JP2006046868A - Radiator and heat pipe - Google Patents

Radiator and heat pipe Download PDF

Info

Publication number
JP2006046868A
JP2006046868A JP2004231891A JP2004231891A JP2006046868A JP 2006046868 A JP2006046868 A JP 2006046868A JP 2004231891 A JP2004231891 A JP 2004231891A JP 2004231891 A JP2004231891 A JP 2004231891A JP 2006046868 A JP2006046868 A JP 2006046868A
Authority
JP
Japan
Prior art keywords
heat
tube
plastic tube
flat plastic
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004231891A
Other languages
Japanese (ja)
Inventor
Seizo Hataya
幡谷精三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004231891A priority Critical patent/JP2006046868A/en
Publication of JP2006046868A publication Critical patent/JP2006046868A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/065Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/06Hollow fins; fins with internal circuits

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pipe and a radiator as high performance, thin, light and low cost heat transfer and radiation means. <P>SOLUTION: A light and thin tube 2 of connected hollow structure made of a flat plastic resin molding with a plurality of refrigerant passages provides heat exchange over outer surfaces. The tube is sealed at both ends and provided with a working fluid sealed therein. The radiator 1 comprises a plurality of independent heat pipes for heat exchange with a fluid outside the pipes. The heat pipe comprises means for pressurizing and moving the working fluid as means for transferring heat from a heat generation source to thereby transfer heat from one heat pipe end to the opposite end. The heat pipe and radiator for efficient heat transfer are formed out of plastic resin in a high performance, thin, light, low cost and flexible design that can cool an electronic part, efficiently radiate a large amount of heat generated locally in a fuel cell, magnetic refrigeration, electric vehicle or the like, and provide thermal switch and heat radiation control. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ヒートパイプで例えば半導体のような小型の発熱体の冷却に好ましく用いる事ができる、放熱と熱移動及び熱移動制御可能な小型化、薄型化、フレキシブル、軽量化、安価な製品を提供する。   The present invention is a heat pipe that can be preferably used for cooling a small heating element such as a semiconductor, and is a compact, thin, flexible, lightweight, and inexpensive product that can control heat dissipation and heat transfer. provide.

半導体のような小型の発熱素子の冷却装置として使用されるヒートパイプとしてはヒートパイプの一端を受熱ブロックに挿入し、他端に通常アルミなどの放熱フィンを設け熱伝達率の小さい空気側の伝熱性能を補う目的で伝熱面の面積を増大させ送風ファンなどによる冷却が知られている。   As a heat pipe used as a cooling device for a small heating element such as a semiconductor, one end of the heat pipe is inserted into a heat receiving block, and a heat radiating fin such as aluminum is usually provided at the other end to transmit air on the air side with a low heat transfer coefficient. For the purpose of supplementing the thermal performance, cooling by a blower fan or the like by increasing the area of the heat transfer surface is known.

ヒートパイプは、密封された空洞部を備えており、その空洞部に収容された作動流体の相変態と移動により熱の輸送が行われ、熱の一部は、ヒートパイプを構成する容器を直接伝わって運ばれるが、大部分の熱は、作動流体による相変態と移動によって輸送される。 The heat pipe has a sealed cavity, and heat is transported by the phase transformation and movement of the working fluid contained in the cavity, and a part of the heat is directly transferred to the container constituting the heat pipe. Most of the heat is transported by phase transformation and movement by the working fluid.

ヒートパイプの吸熱側において、ヒートパイプを構成する容器の材質中を熱伝導して伝わってきた熱により、作動流体が蒸発し、その蒸気がヒートパイプの放熱側に移動する。放熱側では、作動流体の蒸気は冷却され再び液相状態に戻る。そして、液相に戻った作動流体は再び吸熱側に移動する。このような作動流体の相変態や移動によって、熱の輸送がなされる。 On the heat absorption side of the heat pipe, the working fluid evaporates due to heat transferred through heat conduction in the material of the container constituting the heat pipe, and the vapor moves to the heat radiation side of the heat pipe. On the heat dissipation side, the working fluid vapor is cooled and returned to the liquid phase again. And the working fluid which returned to the liquid phase moves to the heat absorption side again. Heat is transported by such phase transformation and movement of the working fluid.

近年、エレクトロニクス機器は、CPU等の高出力、高集積の部品を内蔵して半導体素子等の各種電子部品は、集積度が極めて高くなり、高速で情報の演算、制御等の処理を行うので、多量の熱を発生する。高出力かつ高集積の部品である半導体素子等の熱を所定の位置に移動し冷却するために、銅・アルミニウム等の金属製のヒートパイプが一般的に用いられている。 In recent years, electronic devices have built-in high-output and highly-integrated components such as CPUs, and various electronic components such as semiconductor elements have a very high degree of integration and perform processing such as calculation and control of information at high speed. Generates a large amount of heat. In order to move and cool the heat of a semiconductor element or the like, which is a high output and highly integrated component, to a predetermined position, a metal heat pipe such as copper or aluminum is generally used.

特許文献1のようにヒートパイプ式ヒートシンクが開示されている。   As disclosed in Patent Document 1, a heat pipe type heat sink is disclosed.

しかしながら、図12に示すように従来のヒートパイプ121は、伝熱性能を補う目的で伝熱面の面積を増大させるために図12に示す、放熱フィン122がヒートパイプの一端に取り付けられており、一定の面積を必要として送風ファンで冷却する構造で外気取入れ口から筐体内に取り入れられた空気は、筐体内の発熱素子の熱によって昇温した空気が放熱フィンを冷却するため、放熱フィンの冷却効率が悪く、ヒートパイプの作動原理を確保するために、発熱素子等の発熱源が水平の位置またはヒートパイプの下側に位置するように配置する必要があり、高性能化、小型化並びに軽量化は困難である。   However, as shown in FIG. 12, in the conventional heat pipe 121, the heat radiation fin 122 shown in FIG. 12 is attached to one end of the heat pipe in order to increase the area of the heat transfer surface in order to supplement the heat transfer performance. The air taken into the housing from the outside air intake with a structure that requires a certain area and is cooled by the blower fan cools the radiating fin because the air heated by the heat of the heating element in the housing cools the radiating fin. The cooling efficiency is poor, and in order to ensure the operating principle of the heat pipe, it is necessary to arrange the heat source such as a heating element so that it is located at the horizontal position or below the heat pipe. It is difficult to reduce the weight.

図13によるとヒートパイプの端末に熱交換器を用いて、ヒートパイプからの冷媒は細管がその長手方向に交差する方向に131a、131b、131c、・・・、131nと複数並ぶように配列して面状部を形成し隣接する細管の間隙を直径の約2倍としたことにより管外流体と熱交換を行うものにおいて銅、アルミニウムなどの金属などにより構成して両端部にヘッダ部を備えてヘッダ管112a、112bを用い、細管群の両端部がヘッダ管132a、132bに連結されるように構成した場合には、コンパクトで熱伝達率の大きい細管熱交換器を構成して流体が流れるときの1本あたりの流量が小さくなり、圧力損失が小さくなるという効果が得られる。   According to FIG. 13, a heat exchanger is used at the end of the heat pipe, and the refrigerant from the heat pipe is arranged so that a plurality of thin tubes 131a, 131b, 131c,. In order to exchange heat with the fluid outside the tube by forming a planar portion and making the gap between adjacent narrow tubes about twice the diameter, it is composed of a metal such as copper or aluminum and has header portions at both ends. When the header pipes 112a and 112b are used and both ends of the narrow pipe group are connected to the header pipes 132a and 132b, a compact tubular heat exchanger having a high heat transfer coefficient is configured to flow the fluid. The flow rate per one hour becomes small, and the effect that the pressure loss becomes small is obtained.

特許文献2のように細管熱交換器およびそれを用いたヒートパイプが開示されている。   As disclosed in Patent Document 2, a thin tube heat exchanger and a heat pipe using the same are disclosed.

しかしながら、細管がその長手方向に交差する方向に複数並ぶように配列して面状部を形成しても冷却面積の増大による設置場所の制限や自然冷却による冷却能力では対応が難しくなり、細管群として1段だけの配列では非効率的であり、アルミや銅の金属パイプの細管で肉厚が0.1〜0.3mmと薄いと劣化や腐食による影響も懸念される。   However, even if a plurality of thin tubes are arranged in a direction crossing the longitudinal direction to form a planar portion, it becomes difficult to cope with the limitation of the installation location due to the increase in cooling area and the cooling capacity due to natural cooling, As a result, it is inefficient if the arrangement is only one stage, and there is a concern about the influence of deterioration and corrosion when the thickness is 0.1 to 0.3 mm as a thin tube of a metal pipe made of aluminum or copper.

また、特許文献3によると図14に示す強制振動型ヒートパイプ及びその設計方法によれば吸熱部(HOT)と放熱部(COLD)間を蛇行した閉ループ流路を形成して、ヒートパイプ本体として流路内に流体が封入されて放熱側端末にはバイブレーター(141)を設けて、112a方向より加圧すると流体は蛇行しながら142bに移行してバイブレーター(141)の加圧方向を142bとする事により作動すると流体は反対方向に押し戻される事を1/s前後の周波数で繰り返す事により、流路に封入された流体は振動流として隣り合う流路内で逆位相となり、吸熱部(HOT)から放熱部(COLD)側に熱移動が行われて、銅に比べて概ね40倍程度の熱輸送が可能になり、ヒートパイプの構造として薄型化されて高効率化される。 Further, according to Patent Document 3, according to the forced vibration type heat pipe shown in FIG. 14 and the design method thereof, a closed loop flow path meandering between the heat absorbing part (HOT) and the heat radiating part (COLD) is formed. When a fluid is enclosed in the flow path and a vibrator (141) is provided at the heat radiating end, when the pressure is applied from the direction 112a, the fluid meanders to 142b and the pressure direction of the vibrator (141) is set to 142b. When it is activated by the operation, the fluid is pushed back in the opposite direction at a frequency of about 1 / s, so that the fluid enclosed in the flow path becomes an antiphase in the adjacent flow path as an oscillating flow, and the heat absorption part (HOT) Heat transfer to the heat radiating part (COLD) side, heat transfer approximately 40 times that of copper is possible, and the heat pipe structure is made thin and highly efficient.

しかしながら、部材として銅やアルミなどの金属を使用しており、ノートパソコンなどに応用して本体ケース部内のCPUなどで発生した熱すべてを、本体外部に放熱するのは難しくケース部や他の電子部品などへの影響も考えられ、比較的、影響が少ない放熱手段としてLCD収納部側のケース内に設置する必要が生じるが、この場合、頻繁に行われるケースの開閉操作は金属でフレキシブル化したヒートパイプの対応は困難である。
特開平8−306836号公報 特開2003−279274号公報 特開2002−364991号公報
However, metal such as copper and aluminum is used as a member, and it is difficult to dissipate all the heat generated by the CPU in the main body case when applied to a notebook computer etc. to the outside of the main body. Considering the effects on parts, etc., it is necessary to install it in the case on the LCD housing side as a relatively small heat dissipation means. In this case, the opening and closing operation of the case that is frequently performed is made flexible with metal. It is difficult to handle heat pipes.
Japanese Patent Laid-Open No. 8-306836 JP 2003-279274 A JP 2002-364991 A

従来のヒートパイプにおいては、銅、アルミなどの熱伝導性に優れた金属で形成され、両端が閉塞されたパイプからなるもので、内部に水などの作動液が封入されており片端は放熱の為のアルミ板などで構成されるフィン部が設けられているが単位容積あたりの熱交換能力が小さく、フィンの体積が大きくなるという問題があった。 A conventional heat pipe is made of a metal with excellent thermal conductivity, such as copper and aluminum, and is composed of a pipe closed at both ends. A hydraulic fluid such as water is sealed inside, and one end is used for heat dissipation. However, there is a problem in that the heat exchange capacity per unit volume is small and the fin volume is large.

本発明は、従来技術のヒートパイプを発展させて電子機器などに実装して半導体などからの受熱をヒートパイプで高効率に熱輸送させると共に移動した熱を効率よく放熱させて安価、フレキシブルでコンパクト、軽量な扁平形プラスックチューブを用いて熱移動を行うと共に放熱手段を提供することを目的とするものである。   The present invention is a low-cost, flexible and compact by developing a heat pipe of the prior art and mounting it on an electronic device etc. so that the heat received from a semiconductor can be efficiently transported by the heat pipe and the transferred heat is efficiently dissipated. An object of the present invention is to provide heat dissipation means while performing heat transfer using a lightweight flat plastic tube.

扁平形プラスチックチューブに細管流路が複数形成されて、冷媒を流通させる断面の厚みを0.5mm以下として、該扁平形プラスチックチューブの外面は熱交換する伝熱面として作用し、複数の扁平形プラスチックチューブを配置させるピッチ間隔を、該扁平形プラスチックチューブの厚みの2倍から4倍として、扁平形プラスチックチューブ両端は閉塞されて、チューブ部内の壁面は親水性物質被膜、減圧されて凝縮性の作動流体を具備して、独立した複数のヒートパイプとして作用する。該扁平形プラスチックチューブ端末の一端は受熱面と放熱面を有する金属の平板に直角に交差して熱的に接続された事を備えた放熱器
A plurality of thin tube channels are formed in the flat plastic tube, the thickness of the cross section through which the refrigerant flows is 0.5 mm or less, the outer surface of the flat plastic tube acts as a heat transfer surface for heat exchange, and a plurality of flat shapes The pitch interval for placing the plastic tube is set to 2 to 4 times the thickness of the flat plastic tube, both ends of the flat plastic tube are closed, and the wall surface in the tube part is coated with a hydrophilic substance, and the pressure is reduced and condensed. It has working fluid and acts as a plurality of independent heat pipes. A radiator having one end of the flat plastic tube terminal thermally connected to a metal flat plate having a heat receiving surface and a heat radiating surface at right angles

扁平形プラスチックチューブに細管流路が複数形成されて、冷媒を流通させる断面の厚みを0.5mm以下として、該扁平形プラスチックチューブの外面は熱交換する伝熱面として作用し、該扁平形プラスチックチューブ端末は外部からの発熱を受熱する吸熱部と、対向する端末は放熱部として形成されて、細管流路は閉ループを備え、作動流体が封入されて、加圧機構により、作動流体に圧力を生じさせる事により、該扁平形プラスチックチューブ端末の吸熱部と放熱部間は流体の循環により、熱流体移動、熱移動時間の制御、熱流体移動のON、OFF制御を可能とする事を特徴とするヒートパイプ。   The flat plastic tube is formed with a plurality of thin tube channels, the thickness of the cross section through which the refrigerant flows is 0.5 mm or less, the outer surface of the flat plastic tube acts as a heat transfer surface for heat exchange, and the flat plastic tube The tube terminal is formed as a heat absorbing part that receives heat generated from the outside, and the opposite terminal is formed as a heat radiating part.The narrow tube flow path is provided with a closed loop, the working fluid is enclosed, and pressure is applied to the working fluid by the pressurizing mechanism. By making it occur, heat fluid movement, heat movement time control, thermal fluid movement ON / OFF control can be performed by fluid circulation between the heat absorption part and heat radiation part of the flat plastic tube terminal. Heat pipe to be used.

扁平形プラスチックチューブに細管流路が複数形成されて、冷媒を流通させる断面の厚みを0.5mm以下として、該扁平形プラスチックチューブの外面は熱交換する伝熱面として作用し、該扁平形プラスチックチューブ端末は外部より受熱する吸熱部と、対向する端末の放熱部との間で蛇行する閉ループ流路を備えて、作動流体が封入されて、該作動流体に逆位相となる圧力を加圧機構により印加する事を特徴とするヒートパイプ。   The flat plastic tube is formed with a plurality of thin tube channels, the thickness of the cross section through which the refrigerant flows is 0.5 mm or less, the outer surface of the flat plastic tube acts as a heat transfer surface for heat exchange, and the flat plastic tube The tube terminal has a closed loop flow path that meanders between a heat absorption part that receives heat from the outside and a heat radiation part of the opposite terminal, and a working fluid is enclosed and a pressure that is in reverse phase to the working fluid is pressurized. A heat pipe characterized by being applied by

前記放熱器又はヒートパイプが扁平形プラスチックチューブで構成した請求項1〜3のいずれかの記載を用いて構成したことを特徴とする放熱器およびヒートパイプ。   The heat radiator or the heat pipe, wherein the heat radiator or the heat pipe is configured by using a flat plastic tube.

請求項1に記載の放熱器によれば冷媒を流通させる扁平形チューブ断面の厚みを0.5mm以下として伝熱チューブをプラスチック部材で構成する事により軽量化、安価、生産性にすぐれる。   According to the radiator of the first aspect, the thickness of the cross section of the flat tube through which the refrigerant is circulated is 0.5 mm or less, and the heat transfer tube is made of a plastic member, so that the weight is reduced, the cost is low, and the productivity is excellent.

請求項1に記載の放熱器によれば、プラスチックチューブ面状部外面で受熱手段と放熱手段を有しており、フィンを必要としないので小型化、薄型化が可能になる。   According to the radiator of the first aspect, since the heat receiving means and the heat radiating means are provided on the outer surface of the plastic tube planar portion, and fins are not required, the size and thickness can be reduced.

請求項1に記載の放熱器によれば独立した複数の流体を流通させるプラスチックチューブで、受熱、放熱サイクルを構成する事により熱交換が高効率に行える。   According to the radiator of the first aspect, the heat exchange can be performed with high efficiency by configuring the heat receiving and heat radiation cycle with the plastic tube through which a plurality of independent fluids are circulated.

請求項2に記載のヒートパイプによれば、プラスチック部材とする事により、肉厚を0.1ミリ程度の薄肉とした場合に熱伝導率は銅やアルミと比較しても差はなく軽量化も可能になる。   According to the heat pipe of claim 2, by using a plastic member, when the wall thickness is about 0.1 mm, there is no difference in thermal conductivity compared to copper or aluminum, and the weight is reduced. Is also possible.

請求項2に記載のヒートパイプによれば、流体の移動を一方向に強制的に熱移動の高速化が可能でより大量の熱移動が可能となる。   According to the heat pipe of the second aspect, it is possible to forcibly move the fluid in one direction to increase the speed of the heat transfer, thereby enabling a larger amount of heat transfer.

請求項2に記載のヒートパイプによれば、流体の移動量を制御又は、ON、OFF制御が可能となる。   According to the heat pipe of the second aspect, the amount of fluid movement can be controlled, or ON / OFF control can be performed.

請求項3に記載のヒートパイプによれば、ヒートパイプのフレキシブル化により熱移動が任意の位置に移動可能となる。   According to the heat pipe of the third aspect, the heat transfer can be moved to an arbitrary position by making the heat pipe flexible.

請求項4によれば、ヒートパイプと放熱器の組み合わせにより、高速な移動と放熱が可能になる。   According to the fourth aspect, the combination of the heat pipe and the heat radiator enables high-speed movement and heat radiation.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

実施の形態1.図1は第1の実施の形態のマルチヒートパイプを示す斜視図、図2は図1に示す扁平形プラスチックューブ(以下、単にチューブという)の断面図、図3は図2−1aに示すチューブの要部拡大断面図を示し、図4は放熱器を横から見た断面図を示し、図5は放熱量と動力を示す特性図、図6はチューブ内の構造を示す断面図を示す。   Embodiment 1 FIG. 1 is a perspective view showing the multi-heat pipe of the first embodiment, FIG. 2 is a cross-sectional view of a flat plastic tube (hereinafter simply referred to as a tube) shown in FIG. 1, and FIG. FIG. 4 shows a cross-sectional view of the heatsink seen from the side, FIG. 5 is a characteristic diagram showing the heat radiation amount and power, and FIG. 6 is a cross-sectional view showing the structure inside the tube. Show.

本実施の形態の放熱器1は、図1に示すように、複数本のチューブ2と、所定のピッチ間隔で受熱面と放熱面を有する各チューブ2の一端部を受熱平板3の放熱面に一端が直角に交差して熱的に接続、固定されて、図4に示す熱伝導性接着剤などにより、接合されており、対向する端面は開放されている。   As shown in FIG. 1, the radiator 1 of the present embodiment has a plurality of tubes 2 and one end portion of each tube 2 having a heat receiving surface and a heat radiating surface at a predetermined pitch interval as a heat radiating surface of the heat receiving plate 3. One end crosses at right angles and is thermally connected and fixed, and joined by a heat conductive adhesive shown in FIG. 4, and the opposite end faces are open.

本発明に使用される、チューブ2はポリカーボネート樹脂、POM、ABS、ナイロン、PP、PE、ABS、PMMA、PET等の汎用プラスチックはもちろん、ポリエーテルイミド系樹脂、ポリブチレンテレフタレート系樹脂、ポリアミド系樹脂、ポリフェニレンサルファィド系樹脂、ポリフェニレンエーテル系樹脂、ポリエーテルエーテルケトン系樹脂、ポリフェニレンエーテル系樹脂−スチレン系樹脂−ポリアミド系樹脂混合樹脂、フッ素系樹脂および、ポリカーボネート系樹脂から成る群から選ばれる少なくとも1種の樹脂で溶融して得られる樹脂組成物を押出成形される。   The tube 2 used in the present invention is not only a general-purpose plastic such as polycarbonate resin, POM, ABS, nylon, PP, PE, ABS, PMMA, PET, but also a polyetherimide resin, a polybutylene terephthalate resin, a polyamide resin. At least selected from the group consisting of polyphenylene sulfide resins, polyphenylene ether resins, polyether ether ketone resins, polyphenylene ether resins-styrene resins-polyamide resins, fluororesins, and polycarbonate resins A resin composition obtained by melting with one kind of resin is extruded.

この放熱器1の、各チューブ2は図6に示す細管流路5は各々独立して両端末は閉じてチューブ2内面は減圧されて、適量の作動流体が封入されており、作動流体8として、水、変圧器油、パーフロロカーボンなどの熱輸送媒体、アルコール、シリコンオイル、及び代替フロン系冷媒などを好ましく用いることができるが、本発明ではエタノールを用いているが、これらのみに限定されるものではなく水を含む冷媒など、各種の気体、液体冷媒であってもよい。   Each tube 2 of the radiator 1 has the narrow channel 5 shown in FIG. 6 independently closed at both ends, the inner surface of the tube 2 is depressurized, and an appropriate amount of working fluid is sealed. , Water, transformer oil, heat transport medium such as perfluorocarbon, alcohol, silicone oil, and alternative chlorofluorocarbon refrigerant can be preferably used, but ethanol is used in the present invention, but is limited to these. Various gas and liquid refrigerants, such as a refrigerant containing water, may be used.

図6において、チューブ2は複数の細管断面を中空形状とした長尺状を、なすチューブ2で約0.5mm幅の断面部は、作動流体8の伝熱性能を向上させて、細管流路5の壁面10は親水性処理として無機酸化物の二酸化珪素などをスパッタリング法による成膜を行う。   In FIG. 6, the tube 2 has a long shape in which a plurality of thin tube cross sections are hollow, and the cross section of the tube 2 having a width of about 0.5 mm improves the heat transfer performance of the working fluid 8, 5 wall surface 10 is formed by sputtering using inorganic oxide silicon dioxide or the like as a hydrophilic treatment.

また、図4においてチューブ2の一端部は受熱平板3の放熱面に設けられた凹状の溝部4に挿入されて熱伝導の高い接着剤7で固定されて受熱平板3とチューブ2間は熱的に接続された構造として、チューブ2は一定のピッチ間隔でチューブ2は配列されて、受熱平板3からチューブ2に伝熱され、受熱平板3の下部面は半導体(図時せず)等よりの吸熱部である。   In FIG. 4, one end of the tube 2 is inserted into a concave groove 4 provided on the heat radiation surface of the heat receiving flat plate 3 and fixed with an adhesive 7 having high heat conductivity, and the heat receiving flat plate 3 and the tube 2 are thermally connected. As the structure connected to the tube 2, the tubes 2 are arranged at a constant pitch interval, and heat is transferred from the heat receiving plate 3 to the tube 2, and the lower surface of the heat receiving plate 3 is made of a semiconductor (not shown) or the like. It is an endothermic part.

また、図2は細管断面形状が内径0.5φ以下の中空丸穴1C、または、中空楕円穴1d、または、0.5×0.5mm以下の中空角穴1a、または、中空長角穴、または、外周面に凹凸部を有した中空穴1b、または、星形形状穴1eで形成されて、中空穴は2a、2b、2c、・・・、2n(nは2以上の整数)によって平面状に形成された面状部を形成する。   Further, FIG. 2 shows a hollow circular hole 1C, a hollow elliptical hole 1d, or a hollow rectangular hole 1a having a diameter of 0.5 × 0.5 mm or smaller, Alternatively, it is formed of a hollow hole 1b having a concavo-convex portion on the outer peripheral surface or a star-shaped hole 1e, and the hollow holes are planar by 2a, 2b, 2c, ..., 2n (n is an integer of 2 or more). A planar portion formed in a shape is formed.

なお、本実施の形態の放熱器1においては、図6に示した前記流体8と熱交換する伝熱面9の材質を、プラスチックとしてチューブ2の外面で構成している。   In the radiator 1 of the present embodiment, the material of the heat transfer surface 9 for exchanging heat with the fluid 8 shown in FIG. 6 is configured on the outer surface of the tube 2 as plastic.

伝熱面9をチューブ2の外面のみによって図3に示すように、各プラスチックチューブ2を配置させるピッチ間隔(以下、単にピッチPという)を、該チューブ2の厚みTの2倍から4倍としている。   As shown in FIG. 3 with only the outer surface of the tube 2 as the heat transfer surface 9, the pitch interval (hereinafter simply referred to as the pitch P) for arranging the plastic tubes 2 is set to be 2 to 4 times the thickness T of the tube 2. Yes.

チューブ2を配置させるピッチPを該チューブ2の厚みTの2倍から4倍とすると、空気側熱伝達率をより一層向上させることができ、極めて高い熱交換効率を発揮させることができる。   When the pitch P at which the tubes 2 are arranged is 2 to 4 times the thickness T of the tubes 2, the air-side heat transfer coefficient can be further improved, and extremely high heat exchange efficiency can be exhibited.

図5は、チューブ間隔(ピッチP)をチューブ2の厚さTで割った値(PT)に対する放熱量と動力(ファン動力)との比(放熱量/動力)の変化を示す特性図であり、縦軸は放熱量と動力の比で、数字が大きいほど熱交換率良く、横軸はPTを示す。   FIG. 5 is a characteristic diagram showing a change in the ratio (heat dissipation amount / power) of the heat dissipation amount and power (fan power) to the value (PT) obtained by dividing the tube interval (pitch P) by the thickness T of the tube 2. The vertical axis is the ratio between the heat radiation amount and the power.

この特性図からわかるように、前記PTを2から4の間に設定すれば、熱交換効率を大幅に高めることができる。   As can be seen from this characteristic diagram, if the PT is set between 2 and 4, the heat exchange efficiency can be greatly increased.

上記第1の実施の形態における細管の肉厚は特に限定されるものではないが、圧力損失を少なくする意味ではできるだけ薄い方が好ましいが、実際には、耐管内圧力、耐熱温度、製造技術上の面などから、例えば肉厚約0.1〜0.2mm程度のものを好ましく用いることができて、従来の銅やアルミなどの金属と熱伝導性能において差はなくなりプラスチック樹脂で構成する事が可能になる。   Although the thickness of the thin tube in the first embodiment is not particularly limited, it is preferably as thin as possible in the sense of reducing the pressure loss. For example, a material having a thickness of about 0.1 to 0.2 mm can be preferably used, and there is no difference in heat conduction performance from conventional metals such as copper and aluminum. It becomes possible.

また、本実施の形態の放熱器1においては、チューブ2の厚みを0.5mm以下とすれば、0.5mm超とした場合に比べてチューブ2の本数が増え、該チューブ2に形成された流路5の総断面積を充分に確保でき、冷媒の流通抵抗を大幅に低減させることができる。     Further, in the radiator 1 of the present embodiment, if the thickness of the tube 2 is 0.5 mm or less, the number of the tubes 2 is increased as compared with the case where the thickness is more than 0.5 mm, and the tube 2 is formed. The total cross-sectional area of the flow path 5 can be sufficiently secured, and the flow resistance of the refrigerant can be greatly reduced.

図1に示す受熱平板3の放熱面に設けられた、チューブ2は図6に示す、細管流路5は独立して各々単独のヒートパイプとして動作して、受熱平板3の放熱面より一定の温度に達した段階で各々のヒートパイプ内の流体8は相変態と移動により、上部端末11bに到達し、外部に設けられた電動ファン(図時せず)により、流体8はチューブ2の伝熱面より冷却される。   The tube 2 provided on the heat radiating surface of the heat receiving flat plate 3 shown in FIG. 1 is shown in FIG. 6, and the narrow channel 5 operates independently as a single heat pipe, and is more constant than the heat radiating surface of the heat receiving flat plate 3. When the temperature reaches the temperature, the fluid 8 in each heat pipe reaches the upper terminal 11b by phase transformation and movement, and the fluid 8 is transferred to the tube 2 by an electric fan (not shown) provided outside. Cooled from the hot surface.

冷却されて一定温度以下になった、ヒートパイプ内の流体8は液相状態となり、親水性処理した壁面10を伝わって受熱平板3の放熱面11aに到達する。   The fluid 8 in the heat pipe, which has been cooled to a certain temperature or less, is in a liquid phase state, and reaches the heat radiating surface 11 a of the heat receiving flat plate 3 through the hydrophilically treated wall surface 10.

前記ヒートパイプ1は流体8の相変態と移動によって、熱の移動がなされる。   The heat pipe 1 is moved in heat by the phase transformation and movement of the fluid 8.

したがって、図1に示す、本実施の形態の放熱器1によれば、プラスチック樹脂素材にすることから、より一層の高性能化、小型化、及び軽量化を実現できる。   Therefore, according to the radiator 1 of the present embodiment shown in FIG. 1, since it is made of a plastic resin material, further improvement in performance, size reduction, and weight reduction can be realized.

上記により5cm×5cm程の面に独立した複数のチューブを並列に一定のピッチで配置すると、複数の独立したヒートパイプとして作用することにより熱を効果的に放熱する。   When a plurality of independent tubes are arranged in parallel at a constant pitch on the surface of about 5 cm × 5 cm as described above, heat is effectively radiated by acting as a plurality of independent heat pipes.

実施の形態2.図7aは本発明の実施の形態2に係るヒートパイプ7を上面よりの断面図、7bは側面よりの断面図、図8は斜視断面図でヒートパイプ7全体はプラスチック樹脂で構成されて、図8に示した流体と熱交換する伝熱面の壁14を、チューブ外面で構成して、図7aより使用されるチューブ12はポリカーボネート樹脂、POM、ABS、ナイロン、PP、PE、ABS、PMMA、PET等の汎用プラスチックはもちろん、ポリエーテルイミド系樹脂、ポリブチレンテレフタレート系樹脂、ポリアミド系樹脂、ポリフェニレンサルファィド系樹脂、ポリフェニレンエーテル系樹脂、ポリエーテルエーテルケトン系樹脂、ポリフェニレンエーテル系樹脂−スチレン系樹脂−ポリアミド系樹脂混合樹脂、フッ素系樹脂および、ポリカーボネート系樹脂から成る群から選ばれる少なくとも1種の樹脂で溶融して得られる樹脂組成物を押出成形される。   Embodiment 2. FIG. 7a is a cross-sectional view from above of the heat pipe 7 according to Embodiment 2 of the present invention, 7b is a cross-sectional view from the side, FIG. 8 is a perspective cross-sectional view, and the entire heat pipe 7 is made of plastic resin. The wall 14 of the heat transfer surface for exchanging heat with the fluid shown in FIG. 8 is constituted by the outer surface of the tube, and the tube 12 used from FIG. 7a is polycarbonate resin, POM, ABS, nylon, PP, PE, ABS, PMMA, General purpose plastics such as PET, as well as polyetherimide resins, polybutylene terephthalate resins, polyamide resins, polyphenylene sulfide resins, polyphenylene ether resins, polyether ether ketone resins, polyphenylene ether resins-styrene resins Resin-polyamide resin mixed resin, fluorine resin, and polycarbonate resin It is extruded resin composition obtained by melting at least one resin selected from the group consisting of fat.

図8に示すチューブ12は複数の直線流路15を備えて、直線流路数は中心点13より吸熱側流路16aと、放熱側流路16bに流路を均等に分配されて閉ループを形成される構造として、流路断面形状は図2に示す内径0.5φ以下の中空丸穴1C、または、中空楕円穴1d、または、0.5×0.5mm以下の中空角穴1a、または、中空長角穴、または、外周面に凹凸部を有した中空穴1b、または、星形形状穴1eで形成されて、中空穴は2a、2b、2c、・・・、2n(nは2以上の整数)によって平面状に形成された面状部とした。   The tube 12 shown in FIG. 8 includes a plurality of straight flow paths 15, and the number of straight flow paths is equally distributed from the center point 13 to the heat absorption side flow paths 16a and the heat dissipation side flow paths 16b to form a closed loop. As a structure to be made, the cross-sectional shape of the channel is a hollow round hole 1C having an inner diameter of 0.5φ or less, a hollow elliptical hole 1d, or a hollow square hole 1a having a diameter of 0.5 × 0.5 mm or less, as shown in FIG. A hollow oblong hole, or a hollow hole 1b having a concavo-convex portion on the outer peripheral surface or a star-shaped hole 1e, and the hollow holes are 2a, 2b, 2c,..., 2n (n is 2 or more) It was set as the planar part formed in planar shape by the integer.

また、本実施の形態2のヒートパイプ7は、チューブの肉厚を0.1〜0.2mmと薄肉としており、従来の銅やアルミなどの金属と熱伝導性能において差はなくなり、プラスチック樹脂で構成する事が可能になり、冷媒21と熱交換する伝熱面を、図8で示す細管を仕切る壁面14で伝熱作用を構成している。   In addition, the heat pipe 7 of the second embodiment has a thin wall thickness of 0.1 to 0.2 mm, and there is no difference in heat conduction performance from conventional metals such as copper and aluminum, which is made of plastic resin. It becomes possible to configure, and the heat transfer function is configured by the wall surface 14 partitioning the thin tube shown in FIG.

このヒートパイプ7の、流路内15には冷媒21が封入されており、冷媒21として、水、変圧器油、パーフロロカーボンなどの熱輸送媒体、アルコール、シリコンオイル、及び代替フロン系冷媒などを好ましく用いることができるが、本発明ではエタノールを用いているが、これらのみに限定されるものではなく水を含む冷媒など、各種の気体、液体冷媒であってもよい。   A refrigerant 21 is sealed in the flow path 15 of the heat pipe 7, and as the refrigerant 21, a heat transport medium such as water, transformer oil, perfluorocarbon, alcohol, silicon oil, and an alternative chlorofluorocarbon refrigerant is used. Although ethanol can be preferably used in the present invention, the present invention uses ethanol. However, the present invention is not limited thereto, and various gases and liquid refrigerants such as a refrigerant containing water may be used.

図9及び図8に示す、加圧機構22は、液入口部20b‘と16a及び液出口部20a’と16bが接続されて、ピストン方式やダイアフラム方式(図示せず)等によるポンプの、発生圧力により加圧して、図8に示す冷媒21をポンプで、閉ループ内を循環19(17a〜17b)させることにより、図7bに示す高温の冷媒21をチューブ端末18aから対向する端末18bに移動して、アルミや銅などの熱伝導性の優れた金属の平板25bに伝熱される。   The pressurizing mechanism 22 shown in FIGS. 9 and 8 is connected to the liquid inlet portions 20b ′ and 16a and the liquid outlet portions 20a ′ and 16b, and generates a pump by a piston method or a diaphragm method (not shown). The refrigerant 21 shown in FIG. 8 is pressurized by pressure and circulated 19 (17a to 17b) in the closed loop with a pump, whereby the high-temperature refrigerant 21 shown in FIG. 7b is moved from the tube terminal 18a to the opposite terminal 18b. Thus, heat is transferred to the flat plate 25b made of metal having excellent thermal conductivity such as aluminum or copper.

また、図7bに示した平板25bに伝熱された熱は、外部に設ける放熱手段(図示省略)と熱的に接続される事により、移動された熱は放熱処理されて、冷媒21は吸熱側18aに移動する閉ループを構成している。   Further, the heat transferred to the flat plate 25b shown in FIG. 7b is thermally connected to a heat radiating means (not shown) provided outside, so that the transferred heat is subjected to a heat radiating process, and the refrigerant 21 absorbs heat. A closed loop moving to the side 18a is constructed.

また、図14に示すヒートパイプ140では、冷媒(矢印方向)を蛇行させて閉ループとする場合に循環ではなく、冷媒(矢印方向)を一定間隔の距離を加圧機構(図示せず)より、圧力を加えて流体方向142aと142bの方向に対して反復振動させて高温のHOT側からCOLD側へ熱移動をして放熱する。この場合は流体(矢印方向)に伝熱された熱はチューブの直線流路の壁面と流体(矢印方向)を伝熱体としてHOT側に熱移動する。   In addition, in the heat pipe 140 shown in FIG. 14, when the refrigerant (arrow direction) meanders to form a closed loop, the circulation (in the arrow direction) of the refrigerant (arrow direction) is performed at a constant interval by a pressurizing mechanism (not shown). A pressure is applied to repeatedly vibrate in the fluid directions 142a and 142b to dissipate heat by transferring heat from the hot HOT side to the COLD side. In this case, the heat transferred to the fluid (arrow direction) moves to the HOT side using the wall surface of the straight flow path of the tube and the fluid (arrow direction) as a heat transfer body.

冷媒21に圧力を生じさせる加圧機構22の流体液出口部20a‘と液入口部20b‘は図7aに示したチューブ12の20aと20bに接続されて、図9に示したピストン方式やダイアフラム方式などの圧力ポンプ22を、電源投入により、動作させる事によって、流体に圧力を加える事で作動流体とする事が可能である   The fluid liquid outlet 20a ′ and the liquid inlet 20b ′ of the pressurizing mechanism 22 for generating pressure in the refrigerant 21 are connected to the tubes 20a and 20b of the tube 12 shown in FIG. It is possible to make the working fluid by applying pressure to the fluid by operating the pressure pump 22 such as the system when the power is turned on.

圧力を加えるポンプにおいては、ノートパソコン等、省スペースを要する場合は圧電方式やダイアフラム等が有利であり、高速移動等を要する場合はピストン方式等、使用用途により加圧手段は選択する。   For a pump that applies pressure, a piezoelectric system or a diaphragm is advantageous when space is required, such as a notebook personal computer, and a pressurizing means such as a piston system is selected when high speed movement is required.

上記により、ヒートパイプ7による熱移動は、圧力ポンプの吐出圧力、又は、ポンプ動作時間を変化させる事により、熱移動時間の制御も可能になる。   As described above, the heat transfer by the heat pipe 7 can be controlled by changing the discharge pressure of the pressure pump or the pump operation time.

また、圧力ポンプの動作を外部制御信号により、ON、OFFする事により、熱スイッチとして、制御も可能になる   Also, the pressure pump can be controlled as a heat switch by turning it on and off with an external control signal.

実施の形態3. 図10は本発明の模式的に示す斜視図であり、ヒートパイプ7に示すノートパソコン23に応用して、CPU24(中央処理装置)(詳細は省略)よりの発熱をヒートパイプ7の吸熱部側に設けられた熱伝導の優れた平板(図示省略)間をシリコングリース等で密着させて固定する。   Embodiment 3 FIG. 10 is a perspective view schematically showing the present invention. When applied to the notebook computer 23 shown in the heat pipe 7, the heat generated by the CPU 24 (central processing unit) (details omitted) is applied to the heat pipe. The flat plate (not shown in the figure) provided on the heat-absorbing part 7 and having excellent heat conductivity is fixed with silicon grease or the like.

熱移動方向としてパソコン本体側はHDD(図示せず)や半導体が収納されており、熱的な影響を避けてLCD(図示省略)が収納されているケースカバー側に熱移動している。   As the heat transfer direction, an HDD (not shown) and a semiconductor are housed on the personal computer main body side, and the heat is moved to the case cover side where an LCD (not shown) is housed to avoid thermal influence.

圧力ポンプ電源(詳細は省略)としてDC1.5V〜5V前後で0.5/s〜1/sの周波数及び電圧を印加する事によりヒートパイプ7内の流体は移動される。   The fluid in the heat pipe 7 is moved by applying a frequency and a voltage of 0.5 / s to 1 / s at around DC 1.5V to 5V as a pressure pump power source (details omitted).

ヒートパイプ7の放熱側(図示は省略)には放熱手段としてケースカバー側のスペースは限られている為に従来、応用されているアルミフィン27などの厚みを薄くして放熱させる。   Since the space on the case cover side as a heat radiating means is limited on the heat radiating side (not shown) of the heat pipe 7, the thickness of the conventionally applied aluminum fin 27 and the like is reduced to radiate heat.

この時に自然放熱、もしくは小型電動ファン(図示省略)などによる強制的な放熱手段により、排熱は矢印29より筐体外に放出させる。   At this time, exhaust heat is released from the arrow 29 through the arrow 29 by natural heat dissipation or forced heat dissipation means such as a small electric fan (not shown).

ノートパソコンの場合は本体部とケースカバー部はチルト構造により折りたたみが可能な構造であるが、本発明のヒートパイプ7によればプラスチック部材の選択によりフレキシブル構造28のヒートパイプ7とする事が可能である。   In the case of a notebook computer, the main body and the case cover can be folded by a tilt structure. However, according to the heat pipe 7 of the present invention, the heat pipe 7 of the flexible structure 28 can be formed by selecting a plastic member. It is.

実施の形態4.図11は本発明の実施の形態1に係る放熱器1および、実施の形態2に係るヒートパイプ7を一体化して発熱体の冷却に利用した例を模式的に示す斜視図である。 Embodiment 4 FIG. FIG. 11 is a perspective view schematically showing an example in which the radiator 1 according to the first embodiment of the present invention and the heat pipe 7 according to the second embodiment are integrated and used for cooling the heating element.

図11において、例えばパソコンなど各種電子制御装置などの電子機器内の筐体30の内部に発熱体であるCPU24(中央処理装置)(詳細図示省略)が収容されている。   In FIG. 11, for example, a CPU 24 (central processing unit) (not shown in detail), which is a heating element, is accommodated in a housing 30 in an electronic device such as a personal computer.

CPU24(中央処理装置)(詳細図示省略)とヒートパイプ7は熱的に結合して設けられた平板25aと圧接して取り付けられるが、 熱伝導を高める為にCPU24(中央処理装置)(詳細図示省略)と平板25aの接触部にはシリコングリースなどを塗布して密着させて、熱伝導を向上させて固定される事として取り付ける。   The CPU 24 (central processing unit) (detailed illustration is omitted) and the heat pipe 7 are mounted in pressure contact with a flat plate 25a provided by thermal coupling. The CPU 24 (central processing unit) (detailed illustration) is provided to increase heat conduction. (Not shown) and a contact portion between the flat plate 25a and silicon grease or the like is applied and brought into close contact with the flat plate 25a to improve heat conduction and to be fixed.

ヒートパイプ7のチューブはプラスチック製でフレキシブルな構造であり、筐体30内の任意の位置に曲げた形状でも配置が可能であり、チューブの厚みも0.5mmと薄型で設置面積も少なく、筐体30内に配置する事が可能である。   The tube of the heat pipe 7 is made of plastic and has a flexible structure, and can be arranged in a bent shape inside the housing 30. The tube has a thin thickness of 0.5 mm and has a small installation area. It can be placed in the body 30.

図11に示すヒートパイプ7内部には図8に示す冷媒21として、エタノール、アンモニアや水などが適量封入されており(図示省略)図11に示すCPU24よりの発熱は、ヒートパイプ7内の冷媒21に、ポンプ22(詳細は省略)で、加圧されて、冷媒21は対向するヒートパイプの放熱側端末に移動する閉ループとする。   An appropriate amount of ethanol, ammonia, water, or the like is enclosed in the heat pipe 7 shown in FIG. 11 as the refrigerant 21 shown in FIG. 8 (not shown). The heat generated by the CPU 24 shown in FIG. 21 is pressurized by a pump 22 (details omitted), and the refrigerant 21 is a closed loop that moves to the heat radiation side terminal of the opposite heat pipe.

この時、放熱側端末に移動した高温の冷媒21は放熱側端末に設けられた伝熱性の高い銅やアルミなどの素材で構成された平板(図示省略)より放熱器1に熱伝導されて、並列した複数のチューブ方向より電動ファン32などにより、複数のチューブ2は外気と熱交換を行い、排熱は矢印33で示す筐体30に設けられた通気穴より排出されて熱交換が行われる。   At this time, the high-temperature refrigerant 21 that has moved to the heat radiation side terminal is thermally conducted to the radiator 1 from a flat plate (not shown) made of a material such as copper or aluminum having high heat conductivity provided in the heat radiation side terminal. The plurality of tubes 2 exchange heat with the outside air by an electric fan 32 or the like from a plurality of parallel tube directions, and the exhaust heat is discharged from a vent hole provided in the housing 30 indicated by an arrow 33 to perform heat exchange. .

この時、ヒートパイプ7はフレキシブル構造であり、筐体30内の任意の位置に設置可能である。   At this time, the heat pipe 7 has a flexible structure and can be installed at an arbitrary position in the housing 30.

上記のように構成された実施の形態4においては、比較的大容量の熱移動及び熱交換が可能であり、プラスチック素材の選択やヒートパイプ7内の作動流体の移動量や移動スピードなどの設計において大容量の放熱回路構成とする事も可能である。     In the fourth embodiment configured as described above, heat transfer and heat exchange with a relatively large capacity are possible, and the selection of the plastic material and the design such as the moving amount and moving speed of the working fluid in the heat pipe 7 are possible. It is also possible to configure a large-capacity heat dissipation circuit.

上記の様に、実施の形態1で示した放熱器1の動作により単位体積あたりの熱交換量を増大できるため、ヒートパイプの放熱能力の増大、ひいてはCPU24の大容量化が可能となるという効果がある。   As described above, since the heat exchange amount per unit volume can be increased by the operation of the radiator 1 shown in the first embodiment, it is possible to increase the heat dissipating capacity of the heat pipe and to increase the capacity of the CPU 24. There is.

第一の実施の形態の放熱器を示す斜視図である。It is a perspective view which shows the heat radiator of 1st embodiment. 図1に示すチューブのA−A線断面図である。It is the sectional view on the AA line of the tube shown in FIG. 図2に示すチューブの拡大断面図である。It is an expanded sectional view of the tube shown in FIG. 図1に示す側面からの断面図である。It is sectional drawing from the side surface shown in FIG. チューブ間隔(ピッチP)をチューブの厚さTで割った値(PT)に対する放熱量と動力(ファン動力)との比(放熱量/動力)の変化を示す特性図第2−1の実施の形態の熱交換器を示す斜視図である。Characteristic diagram showing the change in the ratio (heat dissipation / power) of the heat dissipation amount and power (fan power) to the value (PT) obtained by dividing the tube interval (pitch P) by the tube thickness T (PT) It is a perspective view which shows the heat exchanger of a form. 図1に示すチューブの模式図である。It is a schematic diagram of the tube shown in FIG. 第2の実施の形態のヒートパイプの正面と側面からの断面図である。It is sectional drawing from the front and side surface of the heat pipe of 2nd Embodiment. 第2の実施のヒートパイプの模式図である。It is a schematic diagram of the heat pipe of 2nd implementation. 第2の実施の圧力ポンプの一例である。It is an example of the pressure pump of 2nd implementation. 第2の実施の形態の筐体内に放熱器とヒートパイプ応用の斜視図である。It is a perspective view of a heat radiator and a heat pipe application in the housing | casing of 2nd Embodiment. 第3の実施の形態の筐体内に放熱器とヒートパイプ応用の斜視図である。It is a perspective view of a heat radiator and a heat pipe application in the housing | casing of 3rd Embodiment. 参考文献1のヒートパイプの構成図である。2 is a configuration diagram of a heat pipe of Reference Document 1. FIG. 参考文献2の細管群熱交換器の斜視図である。6 is a perspective view of a thin tube group heat exchanger of Reference 2. FIG. 参考文献3のヒートパイプの断面図である。10 is a cross-sectional view of a heat pipe of Reference 3. FIG.

符号の説明Explanation of symbols

1 放熱器
1a、1b、1c、1d、1e チューブ穴断面
2 チューブ
2a、2b、2c、・・・、2n 中空穴の面上部
3 受熱平板
4 溝部
5 細管流路
6 受熱平板の受熱側
7a、7b ヒートパイプ断面
8 作動流体
9 チューブ伝熱面
10 細管壁面
11a、11b 端末
12 ヒートパイプ用チューブ
13 流路数の中心点
14 流路壁面
15 直線流路
16a、16b 吸熱、放熱流路 、
17a、17b 流体方向
18a、18b
19 冷媒の循環方向
20a、20a ヒートパイプの入、出流路
21 冷媒
22 加圧機構
23 ノートパソコン
24 CPU
25a、25b 平板
26 通気穴
27 アルミ製のフィン
28 ヒートパイプのフレキシブル構造
29 ケースカバーよりの排熱方向
30 パソコン筐体
31 熱伝導用平板
32 電動ファン
33 排熱の流出方向
DESCRIPTION OF SYMBOLS 1 Heat radiator 1a, 1b, 1c, 1d, 1e Tube hole cross section 2 Tube 2a, 2b, 2c, ..., 2n The upper surface of a hollow hole 3 Heat-receiving plate 4 Groove part 5 Narrow tube flow path 6 7b Heat pipe cross section
8 Working fluid 9 Tube heat transfer surface 10 Thin tube wall surface 11a, 11b Terminal 12 Heat pipe tube 13 Center point of the number of channels 14 Channel wall surface 15 Linear channel 16a, 16b Heat absorption, heat dissipation channel,
17a, 17b Fluid direction
18a, 18b
19 Refrigerant circulation direction 20a, 20a Heat pipe entry / exit flow path 21 Refrigerant 22 Pressurization mechanism 23 Notebook PC 24 CPU
25a, 25b Flat plate 26 Ventilation hole 27 Aluminum fin 28 Flexible structure of heat pipe 29 Heat exhaust direction from case cover 30 PC case 31 Heat conduction flat plate 32 Electric fan 33 Exhaust heat outflow direction

Claims (4)

扁平形プラスチックチューブに細管流路が複数形成されて、冷媒を流通させる断面の厚みを0.5mm以下として、該扁平形プラスチックチューブの外面は熱交換する伝熱面として作用し、複数の扁平形プラスチックチューブを配置させるピッチ間隔を、該扁平形プラスチックチューブの厚みの2倍から4倍として、扁平形プラスチックチューブ両端は閉塞されて、チューブ部内の壁面は親水性物質被膜、減圧されて凝縮性の作動流体を具備して、独立した複数のヒートパイプとして作用する。該扁平形プラスチックチューブ端末の一端は受熱面と放熱面を有する金属の平板に直角に交差して熱的に接続された事を備えた放熱器   A plurality of thin tube channels are formed in the flat plastic tube, the thickness of the cross section through which the refrigerant flows is 0.5 mm or less, the outer surface of the flat plastic tube acts as a heat transfer surface for heat exchange, and a plurality of flat shapes The pitch interval for placing the plastic tube is set to 2 to 4 times the thickness of the flat plastic tube, both ends of the flat plastic tube are closed, and the wall surface in the tube part is coated with a hydrophilic substance, and the pressure is reduced and condensed. It has a working fluid and acts as a plurality of independent heat pipes. A radiator having one end of the flat plastic tube terminal thermally connected to a metal flat plate having a heat receiving surface and a heat radiating surface at right angles 扁平形プラスチックチューブに細管流路が複数形成されて、冷媒を流通させる断面の厚みを0.5mm以下として、該扁平形プラスチックチューブの外面は熱交換する伝熱面として作用し、該扁平形プラスチックチューブ端末は外部からの発熱を受熱する吸熱部と、対向する端末は放熱部として形成されて、細管流路は閉ループを備え、作動流体が封入されて、加圧機構により、作動流体に圧力を生じさせる事により、該扁平形プラスチックチューブ端末の吸熱部と放熱部間は流体の循環により、熱流体移動、熱移動時間の制御、熱流体移動のON、OFF制御を可能とする事を特徴とするヒートパイプ。   The flat plastic tube is formed with a plurality of thin tube channels, the thickness of the cross section through which the refrigerant flows is 0.5 mm or less, the outer surface of the flat plastic tube acts as a heat transfer surface for heat exchange, and the flat plastic tube The tube terminal is formed as a heat absorbing part that receives heat generated from the outside, and the opposite terminal is formed as a heat radiating part.The narrow tube flow path is provided with a closed loop, the working fluid is enclosed, and pressure is applied to the working fluid by the pressurizing mechanism. By making it occur, heat fluid movement, heat movement time control, thermal fluid movement ON / OFF control can be performed by fluid circulation between the heat absorption part and heat radiation part of the flat plastic tube terminal. Heat pipe to be used. 扁平形プラスチックチューブに細管流路が複数形成されて、冷媒を流通させる断面の厚みを0.5mm以下として、該扁平形プラスチックチューブの外面は熱交換する伝熱面として作用し、該扁平形プラスチックチューブ端末は外部より受熱する吸熱部と、対向する端末の放熱部との間で蛇行する閉ループ流路を備えて、作動流体が封入されて、該作動流体に逆位相となる圧力を加圧機構により印加する事を特徴とするヒートパイプ。   The flat plastic tube is formed with a plurality of thin tube channels, the thickness of the cross section through which the refrigerant flows is 0.5 mm or less, the outer surface of the flat plastic tube acts as a heat transfer surface for heat exchange, and the flat plastic tube The tube terminal has a closed loop flow path that meanders between a heat absorption part that receives heat from the outside and a heat radiation part of the opposite terminal, and a working fluid is enclosed and a pressure that is in reverse phase to the working fluid is pressurized. A heat pipe characterized by being applied by 前記放熱器又はヒートパイプが扁平形プラスチックチューブで構成した請求項1〜3のいずれかの記載を用いて構成したことを特徴とする放熱器およびヒートパイプ。   The heat radiator or the heat pipe, wherein the heat radiator or the heat pipe is configured by using a flat plastic tube.
JP2004231891A 2004-08-09 2004-08-09 Radiator and heat pipe Pending JP2006046868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231891A JP2006046868A (en) 2004-08-09 2004-08-09 Radiator and heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231891A JP2006046868A (en) 2004-08-09 2004-08-09 Radiator and heat pipe

Publications (1)

Publication Number Publication Date
JP2006046868A true JP2006046868A (en) 2006-02-16

Family

ID=36025611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231891A Pending JP2006046868A (en) 2004-08-09 2004-08-09 Radiator and heat pipe

Country Status (1)

Country Link
JP (1) JP2006046868A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101243947B1 (en) 2011-03-30 2013-03-13 알트론 주식회사 Heat sink for repeaters
CN103715441A (en) * 2013-12-18 2014-04-09 孙世梅 Heat management method for proton exchange membrane fuel cell based on array heat pipe phase change heat transfer
CN103807835A (en) * 2014-03-03 2014-05-21 赵耀华 Plate-shaped heat pipe insertion type heat dissipation device of large-power LED
CN104406439A (en) * 2014-12-12 2015-03-11 江苏巨鼎新能源科技有限公司 Heat pipe radiator
KR101542784B1 (en) 2015-03-27 2015-08-10 주식회사 이즈 Heat sink for pipe
KR101587873B1 (en) * 2014-08-28 2016-01-22 (주)코스텍 Bond structure of the heat sink
US20160047604A1 (en) * 2014-08-15 2016-02-18 Ge Aviation Systems Llc Heat dissipating assembly
EP3816562B1 (en) * 2019-10-31 2023-05-03 Hamilton Sundstrand Corporation Oscillating heat pipe integrated thermal management system for power electronics

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101243947B1 (en) 2011-03-30 2013-03-13 알트론 주식회사 Heat sink for repeaters
CN103715441A (en) * 2013-12-18 2014-04-09 孙世梅 Heat management method for proton exchange membrane fuel cell based on array heat pipe phase change heat transfer
CN103807835A (en) * 2014-03-03 2014-05-21 赵耀华 Plate-shaped heat pipe insertion type heat dissipation device of large-power LED
US20160047604A1 (en) * 2014-08-15 2016-02-18 Ge Aviation Systems Llc Heat dissipating assembly
KR101587873B1 (en) * 2014-08-28 2016-01-22 (주)코스텍 Bond structure of the heat sink
CN104406439A (en) * 2014-12-12 2015-03-11 江苏巨鼎新能源科技有限公司 Heat pipe radiator
KR101542784B1 (en) 2015-03-27 2015-08-10 주식회사 이즈 Heat sink for pipe
EP3816562B1 (en) * 2019-10-31 2023-05-03 Hamilton Sundstrand Corporation Oscillating heat pipe integrated thermal management system for power electronics

Similar Documents

Publication Publication Date Title
US7607470B2 (en) Synthetic jet heat pipe thermal management system
JP3202014B2 (en) Micro cooling device
JP4234722B2 (en) Cooling device and electronic equipment
US20060181848A1 (en) Heat sink and heat sink assembly
US7106589B2 (en) Heat sink, assembly, and method of making
JP4551261B2 (en) Cooling jacket
US20060021737A1 (en) Liquid cooling device
JP2009532871A (en) Cooling system
JP2006294678A (en) Radiator and cooling device having the same
JP2005195226A (en) Pumpless water cooling system
WO2003043397A1 (en) Electronic apparatus
JP2006286767A (en) Cooling jacket
JP2005229047A (en) Cooling system for electronic equipment, and the electronic equipment using same
US8985195B2 (en) Condensing device and thermal module using same
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
JP2007155269A (en) Cooling device
JP2004295718A (en) Liquid cooling system for information processor
US20070151275A1 (en) Methods and apparatus for microelectronic cooling using a miniaturized vapor compression system
KR20050081815A (en) Electronic device equipped with liquid cooling system, and radiator and manufacturing method thereof
JP2006046868A (en) Radiator and heat pipe
JP2004293833A (en) Cooling device
US7443675B2 (en) Heat pipe with guided internal grooves and heat dissipation module incorporating the same
JP2009099995A (en) Refrigerator and electronic apparatus
US20050135061A1 (en) Heat sink, assembly, and method of making
TWM609021U (en) Liquid cooling heat dissipation device and liquid cooling heat dissipation system with the same