JP2005011983A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2005011983A
JP2005011983A JP2003174341A JP2003174341A JP2005011983A JP 2005011983 A JP2005011983 A JP 2005011983A JP 2003174341 A JP2003174341 A JP 2003174341A JP 2003174341 A JP2003174341 A JP 2003174341A JP 2005011983 A JP2005011983 A JP 2005011983A
Authority
JP
Japan
Prior art keywords
heat absorber
refrigerant
cooling device
inlet pipe
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003174341A
Other languages
Japanese (ja)
Inventor
Hiromasa Ashitani
博正 芦谷
Masao Nakano
雅夫 中野
Akira Ikeda
明 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003174341A priority Critical patent/JP2005011983A/en
Publication of JP2005011983A publication Critical patent/JP2005011983A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device wherein a degree of design for providing an electronic component arranged around an endothermic device is improved. <P>SOLUTION: The cooling device has a refrigerant inlet piping 12 and a refrigerant outlet piping 13 arranged at one direction side of the endothermic device 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器などに搭載された半導体素子などから発せられる熱を機器外部に放熱するための冷却装置に関するものである。
【0002】
【従来の技術】
従来、この種の冷却装置としては、例えば、図7に記載されているようなものがあった。図7は従来の冷却装置の基本回路を示している。この図のように、吸熱器101と、放熱器102、ポンプ103といった構成で、電子機器に組み込まれる。(例えば、特許文献1参照)
【0003】
【特許文献1】
特開2001−24372号公報
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、電子機器の冷却装置として、電子機器に搭載される際、例えばCPU周辺における他の電子部品の設置自由度を低下させる可能性があった。
【0005】
【課題を解決するための手段】
前記従来の課題を解決するため、本発明の冷却装置は、吸熱器の一方向に、冷媒入口配管及び冷媒出口配管を配置し、吸熱器周辺に配置される電子部品の設置に対する設計自由度を向上させるものである。
【0006】
【発明の実施の形態】
以下に、本発明の実施の形態について、図面を参照しながら説明する。
【0007】
(実施の形態1)
図1は、本発明の実施の形態1における冷却装置の回路図である。また、図2は、本発明の実施の形態1における吸熱器の斜視図である。
【0008】
冷却装置1は、放熱器3とポンプ8と吸熱器5を配管7で繋いで閉回路を形成し、冷媒が内部に充填されて構成する。ポンプ8から圧送された冷媒は、まず液相の状態で吸熱器5に至り、この吸熱器5に熱伝導材料を介して密着された半導体素子6から発せられる熱9を吸熱し、蒸発し、その一部が気相となる。続いて一部が気相の冷媒は、放熱器3に至り、ファン4によって空冷されることにより、熱10が放熱され、再び、液相となる。続いて、ポンプ8に戻り、再び吸熱器5に圧送される。
【0009】
吸熱器5の内部に設けられた冷媒流路空間11に冷媒を流入させる冷媒入口配管12は、吸熱器5の側面に有するよう構成され、一方冷媒流路空間11から冷媒を流出させるための冷媒出口配管13は、吸熱器5の上面に設けられ、その配方向は冷媒入口配管12の方向と同一になるように構成されている。
【0010】
以上のように構成された冷却装置において、吸熱器5の一側面方向に、冷媒入口配管12及び冷媒出口配管13を配置するため、吸熱器5周辺に配置される電子部品の設置に対する設計自由度が向上する。
【0011】
(実施の形態2)
図3は、本発明の実施の形態2における吸熱器の斜視図である。
【0012】
吸熱器5の内部に設けられた冷媒流路空間11から冷媒を流出させる冷媒出口配管13は、吸熱器5の側面に有するよう構成され、一方冷媒流路空間11に冷媒を流入させるための冷媒入口配管12は、吸熱器5の上面に設けられ、その配方向は冷媒入口配管13の方向と同一になるように構成されている。
【0013】
以上のように構成された冷却装置において、吸熱器5の一側面方向に、冷媒入口配管12及び冷媒出口配管13を配置するため、吸熱器5周辺に配置される電子部品の設置に対する設計自由度が向上する。
【0014】
(実施の形態3)
図4は、本発明の実施の形態3における吸熱器の斜視図である。図5は、同じく吸熱器内部の断面図である。
【0015】
吸熱器5の内部に設けられた冷媒流路空間11に対し、冷媒を流入させるための冷媒入口配管12と、冷媒を流出させるための冷媒出口配管13を、吸熱器5の同一側面上に配置し、冷媒流路空間11の内部に仕切り板14を設けて、冷媒流路空間11内における冷媒の流れがU字状に形成される構成としたものである。
【0016】
以上のように、吸熱器の一方向に、冷媒入口配管及び冷媒出口配管を配置するため、吸熱器5周辺に配置される電子部品の設置に対する設計自由度が向上する。しかも、吸熱器5の内部構造は簡単で済む。
【0017】
(実施の形態4)
図6は、本発明の実施の形態4における吸熱器内部の断面図である。
【0018】
仕切り板14は、隔てて形成される上流空間15の流域幅Bに対して、下流空間16の流域幅Bの方が、大なるように配置されるものである。
【0019】
以上のように構成された冷却装置において、吸熱器5の一側面方向に、冷媒入口配管12及び冷媒出口配管13を配置するため、吸熱器5周辺に配置される電子部品の設置に対する設計自由度が向上する。
【0020】
さらに実施の形態4の構成によれば、吸熱の結果、冷媒の内部エネルギーが上昇する定性にある下流空間16の流路断面積を、上流空間15の流路断面積に比べて相対的に増加させることで、内部を流れる際に生じる圧力損失を減少させることで、冷却装置1全体としての放熱性能を向上することができる。
【0021】
また、下流空間16が吸熱器5の中央部に望むことで、半導体素子6で局所的に温度の高くなる傾向のある中央部の放熱効果も増進することが可能となる。
【0022】
(実施の形態5)
本実施の形態では、冷媒入口配管12の内径と比較して、冷媒出口配管13の内径を相対的に大きくしたものである。
【0023】
以上のように、吸熱器の一方向に、冷媒入口配管及び冷媒出口配管を配置するため、吸熱器5周辺に配置される電子部品の設置に対する設計自由度が向上する。
【0024】
さらに、吸熱の結果、冷媒の内部エネルギーが上昇する定性にある下流側の冷媒出口配管13の内径を、冷媒入口配管12の内径に比較して大きくすることで、流路断面積を相対的に増加させ、内部を流れる際に生じる圧力損失を減少させることで、冷却装置1全体としての放熱性能を向上することができる。
【0025】
【発明の効果】
以上のように、本発明は、放熱器とファンと、ポンプと、吸熱器と配管とからなる冷却装置であって、前記吸熱器は、内部に冷媒流路空間を有し、吸熱器入口配管を吸熱器側面に有し、吸熱器出口配管を吸熱器上面に有し、かつ前記吸熱器入口配管と略並行に配列するものである。
【0026】
また、本発明は吸熱器出口配管を吸熱器側面に有し、前記吸熱器入口配管を前記吸熱器上面に有し、かつ前記吸熱器入口配管と略並行に配列するものである。
【0027】
また、本発明は吸熱器入口配管と、吸熱器出口配管を、吸熱器の同一の側面に配置し、吸熱器内の冷媒流路空間内に仕切り板を設けて、前記冷媒流路空間内において、前記冷媒のU字状の流れが形成されるものである。
【0028】
また、本発明は仕切り板で仕切られて形成される複数の流域のうち、下流側の流域が、上流側の流域よりも大なるものである。
【0029】
また、本発明は吸熱器出口配管の内径が、吸熱器入口配管の内径よりも大なるものである。
【0030】
この構成によれば、吸熱器の一方向に、冷媒入口配管及び冷媒出口配管を配置するため、吸熱器5周辺に配置される電子部品の設置に対する設計自由度が向上する。
【図面の簡単な説明】
【図1】本発明の実施の形態1から5における冷却装置の回路図
【図2】本発明の実施の形態1における吸熱器の斜視図
【図3】本発明の実施の形態2における吸熱器の斜視図
【図4】本発明の実施の形態3における吸熱器の斜視図
【図5】本発明の実施の形態3における吸熱器内部の断面図
【図6】本発明の実施の形態4における吸熱器内部の断面図
【図7】従来の冷却装置の斜視図
【符号の説明】
1 冷却装置
2 放熱部
3 放熱器
4 ファン
5 吸熱器
6 半導体素子
7 配管
8 ポンプ
9 熱
10 熱
11 冷媒流路空間
12 吸熱器入口配管
13 吸熱器出口配管
14 仕切り板
15 上流空間
16 下流空間
101 吸熱器
102 放熱器
103 ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling device for radiating heat generated from a semiconductor element or the like mounted on an electronic device or the like to the outside of the device.
[0002]
[Prior art]
Conventionally, as this type of cooling device, for example, there is one as shown in FIG. FIG. 7 shows a basic circuit of a conventional cooling device. As shown in this figure, the heat absorber 101, the heat radiator 102, and the pump 103 are incorporated into an electronic device. (For example, see Patent Document 1)
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-24372
[Problems to be solved by the invention]
However, in the conventional configuration, when mounted on an electronic device as a cooling device for the electronic device, there is a possibility that the degree of freedom of installation of other electronic components around the CPU, for example, may be reduced.
[0005]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, the cooling device of the present invention has a refrigerant inlet pipe and a refrigerant outlet pipe arranged in one direction of the heat absorber, and has a degree of design freedom for installation of electronic components arranged around the heat absorber. It is to improve.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0007]
(Embodiment 1)
FIG. 1 is a circuit diagram of a cooling device according to Embodiment 1 of the present invention. FIG. 2 is a perspective view of the heat absorber in the first embodiment of the present invention.
[0008]
The cooling device 1 is configured by connecting a radiator 3, a pump 8, and a heat absorber 5 with a pipe 7 to form a closed circuit, and a refrigerant is filled therein. The refrigerant pumped from the pump 8 first reaches the heat absorber 5 in a liquid state, absorbs heat 9 emitted from the semiconductor element 6 adhered to the heat absorber 5 through a heat conductive material, and evaporates. Part of it becomes the gas phase. Subsequently, a part of the gas-phase refrigerant reaches the radiator 3 and is air-cooled by the fan 4 so that the heat 10 is dissipated and becomes liquid again. Then, it returns to the pump 8 and is pumped again to the heat absorber 5.
[0009]
The refrigerant inlet pipe 12 for allowing the refrigerant to flow into the refrigerant flow path space 11 provided inside the heat absorber 5 is configured to be provided on the side surface of the heat absorber 5, while the refrigerant for allowing the refrigerant to flow out of the refrigerant flow path space 11. The outlet pipe 13 is provided on the upper surface of the heat absorber 5, and the arrangement direction thereof is configured to be the same as the direction of the refrigerant inlet pipe 12.
[0010]
In the cooling device configured as described above, since the refrigerant inlet pipe 12 and the refrigerant outlet pipe 13 are arranged in one side surface direction of the heat absorber 5, the degree of design freedom with respect to installation of electronic components arranged around the heat absorber 5. Will improve.
[0011]
(Embodiment 2)
FIG. 3 is a perspective view of a heat absorber according to Embodiment 2 of the present invention.
[0012]
A refrigerant outlet pipe 13 for allowing the refrigerant to flow out from the refrigerant flow path space 11 provided inside the heat absorber 5 is configured to have a side surface of the heat absorber 5, while the refrigerant for allowing the refrigerant to flow into the refrigerant flow path space 11. The inlet pipe 12 is provided on the upper surface of the heat absorber 5, and the arrangement direction thereof is configured to be the same as the direction of the refrigerant inlet pipe 13.
[0013]
In the cooling device configured as described above, since the refrigerant inlet pipe 12 and the refrigerant outlet pipe 13 are arranged in one side surface direction of the heat absorber 5, the degree of design freedom with respect to installation of electronic components arranged around the heat absorber 5. Will improve.
[0014]
(Embodiment 3)
FIG. 4 is a perspective view of a heat absorber according to Embodiment 3 of the present invention. FIG. 5 is a cross-sectional view of the heat absorber.
[0015]
A refrigerant inlet pipe 12 for allowing the refrigerant to flow in and a refrigerant outlet pipe 13 for allowing the refrigerant to flow out are arranged on the same side surface of the heat absorber 5 with respect to the refrigerant flow path space 11 provided inside the heat absorber 5. In addition, the partition plate 14 is provided inside the refrigerant flow path space 11 so that the flow of the refrigerant in the refrigerant flow path space 11 is formed in a U shape.
[0016]
As described above, since the refrigerant inlet pipe and the refrigerant outlet pipe are arranged in one direction of the heat absorber, the degree of freedom in designing electronic components arranged around the heat absorber 5 is improved. Moreover, the internal structure of the heat absorber 5 is simple.
[0017]
(Embodiment 4)
FIG. 6 is a cross-sectional view inside the heat absorber according to the fourth embodiment of the present invention.
[0018]
The partition plate 14, to the basin width B 2 of the upstream space 15 which is formed at, towards the basin width B 1 of the downstream space 16 is intended to be arranged so large becomes.
[0019]
In the cooling device configured as described above, since the refrigerant inlet pipe 12 and the refrigerant outlet pipe 13 are arranged in one side surface direction of the heat absorber 5, the degree of design freedom with respect to installation of electronic components arranged around the heat absorber 5. Will improve.
[0020]
Furthermore, according to the configuration of the fourth embodiment, as a result of heat absorption, the flow passage cross-sectional area of the downstream space 16 qualitatively increasing the internal energy of the refrigerant is relatively increased compared to the flow passage cross-sectional area of the upstream space 15. By doing so, the heat dissipation performance as the whole cooling device 1 can be improved by reducing the pressure loss generated when flowing inside.
[0021]
In addition, since the downstream space 16 is desired at the central portion of the heat absorber 5, it is possible to enhance the heat radiation effect at the central portion where the temperature tends to locally increase in the semiconductor element 6.
[0022]
(Embodiment 5)
In the present embodiment, the inner diameter of the refrigerant outlet pipe 13 is relatively larger than the inner diameter of the refrigerant inlet pipe 12.
[0023]
As described above, since the refrigerant inlet pipe and the refrigerant outlet pipe are arranged in one direction of the heat absorber, the degree of freedom in designing electronic components arranged around the heat absorber 5 is improved.
[0024]
Furthermore, as a result of heat absorption, the inner diameter of the downstream refrigerant outlet pipe 13 that is qualitatively increased in internal energy of the refrigerant is made larger than the inner diameter of the refrigerant inlet pipe 12, so that the flow path cross-sectional area is relatively increased. By increasing the pressure loss that occurs when flowing through the interior, the heat dissipation performance of the entire cooling device 1 can be improved.
[0025]
【The invention's effect】
As described above, the present invention is a cooling device including a radiator, a fan, a pump, a heat absorber, and a pipe, and the heat absorber has a refrigerant passage space inside, and the heat absorber inlet pipe. Is disposed on the side surface of the heat absorber, the outlet pipe of the heat absorber is disposed on the upper surface of the heat absorber, and is arranged substantially in parallel with the inlet pipe of the heat absorber.
[0026]
Further, the present invention has a heat absorber outlet pipe on the side of the heat absorber, the heat absorber inlet pipe on the upper surface of the heat absorber, and is arranged substantially in parallel with the heat absorber inlet pipe.
[0027]
In the present invention, the heat absorber inlet pipe and the heat absorber outlet pipe are arranged on the same side surface of the heat absorber, and a partition plate is provided in the refrigerant channel space in the heat absorber. A U-shaped flow of the refrigerant is formed.
[0028]
In the present invention, among a plurality of basins formed by partitioning with a partition plate, the downstream basin is larger than the upstream basin.
[0029]
Further, in the present invention, the inner diameter of the heat absorber outlet pipe is larger than the inner diameter of the heat absorber inlet pipe.
[0030]
According to this configuration, since the refrigerant inlet pipe and the refrigerant outlet pipe are arranged in one direction of the heat absorber, the degree of freedom in designing electronic components arranged around the heat absorber 5 is improved.
[Brief description of the drawings]
1 is a circuit diagram of a cooling device in Embodiments 1 to 5 of the present invention. FIG. 2 is a perspective view of a heat absorber in Embodiment 1 of the present invention. FIG. 3 is a heat absorber in Embodiment 2 of the present invention. FIG. 4 is a perspective view of a heat absorber according to Embodiment 3 of the present invention. FIG. 5 is a cross-sectional view of the inside of the heat absorber according to Embodiment 3 of the present invention. Cross section of heat sink [Fig. 7] Perspective view of conventional cooling device [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Radiating part 3 Radiator 4 Fan 5 Heat absorber 6 Semiconductor element 7 Piping 8 Pump 9 Heat 10 Heat 11 Refrigerant channel space 12 Heat absorber inlet piping 13 Heat absorber outlet piping 14 Partition plate 15 Upstream space 16 Downstream space 101 Heat absorber 102 Radiator 103 Pump

Claims (5)

放熱器とファンと、ポンプと、吸熱器と配管とからなる冷却装置であって、前記吸熱器は、内部に冷媒流路空間を有し、吸熱器入口配管を吸熱器側面に有し、吸熱器出口配管を吸熱器上面に有し、かつ前記吸熱器入口配管と略並行に配列することを特徴とした、冷却装置。A cooling device comprising a radiator, a fan, a pump, a heat absorber, and a pipe, wherein the heat absorber has a refrigerant flow path space inside, and has a heat absorber inlet pipe on a side surface of the heat absorber. A cooling device having an outlet pipe on the upper surface of the heat absorber and arranged substantially parallel to the inlet pipe of the heat absorber. 吸熱器出口配管を吸熱器側面に有し、前記吸熱器入口配管を前記吸熱器上面に有し、かつ前記吸熱器入口配管と略並行に配列することを特徴とした、請求項1に記載の冷却装置。The heat absorber outlet pipe is provided on a side surface of the heat absorber, the heat absorber inlet pipe is provided on the upper surface of the heat absorber, and is arranged substantially in parallel with the heat absorber inlet pipe. Cooling system. 吸熱器入口配管と、吸熱器出口配管を、吸熱器の同一の側面に配置し、吸熱器内の冷媒流路空間内に仕切り板を設けて、前記冷媒流路空間内において、前記冷媒のU字状の流れが形成されることを特徴とした、請求項1に記載の冷却装置。The heat absorber inlet pipe and the heat absorber outlet pipe are arranged on the same side surface of the heat absorber, and a partition plate is provided in the refrigerant channel space in the heat absorber, and in the refrigerant channel space, the refrigerant U The cooling device according to claim 1, wherein a character-like flow is formed. 仕切り板で仕切られて形成される複数の流域のうち、下流側の流域が、上流側の流域よりも大なることを特徴とした、請求項3に記載の冷却装置。The cooling device according to claim 3, wherein among a plurality of flow areas formed by partitioning with a partition plate, the downstream flow area is larger than the upstream flow area. 吸熱器出口配管の内径が、吸熱器入口配管の内径よりも大なることを特徴とした、
請求項1〜請求項4のいずれかに記載の冷却装置。
The inner diameter of the heat absorber outlet pipe is larger than the inner diameter of the heat absorber inlet pipe,
The cooling device according to any one of claims 1 to 4.
JP2003174341A 2003-06-19 2003-06-19 Cooling device Pending JP2005011983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174341A JP2005011983A (en) 2003-06-19 2003-06-19 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174341A JP2005011983A (en) 2003-06-19 2003-06-19 Cooling device

Publications (1)

Publication Number Publication Date
JP2005011983A true JP2005011983A (en) 2005-01-13

Family

ID=34097851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174341A Pending JP2005011983A (en) 2003-06-19 2003-06-19 Cooling device

Country Status (1)

Country Link
JP (1) JP2005011983A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100899368B1 (en) * 2006-07-25 2009-05-27 후지쯔 가부시끼가이샤 Heat receiver for liquid cooling unit, liquid cooling unit and electronic apparatus
US7652884B2 (en) 2006-07-25 2010-01-26 Fujitsu Limited Electronic apparatus including liquid cooling unit
US7672125B2 (en) 2006-07-25 2010-03-02 Fujitsu Limited Electronic apparatus
US7701715B2 (en) 2006-07-25 2010-04-20 Fujitsu Limited Electronic apparatus
DE112008001282T5 (en) 2007-05-25 2010-04-22 Toyota Jidosha Kabushiki Kaisha, Toyota-shi cooler
US7710722B2 (en) 2006-07-25 2010-05-04 Fujitsu Limited Liquid cooling unit and heat exchanger therefor
WO2012086058A1 (en) * 2010-12-24 2012-06-28 トヨタ自動車株式会社 Cooler
US8289701B2 (en) 2006-07-25 2012-10-16 Fujistu Limited Liquid cooling unit and heat receiver therefor
JP2013012700A (en) * 2011-05-31 2013-01-17 Sumitomo Heavy Ind Ltd Power storage module and work machine
JP2013164080A (en) * 2013-05-29 2013-08-22 Seiko Epson Corp Tube unit
US9447783B2 (en) 2008-12-05 2016-09-20 Seiko Epson Corporation Tube unit, control unit, and micropump
JP2017055586A (en) * 2015-09-10 2017-03-16 日立オートモティブシステムズ株式会社 Electric power conversion device
US9631615B2 (en) 2008-09-29 2017-04-25 Seiko Epson Corporation Control unit, tube unit, and micropump
US9657731B2 (en) 2008-08-20 2017-05-23 Seiko Epson Corporation Micropump

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100899368B1 (en) * 2006-07-25 2009-05-27 후지쯔 가부시끼가이샤 Heat receiver for liquid cooling unit, liquid cooling unit and electronic apparatus
US7652884B2 (en) 2006-07-25 2010-01-26 Fujitsu Limited Electronic apparatus including liquid cooling unit
US7672125B2 (en) 2006-07-25 2010-03-02 Fujitsu Limited Electronic apparatus
US7701715B2 (en) 2006-07-25 2010-04-20 Fujitsu Limited Electronic apparatus
US7710722B2 (en) 2006-07-25 2010-05-04 Fujitsu Limited Liquid cooling unit and heat exchanger therefor
US8289701B2 (en) 2006-07-25 2012-10-16 Fujistu Limited Liquid cooling unit and heat receiver therefor
DE112008001282T5 (en) 2007-05-25 2010-04-22 Toyota Jidosha Kabushiki Kaisha, Toyota-shi cooler
DE112008001282B4 (en) * 2007-05-25 2013-04-18 Toyota Jidosha Kabushiki Kaisha cooler
US9657731B2 (en) 2008-08-20 2017-05-23 Seiko Epson Corporation Micropump
US9631615B2 (en) 2008-09-29 2017-04-25 Seiko Epson Corporation Control unit, tube unit, and micropump
US9447783B2 (en) 2008-12-05 2016-09-20 Seiko Epson Corporation Tube unit, control unit, and micropump
JP5472443B2 (en) * 2010-12-24 2014-04-16 トヨタ自動車株式会社 Cooler
US9212853B2 (en) 2010-12-24 2015-12-15 Toyota Jidosha Kabushiki Kaisha Cooler
CN103210707A (en) * 2010-12-24 2013-07-17 丰田自动车株式会社 Cooler
WO2012086058A1 (en) * 2010-12-24 2012-06-28 トヨタ自動車株式会社 Cooler
JP2013012700A (en) * 2011-05-31 2013-01-17 Sumitomo Heavy Ind Ltd Power storage module and work machine
JP2013164080A (en) * 2013-05-29 2013-08-22 Seiko Epson Corp Tube unit
JP2017055586A (en) * 2015-09-10 2017-03-16 日立オートモティブシステムズ株式会社 Electric power conversion device

Similar Documents

Publication Publication Date Title
JP2005011983A (en) Cooling device
JP4551261B2 (en) Cooling jacket
JP4978401B2 (en) Cooling system
JP4234722B2 (en) Cooling device and electronic equipment
US20090288808A1 (en) Quick temperature-equlizing heat-dissipating device
JP4532422B2 (en) Heat sink with centrifugal fan
JP2009198173A (en) Heat sink with heat pipes and method for manufacturing the same
US10107557B2 (en) Integrated heat dissipation device
JP2004116864A (en) Electronic apparatus comprising cooling mechanism
JPWO2006095436A1 (en) Endothermic member, cooling device and electronic device
JP2006279004A (en) Heat sink with heat pipe
JP2009099740A (en) Cooling device for housing
JP2022090592A (en) Water-cooling radiator
US20160258691A1 (en) Heat dissipation module
JP2016207928A (en) Heat sink for cooling multiple heating components
US20070056713A1 (en) Integrated cooling design with heat pipes
JP2008249314A (en) Thermosiphon type boiling cooler
JP2007200957A (en) Liquid-cooled heat dissipation apparatus
JP5117287B2 (en) Electronic equipment cooling system
JP2009099995A (en) Refrigerator and electronic apparatus
JP6825615B2 (en) Cooling system and cooler and cooling method
JP2003338595A (en) Cooling device for electronic component
JP2006046868A (en) Radiator and heat pipe
JP2004335516A (en) Power converter
JP5252059B2 (en) Cooling system