JP2008241643A - Three-dimensional shape measuring device - Google Patents

Three-dimensional shape measuring device Download PDF

Info

Publication number
JP2008241643A
JP2008241643A JP2007086255A JP2007086255A JP2008241643A JP 2008241643 A JP2008241643 A JP 2008241643A JP 2007086255 A JP2007086255 A JP 2007086255A JP 2007086255 A JP2007086255 A JP 2007086255A JP 2008241643 A JP2008241643 A JP 2008241643A
Authority
JP
Japan
Prior art keywords
measured
imaging
imaging system
measurement pattern
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007086255A
Other languages
Japanese (ja)
Inventor
宗濤 ▲葛▼
Souto Katsura
Masaaki Tomimizu
政昭 冨水
Hideo Muto
秀雄 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2007086255A priority Critical patent/JP2008241643A/en
Publication of JP2008241643A publication Critical patent/JP2008241643A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional shape measuring device capable of measuring three-dimensional shape of a plane to be measured with high accuracy and at high speed, based on the principle of triangulation, even when variation of shape of the plane to be measured may be large. <P>SOLUTION: By including a projecting and scanning system 2 projecting and scanning bright line intermittently over the whole region of a plane 7 to be measured within one exposure time, a first and a second imaging system 3 and 4 imaging each bright line deformed after projected to the plane 7 to be measured from mutually different directions, and a projection direction detecting means 5 detecting the projection direction of each bright line, a shape analysis based on the three-dimensional coordinate data by a stereo technique obtained from a first three-dimensional coordinate acquisition section 61 and a shape analysis based on the three-dimensional coordinate data by an optical cutting technique obtained from a second three-dimensional coordinate acquisition means make it possible to combine suitably for implementation thereof. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、三角測量の原理を用いて被測定面の3次元形状を求める3次元形状測定装置に関し、特に、形状の変化が大きい被測定面への適用が好適な3次元形状測定装置に関する。   The present invention relates to a three-dimensional shape measuring apparatus that obtains a three-dimensional shape of a surface to be measured using the principle of triangulation, and more particularly to a three-dimensional shape measuring device that is suitable for application to a surface to be measured with a large change in shape.

従来、三角測量の原理を利用する3次元形状測定装置としては、被測定面を互いに異なる方向から2つの撮像系で撮像して視差の情報から形状を求めるステレオ法という手法を用いるものが知られている。ステレオ法では、2つの撮像系により撮像された画像間の対応点を求める対応点探索が必要となるが、これを精度良く行なうことができれば、高精度な測定結果を得ることが可能となる。下記特許文献1には、2つの画像間の対応点の判別を容易とするため、被測定面に点状や線状の測定用パターンを投影することが記載されている。   Conventionally, as a three-dimensional shape measuring apparatus using the principle of triangulation, one using a method called a stereo method in which a surface to be measured is picked up by two imaging systems from different directions and a shape is obtained from parallax information is known. ing. The stereo method requires a corresponding point search for obtaining corresponding points between images captured by two imaging systems. If this can be performed with high accuracy, a highly accurate measurement result can be obtained. Japanese Patent Application Laid-Open No. 2004-228561 describes that a point-like or linear measurement pattern is projected on a surface to be measured in order to easily determine a corresponding point between two images.

また、ステレオ法における2つの撮像系の一方を、光スポット(点状の測定用パターン)や、輝線(直線状の測定用パターン)の投影走査系に置き換えた光切断法という手法を用いるものも知られている(下記特許文献2参照)。光切断法は、被測定面に光スポットや輝線を投影、走査し、それを投影方向とは異なる方向から撮像するものであり、撮像時点における光スポットや輝線の投影方向を検出すること、および投影走査系と撮像系との距離(基線長)を求めておくことが必要であるが、一般的なステレオ法における対応点探索が不要なため解析が容易となる。   Also, there is a method using a light cutting method in which one of two imaging systems in the stereo method is replaced with a projection scanning system of a light spot (dotted measurement pattern) or a bright line (linear measurement pattern). It is known (see Patent Document 2 below). The light cutting method projects and scans a light spot or bright line on the surface to be measured and images it from a direction different from the projection direction, detects the projection direction of the light spot or bright line at the time of imaging, and Although it is necessary to obtain the distance (base line length) between the projection scanning system and the imaging system, the corresponding point search in the general stereo method is not necessary, so that the analysis becomes easy.

特開平5−26640号公報Japanese Patent Laid-Open No. 5-26640 特開平10−122837号公報Japanese Patent Laid-Open No. 10-122837

しかしながら、従来のステレオ法および光切断法においては、形状変化が大きい被測定面を測定する場合、被測定面に対する撮像系の向きによっては、被測定面の一部領域を観察することができないため、高精度な測定結果を得ることができないという問題がある。   However, in the conventional stereo method and light cutting method, when measuring a surface to be measured having a large shape change, a partial region of the surface to be measured cannot be observed depending on the orientation of the imaging system with respect to the surface to be measured. There is a problem that a highly accurate measurement result cannot be obtained.

ステレオ法の場合、異なる2方向から同時に撮像された画像が、被測定面の全領域に亘って必要となるが、被測定面に対する2つの撮像系の向きを固定すると、被測定面の一部領域については一方の撮像系でしか撮像できないことがある。上記特許文献1には、被測定面と2つの撮像系との位置関係を変化させることが開示されているが、位置関係の変動に伴う測定誤差が生じる虞がある。   In the case of the stereo method, images taken simultaneously from two different directions are required over the entire area of the surface to be measured. If the orientations of the two imaging systems with respect to the surface to be measured are fixed, a part of the surface to be measured is obtained. An area may be imaged only by one imaging system. Although Patent Document 1 discloses changing the positional relationship between the surface to be measured and the two imaging systems, there is a possibility that a measurement error may occur due to a change in the positional relationship.

光切断法の場合でも、光スポットや輝線(の一部)を観察することができない領域が被測定面上に生じることがあり、そのような領域については、被測定面の3次元データを求めることが困難となる。例えば、輝線の一部が欠けて観察された場合において、輝線が直線であることを利用して、欠けた領域の3次元データを補完する手法も存在するが、精度が低下することは否めない。   Even in the case of the light cutting method, a region where a light spot or a bright line (part of it) cannot be observed may occur on the surface to be measured. For such a region, three-dimensional data of the surface to be measured is obtained. It becomes difficult. For example, there is a method of complementing the three-dimensional data of the missing area by utilizing the fact that the bright line is a straight line when a part of the bright line is observed, but the accuracy cannot be denied. .

また、光切断法の場合、被測定面の全域に亘って光スポットや輝線を投影、走査する間に、被測定面を複数回撮像する必要があるので(例えば、輝線を1本分走査する毎に1回撮像する)、1つの測定に要する時間が長いという問題もある。   In the case of the light cutting method, it is necessary to image the surface to be measured a plurality of times while projecting and scanning the light spot and the bright line over the entire surface to be measured (for example, scanning one bright line). There is also a problem that the time required for one measurement is long).

本発明は、このような事情に鑑みなされたものであり、被測定面の形状変化が大きいような場合でも、三角測量の原理に基づき、被測定面の3次元形状を高精度に求めることが可能であり、かつ撮像回数を低減して、1つの測定に要する時間を短縮し得る3次元形状測定装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and can obtain the three-dimensional shape of the surface to be measured with high accuracy based on the principle of triangulation even when the shape of the surface to be measured is large. It is an object of the present invention to provide a three-dimensional shape measuring apparatus that is possible and that can reduce the number of times of imaging and shorten the time required for one measurement.

上記課題を解決するため本発明の3次元形状測定装置では、ステレオ法による形状解析と光切断法による形状解析とを、適宜組み合わせて行なえるようにしている。   In order to solve the above problems, the three-dimensional shape measuring apparatus of the present invention can perform a combination of shape analysis by a stereo method and shape analysis by a light cutting method as appropriate.

すなわち、本発明に係る3次元形状測定装置は、被測定面に測定用パターンを投影、走査する投影走査系と、
前記被測定面に投影、走査された前記測定用パターンを互いに異なる方向から撮像する第1および第2の撮像系と、
前記測定用パターンの投影方向を検出する投影方向検出手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と同じタイミングで前記第2の撮像系により撮像された画像上における前記測定用パターンの座標との対応関係、および前記第1および第2の撮像系の間に設定された第1基線長に基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第1の3次元座標取得手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と前記投影走査系との間に設定された第2基線長と、前記投影方向とに基づき、および/または、前記第2の撮像系により撮像された画像上における前記測定用パターンの座標と、該第2の撮像系と前記投影走査系との間に設定された第3基線長と、前記投影方向とに基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第2の3次元座標取得手段と、
前記測定用パターンが前記被測定面を走査する過程において、前記第1および第2の3次元座標取得手段によりそれぞれ求められた3次元座標データを、任意に組み合わせて前記被測定面の3次元形状を求める3次元形状解析手段と、を備えてなり、
前記投影走査系は、前記第1の撮像系および前記第2の撮像系の一露光時間内に、前記被測定面の全域に亘って前記測定用パターンを投影、走査するように構成されていることを特徴とする。
That is, the three-dimensional shape measuring apparatus according to the present invention includes a projection scanning system that projects and scans a measurement pattern on a measurement surface;
First and second imaging systems for imaging the measurement pattern projected and scanned on the measurement surface from different directions;
A projection direction detecting means for detecting a projection direction of the measurement pattern;
The coordinates of the measurement pattern on the image captured by the first imaging system and the coordinates of the measurement pattern on the image captured by the second imaging system at the same timing as the first imaging system And a first base line length set between the first and second imaging systems to obtain a three-dimensional coordinate of the surface to be measured at a position where the measurement pattern is projected 3D coordinate acquisition means,
The coordinates of the measurement pattern on the image captured by the first imaging system, the second baseline length set between the first imaging system and the projection scanning system, and the projection direction And / or the coordinates of the measurement pattern on the image captured by the second imaging system, and the third baseline length set between the second imaging system and the projection scanning system, A second three-dimensional coordinate acquisition means for obtaining a three-dimensional coordinate of the measurement surface at a position where the measurement pattern is projected based on the projection direction;
In the process in which the measurement pattern scans the surface to be measured, the three-dimensional shape of the surface to be measured is arbitrarily combined with the three-dimensional coordinate data respectively obtained by the first and second three-dimensional coordinate acquisition means And a three-dimensional shape analysis means for obtaining
The projection scanning system is configured to project and scan the measurement pattern over the entire surface to be measured within one exposure time of the first imaging system and the second imaging system. It is characterized by that.

本発明の3次元形状測定装置において、第2の3次元座標取得手段は、第1および第2の撮像系のうちいずれか一方の撮像系のみが測定用パターンを撮像可能であった場合に、該一方の撮像系により撮像された測定用パターンの画像上における座標と、前記第2および第3基線長のうち該一方の撮像系に対応する方の基線長と、前記投影方向とに基づき、該一方の撮像系により撮像された測定用パターンが投影された位置における被測定面の3次元座標を求めるように構成されている、とすることができる。   In the three-dimensional shape measurement apparatus of the present invention, the second three-dimensional coordinate acquisition unit is configured such that when only one of the first and second imaging systems can capture the measurement pattern, Based on the coordinates on the image of the measurement pattern imaged by the one imaging system, the baseline length corresponding to the one imaging system among the second and third baseline lengths, and the projection direction, It can be configured to obtain the three-dimensional coordinates of the surface to be measured at the position where the measurement pattern imaged by the one imaging system is projected.

また、投影走査系は、回動する反射ミラーを介して測定用パターンを被測定面に投影、走査するように構成することができ、この場合、第1および第2の撮像系は、反射ミラーの回動中心を挟んで互いに対称に配置されていることが好ましい。   In addition, the projection scanning system can be configured to project and scan the measurement pattern onto the surface to be measured via the rotating reflection mirror. In this case, the first and second imaging systems are the reflection mirrors. It is preferable that they are arranged symmetrically with respect to the rotation center.

本発明の3次元形状測定装置によれば、上記構成を備えていることにより、第1の3次元座標取得手段によって得られた3次元座標データに基づく形状解析(ステレオ法による形状解析)と、第2の3次元座標取得手段によって得られた3次元座標データに基づく形状解析(光切断法による形状解析)とを、適宜組み合わせて実施することが可能となる。   According to the three-dimensional shape measuring apparatus of the present invention, having the above configuration, shape analysis based on the three-dimensional coordinate data obtained by the first three-dimensional coordinate acquisition means (shape analysis by stereo method), It is possible to implement a suitable combination of shape analysis based on the three-dimensional coordinate data obtained by the second three-dimensional coordinate acquisition means (shape analysis by the light cutting method).

これにより、例えば、2つの撮像系により同時に測定用パターンを撮像可能であった場合には、ステレオ法による形状解析を行ない、2つの撮像系のうちいずれか一方の撮像系のみが測定用パターンを撮像可能であった場合には、光切断法による形状解析を行なうことができる。   Thus, for example, when the measurement pattern can be simultaneously imaged by two imaging systems, the shape analysis by the stereo method is performed, and only one of the two imaging systems captures the measurement pattern. If the image can be captured, shape analysis can be performed by a light cutting method.

被測定面の形状変化が大きい場合でも、投影走査系により被測定面に投影、走査された測定用パターンを、2つの撮像系により互いに異なる方向から撮像することによって、被測定面の各領域について、少なくとも一方の撮像系においては測定用パターンを撮像し得る確率は高くなる。したがって、本発明の3次元形状測定装置によれば、被測定面と撮像系との相対的位置を変化させなくとも、形状変化が大きい被測定面の3次元座標データを略全域に亘って得ることができるので、その3次元形状を高精度に測定することが可能となる。   Even when the shape change of the surface to be measured is large, each area of the surface to be measured is obtained by imaging the measurement patterns projected and scanned onto the surface to be measured by the projection scanning system from different directions by the two imaging systems. In at least one of the imaging systems, the probability that the measurement pattern can be imaged increases. Therefore, according to the three-dimensional shape measuring apparatus of the present invention, the three-dimensional coordinate data of the surface to be measured having a large shape change can be obtained over substantially the entire area without changing the relative position between the surface to be measured and the imaging system. Therefore, the three-dimensional shape can be measured with high accuracy.

また、第1および第2の撮像系の一露光時間内に、被測定面の全域に亘って測定用パターンを投影、走査する構成としたことにより、測定時の撮像回数を1回のみとすることができるので、1つの測定に要する時間を大幅に短縮することが可能となる。   In addition, since the measurement pattern is projected and scanned over the entire surface to be measured within one exposure time of the first and second imaging systems, the number of times of imaging during measurement is limited to one. Therefore, the time required for one measurement can be greatly shortened.

以下、本発明の実施形態について図面を参照しつつ詳細に説明する。図1は本発明の一実施形態に係る3次元形状測定装置の全体構成を示す図であり、図2はその測定原理を示す概略図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing the overall configuration of a three-dimensional shape measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing the measurement principle.

図1に示す3次元形状測定装置は、三角測量の原理を用いて被測定面7の3次元形状を測定解析するものであり、図示せぬ三脚に支持された装置本体1と、コンピュータ等からなる解析装置6とを備えてなる。   The three-dimensional shape measuring apparatus shown in FIG. 1 measures and analyzes the three-dimensional shape of the surface 7 to be measured using the principle of triangulation. From the apparatus main body 1 supported on a tripod (not shown), a computer, and the like. And an analyzing device 6.

装置本体1は、被測定面7に輝線(直線状の測定用パターン)K(図2参照)を投影、走査する投影走査系2と、被測定面7に投影されて変形した輝線K(図2参照)を互いに異なる方向から撮像する第1および第2の撮像系3,4と、輝線Kの投影方向を検出する投影方向検出手段5と、を備えてなる。 The apparatus body 1 has a projection scanning system 2 that projects and scans a bright line (linear measurement pattern) K (see FIG. 2) on the measurement surface 7 and a bright line K 0 (projected and deformed on the measurement surface 7). 2), and a projection direction detection means 5 for detecting the projection direction of the bright line K.

上記投影走査系2は、半導体レーザ装置等からなる光源部21と、投影レンズ22と、回動可能な反射ミラーからなる走査ミラー23を有してなる。光源部21からは直進性の高い光が投影レンズ22に向けて間欠的に出力されるように構成されており(例えば、光源部21と投影レンズ22との間に間欠的に開放されるシャッタ(図示略)を配置し、該シャッタが開放される間のみ投影レンズ22に向けて光が出力されるように構成したり、間欠的に光を出力し得るパルスレーザを光源部21として用いたりする)、投影レンズ22は、光源部21からの出力光を輝線生成用の光束に変換して走査ミラー23の回動中心(走査ミラー23の回動軸C(図2参照)と、投影走査系2の光軸Lとの交点に位置する。以下「基点P」と称す)に向けて出射するように構成されている。また、上記走査ミラー23は、図示せぬ回動装置を介して装置筺体に支持されており、該回動装置により、上記投影レンズ22から間欠的に出力される光の各出力タイミングに同期して所定角度ずつ回動せしめられながら、投影レンズ22からの光束を反射することにより、上記輝線Kを、その投影方向を上記所定角度ずつ変化させながら、上記被測定面7の全域に亘って間欠的に投影、走査するようになっている。 The projection scanning system 2 includes a light source unit 21 composed of a semiconductor laser device or the like, a projection lens 22, and a scanning mirror 23 composed of a rotatable reflection mirror. The light source unit 21 is configured to intermittently output light having high straightness toward the projection lens 22 (for example, a shutter that is intermittently opened between the light source unit 21 and the projection lens 22). (Not shown) is arranged so that light is output toward the projection lens 22 only while the shutter is opened, or a pulse laser capable of intermittently outputting light is used as the light source unit 21. The projection lens 22 converts the output light from the light source unit 21 into a luminous flux for generating a bright line, and rotates the rotation center of the scanning mirror 23 (the rotation axis C of the scanning mirror 23 (see FIG. 2)) and the projection scanning. It is located at the intersection with the optical axis L 1 of the system 2. It is configured so as to emit toward the base point (hereinafter referred to as “base point P 1 ”). The scanning mirror 23 is supported on the apparatus housing via a rotating device (not shown), and is synchronized with each output timing of light intermittently output from the projection lens 22 by the rotating device. By rotating the light beam from the projection lens 22 while being rotated by a predetermined angle, the bright line K is intermittently spread over the entire surface to be measured 7 while changing the projection direction by the predetermined angle. Projecting and scanning.

上記第1の撮像系3は、被測定面7に投影、走査された輝線Kを、輝線Kの投影方向とは異なる方向から撮像するものであり、図1に示すように、撮像レンズ31と撮像カメラ32とを有してなる。撮像カメラ32は、CCDやCMOS等の撮像面で形成される撮像面33を備えており、撮像レンズ31は、被測定面7に投影、走査された輝線Kの像を、撮像面33上に結像させるように構成されている。また、撮像カメラ32は、撮像面33上に結像された画像情報を画像信号に変換し、解析装置6に出力するようになっている。 The first imaging system 3, the projection surface to be measured 7, the scanned bright lines K 0, the projection direction of the bright lines K 0 is intended for imaging from different directions, as shown in FIG. 1, the imaging lens 31 and an imaging camera 32. The imaging camera 32 includes an imaging surface 33 formed by an imaging surface such as a CCD or a CMOS. The imaging lens 31 projects an image of the bright line K 0 projected and scanned on the measurement surface 7 on the imaging surface 33. To form an image. The imaging camera 32 converts image information imaged on the imaging surface 33 into an image signal and outputs the image signal to the analysis device 6.

上記第2の撮像系4は、被測定面7に投影、走査された輝線Kを、輝線Kの投影方向および第1の撮像系3とは異なる方向から撮像するものであり、図1に示すように、撮像レンズ41と撮像カメラ42とを有してなる。撮像カメラ42は、CCDやCMOS等の撮像面で形成される撮像面43を備えており、撮像レンズ41は、被測定面7に投影、走査された輝線Kの像を、撮像面43上に結像させるように構成されている。また、撮像カメラ42は、撮像面43上に結像された画像情報を画像信号に変換し、解析装置6に出力するようになっている。 The second image pickup system 4 picks up the bright line K 0 projected and scanned on the measurement surface 7 from the projection direction of the bright line K 0 and the direction different from the first image pickup system 3. As shown in FIG. 2, the imaging lens 41 and the imaging camera 42 are provided. The imaging camera 42 includes an imaging surface 43 formed of an imaging surface such as a CCD or CMOS, and the imaging lens 41 projects an image of the bright line K 0 projected and scanned on the measurement surface 7 on the imaging surface 43. To form an image. Further, the imaging camera 42 converts image information imaged on the imaging surface 43 into an image signal and outputs it to the analysis device 6.

本実施形態において、第1および第2の撮像系3,4は、上記基点P(走査ミラー23の回動中心)を挟んで互いに対称に配置されている。すなわち、図1において、第1の撮像系3における撮像レンズ31の入射瞳の中心(以下「基点P」と称す)と、第2の撮像系4における撮像レンズ41の入射瞳の中心(以下「基点P」と称す)とは、上記基点Pを挟んで左右対称に配置されている。また、第1および第2の撮像系3,4の各光軸L,Lの向きが、互いに左右対称となるように配置されている。これにより、第1および第2の撮像系3,4の収差等に起因する測定誤差を左右対称とすることができるので、誤差補正が容易となるという利点がある。 In the present embodiment, the first and second imaging systems 3 and 4 are disposed symmetrically with respect to the base point P 1 (the rotation center of the scanning mirror 23). That is, in FIG. 1, the center of the entrance pupil of the imaging lens 31 in the first imaging system 3 (hereinafter referred to as “base point P 2 ”) and the center of the entrance pupil of the imaging lens 41 in the second imaging system 4 (hereinafter referred to as “base point P 2 ”). The term “base point P 3 ” is arranged symmetrically with respect to the base point P 1 . Further, the directions of the optical axes L 2 and L 3 of the first and second imaging systems 3 and 4 are arranged so as to be symmetrical with each other. As a result, the measurement error caused by the aberrations of the first and second imaging systems 3 and 4 can be made symmetrical, so that there is an advantage that error correction becomes easy.

また、第1および第2の撮像系3,4の相互間と、これらと上記投影走査系2との間には、被測定面7の形状解析の際に行なわれる演算において、その長さが重要なパラメータとなる基線長がそれぞれ設定されている。本実施形態においては、上述の基点P,P間に第1基線長dが設定されており、基点P,P間に第2基線長dが、基点P,P間に第3基線長dが、それぞれ設定されている。なお、上述した対称性により、本実施形態においては、d=dであり、またd=d+dとなっている。 In addition, the length between the first and second imaging systems 3 and 4 and between the imaging system 3 and the projection scanning system 2 is calculated in the calculation performed in the shape analysis of the surface 7 to be measured. Baseline lengths are set as important parameters. In the present embodiment, the first base line length d 1 is set between the base points P 2 and P 3 described above, and the second base line length d 2 is set between the base points P 1 and P 2 and the base points P 1 and P 3. third base length d 3 in between, are set, respectively. Note that due to the symmetry described above, in the present embodiment, d 2 = d 3 and d 1 = d 2 + d 3 .

上記投影方向検出手段5は、ロータリーエンコーダ等を有してなり、上記走査ミラー23の回動角度に基づき輝線Kの投影方向を検出し、その検出信号を解析装置6に出力するようになっている。   The projection direction detection means 5 has a rotary encoder or the like, detects the projection direction of the bright line K based on the rotation angle of the scanning mirror 23, and outputs the detection signal to the analysis device 6. Yes.

一方、上記解析装置6は、メモリに格納された処理プログラムや、CPU、演算回路等によりそれぞれ構成される第1の3次元座標取得部61、第2の3次元座標取得部62、および3次元形状解析部63を備えてなる。   On the other hand, the analysis device 6 includes a first three-dimensional coordinate acquisition unit 61, a second three-dimensional coordinate acquisition unit 62, and a three-dimensional unit that are configured by a processing program stored in a memory, a CPU, an arithmetic circuit, and the like. A shape analysis unit 63 is provided.

第1の3次元座標取得部61は、第1の3次元座標取得手段を構成するものであり、第1の撮像系3により撮像された画像上における輝線K(図2参照)の座標と、第1の撮像系3と同じタイミングで第2の撮像系4により撮像された画像上における輝線K(図2参照)の座標との対応関係、および第1および第2の撮像系3,4の間に設定された第1基線長dに基づき、輝線Kが投影された位置における被測定面7の3次元座標を求めるように構成されている。 The first three-dimensional coordinate acquisition unit 61 constitutes a first three-dimensional coordinate acquisition unit, and the coordinates of the bright line K L (see FIG. 2) on the image captured by the first imaging system 3 , The correspondence with the coordinates of the bright line K R (see FIG. 2) on the image captured by the second imaging system 4 at the same timing as the first imaging system 3, and the first and second imaging systems 3, On the basis of the first base line length d 1 set between 4, the three-dimensional coordinates of the surface to be measured 7 at the position where the bright line K 0 is projected are obtained.

第2の3次元座標取得部62は、第2の3次元座標取得手段を構成するものであり、第1の撮像系3により撮像された画像上における輝線Kの座標と、第1の撮像系3と投影走査系2との間に設定された第2基線長dと、輝線Kの投影方向とに基づき、および/または、第2の撮像系4により撮像された画像上における輝線Kの座標と、第2の撮像系4と投影走査系2との間に設定された第3基線長dと、輝線Kの投影方向とに基づき、輝線Kが投影された位置における被測定面7の3次元座標を求めるように構成されている。 Second three-dimensional coordinate acquisition unit 62, constitutes a second three-dimensional coordinate acquiring means, the coordinates of the bright lines K L on the captured image by the first imaging system 3, the first imaging Bright lines on the image captured by the second imaging system 4 based on the second baseline length d 2 set between the system 3 and the projection scanning system 2 and the projection direction of the bright line K 0 the coordinates of K R, and the third base-line length d 3 that is set between the second imaging system 4 and the projection scanning system 2, based on the projection direction of the bright lines K 0, position emission line K 0 is projected The three-dimensional coordinates of the surface 7 to be measured are determined.

3次元形状解析部63は、3次元形状解析手段を構成するものであり、輝線Kが被測定面7を走査する過程において、第1および第2の3次元座標取得部61,62によりそれぞれ求められた3次元座標データを、適宜組み合わせて被測定面7の3次元形状を求めるように構成されている。 The three-dimensional shape analysis unit 63 constitutes a three-dimensional shape analysis unit, and in the process in which the bright line K 0 scans the surface to be measured 7, the first and second three-dimensional coordinate acquisition units 61 and 62 respectively. The obtained three-dimensional coordinate data is appropriately combined to obtain the three-dimensional shape of the measured surface 7.

次に、本実施形態に係る3次元形状測定装置の作用、および測定解析手順について説明する。   Next, the operation of the three-dimensional shape measuring apparatus according to this embodiment and the measurement analysis procedure will be described.

(1)3次元形状測定装置の略正面に設置された被測定面7に対し、投影走査系2は、第1および第2の撮像系3,4の一露光時間内(撮像カメラ32,42に搭載されるCCDやCMOS等の撮像素子における一蓄積時間内)に、被測定面7の全域に亘って輝線Kを、その投影方向を上記所定角度ずつ変化させながら、間欠的に投影、走査する。図2に示すように、輝線Kは鉛直方向に延びる直線状のパターンであり、走査方向は水平方向とされている。   (1) The projection scanning system 2 is within one exposure time of the first and second imaging systems 3 and 4 (imaging cameras 32 and 42) with respect to the surface to be measured 7 installed substantially in front of the three-dimensional shape measuring apparatus. (In one accumulation time in an image pickup device such as a CCD or CMOS mounted in), the bright line K is projected and scanned intermittently while changing the projection direction by the predetermined angle over the entire surface 7 to be measured. To do. As shown in FIG. 2, the bright line K is a linear pattern extending in the vertical direction, and the scanning direction is the horizontal direction.

具体的には、例えば、第1および第2の撮像系3,4の一露光時間を33ミリ秒(1/30(秒))とし、この間に、パルスレーザを用いて被測定面7の全域に50本分の輝線Kを投影する。この場合、パルスレーザのオン・オフのデューティ比を1:1とすると、各輝線Kの投影時間はそれぞれ0.33ミリ秒となる。また、上記一露光時間内に、輝線Kの投影方向を全体として30度変化させる場合、各輝線Kの投影方向の変化は0.6度ずつとなる。   Specifically, for example, one exposure time of the first and second imaging systems 3 and 4 is set to 33 milliseconds (1/30 (seconds)), and during this time, the entire surface to be measured 7 is measured using a pulse laser. 50 bright lines K are projected onto the screen. In this case, assuming that the duty ratio of ON / OFF of the pulse laser is 1: 1, the projection time of each bright line K is 0.33 milliseconds. Further, when the projection direction of the bright lines K is changed by 30 degrees as a whole within the one exposure time, the change in the projection direction of each bright line K is 0.6 degrees.

(2)第1および第2の撮像系3,4の一露光時間内に、輝線Kが被測定面7の全域に亘って間欠的に投影、走査された被測定面7を、第1および第2の撮像系3,4によって、互いに異なる方向から同時に撮像する。第1および第2の撮像系3,4によって撮像された各々の画像は、被測定面7の形状に応じて変形した複数の輝線K(図2では簡便化のため1本の輝線Kのみを示す)が、互いに所定間隔を置いて被測定面7の全域に亘って写し出されたものとなっており、この撮像された各画像情報は、共に第1および第2の3次元座標取得部61,62へと送られる。なお、第1および第2の撮像系3,4においては、各撮像面33,43上の複数の画素に跨って各輝線Kが結像されるように、予め撮像倍率等の調整が行なわれている。 (2) The measured surface 7 in which the bright line K is intermittently projected and scanned over the entire area of the measured surface 7 within one exposure time of the first and second imaging systems 3 and 4 is Images are taken simultaneously from different directions by the second imaging systems 3 and 4. Each image picked up by the first and second image pickup systems 3 and 4 has a plurality of bright lines K 0 deformed in accordance with the shape of the surface 7 to be measured (in FIG. 2, one bright line K 0 for simplification). Are shown on the entire surface to be measured 7 at a predetermined interval, and each of the captured image information is obtained for the first and second three-dimensional coordinates. Sent to the units 61 and 62. In the first and second imaging systems 3 and 4, the imaging magnification and the like are adjusted in advance so that each bright line K 0 is imaged across a plurality of pixels on the imaging surfaces 33 and 43. It is.

(3)投影方向検出手段5により、被測定面7上における各輝線Kの投影方向が検出され、その情報が第2の3次元座標取得部62へと送られる。 (3) The projection direction detection unit 5 detects the projection direction of each bright line K 0 on the measurement surface 7, and sends the information to the second three-dimensional coordinate acquisition unit 62.

(4)第1の撮像系3から送られてきた画像情報に基づき、第1の3次元座標取得部61において、第1の撮像系3により撮像された画像上における各輝線K(本来は、複数の輝線Kそれぞれと対応した複数の輝線Kが撮像されるが、図2では簡便化のため1本の輝線Kのみを示す)上の各点の座標(図2において(x,y)と例示)を求める。この座標の特定に際しては、画像上における各輝線Kの線幅中心を求める必要があるが、線幅中心の特定方法としては、2値化処理による方法や、強度分布がガウス分布に従うとして、線幅内で強度がピークとなる位置を求める方法などを用いることができる。 (4) based on the image information transmitted from the first imaging system 3, the first three-dimensional coordinate acquisition unit 61, the bright lines K L (originally in the first on the captured image by the imaging system 3 , a plurality of bright lines K L corresponding to a plurality of bright lines K 0, respectively, are imaged, one emission line K L in only shown) of each point on the coordinate (FIG. 2 (x for simplicity in FIG. 2 i , y i ) and examples) are obtained. In particular this coordinate, as it is necessary to obtain the line width center of each bright lines K L on the image, but as a specific method of line width center, and the method according to the binarization processing, the intensity distribution is Gaussian distribution, A method for obtaining a position where the intensity reaches a peak within the line width can be used.

(5)第2の撮像系4から送られてきた画像情報に基づき、第1の3次元座標取得部61において、第2の撮像系4により撮像された画像上における各輝線K(本来は、複数の輝線Kそれぞれと対応した複数の輝線Kが撮像されるが、図2では簡便化のため1本の輝線Kのみを示す)上の各点の座標(図2において(x´,y´)と例示)を求める。この座標の特定方法は、上述したのと同様である。 (5) Based on the image information sent from the second imaging system 4, each bright line K R (originally on the image captured by the second imaging system 4 in the first three-dimensional coordinate acquisition unit 61) , a plurality of bright lines K R corresponding to a plurality of bright lines K 0, respectively, are imaged, one emission line K in R only are shown) on the coordinates of each point (Fig. 2 (x for Figure 2, simplification ′ P , y ′ q ) and an example) are obtained. The method for specifying the coordinates is the same as described above.

(6)第1の3次元座標取得部61において、各輝線K上の各点が各輝線K上のどこに位置するのかを求める対応点探索を行ない、これにより、第1の撮像系3により撮像された画像上における各輝線Kの座標と、第1の撮像系3と同じタイミングで第2の撮像系4により撮像された画像上における各輝線Kの座標との対応関係を求める。なお、対応点探索の手法としては、一方の画像上における視線を他方の画像上に投影した線(「エピポーラ線」と称される)の上において、パターンマッチング等の手法を用いて対応点を探索する手法を用いることができる。 (6) In the first three-dimensional coordinate acquisition unit 61 performs corresponding point search seeking whether each point on the bright line K L is located anywhere on the bright line K R, thereby, the first imaging system 3 determining the coordinates of the bright lines K L on the captured image, the correspondence between the coordinates of each bright line K R in the first imaging system 3 and at the same time the second on the captured image of the imaging system 4 by . As a method for searching for corresponding points, on a line (referred to as an “epipolar line”) obtained by projecting a line of sight on one image onto the other image, a corresponding point is found using a method such as pattern matching. A searching method can be used.

(7)第1の3次元座標取得部61において、互いに対応付けられた各輝線K,Kの各座標情報と、上記第1基線長dとに基づき、各輝線Kが投影された位置における被測定面7の3次元座標(図2において(X,Y,Z)と例示)を、三角測量の原理を用いて求める。なお、この3次元座標(以下「第1手法による3次元座標」と称す)を求める手法としては、ステレオ法において用いられる一般的な算定手法を用いることができる。 (7) In the first three-dimensional coordinate acquisition unit 61, and the coordinate information of each bright lines K L, K R associated with each other, based on the first and base length d 1 above, each emission line K 0 is projected The three-dimensional coordinates (illustrated as (X, Y, Z) in FIG. 2) of the measured surface 7 at the determined position are obtained using the principle of triangulation. As a method for obtaining the three-dimensional coordinates (hereinafter referred to as “three-dimensional coordinates by the first method”), a general calculation method used in the stereo method can be used.

(8)第2の3次元座標取得部62において、第1の撮像系3から送られてきた画像情報に基づき、第1の撮像系3により撮像された画像上における各輝線K上の各点の座標を求めるとともに、第2の撮像系4から送られてきた画像情報に基づき、第2の撮像系4により撮像された画像上における各輝線K上の各点の座標を求める。 (8) In the second three-dimensional coordinate acquiring unit 62, based on the image information transmitted from the first imaging system 3, each of the respective bright lines K L of the first on the captured image by the imaging system 3 together determine the coordinates of the point, based on the image information transmitted from the second imaging system 4 obtains the coordinates of each point on the bright line K R on the captured image by the second imaging system 4.

(9)第2の3次元座標取得部62において、求められた各輝線Kの座標と、上記第2基線長dと、各輝線Kの投影方向とに基づき、各輝線Kが投影された位置における被測定面7の3次元座標(以下「第2手法による3次元座標」と称す)を求めるとともに、同じく求められた各輝線Kの座標と、上記第3基線長dと、各輝線Kの投影方向とに基づき、各輝線Kが投影された位置における被測定面7の3次元座標(以下「第3手法による3次元座標」と称す)を、三角測量の原理を用いて求める。なお、これら第2手法および第3手法による3次元座標を求める手法としては、光切断法において用いられる一般的な算定手法を用いることができる。 (9) In the second three-dimensional coordinate acquisition unit 62, and the coordinates of each bright lines K L obtained, and the second baseline length d 2, based on the projection direction of the bright lines K 0, each emission line K 0 together determine the three-dimensional coordinates of the surface to be measured 7 (hereinafter referred to as "three-dimensional coordinates by the second method") in the projected position, the coordinates of each bright line K R similarly obtained, the third base-line length d 3 If, based on the projection direction of the bright lines K 0, the 3-dimensional coordinates of the surface to be measured 7 (hereinafter referred to as "three-dimensional coordinate according to the third method") at a position where each emission line K 0 is projected, triangulation Find using the principle. In addition, as a method for obtaining the three-dimensional coordinates by the second method and the third method, a general calculation method used in the light cutting method can be used.

(10)上記(4)〜(9)の手順により、上述した第1手法による3次元座標から第3手法による3次元座標までの、被測定面7の全域に係る計3組の3次元座標が得られることになる。   (10) In accordance with the procedures (4) to (9) above, a total of three sets of three-dimensional coordinates relating to the entire area of the measured surface 7 from the three-dimensional coordinates by the first method to the three-dimensional coordinates by the third method. Will be obtained.

(11)3次元形状解析部63において、第1および第2の3次元座標取得部61,62によりそれぞれ求められた被測定面7の全域に係る3組の3次元座標データを、適宜組み合わせて被測定面7の3次元形状を求める。このデータの組合せは、例えば、次のように行なう。すなわち、第1手法による3次元座標は、第1および第2の撮像系3,4の双方が同一の輝線Kを撮像し得た被測定面7上の領域に対してのみ求めることができる。一方、第2手法による3次元座標は、第1の撮像系3だけが輝線Kを撮像し得た被測定面7上の領域に対しても求めることができ、第3手法による3次元座標は、第2の撮像系3だけが輝線Kを撮像し得た被測定面7上の領域に対しても求めることができる。そこで、基本的には、第1手法による3次元座標に基づき、被測定面7の3次元形状を求め、第1手法による3次元座標が得られない被測定面7上の領域については、第2手法による3次元座標(第1の撮像系3だけが輝線Kを撮像し得た場合)、または第3手法による3次元座標(第2の撮像系3だけが輝線Kを撮像し得た場合)を、補完的に用いて3次元形状を求めるようにする。 (11) In the three-dimensional shape analysis unit 63, three sets of three-dimensional coordinate data relating to the entire area of the measured surface 7 respectively obtained by the first and second three-dimensional coordinate acquisition units 61 and 62 are appropriately combined. The three-dimensional shape of the measured surface 7 is obtained. This combination of data is performed as follows, for example. That is, three-dimensional coordinates of the first approach can be determined only for the first and second region on the surface to be measured 7 which both obtained by imaging the same emission line K 0 of the imaging system 3, 4 . On the other hand, three-dimensional coordinates by the second method, only the first imaging system 3 is also able to determine the region on the surface to be measured 7 which is obtained by imaging the emission line K 0, 3-dimensional coordinates according to the third method may be only the second imaging system 3 is also determined to an area on the surface to be measured 7 which is obtained by imaging the emission line K 0. Therefore, basically, the three-dimensional shape of the measured surface 7 is obtained based on the three-dimensional coordinates obtained by the first method, and the region on the measured surface 7 where the three-dimensional coordinates obtained by the first method cannot be obtained 3-dimensional coordinates according to 2 methods give only (first case only the imaging system 3 is obtained by imaging the emission line K 0) of, or the third three-dimensional coordinates by the method (the second imaging system 3 images the bright line K 0 3) is used in a complementary manner.

なお、上述した手順では、第2の3次元座標取得部62において、第2手法による3次元座標と第3手法による3次元座標との双方を常時求めるようにしているが、第1および第2の撮像系3,4の双方が同一の輝線Kを撮像し得た被測定面7上の領域については、第2手法および第3手法による3次元座標の算定は行なわず、第1および第2の撮像系3,4のうちいずれか一方の撮像系のみが輝線Kを撮像し得た被測定面7上の領域については、撮像し得た方の撮像系の画像情報に基づく3次元座標(第1の撮像系3のみが撮像し得た場合は第2手法による3次元座標、第2の撮像系3のみが撮像し得た場合は第3手法による3次元座標)を求めるようにしてもよい。 In the above-described procedure, the second three-dimensional coordinate acquisition unit 62 always obtains both the three-dimensional coordinates by the second method and the three-dimensional coordinates by the third method. For the area on the measured surface 7 where both of the imaging systems 3 and 4 can image the same bright line K 0 , the first and first three-dimensional coordinates are not calculated by the second and third methods. The region on the measured surface 7 where only one of the two imaging systems 3 and 4 can capture the bright line K 0 is three-dimensional based on the image information of the imaging system that has captured the bright line K 0. The coordinates (three-dimensional coordinates according to the second method when only the first imaging system 3 can capture images, and three-dimensional coordinates according to the third method when only the second imaging system 3 can capture images) are obtained. May be.

また、本実施形態では、第1および第2の撮像系3,4の2つの撮像系を備えているが、3つ以上の撮像系を備えるようにしてもよい。さらに、本実施形態では、1つの直線状の測定用パターン(輝線K)を被測定面7に投影し、これを走査するようにしているが、複数の直線状の測定用パターンを被測定面7に投影、走査するようにしたり、点状の投影用パターンを被測定面7に投影、走査するようにしたり、他の図形からなる投影用パターンを被測定面7に投影、走査するようにしたりすることも可能である。   In this embodiment, the first and second imaging systems 3 and 4 are provided with two imaging systems, but three or more imaging systems may be provided. Furthermore, in this embodiment, one linear measurement pattern (bright line K) is projected onto the surface to be measured 7 and scanned, but a plurality of linear measurement patterns are measured on the surface to be measured. 7 is projected and scanned, a point-like projection pattern is projected and scanned on the surface to be measured 7, and a projection pattern composed of other figures is projected and scanned on the surface to be measured 7. It is also possible to do.

本発明の一実施形態に係る3次元形状測定装置の全体構成図1 is an overall configuration diagram of a three-dimensional shape measuring apparatus according to an embodiment of the present invention. 3次元形状測定装置の測定原理を示す概略図Schematic showing the measurement principle of the three-dimensional shape measuring device

符号の説明Explanation of symbols

1 装置本体
2 投影走査系
3 第1の撮像系
4 第2の撮像系
5 投影方向検出手段
6 解析装置
7 被測定面
21 光源部
22 投影レンズ
23 走査ミラー
31,41 撮像レンズ
32,42 撮像カメラ
33,43 撮像面
61 第1の3次元座標取得部
62 第2の3次元座標取得部
63 3次元形状解析部
〜L 光軸
〜P 基点
第1基線長
第2基線長
第3基線長
K 輝線
(投影されて変形した)輝線
(第1の撮像系により撮像された画像上における)輝線
(第2の撮像系により撮像された画像上における)輝線
C 回動軸
DESCRIPTION OF SYMBOLS 1 Apparatus main body 2 Projection scanning system 3 1st imaging system 4 2nd imaging system 5 Projection direction detection means 6 Analysis apparatus 7 Surface to be measured 21 Light source part 22 Projection lens 23 Scanning mirror 31, 41 Imaging lens 32, 42 Imaging camera 33, 43 Imaging surface 61 First three-dimensional coordinate acquisition unit 62 Second three-dimensional coordinate acquisition unit 63 Three-dimensional shape analysis unit L 1 to L 3 optical axes P 1 to P 3 base points d 1 first baseline length d 2 Second baseline length d 3 Third baseline length K Bright line K 0 (Projected and deformed) Bright line K L (on the image taken by the first imaging system) Bright line K R (taken by the second imaging system) Bright line (on the measured image) C Rotation axis

Claims (4)

被測定面に測定用パターンを投影、走査する投影走査系と、
前記被測定面に投影、走査された前記測定用パターンを互いに異なる方向から撮像する第1および第2の撮像系と、
前記測定用パターンの投影方向を検出する投影方向検出手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と同じタイミングで前記第2の撮像系により撮像された画像上における前記測定用パターンの座標との対応関係、および前記第1および第2の撮像系の間に設定された第1基線長に基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第1の3次元座標取得手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と前記投影走査系との間に設定された第2基線長と、前記投影方向とに基づき、および/または、前記第2の撮像系により撮像された画像上における前記測定用パターンの座標と、該第2の撮像系と前記投影走査系との間に設定された第3基線長と、前記投影方向とに基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第2の3次元座標取得手段と、
前記測定用パターンが前記被測定面を走査する過程において、前記第1および第2の3次元座標取得手段によりそれぞれ求められた3次元座標データを、任意に組み合わせて前記被測定面の3次元形状を求める3次元形状解析手段と、を備えてなり、
前記投影走査系は、前記第1の撮像系および前記第2の撮像系の一露光時間内に、前記被測定面の全域に亘って前記測定用パターンを投影、走査するように構成されていることを特徴とする3次元形状測定装置。
A projection scanning system for projecting and scanning a measurement pattern on a measurement surface;
First and second imaging systems for imaging the measurement pattern projected and scanned on the measurement surface from different directions;
A projection direction detecting means for detecting a projection direction of the measurement pattern;
The coordinates of the measurement pattern on the image captured by the first imaging system and the coordinates of the measurement pattern on the image captured by the second imaging system at the same timing as the first imaging system And a first base line length set between the first and second imaging systems to obtain a three-dimensional coordinate of the surface to be measured at a position where the measurement pattern is projected. 3D coordinate acquisition means,
The coordinates of the measurement pattern on the image captured by the first imaging system, the second baseline length set between the first imaging system and the projection scanning system, and the projection direction And / or coordinates of the measurement pattern on an image captured by the second imaging system, and a third baseline length set between the second imaging system and the projection scanning system, A second three-dimensional coordinate acquisition means for obtaining a three-dimensional coordinate of the surface to be measured at a position where the measurement pattern is projected based on the projection direction;
In the process in which the measurement pattern scans the surface to be measured, the three-dimensional shape of the surface to be measured is arbitrarily combined with the three-dimensional coordinate data respectively obtained by the first and second three-dimensional coordinate acquisition means. And a three-dimensional shape analysis means for obtaining
The projection scanning system is configured to project and scan the measurement pattern over the entire surface to be measured within one exposure time of the first imaging system and the second imaging system. A three-dimensional shape measuring apparatus.
前記第2の3次元座標取得手段は、前記第1および第2の撮像系のうちいずれか一方の撮像系のみが前記測定用パターンを撮像可能であった場合に、該一方の撮像系により撮像された前記測定用パターンの画像上における座標と、前記第2および第3基線長のうち該一方の撮像系に対応する方の基線長と、前記投影方向とに基づき、該一方の撮像系により撮像された前記測定用パターンが投影された位置における前記被測定面の3次元座標を求めるように構成されている、ことを特徴とする3次元形状測定装置。   The second three-dimensional coordinate acquisition unit captures an image with the one imaging system when only one of the first and second imaging systems can capture the measurement pattern. Based on the coordinates of the measured pattern on the image, the baseline length corresponding to the one of the second and third baseline lengths, and the projection direction, the one imaging system A three-dimensional shape measuring apparatus configured to obtain a three-dimensional coordinate of the surface to be measured at a position where the imaged measurement pattern is projected. 前記投影走査系は、回動する反射ミラーを介して前記測定用パターンを前記被測定面に投影、走査するように構成されている、ことを特徴とする請求項1または2記載の3次元形状測定装置。   3. The three-dimensional shape according to claim 1, wherein the projection scanning system is configured to project and scan the measurement pattern onto the surface to be measured via a rotating reflecting mirror. measuring device. 前記第1および第2の撮像系は、前記反射ミラーの回動中心を挟んで互いに対称に配置されている、ことを特徴とする請求項3記載の3次元形状測定装置。
The three-dimensional shape measuring apparatus according to claim 3, wherein the first and second imaging systems are arranged symmetrically with respect to the rotation center of the reflection mirror.
JP2007086255A 2007-03-29 2007-03-29 Three-dimensional shape measuring device Withdrawn JP2008241643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086255A JP2008241643A (en) 2007-03-29 2007-03-29 Three-dimensional shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086255A JP2008241643A (en) 2007-03-29 2007-03-29 Three-dimensional shape measuring device

Publications (1)

Publication Number Publication Date
JP2008241643A true JP2008241643A (en) 2008-10-09

Family

ID=39913163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086255A Withdrawn JP2008241643A (en) 2007-03-29 2007-03-29 Three-dimensional shape measuring device

Country Status (1)

Country Link
JP (1) JP2008241643A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037186A2 (en) * 2010-09-15 2012-03-22 Perceptron, Inc. Non-contact sensing system having mems-based light source
JP2015501938A (en) * 2011-12-16 2015-01-19 フリードリヒ−シラー−ユニバーシタット イエナ 3D measurement method for objects with limited depth
US9013711B2 (en) 2008-04-01 2015-04-21 Perceptron, Inc. Contour sensor incorporating MEMS mirrors
US9170097B2 (en) 2008-04-01 2015-10-27 Perceptron, Inc. Hybrid system
CN105313126A (en) * 2014-07-29 2016-02-10 精工爱普生株式会社 Control system, robot system, and control method
CN107014312A (en) * 2017-04-25 2017-08-04 西安交通大学 A kind of integral calibrating method of mirror-vibrating line laser structured light three-dimension measuring system
JP2018109541A (en) * 2016-12-28 2018-07-12 株式会社キーエンス Optical scanning height measuring device
JP2018109540A (en) * 2016-12-28 2018-07-12 株式会社キーエンス Optical scanning height measuring device
JP2018109543A (en) * 2016-12-28 2018-07-12 株式会社キーエンス Optical scanning height measuring device
CN113375616A (en) * 2020-03-10 2021-09-10 昆山华复精密金属有限公司 Product three-dimensional auxiliary scanning system and method thereof
CN114080535A (en) * 2019-06-28 2022-02-22 佳能株式会社 Measurement apparatus, imaging apparatus, measurement system, control method, and program
WO2022157993A1 (en) * 2021-01-20 2022-07-28 オムロン株式会社 Measurement system, inspection system, measurement device, measurement method, inspection method, and program

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9013711B2 (en) 2008-04-01 2015-04-21 Perceptron, Inc. Contour sensor incorporating MEMS mirrors
US9170097B2 (en) 2008-04-01 2015-10-27 Perceptron, Inc. Hybrid system
WO2012037186A2 (en) * 2010-09-15 2012-03-22 Perceptron, Inc. Non-contact sensing system having mems-based light source
WO2012037186A3 (en) * 2010-09-15 2012-05-31 Perceptron, Inc. Non-contact sensing system having mems-based light source
CN103180689A (en) * 2010-09-15 2013-06-26 视感控器有限公司 Non-contact sensing system having mems-based light source
US9204129B2 (en) 2010-09-15 2015-12-01 Perceptron, Inc. Non-contact sensing system having MEMS-based light source
JP2015501938A (en) * 2011-12-16 2015-01-19 フリードリヒ−シラー−ユニバーシタット イエナ 3D measurement method for objects with limited depth
JP2016031284A (en) * 2014-07-29 2016-03-07 セイコーエプソン株式会社 Control system, robot system, and control method
CN105313126A (en) * 2014-07-29 2016-02-10 精工爱普生株式会社 Control system, robot system, and control method
CN105313126B (en) * 2014-07-29 2019-01-01 精工爱普生株式会社 control system, robot system and control method
JP2018109541A (en) * 2016-12-28 2018-07-12 株式会社キーエンス Optical scanning height measuring device
JP2018109540A (en) * 2016-12-28 2018-07-12 株式会社キーエンス Optical scanning height measuring device
JP2018109543A (en) * 2016-12-28 2018-07-12 株式会社キーエンス Optical scanning height measuring device
CN107014312A (en) * 2017-04-25 2017-08-04 西安交通大学 A kind of integral calibrating method of mirror-vibrating line laser structured light three-dimension measuring system
CN114080535A (en) * 2019-06-28 2022-02-22 佳能株式会社 Measurement apparatus, imaging apparatus, measurement system, control method, and program
US20220113131A1 (en) * 2019-06-28 2022-04-14 Canon Kabushiki Kaisha Measurement apparatus, image capturing apparatus, measurement system, control method, and storage medium
CN113375616A (en) * 2020-03-10 2021-09-10 昆山华复精密金属有限公司 Product three-dimensional auxiliary scanning system and method thereof
WO2022157993A1 (en) * 2021-01-20 2022-07-28 オムロン株式会社 Measurement system, inspection system, measurement device, measurement method, inspection method, and program

Similar Documents

Publication Publication Date Title
JP2008241643A (en) Three-dimensional shape measuring device
JP2007093412A (en) Three-dimensional shape measuring device
JP2006514739A5 (en)
JP2003130621A (en) Method and system for measuring three-dimensional shape
JP2007187581A (en) Range finder and ranging method
JP2002139304A (en) Distance measuring device and distance measuring method
KR20190074841A (en) Optical tracking system and optical tracking method
JP2017531258A (en) Method and apparatus for identifying structural element of projected structural pattern in camera image
JP2007508557A (en) Device for scanning three-dimensional objects
WO2014017977A1 (en) Method and apparatus for determining coplanarity in integrated circuit packages
JP2015072197A (en) Shape measurement device, structure manufacturing system, shape measurement method, structure manufacturing method, and shape measurement program
WO2022050279A1 (en) Three-dimensional measurement device
JP2002099902A (en) Image processing device for measuring three-dimensional information of object through binocular stereoscopic vision, its method, and storage medium with measurement program stored therein
JP3817640B1 (en) 3D shape measurement system
JP2010014505A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measurement method
JP2003329418A (en) Three-dimensional measuring instrument
JP2006308452A (en) Method and apparatus for measuring three-dimensional shape
JP2007333525A (en) Distance measurement device
JP5280918B2 (en) Shape measuring device
JP2005189205A (en) Three-dimensional shape measuring apparatus and method
JP2504944B2 (en) Three-dimensional information processing method
JP2000046534A (en) Moire device
JP2006078291A (en) Omnidirectional three-dimensional measuring apparatus
JP2001183120A (en) Method and device for three-dimensional input
KR100395773B1 (en) Apparatus for measuring coordinate based on optical triangulation using the images

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601