像合致式基線長測距法と、の2つに分類される。
特開2004−317668号公報(第5−7頁、図1,2)
As a distance measuring device for measuring a distance to a measurement object, there is one using a triangulation method (see, for example, Patent Document 1).
Most of the triangulation methods are classified into two types, that is, a projection-type baseline length triangulation method and a double image coincidence type baseline length ranging method.
JP 2004-317668 A (page 5-7, FIGS. 1 and 2)

しかし、従来の三角測距法を用いた測距装置では、測定精度は、距離に反比例し、距離の測定対象としての測定対象物が遠く離れるに従って、測定精度は低下してしまう。   However, in a distance measuring device using the conventional triangulation method, the measurement accuracy is inversely proportional to the distance, and the measurement accuracy decreases as the measurement object as the distance measurement object becomes far away.

本発明は、このような従来の問題点に鑑みてなされたもので、距離の測定精度を向上させることが可能な測距装置及び測距方法を提供することを目的とする。   The present invention has been made in view of such conventional problems, and an object thereof is to provide a distance measuring device and a distance measuring method capable of improving the distance measurement accuracy.

この目的を達成するため、本発明の第1の観点に係る測距装置は、
x軸、y軸、z軸が原点で互いに直交する座標系において、
前記原点を中心として前記x軸方向の対称位置にそれぞれ配置されて、前記z軸方向の予め設定された位置において、前記z軸に交差する平面上の前記z軸を中心とする対称位置に2つの投光スポットが形成されるように光を投光する2つの光源と、
前記2つの光源がそれぞれ光を投光することにより、前記z軸方向に配置された測定対象物で反射した2つの投光スポットの反射光を受光し、受光した反射光に基づいて前記測定対象物上における2つの投光スポットの位置を取得する撮像部と、
前記z軸方向の予め設定された位置において予め計測された2つの前記投光スポットの位置関係と前記撮像部が取得した前記測定対象物上における2つの前記投光スポットの位置関係とを比較し、比較結果に基づいて、前記原点から前記測定対象物までの距離を取得する距離取得部と、を備えたことを特徴とする。
In order to achieve this object, a distance measuring device according to the first aspect of the present invention provides:
In a coordinate system in which the x-axis, y-axis, and z-axis are orthogonal to each other at the origin,
2 are arranged at symmetrical positions in the x-axis direction with the origin as the center, and at a predetermined position in the z-axis direction, the symmetrical position around the z-axis on the plane intersecting the z-axis is 2 Two light sources that project light so that one projection spot is formed;
The two light sources project light, respectively, thereby receiving reflected light of two projection spots reflected by the measurement object arranged in the z-axis direction, and measuring the measurement object based on the received reflected light An imaging unit for acquiring the positions of two light projection spots on the object;
The positional relationship between the two projected spots measured in advance at a preset position in the z-axis direction is compared with the positional relationship between the two projected spots on the measurement object acquired by the imaging unit. A distance acquisition unit that acquires a distance from the origin to the measurement object based on the comparison result.

また、本発明の第2の観点に係る測距装置は、
x軸、y軸、z軸が原点で互いに直交する座標系において、
前記z軸方向に光を投光する光源と、
前記光源が投光した光の幅を前記x軸方向に広げた幅広の光を生成する第1の光学系と、
前記原点に配置されて、前記第1の光学系が生成した幅広の光を、前記z軸を回転軸として回転させて前記z軸方向に投光する第2の光学系と、
前記第2の光学系が幅広の光を前記z軸方向に投光することによって前記z軸方向に配置された測定対象物上に投影された線状の投光スポットの反射光を受光する撮像部と、
前記z軸方向の予め設定された位置における前記幅広の光とx−z軸平面との予め計測された角度を第1の角度、前記撮像部の受光によって得られた前記測定対象物上における前記線状の投光スポットと前記x−z軸平面との角度を第2の角度として、前記第1の角度と前記第2の角度との関係に基づいて前記原点から前記測定対象物までの距離を取得する距離取得部と、を備えたことを特徴とする。
In addition, the distance measuring device according to the second aspect of the present invention is:
In a coordinate system in which the x-axis, y-axis, and z-axis are orthogonal to each other at the origin,
A light source that projects light in the z-axis direction;
A first optical system that generates wide light in which the width of light projected by the light source is widened in the x-axis direction;
A second optical system that is arranged at the origin and projects wide light generated by the first optical system in the z-axis direction by rotating the wide light around the z-axis;
Imaging in which the second optical system receives reflected light of a linear projection spot projected on a measurement object arranged in the z-axis direction by projecting wide light in the z-axis direction. And
A pre-measured angle between the wide light and the xz-axis plane at a preset position in the z-axis direction is a first angle, and the measurement object on the measurement object obtained by light reception of the imaging unit. The distance from the origin to the measurement object based on the relationship between the first angle and the second angle, where the angle between the linear projection spot and the xz axis plane is the second angle. And a distance acquisition unit for acquiring.

また、本発明の第3の観点に係る測距方法は、
x軸、y軸、z軸が原点で互いに直交する座標系において、
前記z軸方向の予め設定された位置において、前記z軸に交差する平面上の前記z軸を中心とする対称位置に2つの投光スポットが形成されるように、前記原点を中心として前記x軸方向の対称位置から、それぞれ光を投光するステップと、
前記2つの光を投光することにより、前記z軸方向に配置された測定対象物でそれぞれ反射した2つの反射光を受光し、受光した反射光に基づいて前記測定対象物上における2つの前記投光スポットの位置を取得するステップと、
前記z軸方向の予め設定された位置において予め計測された2つの投光スポットの位置関係と前記測定対象物上における2つの前記投光スポットの位置関係とを比較し、比較結果に基づいて、前記原点から前記測定対象物までの距離を取得するステップと、を備えたことを特徴とする。
In addition, the distance measuring method according to the third aspect of the present invention is:
In a coordinate system in which the x-axis, y-axis, and z-axis are orthogonal to each other at the origin,
The x projection centered on the origin is formed so that two projection spots are formed at symmetrical positions around the z axis on a plane intersecting the z axis at a preset position in the z axis direction. Projecting light from each axially symmetric position;
By projecting the two lights, the two reflected lights respectively reflected by the measurement object arranged in the z-axis direction are received, and the two above-described two objects on the measurement object are received based on the received reflected light. Obtaining a position of the projection spot;
Comparing the positional relationship between two projection spots measured in advance at a preset position in the z-axis direction and the positional relationship between the two projection spots on the measurement object, based on the comparison result, Obtaining a distance from the origin to the measurement object.

また、本発明の第4の観点に係る測距方法は、
x軸、y軸、z軸が原点で互いに直交する座標系において、
前記z軸方向に光を投光するステップと、
前記投光した光の幅を前記x軸方向に広げた幅広の光を生成するステップと、
前記x軸方向に広がった幅広の光を、前記z軸を回転軸として回転させて前記z軸方向に投光するステップと、
前記幅広の光を前記z軸方向に投光することによって、前記z軸方向に配置された測定対象物上に投影された線状の投光スポットの反射光を受光するステップと、
前記z軸方向の予め設定された位置における前記幅広の光とx−z軸平面との予め計測された角度を第1の角度、受光した前記反射光によって得られた測定対象物上における線状の投光スポットと前記x−z軸平面との角度を第2の角度として、前記第1の角度と前記第2の角度との関係に基づいて前記原点から前記測定対象物までの距離を取得するステップと、を備えたことを特徴とする。
In addition, the distance measuring method according to the fourth aspect of the present invention is:
In a coordinate system in which the x-axis, y-axis, and z-axis are orthogonal to each other at the origin,
Projecting light in the z-axis direction;
Generating wide light in which the width of the projected light is widened in the x-axis direction;
Projecting wide light spread in the x-axis direction and projecting in the z-axis direction by rotating the z-axis as a rotation axis;
Receiving the reflected light of the linear projection spot projected on the measurement object arranged in the z-axis direction by projecting the wide light in the z-axis direction;
A first measured angle between the wide light and the xz-axis plane at a predetermined position in the z-axis direction is a linear shape on the measurement object obtained by the received reflected light. The distance from the origin to the object to be measured is acquired based on the relationship between the first angle and the second angle, with the angle between the projected spot and the xz axis plane as the second angle. And a step of performing.

本発明によれば、距離の測定精度を向上させることができる。   According to the present invention, the distance measurement accuracy can be improved.

以下、本発明の実施形態に係る測距装置を図面を参照して説明する。
(実施形態1)
実施形態1に係る測距装置の構成を図1に示す。
実施形態1に係る測距装置1は、LD(レーザダイオード)モジュール11,12と、カメラ13と、距離取得部14と、からなる。
Hereinafter, a distance measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 shows the configuration of the distance measuring apparatus according to the first embodiment.
The distance measuring apparatus 1 according to the first embodiment includes LD (laser diode) modules 11 and 12, a camera 13, and a distance acquisition unit 14.

LDモジュール11,12は、ともにレーザ光を発する2つの光源であり、レーザダイオードからなる。LDモジュール11,12は、x軸、y軸、z軸が原点で互いに直交する座標系において、原点を中心としてx軸(水平方向)方向の対称位置にそれぞれ配置される。   The LD modules 11 and 12 are two light sources that emit laser light, and are composed of laser diodes. The LD modules 11 and 12 are arranged at symmetrical positions in the x-axis (horizontal direction) around the origin in a coordinate system in which the x-axis, y-axis, and z-axis are orthogonal to each other at the origin.

LDモジュール11,12の投光方向は、z軸方向の予め設定された位置として原点から4mの位置において、z軸と交差する平面S1上において、z軸を中心とする対称位置に2つの投光スポットP2,P1が形成されるように設定される。   The light projecting directions of the LD modules 11 and 12 are set at two symmetrical positions around the z axis on a plane S1 intersecting the z axis at a position 4 m from the origin as a preset position in the z axis direction. The light spots P2 and P1 are set to be formed.

本実施形態1では、2つの投光スポットP1,P2は、z軸と交差する平面S1上において、z軸を中心とする対称位置として、z軸に垂直であるy軸方向に形成されるものとする。   In the first embodiment, the two light projection spots P1 and P2 are formed in the y-axis direction perpendicular to the z-axis as a symmetrical position about the z-axis on the plane S1 intersecting the z-axis. And

カメラ13は、CCD(Charge Coupled Device;電荷結合素子)又はCMOSを備えたものである。カメラ13は、x,y,z直交座標系の原点に配置されてz軸方向を視線とする。そして、カメラ13は、LDモジュール11,12が投光してz軸方向に配置された測定対象物で反射した反射光を受光して、測定対象物の2つの投光スポットの位置を取得する。   The camera 13 includes a CCD (Charge Coupled Device) or a CMOS. The camera 13 is disposed at the origin of the x, y, z orthogonal coordinate system, and the z-axis direction is the line of sight. Then, the camera 13 receives the reflected light reflected by the measurement object that is projected by the LD modules 11 and 12 and arranged in the z-axis direction, and acquires the positions of the two light projection spots of the measurement object. .

カメラ13は、距離を測定するために必要十分な解像度を有しているものとし、解像度は、市販のデジタルカメラ程度の解像度を有していれば、十分である。また、カメラ13は、ズーム機能を有しているものであれば、このズーム機能を使用してもよい。   The camera 13 is assumed to have a necessary and sufficient resolution for measuring the distance, and the resolution is sufficient if it has a resolution comparable to a commercially available digital camera. Further, if the camera 13 has a zoom function, this zoom function may be used.

距離取得部14は、z軸方向の予め設定された位置に投光された2つの投光スポットP1,P2の位置関係と、測定対象物に投光された2つの投光スポットの位置関係を比較して、比較結果に基づいて、原点から測定対象物までの距離を取得するものである。   The distance acquisition unit 14 determines the positional relationship between the two projection spots P1 and P2 projected at a preset position in the z-axis direction and the positional relationship between the two projection spots projected onto the measurement object. In comparison, the distance from the origin to the measurement object is acquired based on the comparison result.

2つのLDモジュール11,12の投光方向が図1に示すように設定されると、2つのLDモジュール11,12の投光によって形成される2つの投光スポットの位置関係は、測定対象物までの距離に応じて、図2(a)〜(d)に示すように、変化する。   When the light projecting directions of the two LD modules 11 and 12 are set as shown in FIG. 1, the positional relationship between the two light projecting spots formed by the light projecting of the two LD modules 11 and 12 is measured. As shown in FIG. 2A to FIG.

図2(a)〜(d)において、dxは、投光スポットP1,P2のx軸方向(水平方向)の距離を示す。dyは、投光スポットP1,P2のy軸方向(垂直方向)の距離を示す。   2A to 2D, dx indicates the distance in the x-axis direction (horizontal direction) of the light projection spots P1 and P2. dy represents the distance in the y-axis direction (vertical direction) between the light projection spots P1 and P2.

図2(d)は、原点から4mの位置における2つのLDモジュール11,12が投光した投光スポットP1,P2の位置関係を示す。原点から4mの位置では、投光スポットP1,P2は、y軸方向(垂直方向)に並ぶので、dx=0となる。   FIG. 2D shows the positional relationship between the light projection spots P1 and P2 projected by the two LD modules 11 and 12 at a position 4 m from the origin. At a position 4 m from the origin, the projection spots P1 and P2 are arranged in the y-axis direction (vertical direction), so dx = 0.

図2(a)〜(c)は、それぞれ、原点から測定対象物までの距離が1mの場合の投光スポットP11,P12の位置関係、2mの場合の投光スポットP21,P22の位置関係、3mの場合の投光スポットP31,P32の位置関係を示す。特に、距離4mでの投光スポットP1,P2間の距離と二つのLDモジュール11,12間の距離とが等しくなるように設定された場合、距離が2mで、dxとdyとが等しくなる。   FIGS. 2A to 2C show the positional relationship between the projection spots P11 and P12 when the distance from the origin to the measurement object is 1 m, and the positional relationship between the projection spots P21 and P22 when the distance is 2 m. The positional relationship between the projection spots P31 and P32 in the case of 3 m is shown. In particular, when the distance between the projection spots P1 and P2 at a distance of 4 m and the distance between the two LD modules 11 and 12 are set to be equal, the distance is 2 m and dx and dy are equal.

dxとdyとの比と、距離Lと、の間には、一定の関係がある。図3は、dxをdyで除した値と距離Lとの関係を示す図である。この図3に示すように、距離Lは、dxをdyで除した値に反比例する。また、図4は、dx/dyと距離Lの逆数との関係を示す。距離Lの逆数は、dx/dyの値に比例する。   There is a certain relationship between the ratio between dx and dy and the distance L. FIG. 3 is a diagram showing the relationship between the value obtained by dividing dx by dy and the distance L. As shown in FIG. As shown in FIG. 3, the distance L is inversely proportional to the value obtained by dividing dx by dy. FIG. 4 shows the relationship between dx / dy and the reciprocal of the distance L. The reciprocal of the distance L is proportional to the value of dx / dy.

距離取得部14は、原点から距離Lが4mの場合の投光スポットP1,P2の位置関係と、測定対象物上の投光スポットの位置関係を比較する。そして、距離取得部14は、この図3,4に示す位置関係に基づいて、原点から測定対象物までの距離を取得する。尚、カメラ13の解像度が十分であれば、距離精度は、カメラ13から測定対象物までの距離Lには依存しない。但し、設定距離は4m程度までとする。   The distance acquisition unit 14 compares the positional relationship between the projection spots P1 and P2 when the distance L from the origin is 4 m and the positional relationship between the projection spots on the measurement target. And the distance acquisition part 14 acquires the distance from an origin to a measuring object based on the positional relationship shown to this FIG. If the resolution of the camera 13 is sufficient, the distance accuracy does not depend on the distance L from the camera 13 to the measurement object. However, the set distance is up to about 4 m.

次に実施形態1に係る測距装置1の動作を説明する。
LDモジュール11,12は、それぞれ、投光スポットP2,P1方向に投光する。カメラ13は、測定対象物で反射した反射光を受光して、投光スポットの位置を取得する。
Next, the operation of the distance measuring apparatus 1 according to the first embodiment will be described.
The LD modules 11 and 12 project light in the direction of the light projecting spots P2 and P1, respectively. The camera 13 receives the reflected light reflected by the measurement object and acquires the position of the projection spot.

原点から測定対象物までの距離L=4mの場合、投光スポットP1,P2の位置関係は図2(d)に示すような位置関係になる。距離取得部14は、このような位置関係から、投光スポットP1,P2のx軸方向の距離dx,y軸方向の距離dyを求める。距離取得部14は、距離dx、dyの比dx/dyの値を求めて図3,4を参照し、距離L=4mを取得する。   When the distance L from the origin to the measurement object is L = 4 m, the positional relationship between the projection spots P1 and P2 is as shown in FIG. The distance acquisition unit 14 obtains the distance dx in the x-axis direction and the distance dy in the y-axis direction of the projection spots P1 and P2 from such a positional relationship. The distance acquisition unit 14 obtains the ratio dx / dy of the distances dx and dy and refers to FIGS. 3 and 4 to acquire the distance L = 4 m.

原点から測定対象物までの距離L=3mの場合、投光スポットP31,P32の位置関係は、図2(c)に示すような位置関係になる。距離取得部14は、この位置関係から、投光スポットP1,P2のx,y軸方向のそれぞれの距離dx,dyを求め、距離dx、dyの比dx/dyの値を求めて図3,4を参照し、距離L=3mを取得する。   When the distance L from the origin to the measurement target is L = 3 m, the positional relationship between the projection spots P31 and P32 is as shown in FIG. The distance acquisition unit 14 obtains the distances dx and dy in the x and y axis directions of the projection spots P1 and P2 from this positional relationship, and obtains the value of the ratio dx / dy of the distances dx and dy as shown in FIG. 4, the distance L = 3 m is acquired.

原点から測定対象物までの距離L=2mの場合、投光スポットP21,P22の位置関係は、図2(b)に示すような位置関係になる。距離取得部14は、この位置関係から、投光スポットP21,P22のx,y軸方向のそれぞれの距離dx,dyを求め、距離dx、dyの比dx/dyの値を求めて図3,4を参照し、距離L=2mを取得する。   When the distance L from the origin to the measurement object is L = 2 m, the positional relationship between the projection spots P21 and P22 is as shown in FIG. The distance acquisition unit 14 obtains the distances dx and dy in the x and y axis directions of the projection spots P21 and P22 from this positional relationship, and obtains the value of the ratio dx / dy of the distances dx and dy as shown in FIG. 4, the distance L = 2m is acquired.

原点から測定対象物までの距離L=1mの場合、投光スポットP11,P12の位置関係は、図2(a)に示すような位置関係になる。距離取得部14は、この位置関係から、投光スポットP11,P12のx,y軸方向のそれぞれの距離dx,dyを求め、距離dx、dyの比dx/dyの値を求めて図3,4を参照し、距離L=1mを取得する。   When the distance L from the origin to the measurement object is 1 m, the positional relationship between the projection spots P11 and P12 is as shown in FIG. The distance acquisition unit 14 obtains the distances dx and dy in the x and y axis directions of the projection spots P11 and P12 from this positional relationship, and obtains the value of the ratio dx / dy of the distances dx and dy as shown in FIG. 4, the distance L = 1 m is obtained.

以上説明したように、本実施形態1によれば、LDモジュール11,12は、原点から4mの位置において、z軸と交差する平面S1上において、z軸を中心とする対称位置に2つの投光スポットP2,P1が形成されるように、光を投光する。距離取得部14は、予め計測された2つの投光スポットP1,P2の位置関係と、測定対象物上での投光スポットの位置関係とを比較して、比較結果に基づいて、原点から測定対象物までの距離を取得するようにした。   As described above, according to the first embodiment, the LD modules 11 and 12 have two projections at symmetrical positions around the z axis on the plane S1 intersecting the z axis at a position 4 m from the origin. Light is projected so that the light spots P2 and P1 are formed. The distance acquisition unit 14 compares the positional relationship between the two light projection spots P1 and P2 measured in advance with the positional relationship between the light projection spots on the measurement object, and measures from the origin based on the comparison result. The distance to the object was acquired.

従って、原点から測定対象物までの距離Lにかかわらず、高い測定精度でこの距離Lを取得することができる。   Therefore, regardless of the distance L from the origin to the measurement object, the distance L can be acquired with high measurement accuracy.

(実施形態2)
実施形態2に係る測距装置は、1つのLDモジュールのレーザ光を光学系でねじれ光とし、このねじれ光の傾きに基づいて測定対象物との距離を取得するようにしたものである。
(Embodiment 2)
In the distance measuring apparatus according to the second embodiment, the laser light of one LD module is converted into twisted light by an optical system, and the distance from the measurement object is acquired based on the inclination of the twisted light.

実施形態2に係る測距装置1は、図5に示すように、LDモジュール21と、シリンドリカル凹レンズ22と、シリンドリカル凸レンズ23,24と、からなる。   As shown in FIG. 5, the distance measuring device 1 according to the second embodiment includes an LD module 21, a cylindrical concave lens 22, and cylindrical convex lenses 23 and 24.

LDモジュール21は、実施形態1のLDモジュール11,12と同様のものであり、z軸方向にレーザ光beam1を投光する。   The LD module 21 is the same as the LD modules 11 and 12 of the first embodiment, and projects the laser beam beam1 in the z-axis direction.

シリンドリカル凹レンズ22は、LDモジュール21が出射したレーザ光beam1をx軸方向(水平方向)に広げ、幅広の光beam2を生成するものであり、その入射面と出射面とは、投光されたレーザ光beam1が通過するz軸上に配置される。   The cylindrical concave lens 22 expands the laser beam beam1 emitted from the LD module 21 in the x-axis direction (horizontal direction) and generates a wide beam beam2. The incident surface and the exit surface are formed by a projected laser. It is arranged on the z-axis through which the light beam1 passes.

シリンドリカル凸レンズ23は、シリンドリカル凹レンズ22が広げた幅広の光beam2を平行光線beam3にするためのものであり、幅広の光beam2が通過するようにその入射面と出射面とがz軸上に配置される。   The cylindrical convex lens 23 is for converting the wide light beam 2 expanded by the cylindrical concave lens 22 into a parallel light beam 3, and its incident surface and output surface are arranged on the z-axis so that the wide light beam 2 passes through. The

シリンドリカル凸レンズ24は、シリンドリカル凸レンズ23が生成した平行光線beam3をz軸を中心として回転させてねじれ光線beam4を生成するものであり、平行光線beam3が通過するように、その入射面と出射面とがz軸上に配置される。   The cylindrical convex lens 24 rotates the parallel light beam 3 generated by the cylindrical convex lens 23 around the z axis to generate a twisted light beam 4, and the incident surface and the output surface thereof are arranged so that the parallel light beam 3 passes through. Arranged on the z-axis.

シリンドリカル凸レンズ24は、平行光線beam3の左側ほど右下斜め方向に、右側ほど左上斜め方向になるように、平行光線beam3を回転させる。シリンドリカル凸レンズ24は、原点から4mの位置において、ねじれ光線beam4がx軸に対して垂直になるように、45°傾けられている。   The cylindrical convex lens 24 rotates the parallel light beam 3 so that the left side of the parallel light beam 3 is in the lower right diagonal direction and the right side is in the upper left diagonal direction. The cylindrical convex lens 24 is inclined by 45 ° so that the twisted light beam beam4 is perpendicular to the x-axis at a position 4 m from the origin.

シリンドリカル凸レンズ24は、ねじれ光線beam4を投光することによりz軸方向に配置された測定対象物上に線状の投光スポットbeam5を形成する。   The cylindrical convex lens 24 forms a linear projection spot beam5 on a measurement object arranged in the z-axis direction by projecting a twisted beam beam4.

カメラ13は、シリンドリカル凹レンズ22,シリンドリカル凸レンズ23,24の近傍に配置され、線状の投光スポットの反射光を受光して、測定対象物における線状の投光スポットbeam5の状態を取得するものである。この線状の投光スポットbeam5は、直線状になる。   The camera 13 is disposed in the vicinity of the cylindrical concave lens 22 and the cylindrical convex lenses 23 and 24, receives the reflected light of the linear projection spot, and acquires the state of the linear projection spot beam5 on the measurement object. It is. This linear projection spot beam5 is linear.

距離取得部14は、原点から4mの位置をz軸方向の予め設定された位置として、この位置において、線状の投光スポットbeam5とx−z軸平面h_xzとの予め計測された角度θ4と、カメラ13が取得した線状の投光スポットbeam5とx−z軸平面h_xzとの角度θと、の関係に基づいて原点から測定対象物までの距離を取得する。   The distance acquisition unit 14 sets a position 4 m from the origin as a preset position in the z-axis direction, and at this position, the angle θ4 measured in advance between the linear projection spot beam5 and the xz-axis plane h_xz The distance from the origin to the measurement object is acquired based on the relationship between the linear projection spot beam5 acquired by the camera 13 and the angle θ between the xz axis plane h_xz.

図6(a)〜(d)は、原点から測定対象物までの距離Lと、線状の投光スポットbeam5とx−z軸平面h_xzとの角度θと、の関係を示す図である。図6(d)は、原点から4mの位置における線状の投光スポットbeam5とx−z軸平面h_xzとの角度θ4を示す。前述のように、シリンドリカル凸レンズ24が設定されているため、線状の投光スポットbeam5の傾きθ4=90°となる。   6A to 6D are diagrams showing the relationship between the distance L from the origin to the measurement object and the angle θ between the linear projection spot beam5 and the xz axis plane h_xz. FIG. 6D shows an angle θ4 between the linear projection spot beam5 and the xz axis plane h_xz at a position 4 m from the origin. As described above, since the cylindrical convex lens 24 is set, the inclination θ4 of the linear projection spot beam5 becomes 90 °.

図6(a)〜(d)に示すような関係に従って、原点から測定対象物までの距離Lと角度θとの関係、1/Lと角度θとの関係は、それぞれ、図7、8に示すような関係になる。   According to the relationships as shown in FIGS. 6A to 6D, the relationship between the distance L from the origin to the measurement object and the angle θ and the relationship between 1 / L and the angle θ are shown in FIGS. The relationship is as shown.

距離取得部14は、カメラ13が取得した線状の投光スポットbeam5とx−z軸平面h_xzとの角度θから、この図7、8に示す関係に基づいて、原点から測定対象物までの距離Lを取得する。   The distance acquisition unit 14 determines the distance from the origin to the measurement object based on the relationship shown in FIGS. 7 and 8 from the angle θ between the linear projection spot beam5 acquired by the camera 13 and the xz axis plane h_xz. The distance L is acquired.

次に、実施形態2に係る測距装置1の動作を説明する。
LDモジュール21は、z軸方向にレーザ光beam1を投光する。シリンドリカル凹レンズ22は、LDモジュール21が投光した光をx軸方向に広げて、幅広の光beam2を生成する。
Next, the operation of the distance measuring apparatus 1 according to the second embodiment will be described.
The LD module 21 projects a laser beam beam1 in the z-axis direction. The cylindrical concave lens 22 expands the light projected by the LD module 21 in the x-axis direction to generate a wide light beam2.

シリンドリカル凸レンズ23は、シリンドリカル凹レンズ22が生成した幅広の光beam2から平行光線beam3を生成する。シリンドリカル凸レンズ24は、シリンドリカル凸レンズ23が生成した平行光線beam3をz軸を中心として回転させて、ねじれ光線beam4を投光する。   The cylindrical convex lens 23 generates a parallel light beam 3 from the wide light beam 2 generated by the cylindrical concave lens 22. The cylindrical convex lens 24 projects the twisted light beam 4 by rotating the parallel light beam 3 generated by the cylindrical convex lens 23 around the z axis.

シリンドリカル凸レンズ24がねじれ光線beam4を投光することによりz軸方向に配置された測定対象物上に線状の投光スポットbeam5が形成される。カメラ13は線状の投光スポットbeam5の反射光を受光して線状の投光スポットbeam5の状態を取得する。   When the cylindrical convex lens 24 projects the twisted light beam beam4, a linear projection spot beam5 is formed on the measurement object arranged in the z-axis direction. The camera 13 receives the reflected light of the linear projection spot beam5 and acquires the state of the linear projection spot beam5.

原点から測定対象物までの距離L=4mの場合、図6(d)に示すように、カメラ13が取得した線状の投光スポットbeam5の角度θ=θ4となる。距離取得部14は、角度θ=θ4から、図7,8を参照し、距離L=4を取得する。   When the distance L from the origin to the measurement object is L = 4 m, as shown in FIG. 6D, the angle θ = θ4 of the linear projection spot beam5 acquired by the camera 13 is obtained. The distance acquisition unit 14 acquires the distance L = 4 from the angle θ = θ4 with reference to FIGS.

同様に、原点から測定対象物までの距離L=3m、2m、1mの場合、ぞれぞれ、図6(c)、(b)、(a)に示すように、カメラ13が取得した線状の投光スポットbeam5の角度θ=θ3,θ2,θ1となる。距離取得部14は、それぞれ、角度θ=θ3,θ2,θ1から、図7,8を参照し、距離L=3,2,1を取得する。   Similarly, when the distance L from the origin to the measurement object is L = 3 m, 2 m, and 1 m, as shown in FIGS. 6C, 6B, and 6A, the lines acquired by the camera 13 are obtained. The angle θ of the light projection spot beam5 is θ = θ3, θ2, θ1. The distance acquisition unit 14 acquires distances L = 3, 2, and 1 from the angles θ = θ3, θ2, and θ1 with reference to FIGS.

以上説明したように、本実施形態2によれば、シリンドリカル凹レンズ22、シリンドリカル凸レンズ23,24は、LDモジュール21が投光したレーザ光beam1から生成した平行光線beam3を回転させて、回転させたねじれ光線beam4を投光する。そして、距離取得部14は、カメラ13が取得した線状の投光スポットbeam5とx−z軸平面h_xzとの角度θに基づいて、原点から測定対象物までの距離Lを取得するようにした。   As described above, according to the second embodiment, the cylindrical concave lens 22 and the cylindrical convex lenses 23 and 24 rotate the parallel beam beam3 generated from the laser beam beam1 projected by the LD module 21 and rotate the twist. Light beam4 is projected. The distance acquisition unit 14 acquires the distance L from the origin to the measurement object based on the angle θ between the linear projection spot beam5 acquired by the camera 13 and the xz axis plane h_xz. .

従って、LDモジュール21を1つのみとすることができる。また、測定対象物に投光された投光スポットが線状となるので、線状の投光スポットbeam5を受光する画素の画素情報が増え、その結果、距離測定の精度をさらに向上させることができる。   Therefore, only one LD module 21 can be provided. In addition, since the light projection spot projected onto the measurement object is linear, the pixel information of the pixel that receives the linear light projection spot beam5 is increased, and as a result, the accuracy of distance measurement can be further improved. it can.

また、従来の三角測距法において、距離が大きくなるに従って角度変化は急激に小さくなるのに対して、本実施形態2における線状の投光スポットbeam5の角度θを設定距離の範囲内でほぼ一定の割合で変化させることができる。   Further, in the conventional triangulation method, the angle change rapidly decreases as the distance increases, whereas the angle θ of the linear projection spot beam5 in the second embodiment is substantially within the set distance range. It can be changed at a constant rate.

尚、本発明を実施するにあたっては、種々の形態が考えられ、上記実施の形態に限られるものではない。   In carrying out the present invention, various forms are conceivable and the present invention is not limited to the above embodiment.

例えば、上記実施形態1において、LDモジュール11,12の投光方向を、原点から4mの位置に投光スポットP2,P1が形成されるものとして説明した。しかし、投光方向を4mの位置ではなく、それ以上離れた位置にしてもよい。そして、取得する距離に基づいて、LDモジュール11,12の投光方向を変えるようにしもよい。このようにすれば、原点から測定対象物までの距離にかかわらず、精度良く測定対象物までの距離Lを取得することができる。   For example, in the first embodiment, it has been described that the light projecting directions of the LD modules 11 and 12 are such that the light projecting spots P2 and P1 are formed at a position 4 m from the origin. However, the light projecting direction may be a position further away than the 4 m position. And based on the distance to acquire, you may make it change the light projection direction of LD module 11 and 12. FIG. In this way, the distance L to the measurement object can be obtained with high accuracy regardless of the distance from the origin to the measurement object.

また、x軸上にLDモジュール11,12を2ペア以上配置して、各ペア毎に投光方向を設定することもできる   It is also possible to arrange two or more pairs of LD modules 11 and 12 on the x-axis and set the light projection direction for each pair.

本発明の実施形態1に係る測距装置の構成を示す図である。It is a figure which shows the structure of the ranging apparatus which concerns on Embodiment 1 of this invention. 図1に示す測距装置が投光した2つの投光スポットの位置関係を示す図である。It is a figure which shows the positional relationship of the two light projection spots which the distance measuring device shown in FIG. 1 light-projected. dx/dyと距離Lとの関係を示す図である。It is a figure which shows the relationship between dx / dy and distance L. FIG. dx/dyと1/Lとの関係を示す図である。It is a figure which shows the relationship between dx / dy and 1 / L. 本発明の実施形態2に係る測距装置の構成を示す図である。It is a figure which shows the structure of the ranging apparatus which concerns on Embodiment 2 of this invention. 各距離Lにおける線状の投光スポットの傾きθを示す図である。It is a figure which shows inclination (theta) of the linear projection spot in each distance L. FIG. 線状の投光スポットの傾きθと距離Lとの関係を示す図である。It is a figure which shows the relationship between inclination (theta) and the distance L of a linear projection spot. 線状の投光スポットの傾きθと1/Lとの関係を示す図である。It is a figure which shows the relationship between inclination (theta) of a linear projection spot, and 1 / L.

符号の説明Explanation of symbols

1・・・測距装置、11,12,21・・・LDモジュール、13・・・カメラ、14・・・距離取得部、22・・・シリンドリカル凹レンズ、23,24・・・シリンドリカル凸レンズ   DESCRIPTION OF SYMBOLS 1 ... Distance measuring device 11, 12, 21 ... LD module, 13 ... Camera, 14 ... Distance acquisition part, 22 ... Cylindrical concave lens, 23, 24 ... Cylindrical convex lens

Claims (4)

x軸、y軸、z軸が原点で互いに直交する座標系において、
前記原点を中心として前記x軸方向の対称位置にそれぞれ配置されて、前記z軸方向の予め設定された位置において、前記z軸に交差する平面上の前記z軸を中心とする対称位置に2つの投光スポットが形成されるように光を投光する2つの光源と、
前記2つの光源がそれぞれ光を投光することにより、前記z軸方向に配置された測定対象物で反射した2つの投光スポットの反射光を受光し、受光した反射光に基づいて前記測定対象物上における2つの投光スポットの位置を取得する撮像部と、
前記z軸方向の予め設定された位置において予め計測された2つの前記投光スポットの位置関係と前記撮像部が取得した前記測定対象物上における2つの前記投光スポットの位置関係とを比較し、比較結果に基づいて、前記原点から前記測定対象物までの距離を取得する距離取得部と、を備えた、
ことを特徴とする測距装置。
In a coordinate system in which the x-axis, y-axis, and z-axis are orthogonal to each other at the origin,
2 are arranged at symmetrical positions in the x-axis direction with the origin as the center, and at a predetermined position in the z-axis direction, the symmetrical position around the z-axis on the plane intersecting the z-axis is 2 Two light sources that project light so that one projection spot is formed;
The two light sources project light, respectively, thereby receiving reflected light of two projection spots reflected by the measurement object arranged in the z-axis direction, and measuring the measurement object based on the received reflected light An imaging unit for acquiring the positions of two light projection spots on the object;
The positional relationship between the two projected spots measured in advance at a preset position in the z-axis direction is compared with the positional relationship between the two projected spots on the measurement object acquired by the imaging unit. A distance acquisition unit for acquiring a distance from the origin to the measurement object based on a comparison result,
A distance measuring device characterized by that.
x軸、y軸、z軸が原点で互いに直交する座標系において、
前記z軸方向に光を投光する光源と、
前記光源が投光した光の幅を前記x軸方向に広げた幅広の光を生成する第1の光学系と、
前記原点に配置されて、前記第1の光学系が生成した幅広の光を、前記z軸を回転軸として回転させて前記z軸方向に投光する第2の光学系と、
前記第2の光学系が幅広の光を前記z軸方向に投光することによって前記z軸方向に配置された測定対象物上に投影された線状の投光スポットの反射光を受光する撮像部と、
前記z軸方向の予め設定された位置における前記幅広の光とx−z軸平面との予め計測された角度を第1の角度、前記撮像部の受光によって得られた前記測定対象物上における前記線状の投光スポットと前記x−z軸平面との角度を第2の角度として、前記第1の角度と前記第2の角度との関係に基づいて前記原点から前記測定対象物までの距離を取得する距離取得部と、を備えた、
ことを特徴とする測距装置。
In a coordinate system in which the x-axis, y-axis, and z-axis are orthogonal to each other at the origin,
A light source that projects light in the z-axis direction;
A first optical system that generates wide light in which the width of light projected by the light source is widened in the x-axis direction;
A second optical system that is arranged at the origin and projects wide light generated by the first optical system in the z-axis direction by rotating the wide light around the z-axis;
Imaging in which the second optical system receives reflected light of a linear projection spot projected on a measurement object arranged in the z-axis direction by projecting wide light in the z-axis direction. And
A pre-measured angle between the wide light and the xz-axis plane at a preset position in the z-axis direction is a first angle, and the measurement object on the measurement object obtained by light reception of the imaging unit. The distance from the origin to the measurement object based on the relationship between the first angle and the second angle, where the angle between the linear projection spot and the xz axis plane is the second angle. A distance acquisition unit for acquiring,
A distance measuring device characterized by that.
x軸、y軸、z軸が原点で互いに直交する座標系において、
前記z軸方向の予め設定された位置において、前記z軸に交差する平面上の前記z軸を中心とする対称位置に2つの投光スポットが形成されるように、前記原点を中心として前記x軸方向の対称位置から、それぞれ光を投光するステップと、
前記2つの光を投光することにより、前記z軸方向に配置された測定対象物でそれぞれ反射した2つの反射光を受光し、受光した反射光に基づいて前記測定対象物上における2つの前記投光スポットの位置を取得するステップと、
前記z軸方向の予め設定された位置において予め計測された2つの投光スポットの位置関係と前記測定対象物上における2つの前記投光スポットの位置関係とを比較し、比較結果に基づいて、前記原点から前記測定対象物までの距離を取得するステップと、を備えた、
ことを特徴とする測距方法。
In a coordinate system in which the x-axis, y-axis, and z-axis are orthogonal to each other at the origin,
The x projection centered on the origin is formed so that two projection spots are formed at symmetrical positions around the z axis on a plane intersecting the z axis at a preset position in the z axis direction. Projecting light from each axially symmetric position;
By projecting the two lights, the two reflected lights respectively reflected by the measurement object arranged in the z-axis direction are received, and the two above-described two objects on the measurement object are received based on the received reflected light. Obtaining a position of the projection spot;
Comparing the positional relationship between two projection spots measured in advance at a preset position in the z-axis direction and the positional relationship between the two projection spots on the measurement object, based on the comparison result, Obtaining a distance from the origin to the measurement object, and
A distance measuring method characterized by that.
x軸、y軸、z軸が原点で互いに直交する座標系において、
前記z軸方向に光を投光するステップと、
前記投光した光の幅を前記x軸方向に広げた幅広の光を生成するステップと、
前記x軸方向に広がった幅広の光を、前記z軸を回転軸として回転させて前記z軸方向に投光するステップと、
前記幅広の光を前記z軸方向に投光することによって、前記z軸方向に配置された測定対象物上に投影された線状の投光スポットの反射光を受光するステップと、
前記z軸方向の予め設定された位置における前記幅広の光とx−z軸平面との予め計測された角度を第1の角度、受光した前記反射光によって得られた測定対象物上における線状の投光スポットと前記x−z軸平面との角度を第2の角度として、前記第1の角度と前記第2の角度との関係に基づいて前記原点から前記測定対象物までの距離を取得するステップと、を備えた、
ことを特徴とする測距方法。
In a coordinate system in which the x-axis, y-axis, and z-axis are orthogonal to each other at the origin,
Projecting light in the z-axis direction;
Generating wide light in which the width of the projected light is widened in the x-axis direction;
Projecting wide light spread in the x-axis direction and projecting in the z-axis direction by rotating the z-axis as a rotation axis;
Receiving the reflected light of the linear projection spot projected on the measurement object arranged in the z-axis direction by projecting the wide light in the z-axis direction;
A first measured angle between the wide light and the xz-axis plane at a predetermined position in the z-axis direction is a linear shape on the measurement object obtained by the received reflected light. The distance from the origin to the object to be measured is acquired based on the relationship between the first angle and the second angle, with the angle between the projected spot and the xz axis plane as the second angle. Comprising the steps of:
A distance measuring method characterized by that.
JP2006006655A 2006-01-13 2006-01-13 Ranging device and ranging method Expired - Fee Related JP4760391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006006655A JP4760391B2 (en) 2006-01-13 2006-01-13 Ranging device and ranging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006006655A JP4760391B2 (en) 2006-01-13 2006-01-13 Ranging device and ranging method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011085991A Division JP4993025B2 (en) 2011-04-08 2011-04-08 Ranging device and ranging method

Publications (2)

Publication Number Publication Date
JP2007187581A true JP2007187581A (en) 2007-07-26
JP4760391B2 JP4760391B2 (en) 2011-08-31

Family

ID=38342843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006006655A Expired - Fee Related JP4760391B2 (en) 2006-01-13 2006-01-13 Ranging device and ranging method

Country Status (1)

Country Link
JP (1) JP4760391B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196883A (en) * 2010-03-19 2011-10-06 Toshiba Corp Distance measuring apparatus
JP2011257267A (en) * 2010-06-09 2011-12-22 Kawada Industries Inc Imaging plane detection device and working robot with the same
US20120050713A1 (en) * 2010-08-24 2012-03-01 Casio Computer Co., Ltd. Range image sensor, range image generating apparatus, range image data obtaining method and range image generating method
JP2012047830A (en) * 2010-08-24 2012-03-08 Casio Comput Co Ltd Diffraction optical element, ranging device and ranging method
JP2013174596A (en) * 2013-03-25 2013-09-05 Toshiba Corp Distance detection device
CN104154898A (en) * 2014-04-24 2014-11-19 深圳大学 Active ranging method and system
CN104269078A (en) * 2014-09-23 2015-01-07 苏州天益航空科技有限公司 Method for collision detection for agricultural plant protection unmanned aerial vehicle
RU2562391C1 (en) * 2014-02-25 2015-09-10 Акционерное общество "Швабе Технологическая лаборатория" (АО "Швабе - Технологическая лаборатория") Method and apparatus for optical location
KR20170010541A (en) * 2015-07-20 2017-02-01 삼성중공업 주식회사 Apparatus for measuring position and orientation of mobile body
RU2653158C1 (en) * 2017-06-19 2018-05-07 Акционерное общество "Швабе - Технологическая лаборатория" Location optical-electronic module
JP2018514783A (en) * 2015-05-10 2018-06-07 マジック アイ インコーポレイテッド Distance sensor
JP2020521142A (en) * 2017-05-24 2020-07-16 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Lidar apparatus and method for scanning a scan angle with at least one beam with a constant orientation
US10885761B2 (en) 2017-10-08 2021-01-05 Magik Eye Inc. Calibrating a sensor system including multiple movable sensors
US10931883B2 (en) 2018-03-20 2021-02-23 Magik Eye Inc. Adjusting camera exposure for three-dimensional depth sensing and two-dimensional imaging
US11002537B2 (en) 2016-12-07 2021-05-11 Magik Eye Inc. Distance sensor including adjustable focus imaging sensor
US11019249B2 (en) 2019-05-12 2021-05-25 Magik Eye Inc. Mapping three-dimensional depth map data onto two-dimensional images
US11062468B2 (en) 2018-03-20 2021-07-13 Magik Eye Inc. Distance measurement using projection patterns of varying densities
CN113176579A (en) * 2021-03-01 2021-07-27 奥比中光科技集团股份有限公司 Light spot position self-adaptive searching method, time flight ranging system and ranging method
US11199397B2 (en) 2017-10-08 2021-12-14 Magik Eye Inc. Distance measurement using a longitudinal grid pattern
US11320537B2 (en) 2019-12-01 2022-05-03 Magik Eye Inc. Enhancing triangulation-based three-dimensional distance measurements with time of flight information
US11474209B2 (en) 2019-03-25 2022-10-18 Magik Eye Inc. Distance measurement using high density projection patterns
US11474245B2 (en) 2018-06-06 2022-10-18 Magik Eye Inc. Distance measurement using high density projection patterns
US11475584B2 (en) 2018-08-07 2022-10-18 Magik Eye Inc. Baffles for three-dimensional sensors having spherical fields of view
US11483503B2 (en) 2019-01-20 2022-10-25 Magik Eye Inc. Three-dimensional sensor including bandpass filter having multiple passbands
US11580662B2 (en) 2019-12-29 2023-02-14 Magik Eye Inc. Associating three-dimensional coordinates with two-dimensional feature points
US11688088B2 (en) 2020-01-05 2023-06-27 Magik Eye Inc. Transferring the coordinate system of a three-dimensional camera to the incident point of a two-dimensional camera

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113446U (en) * 1978-01-23 1979-08-09
JPS58178329A (en) * 1982-04-14 1983-10-19 Copal Co Ltd Focus detector suited for self-timer photographing
JPS6079109U (en) * 1983-11-08 1985-06-01 オムロン株式会社 distance measuring device
JPS6472005A (en) * 1987-09-11 1989-03-16 Matsushita Electric Ind Co Ltd Visual sensor
JPH01121714A (en) * 1987-11-06 1989-05-15 Kobe Steel Ltd Contactless measuring method for distance
JPH01167609A (en) * 1987-12-24 1989-07-03 Shinichi Yuda Distance sensor
JP2000230807A (en) * 1999-02-10 2000-08-22 Micro Research:Kk Method for distance measurement using parallel light and its instrument

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113446U (en) * 1978-01-23 1979-08-09
JPS58178329A (en) * 1982-04-14 1983-10-19 Copal Co Ltd Focus detector suited for self-timer photographing
JPS6079109U (en) * 1983-11-08 1985-06-01 オムロン株式会社 distance measuring device
JPS6472005A (en) * 1987-09-11 1989-03-16 Matsushita Electric Ind Co Ltd Visual sensor
JPH01121714A (en) * 1987-11-06 1989-05-15 Kobe Steel Ltd Contactless measuring method for distance
JPH01167609A (en) * 1987-12-24 1989-07-03 Shinichi Yuda Distance sensor
JP2000230807A (en) * 1999-02-10 2000-08-22 Micro Research:Kk Method for distance measurement using parallel light and its instrument

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196883A (en) * 2010-03-19 2011-10-06 Toshiba Corp Distance measuring apparatus
JP2011257267A (en) * 2010-06-09 2011-12-22 Kawada Industries Inc Imaging plane detection device and working robot with the same
CN102435169A (en) * 2010-08-24 2012-05-02 卡西欧计算机株式会社 Range image sensor and range image generating method
JP2012047830A (en) * 2010-08-24 2012-03-08 Casio Comput Co Ltd Diffraction optical element, ranging device and ranging method
JP2012047500A (en) * 2010-08-24 2012-03-08 Casio Comput Co Ltd Distance image sensor, device for generating distance image, method for acquiring distance image data, and method for generating distance image
CN102375170A (en) * 2010-08-24 2012-03-14 卡西欧计算机株式会社 Diffractive optical element, distance measuring apparatus and distance measuring method
US20120050713A1 (en) * 2010-08-24 2012-03-01 Casio Computer Co., Ltd. Range image sensor, range image generating apparatus, range image data obtaining method and range image generating method
US8705013B2 (en) 2010-08-24 2014-04-22 Casio Computer Co., Ltd. Diffractive optical element, distance measuring apparatus and distance measuring method
US8743346B2 (en) 2010-08-24 2014-06-03 Casio Computer Co., Ltd. Range image sensor, range image generating apparatus, range image data obtaining method and range image generating method
CN102375170B (en) * 2010-08-24 2014-06-18 卡西欧计算机株式会社 Diffractive optical element, distance measuring apparatus and distance measuring method
CN102435169B (en) * 2010-08-24 2014-11-12 卡西欧计算机株式会社 Range image sensor and range image generating method
JP2013174596A (en) * 2013-03-25 2013-09-05 Toshiba Corp Distance detection device
RU2562391C1 (en) * 2014-02-25 2015-09-10 Акционерное общество "Швабе Технологическая лаборатория" (АО "Швабе - Технологическая лаборатория") Method and apparatus for optical location
CN104154898A (en) * 2014-04-24 2014-11-19 深圳大学 Active ranging method and system
CN104269078A (en) * 2014-09-23 2015-01-07 苏州天益航空科技有限公司 Method for collision detection for agricultural plant protection unmanned aerial vehicle
JP2018514783A (en) * 2015-05-10 2018-06-07 マジック アイ インコーポレイテッド Distance sensor
KR20170010541A (en) * 2015-07-20 2017-02-01 삼성중공업 주식회사 Apparatus for measuring position and orientation of mobile body
KR101714707B1 (en) * 2015-07-20 2017-03-09 삼성중공업(주) Apparatus for measuring position and orientation of mobile body
US11002537B2 (en) 2016-12-07 2021-05-11 Magik Eye Inc. Distance sensor including adjustable focus imaging sensor
JP2020521142A (en) * 2017-05-24 2020-07-16 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Lidar apparatus and method for scanning a scan angle with at least one beam with a constant orientation
US11493608B2 (en) 2017-05-24 2022-11-08 Robert Bosch Gmbh LIDAR device and method for scanning a scanning angle using at least one beam of constant alignment
JP7084426B2 (en) 2017-05-24 2022-06-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Rider device and method for scanning a scanning angle with at least one beam having a constant orientation.
RU2653158C1 (en) * 2017-06-19 2018-05-07 Акционерное общество "Швабе - Технологическая лаборатория" Location optical-electronic module
US11199397B2 (en) 2017-10-08 2021-12-14 Magik Eye Inc. Distance measurement using a longitudinal grid pattern
US10885761B2 (en) 2017-10-08 2021-01-05 Magik Eye Inc. Calibrating a sensor system including multiple movable sensors
US10931883B2 (en) 2018-03-20 2021-02-23 Magik Eye Inc. Adjusting camera exposure for three-dimensional depth sensing and two-dimensional imaging
US11062468B2 (en) 2018-03-20 2021-07-13 Magik Eye Inc. Distance measurement using projection patterns of varying densities
US11381753B2 (en) 2018-03-20 2022-07-05 Magik Eye Inc. Adjusting camera exposure for three-dimensional depth sensing and two-dimensional imaging
US11474245B2 (en) 2018-06-06 2022-10-18 Magik Eye Inc. Distance measurement using high density projection patterns
US11475584B2 (en) 2018-08-07 2022-10-18 Magik Eye Inc. Baffles for three-dimensional sensors having spherical fields of view
US11483503B2 (en) 2019-01-20 2022-10-25 Magik Eye Inc. Three-dimensional sensor including bandpass filter having multiple passbands
US11474209B2 (en) 2019-03-25 2022-10-18 Magik Eye Inc. Distance measurement using high density projection patterns
US11019249B2 (en) 2019-05-12 2021-05-25 Magik Eye Inc. Mapping three-dimensional depth map data onto two-dimensional images
US11320537B2 (en) 2019-12-01 2022-05-03 Magik Eye Inc. Enhancing triangulation-based three-dimensional distance measurements with time of flight information
US11580662B2 (en) 2019-12-29 2023-02-14 Magik Eye Inc. Associating three-dimensional coordinates with two-dimensional feature points
US11688088B2 (en) 2020-01-05 2023-06-27 Magik Eye Inc. Transferring the coordinate system of a three-dimensional camera to the incident point of a two-dimensional camera
CN113176579A (en) * 2021-03-01 2021-07-27 奥比中光科技集团股份有限公司 Light spot position self-adaptive searching method, time flight ranging system and ranging method

Also Published As

Publication number Publication date
JP4760391B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4760391B2 (en) Ranging device and ranging method
US20200166333A1 (en) Hybrid light measurement method for measuring three-dimensional profile
CN107957237B (en) Laser projector with flash alignment
Heist et al. Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement
JP5123932B2 (en) Camera-equipped 6-degree-of-freedom target measurement device and target tracking device with a rotating mirror
CN107036534B (en) Method and system for measuring displacement of vibration target based on laser speckle
JP2008241643A (en) Three-dimensional shape measuring device
JP5187364B2 (en) Diffractive optical element, distance measuring device and distance measuring method
JP2006514739A (en) Dental laser digitizer system
JP2008002995A (en) Three-dimensional shape measuring device
KR100264393B1 (en) Stereo Camera System by Prism
WO2023207756A1 (en) Image reconstruction method and apparatus, and device
JP2007093412A (en) Three-dimensional shape measuring device
TW201944047A (en) Multi-degree-of-freedom error measurement system for rotary axes and method thereof
US6912055B2 (en) Spherical form measuring and analyzing method
JP4993025B2 (en) Ranging device and ranging method
TWI768672B (en) Projector focusing method and projector focusing system
JP2019500606A5 (en)
Igor et al. A 2D quadrangular pyramid photoelectric autocollimator with extended angle measurement range
JP2006220603A (en) Imaging apparatus
JP2006308452A (en) Method and apparatus for measuring three-dimensional shape
CN209894134U (en) Multi-eye measuring device
US20100321558A1 (en) Apparatus and method for detecting spatial movement of object
JP2011090166A (en) Stereo imaging apparatus
JP4788968B2 (en) Focal plane tilt type confocal surface shape measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4760391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees