JP5117287B2 - Electronic equipment cooling system - Google Patents

Electronic equipment cooling system Download PDF

Info

Publication number
JP5117287B2
JP5117287B2 JP2008149469A JP2008149469A JP5117287B2 JP 5117287 B2 JP5117287 B2 JP 5117287B2 JP 2008149469 A JP2008149469 A JP 2008149469A JP 2008149469 A JP2008149469 A JP 2008149469A JP 5117287 B2 JP5117287 B2 JP 5117287B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat receiving
pump
pressing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008149469A
Other languages
Japanese (ja)
Other versions
JP2009295869A (en
Inventor
洋典 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008149469A priority Critical patent/JP5117287B2/en
Priority to CN200910118359.8A priority patent/CN101600326B/en
Priority to US12/421,749 priority patent/US20090301692A1/en
Publication of JP2009295869A publication Critical patent/JP2009295869A/en
Priority to US13/408,306 priority patent/US20120160460A1/en
Application granted granted Critical
Publication of JP5117287B2 publication Critical patent/JP5117287B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Description

本発明は、パーソナルコンピュータなど内部に半導体集積回路を搭載した電子機器の冷却装置に係わり、半導体集積回路の発熱を効率良く冷却する冷却装置に関するものである。   The present invention relates to a cooling apparatus for an electronic device having a semiconductor integrated circuit mounted therein such as a personal computer, and more particularly to a cooling apparatus that efficiently cools heat generated in a semiconductor integrated circuit.

近年の電子機器においては、パーソナルコンピュータのCPUに代表されるように高性能な半導体集積回路が搭載されている。この半導体集積回路は、電子機器の高性能化の要求もあって、急速に高速化、高集積化が図られており、それに伴って発熱量も増大している。しかるに、半導体集積回路は、所定の温度以上になると半導体集積回路が所有する性能を維持できないだけでなく、過度の発熱においては破壊されてしまう。よって、電子機器の半導体集積回路は、何らかの手段で冷却される必要を有している。   In recent electronic devices, a high-performance semiconductor integrated circuit is mounted as represented by a CPU of a personal computer. This semiconductor integrated circuit has been rapidly increased in speed and increased in integration due to the demand for higher performance of electronic equipment, and the amount of heat generated has increased accordingly. However, the semiconductor integrated circuit cannot be maintained with the performance possessed by the semiconductor integrated circuit when the temperature is higher than a predetermined temperature, but is destroyed due to excessive heat generation. Therefore, the semiconductor integrated circuit of the electronic device needs to be cooled by some means.

電子機器の半導体集積回路の一般的な冷却方法は、半導体集積回路にヒートシンクを熱接続し、ヒートシンクにファンによって冷却風を通風して冷却する空冷方式である。ただ、この空冷方式において、発熱体の発熱温度の上昇に対応して冷却性能を上げるには、大形で高速回転のファンを搭載して通風量を増大させることになる。一方で、電子機器は使途の多様化もあって、可搬型の小型機器の開発が急速に進んでいる。すなわち、電子機器における半導体集積回路の冷却装置は、小型で、かつ高性能な冷却装置を要求するものであり、空冷方式の冷却装置では、充分な対応が難しい場合がある。このため、冷媒液の熱移送によって冷却性能を上げる液冷の冷却方式が着目されている。   A general cooling method for a semiconductor integrated circuit of an electronic device is an air cooling method in which a heat sink is thermally connected to the semiconductor integrated circuit, and cooling air is blown to the heat sink by a fan. However, in this air cooling system, in order to improve the cooling performance in response to an increase in the heat generation temperature of the heating element, a large and high-speed fan is mounted to increase the air flow rate. On the other hand, with the diversification of uses of electronic devices, the development of portable small devices is rapidly progressing. In other words, a cooling device for a semiconductor integrated circuit in an electronic device requires a small and high-performance cooling device, and an air-cooling cooling device may be difficult to cope with. For this reason, attention is focused on a liquid-cooling cooling system that increases the cooling performance by heat transfer of the refrigerant liquid.

しかしながらこの液冷方式においては、空冷方式のよりも部品点数が多い為、小型化・低コスト化が課題となっている。   However, in this liquid cooling system, the number of parts is larger than that in the air cooling system, and thus downsizing and cost reduction are problems.

小型化、低コスト化の方法としては、各パーツを一体化する事が考えられる。例えば受熱部とポンプ部を一体化する技術が特許文献1および2に開示されている。このうち特許文献1では、放熱用のフィンを使用しない冷却装置の例が開示されている。特許文献2では、マイクロフィンを有する放熱フィンを使用する冷却装置の例が開示されている。   As a method for downsizing and cost reduction, it is conceivable to integrate each part. For example, Patent Documents 1 and 2 disclose a technique for integrating a heat receiving unit and a pump unit. Among these, Patent Document 1 discloses an example of a cooling device that does not use a fin for heat dissipation. In patent document 2, the example of the cooling device which uses the radiation fin which has a microfin is disclosed.

特開2005−142191号公報JP 2005-142191 A 特開2007−35901号公報JP 2007-35901 A

液冷方式における熱交換器の受熱部材において、小型化、低コスト化を実現するためには、上記のような従来技術においては解決しなければならない技術的課題がある。   In order to realize downsizing and cost reduction in the heat receiving member of the heat exchanger in the liquid cooling system, there is a technical problem that must be solved in the conventional technology as described above.

特許文献1に開示されている冷却装置は、ケーシングの一部を高熱伝導率の金属材料で構成しており、この部位が発熱体と接触する事で受熱を行う構成としている。しかしながら受熱性能を考えた場合、受熱能力に特化した受熱部構造、例えば緻密なフィン形状を備えた受熱部と比較すると受熱性能の低下が予想される。また、ポンプ自身に発熱体の熱が伝わり易くなり、ポンプの寿命に悪影響を及ぼすという問題がある。   The cooling device disclosed in Patent Document 1 is configured such that a part of the casing is made of a metal material having high thermal conductivity, and this part receives heat by contacting a heating element. However, when considering the heat receiving performance, a decrease in the heat receiving performance is expected as compared with a heat receiving portion structure specialized in the heat receiving capability, for example, a heat receiving portion having a dense fin shape. In addition, the heat of the heating element is easily transmitted to the pump itself, which has a problem of adversely affecting the life of the pump.

一方、特許文献2に開示されている冷却装置は、受熱部にマイクロフィンを用いている。この場合、フィン間の流路抵抗が高い為にケーシングとの嵌合や接触が不十分であれば、フィン間ではなく嵌合ないし接触する部分の隙間に冷媒が流れ、受熱性能の低下が顕著になる。また、フィンの小型化に伴い発熱体からフィンの頂部までの距離が近くなるため、フィンを介してポンプ部側に発熱体の熱が伝わり易くなるという問題がある。しかし、これらについての具体的解決手段は開示されていない。   On the other hand, the cooling device disclosed in Patent Document 2 uses micro fins in the heat receiving portion. In this case, if the fitting and contact with the casing is insufficient due to the high flow resistance between the fins, the refrigerant flows not in the fins but in the gap between the fitting or contacting portions, and the heat receiving performance is significantly reduced. become. In addition, since the distance from the heating element to the top of the fin is reduced with the miniaturization of the fin, there is a problem that heat of the heating element is easily transmitted to the pump unit side through the fin. However, specific solutions for these are not disclosed.

本発明の目的は、これらの問題を解決し、受熱性能が良好で、さらにはポンプ部側に発熱体の熱が伝わりにくい小型の電子機器用冷却装置を提供することにある。   An object of the present invention is to solve these problems, and to provide a small cooling device for electronic equipment that has good heat receiving performance and that does not easily transmit heat of a heating element to the pump unit side.

上記目的を達成するため本発明は、発熱体を冷媒の熱移送によって冷却する電子機器の冷却装置であって、発熱体の発生した熱を受熱するベース、開口部を備えベースの一部を被覆し発熱体とは反対側に設けられた押圧部材、冷媒が流れる流路を有する受熱部と、冷媒によって受熱した熱を放熱する放熱部と、受熱部と放熱部の間において冷媒を循環させるためのポンプ部とを備え、受熱部の流路においては、冷媒が押圧部材の開口部より流入し、開口部以外にあって押圧部材の周囲から流出することを特徴としている。   In order to achieve the above object, the present invention is an electronic device cooling apparatus for cooling a heating element by heat transfer of a refrigerant, comprising a base for receiving heat generated by the heating element and an opening, and covering a part of the base In order to circulate the refrigerant between the heat receiving portion and the heat radiating portion, a pressure member provided on the opposite side of the heat generating member, a heat receiving portion having a flow path through which the refrigerant flows, a heat radiating portion that radiates heat received by the refrigerant, and In the flow path of the heat receiving part, the refrigerant flows in from the opening of the pressing member, and flows out from the periphery of the pressing member outside the opening.

また本発明は、発熱体の発生した熱を受熱する板状のベース、ベースの発熱体とは反対側の領域にその高さが周囲のベースの高さと略等しくなるよう形成したフィン、開口部を備えフィンの頂部の一部及びベースの一部を被覆した押圧部材、冷媒が流れる流路を有する受熱部と、冷媒によって受熱した熱を放熱する放熱部と、受熱部と放熱部の間において冷媒を循環させるためのポンプ部とを備え、受熱部の流路においては、冷媒が押圧部材の開口部内のフィンの頂部より流入し、開口部以外にあって押圧部材の周囲のフィンの頂部から流出することを特徴としている。   The present invention also provides a plate-like base for receiving heat generated by a heating element, fins formed in a region opposite to the heating element of the base so that the height thereof is substantially equal to the height of the surrounding base, and openings. A pressure member that covers a part of the top of the fin and a part of the base, a heat receiving part having a flow path through which the refrigerant flows, a heat radiating part that radiates heat received by the refrigerant, and between the heat receiving part and the heat radiating part And a pump part for circulating the refrigerant, and in the flow path of the heat receiving part, the refrigerant flows in from the top part of the fin in the opening part of the pressing member, and from the top part of the fin around the pressing member other than the opening part. It is characterized by leaking.

本発明によれば、小型化に伴う受熱性能の低下を防止することができる。さらには、ポンプ部側に発熱体の熱が伝わりにくくする効果がある。その結果、小型で性能の良い電子機器用冷却装置を実現でき、小型のパーソナルコンピュータなどの電子機器の性能向上に寄与することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fall of the heat receiving performance accompanying size reduction can be prevented. Furthermore, there is an effect of making it difficult for the heat of the heating element to be transmitted to the pump part side. As a result, a small and highly efficient cooling apparatus for electronic equipment can be realized, which can contribute to improvement in performance of electronic equipment such as a small personal computer.

以下、本発明の実施形態について図面を参照して説明する。
図4は、本発明の冷却装置を搭載した電子機器の一例を示す構成図である。
電子機器401には、回路基板402、電源410、HDD411等を搭載している。この回路基板402には半導体素子等の発熱体403を有している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 4 is a block diagram showing an example of an electronic device equipped with the cooling device of the present invention.
The electronic device 401 includes a circuit board 402, a power supply 410, an HDD 411, and the like. The circuit board 402 has a heating element 403 such as a semiconductor element.

また、この発熱体403を冷却する冷却装置404は以下の部材で構成されている。受熱部405は、発熱体403に熱接続させ、内部に通流する冷媒に熱伝達によって吸熱させるものである。放熱部408は、冷媒の吸熱した熱をコアチューブ及び放熱フィン等に冷却風を通風して熱伝達により電子機器401の外部に放熱するものである。またポンプ部406は受熱部405と一体となっており、受熱部405と放熱部408との間で冷媒を循環駆動するものである。タンク409は冷却装置404の冷媒を貯留し、配管407は、ポンプ部406と放熱部408間で冷媒を循環するように接続している。   The cooling device 404 for cooling the heating element 403 is composed of the following members. The heat receiving unit 405 is thermally connected to the heating element 403 and absorbs heat by heat transfer to the refrigerant flowing inside. The heat dissipating unit 408 dissipates heat absorbed by the refrigerant to the outside of the electronic device 401 through heat transfer by passing cooling air through the core tube and the heat dissipating fins. The pump unit 406 is integrated with the heat receiving unit 405, and circulates and drives the refrigerant between the heat receiving unit 405 and the heat radiating unit 408. The tank 409 stores the refrigerant of the cooling device 404, and the pipe 407 is connected so as to circulate the refrigerant between the pump unit 406 and the heat radiating unit 408.

ここで、電子機器401は、特定の機器を想定するものではなく、また、この実施例では半導体素子を発熱体403として説明しているが、半導体素子に限定されるものではなく、HDDなどの発熱に対する冷却装置404であっても良い。また、タンク409は独立して配置しているが、放熱部408との一体形状になっていても良い。   Here, the electronic device 401 is not assumed to be a specific device, and in this embodiment, the semiconductor element is described as the heating element 403. However, the electronic device 401 is not limited to the semiconductor element, such as an HDD. The cooling device 404 against heat generation may be used. Further, although the tank 409 is arranged independently, it may be integrated with the heat radiating portion 408.

本発明の冷却装置404の受熱部405とポンプ部406について、以下詳細に説明する。図1は、本発明の冷却装置における受熱部およびポンプ部の一実施例を示す図である。
図1(a)はポンプ部側から見た透視図であり、図1(b)は図1(a)のA−A’における断面図を示す。図1(a)において、フィン202の一部が押圧部材203の奥側に隠れるため、その部分を破線で示してある。
The heat receiving unit 405 and the pump unit 406 of the cooling device 404 of the present invention will be described in detail below. FIG. 1 is a diagram showing an embodiment of a heat receiving unit and a pump unit in the cooling device of the present invention.
FIG. 1A is a perspective view seen from the pump portion side, and FIG. 1B is a cross-sectional view taken along line AA ′ of FIG. In FIG. 1A, since a part of the fin 202 is hidden behind the pressing member 203, the part is indicated by a broken line.

本実施例におけるポンプ部406は渦流式ポンプであり、冷媒を吸い込む第1の吸入口101と、冷媒を吐き出す第1の排出口102を有し、これらは配管407と通じている。更には本発明の特徴である第2の排出口104と、第2の吸入口105も有しており、これらの開口部は受熱部405側に向けて設けられている。また夫々の吸入口と排出口の間には、仕切り103および106がある。これらの仕切りにより、夫々の吸入口と排出口が機能する。またインペラー107は磁化しており、これとコイル109および駆動基板110により、インペラー107が回転し、羽根108が冷媒を動かす事により液の流れを生じさせる。ポンプ部406内部の冷媒の流れは、第1の吸入口101から入った冷媒が第2の排出口104に流れ出て、受熱部405を経た後、第2の吸入口105から再び入り、第1の排出口102から出て行く。   The pump unit 406 in this embodiment is a vortex pump, and has a first suction port 101 for sucking refrigerant and a first discharge port 102 for discharging refrigerant, which communicate with a pipe 407. Furthermore, it has the 2nd discharge port 104 and the 2nd suction port 105 which are the characteristics of this invention, and these opening parts are provided toward the heat receiving part 405 side. There are partitions 103 and 106 between the respective inlets and outlets. With these partitions, the respective inlets and outlets function. The impeller 107 is magnetized, and the impeller 107 is rotated by the coil 109 and the driving substrate 110, and the blades 108 move the refrigerant to cause a liquid flow. The refrigerant flowing in the pump unit 406 flows from the first suction port 101 into the second discharge port 104, passes through the heat receiving unit 405, and then enters the second suction port 105 again. It goes out from the discharge port 102.

次にポンプ部406に接合している受熱部405について説明する。図2は受熱部405のみの斜視図である。206と208は冷媒をその流れの方向とともに示している。207はフィン202の中央頂部を示す。またフィン202の一部は、押圧部材203に隠れ、あるいは受熱部405の内部にあるため、その部分を破線で示している。   Next, the heat receiving part 405 joined to the pump part 406 will be described. FIG. 2 is a perspective view of only the heat receiving portion 405. 206 and 208 indicate the refrigerant along with its flow direction. Reference numeral 207 denotes the central top of the fin 202. Further, since a part of the fin 202 is hidden behind the pressing member 203 or inside the heat receiving portion 405, the portion is indicated by a broken line.

受熱部405は、ベース201、フィン202、押圧部材203で構成されている。フィン202の頂部は、ベース201の上面と略同じ高さにある。略同じ高さというのは、フィン202を加工して作成する際に発生する、フィン202の頂部とベース201の上面との段差が、押圧部材203で吸収できる程度に同じ高さということである。   The heat receiving unit 405 includes a base 201, fins 202, and pressing members 203. The tops of the fins 202 are at substantially the same height as the top surface of the base 201. The substantially same height means that the level difference between the top of the fin 202 and the upper surface of the base 201, which is generated when the fin 202 is processed and formed, is the same height that can be absorbed by the pressing member 203. .

フィン202の底面部205はベース201よりも薄くなっている。ベース201とフィン202の上には押圧部材203があり、押圧部材203には開口部204がある。押圧部材203はフィン202の高さ等の寸法に多少のバラツキがある場合であっても、ポンプ部とフィンの隙間を無くし、フィンへの冷媒の流れを確実にする為のものである。従って押圧部材203は、柔軟性があり、かつフィンの熱に耐え得る耐熱性を備えた材質で出来ている。たとえば、広い温度範囲で柔軟性を保つことのできるゲルシートなどを使用すると良い。発熱体403が半導体素子であるならば、その動作を保証する周囲温度である、たとえば−20℃から100℃の範囲で柔軟性を保てると良い。これにより、前記したフィン202の頂部とベース201の上面との段差を、必要な温度範囲で押圧部材203により吸収することができる。   The bottom surface portion 205 of the fin 202 is thinner than the base 201. There is a pressing member 203 on the base 201 and the fin 202, and the pressing member 203 has an opening 204. The pressing member 203 is for eliminating the gap between the pump part and the fin and ensuring the flow of the refrigerant to the fin even when there is some variation in the dimensions such as the height of the fin 202. Therefore, the pressing member 203 is made of a material having flexibility and heat resistance capable of withstanding the heat of the fins. For example, a gel sheet that can maintain flexibility over a wide temperature range may be used. If the heating element 403 is a semiconductor element, flexibility should be maintained in an ambient temperature that guarantees its operation, for example, in the range of -20 ° C to 100 ° C. As a result, the step between the top of the fin 202 and the upper surface of the base 201 can be absorbed by the pressing member 203 within a necessary temperature range.

ここで受熱部405の冷媒の流れを説明する。ポンプ部406の第2の排出口104を出た冷媒206は押圧部材の開口部204に沿って流れ、フィン202の中央頂部207に流れ込む。フィン202に流れ込んだ冷媒は押圧部材203の周囲から湧き出る。湧き出た冷媒208は、周囲がOリング111で封止されている為、自ずとポンプ部406の第2の吸入口105に流れ込む。以上、説明した様に、受熱部の冷媒入出口の位置がフィンの上部ではなく、ベース上部に存在する場合においても、フィン上部から冷媒の入出を行う事が可能となり、小型化に寄与することができる。尚本発明による受熱部においては、第2の排出口104の位置が任意であっても容易に対応可能である。例えば図5に示す様に、これまで説明してきた図5(a)に示す位置では無く図5(b)の位置に第2の排出口104が存在する場合においても、押圧部材203の形状をここに示す様に変更する事で対応可能である。   Here, the flow of the refrigerant in the heat receiving unit 405 will be described. The refrigerant 206 exiting the second discharge port 104 of the pump unit 406 flows along the opening 204 of the pressing member and flows into the central top portion 207 of the fin 202. The refrigerant that has flowed into the fin 202 springs out from the periphery of the pressing member 203. The refrigerant 208 that has flown out naturally flows into the second suction port 105 of the pump unit 406 because the periphery is sealed by the O-ring 111. As described above, even when the position of the refrigerant inlet / outlet of the heat receiving part is not at the upper part of the fin but at the upper part of the base, it is possible to enter and exit the refrigerant from the upper part of the fin, contributing to downsizing. Can do. In addition, in the heat receiving part by this invention, even if the position of the 2nd discharge port 104 is arbitrary, it can respond easily. For example, as shown in FIG. 5, even when the second discharge port 104 exists at the position shown in FIG. 5B instead of the position shown in FIG. It can respond by changing as shown here.

従ってポンプ部にとって無理の無い位置に第2の排出口104を配置する事が可能である。また第2の吸入口105においても、押圧部材203に被らない位置であれば任意で良い。この構成により設計の自由度を増すことができ、必要最小限の大きさでポンプ部と受熱部を一体化できるという効果がある。   Therefore, it is possible to arrange the second discharge port 104 at a position that is not unreasonable for the pump unit. Further, the second suction port 105 may be arbitrarily positioned as long as it does not cover the pressing member 203. With this configuration, the degree of freedom in design can be increased, and the pump unit and the heat receiving unit can be integrated with a minimum size.

また前記したように、ポンプ部とフィンの隙間が無いため、フィン以外の部分を冷媒が流れて、受熱性能が低下する問題を解決できる効果がある。
また前記したとおり、第2の排出口104は受熱部405側に向いて設けられているため、冷却効果をいっそう向上する効果もある。
In addition, as described above, since there is no gap between the pump part and the fin, there is an effect that the problem that the refrigerant flows through the part other than the fin and the heat receiving performance is lowered can be solved.
Further, as described above, since the second outlet 104 is provided toward the heat receiving portion 405, there is an effect of further improving the cooling effect.

尚本実施例では、ベース201の厚みが1.5mm、押圧部材203の厚みが0.5mmである。またポンプ406の第2の排出口104と第2の吸入口105は単なる開口形状である為、ポンプ部の厚みは、単品状態から増加しない。従って、ポンプ単体の状態から、受熱部を接合する事による厚み増加は僅か2mmである。   In this embodiment, the thickness of the base 201 is 1.5 mm and the thickness of the pressing member 203 is 0.5 mm. Moreover, since the 2nd discharge port 104 and the 2nd suction port 105 of the pump 406 are mere opening shapes, the thickness of a pump part does not increase from a single item state. Therefore, the thickness increase by joining the heat receiving portion from the state of the pump alone is only 2 mm.

また、従来においては、フィンを介してポンプ部側に発熱体の熱が伝わり易くなるという問題が生じ、特にフィンの近くにポンプ軸112がある場合、熱により軸周りの劣化が早まり、ポンプの寿命が短くなるという問題が生じる恐れがあったが、押圧部材203は前記したとおり、たとえばゲルシートなど金属に比べ熱伝導率の低い材質で出来ており、さらにはその中央部には開口部204を設けている。その開口部204内部には冷媒が流れる為、ポンプ部側へ受熱部側の熱が直接伝わる事を避ける作用を有する。このため、ポンプ側に発熱体の熱が伝わる問題を、解決できる効果がある。実際に押圧部材203を使用しない場合と比較すると、ポンプ側の温度上昇を3〜6度程度改善することができる。   Further, conventionally, there is a problem that heat of the heating element is easily transmitted to the pump unit side through the fins, and particularly when the pump shaft 112 is near the fins, deterioration around the shaft is accelerated by heat, and the pump However, as described above, the pressing member 203 is made of a material having a lower thermal conductivity than a metal, such as a gel sheet, and further has an opening 204 at the center thereof. Provided. Since the refrigerant flows in the opening 204, it has an effect of preventing the heat on the heat receiving part from being directly transferred to the pump part. For this reason, there exists an effect which can solve the problem that the heat of a heat generating body is transmitted to the pump side. Compared with the case where the pressing member 203 is not actually used, the temperature rise on the pump side can be improved by about 3 to 6 degrees.

尚これまで述べてきた実施例では、フィン202の形状は板状のものを用いたが、これに限定されるものでは無く、例えばピン形状のフィンが並んだものであっても良い。また、ポンプについても、これまで述べてきた渦流式ポンプに限定されるものでは無く、例えば遠心式ポンプや、歯車式ポンプでも良い。   In the embodiment described so far, the fin 202 has a plate shape. However, the present invention is not limited to this. For example, a pin-shaped fin may be arranged. Also, the pump is not limited to the vortex pump described so far, and may be a centrifugal pump or a gear pump, for example.

図3に歯車式ポンプを用いた場合の実施例を示す。ここで301は内歯、302は外歯を示す。その他、図1の実施例と同様のもので良い構成物には、同じ番号を与えている。図3に示す歯車式ポンプは、内歯301と外歯302が回転しながら噛み合う事により液を駆動する。このポンプにおいても、先の実施例と同様に、外部と接続する為の第1の吸入口(図示せず)と第1の排出口102に加え、受熱部と接続する為の第2の排出口104と第2の吸入口105を備えている。またフィン202の頂部はベース201と略同じ高さにあり、押圧部材203は、フィン202と第2の排出口104の間に位置している。これらの構成により先の実施例と同様、マイクロフィンへの冷媒の流れを確実にして受熱性能の低下を防ぎ、フィンの熱がポンプ部に伝わる事を避け、更にはポンプ単品と略同等の大きさで受熱部との接合が可能になるという効果がある。   FIG. 3 shows an embodiment in which a gear pump is used. Here, 301 indicates internal teeth and 302 indicates external teeth. In addition, the same number is given to the component which may be the same as that of the Example of FIG. The gear-type pump shown in FIG. 3 drives the liquid by engaging the inner teeth 301 and the outer teeth 302 while rotating. Also in this pump, in the same manner as in the previous embodiment, in addition to the first suction port (not shown) for connection to the outside and the first discharge port 102, the second exhaust for connection to the heat receiving unit is also provided. An outlet 104 and a second inlet 105 are provided. Further, the top of the fin 202 is at substantially the same height as the base 201, and the pressing member 203 is located between the fin 202 and the second discharge port 104. As with the previous embodiment, these configurations ensure the flow of refrigerant to the micro fins to prevent a decrease in heat receiving performance, prevent the heat of the fins from being transmitted to the pump unit, and are approximately the same size as a single pump. Now, there is an effect that the joining with the heat receiving portion becomes possible.

これまでの説明では図1をはじめ、多数のフィンを短い間隔で設けたものを示したが、これは限定条件ではない。図6と図7を用いて、他の実施例を示す。これらは図1と同じ方法で描いた透視図と断面図である。同様のもので良い構成物には、同じ番号を与えている。   Although the description so far has shown what provided many fins at short intervals including FIG. 1, this is not a limiting condition. Another embodiment will be described with reference to FIGS. 6 and 7. These are a perspective view and a cross-sectional view drawn in the same manner as in FIG. Similar components may be given the same number.

図6はフィン202が3個の場合である。この例のように、少数のフィンを長い間隔で設けた場合においても、本発明は適用可能であり、同様の効果を得ることができる。フィンの厚さは図1のものに比較し、厚くすることで放熱効果を大きくすることができる。   FIG. 6 shows a case where there are three fins 202. Even in the case where a small number of fins are provided at long intervals as in this example, the present invention is applicable and the same effect can be obtained. The fins can be made thicker than those in FIG. 1 to increase the heat dissipation effect.

図7はフィンを設けない場合である。この例は図1と比較し押圧部材203とポンプ側との間に隙間ができ易くなるが、これが問題となる場合は、接着剤の使用などで解決することができる。冷媒は第2の排出口104から出て押圧部材の開口部204へ流れ込み、特にベースの底面部205を冷却したのち、押圧部材203の周囲より流れ出て、第2の吸水口105よりポンプ部へ吸い込まれる。やはり図1と同様に、本発明を適用でき、同様の効果を得ることができる。   FIG. 7 shows a case where no fin is provided. In this example, a gap is easily formed between the pressing member 203 and the pump side as compared with FIG. 1, but when this becomes a problem, it can be solved by using an adhesive or the like. The refrigerant exits from the second discharge port 104 and flows into the opening 204 of the pressing member. In particular, after cooling the bottom surface portion 205 of the base, it flows out from the periphery of the pressing member 203 and flows from the second water suction port 105 to the pump unit. Inhaled. Similarly to FIG. 1, the present invention can be applied and the same effect can be obtained.

またここまで冷媒の流れる向きをたとえば図2の場合、矢印206と208で示したがこれと逆であっても、冷却効果を得ることができる。ポンプ軸112をはじめとするポンプ部406の温度上昇を低減するためには、たとえば図2に示したようにすると良い。   In addition, for example, in the case of FIG. 2, the direction in which the refrigerant flows so far is indicated by arrows 206 and 208. In order to reduce the temperature rise of the pump unit 406 including the pump shaft 112, for example, as shown in FIG.

上記のように、本発明によれば、小型で高性能な受熱部の冷媒入出口の位置を任意に決める事ができる為、受熱部とポンプ部との一体化が容易実現し、またマイクロフィンを備えた受熱部とポンプの一体化する際、受熱性能低下の原因となるマイクロフィンとポンプの隙間を無くす事が容易に可能になり、またマイクロフィンからポンプへ熱が伝わりポンプの寿命が低下する事を避け、更にはポンプサイズと略同等のサイズにて受熱部とポンプを一体化する事ができる為、高性能、小型、低コストの液冷式冷却装置を実現することができる。   As described above, according to the present invention, since the position of the refrigerant inlet / outlet of the small and high performance heat receiving part can be arbitrarily determined, the heat receiving part and the pump part can be easily integrated, and the microfin When the heat receiving part with the pump is integrated with the pump, it becomes easy to eliminate the gap between the micro fin and the pump, which causes a decrease in the heat receiving performance, and the heat is transmitted from the micro fin to the pump and the life of the pump is reduced. In addition, since the heat receiving portion and the pump can be integrated with a size substantially the same as the pump size, a high-performance, small, and low-cost liquid-cooled cooling device can be realized.

本発明による冷却装置の受熱部とポンプ部の一実施例を示す。(a)は透視図、(b)は断面図である。1 shows an embodiment of a heat receiving part and a pump part of a cooling device according to the present invention. (A) is a perspective view, (b) is a sectional view. 本実施例の受熱部を示す斜視図である。It is a perspective view which shows the heat receiving part of a present Example. 本発明の他の一実施例を示す断面図である。It is sectional drawing which shows other one Example of this invention. 本発明の冷却装置を搭載した電子機器の一例を示す構成図である。It is a block diagram which shows an example of the electronic device carrying the cooling device of this invention. 本実施例の受熱部における押圧部材の形状の例を示す透視図である。It is a perspective view which shows the example of the shape of the press member in the heat receiving part of a present Example. 本発明による冷却装置の受熱部とポンプ部の他の一実施例を示す。Another embodiment of the heat receiving part and the pump part of the cooling device according to the present invention is shown. 本発明による冷却装置の受熱部とポンプ部の他の一実施例を示す。Another embodiment of the heat receiving part and the pump part of the cooling device according to the present invention is shown.

符号の説明Explanation of symbols

101・・・第1の吸入口
102・・・第1の排出口
103・・・仕切り
104・・・第2の排出口
105・・・第2の吸入口
106・・・仕切り
111・・・Oリング
201・・・ベース
202・・・フィン
203・・・押圧部材
204・・・押圧部材の開口部
401・・・電子機器
402・・・回路基板
403・・・発熱体
404・・・冷却装置
405・・・受熱部
406・・・ポンプ部
407・・・配管
408・・・放熱部
409・・・タンク。
DESCRIPTION OF SYMBOLS 101 ... 1st inlet 102 ... 1st outlet 103 ... Partition 104 ... 2nd outlet 105 ... 2nd inlet 106 ... Partition 111 ... O-ring 201 ... base 202 ... fin 203 ... pressing member 204 ... opening of pressing member 401 ... electronic device 402 ... circuit board 403 ... heating element 404 ... cooling Apparatus 405 ... Heat receiving part 406 ... Pump part 407 ... Piping 408 ... Heat radiation part 409 ... Tank.

Claims (5)

発熱体を冷媒の熱移送によって冷却する電子機器の冷却装置において、
前記発熱体の発生した熱を受熱するベースと、開口部を備え前記ベースの一部を被覆し前記発熱体とは反対側に設けられた押圧部材と、前記冷媒が流れる流路とを有する受熱部と、
前記冷媒によって受熱した熱を放熱する放熱部と、
前記受熱部と前記放熱部の間において前記冷媒を循環させるためのポンプ部とを備え、
前記受熱部の前記流路においては、前記冷媒が前記押圧部材の前記開口部より流入し、前記開口部以外にあって前記押圧部材の周囲から流出することを特徴とする電子機器の冷却装置。
In a cooling device for an electronic device that cools a heating element by heat transfer of a refrigerant,
A heat receiving unit having a base that receives heat generated by the heating element, a pressing member that includes an opening and covers a part of the base and is provided on the opposite side of the heating element, and a flow path through which the refrigerant flows. And
A heat radiating part for radiating heat received by the refrigerant;
A pump unit for circulating the refrigerant between the heat receiving unit and the heat radiating unit;
The electronic apparatus cooling apparatus according to claim 1, wherein in the flow path of the heat receiving unit, the refrigerant flows in from the opening of the pressing member and flows out of the pressing member except for the opening.
発熱体を冷媒の熱移送によって冷却する電子機器の冷却装置において、
前記発熱体の発生した熱を受熱する板状のベースと、前記ベースの前記発熱体とは反対側の領域にその高さが周囲のベースの高さと略等しくなるよう形成したフィンと、開口部を備え前記フィンの頂部の一部及び前記ベースの一部を被覆した押圧部材と、前記冷媒が流れる流路とを有する受熱部と、
前記冷媒によって受熱した熱を放熱する放熱部と、
前記受熱部と前記放熱部の間において前記冷媒を循環させるためのポンプ部とを備え、
前記受熱部の前記流路においては、前記冷媒が前記押圧部材の前記開口部内の前記フィンの頂部より流入し、前記開口部以外にあって前記押圧部材の周囲の前記フィンの頂部から流出することを特徴とする電子機器の冷却装置。
In a cooling device for an electronic device that cools a heating element by heat transfer of a refrigerant,
A plate-like base that receives the heat generated by the heating element; a fin formed in a region of the base opposite to the heating element so that its height is substantially equal to the height of the surrounding base; and an opening A heat receiving part having a pressing member that covers a part of the top of the fin and a part of the base, and a flow path through which the refrigerant flows,
A heat radiating part for radiating heat received by the refrigerant;
A pump unit for circulating the refrigerant between the heat receiving unit and the heat radiating unit;
In the flow path of the heat receiving portion, the refrigerant flows in from the top of the fin in the opening of the pressing member, and flows out from the top of the fin around the pressing member except for the opening. An electronic device cooling device characterized by the above.
請求項1または2に記載の電子機器用の冷却装置において、
前記受熱部と前記ポンプ部は、前記押圧部材を介して上下より水密構造となるように接合された一体構造であって、
前記ポンプ部は、前記冷媒を前記ポンプ部内に吸い込む第1の吸入口と、前記冷媒を前記ポンプ部外に吐き出す第1の排出口と、前記冷媒を前記受熱部から吸い込む第2の吸入口と、端面が前記受熱部に対向する向きに配置され前記冷媒を前記受熱部に吐き出す第2の排出口とを備えたことを特徴とする電子機器の冷却装置。
In the cooling device for electronic devices of Claim 1 or 2,
The heat receiving portion and the pump portion are integrated structures joined to form a watertight structure from above and below via the pressing member,
The pump unit includes a first suction port for sucking the refrigerant into the pump unit, a first discharge port for discharging the refrigerant to the outside of the pump unit, and a second suction port for sucking the refrigerant from the heat receiving unit. An electronic device cooling apparatus comprising: a second discharge port that has an end surface disposed in a direction facing the heat receiving unit and discharges the refrigerant to the heat receiving unit.
請求項3に記載の電子機器の冷却装置において、
前記ポンプ部内部の冷媒を循環させるためのポンプ室を分割する仕切り部を有し、
前記第1の吸入口と前記第2の排出口は、前記仕切り部により分割された第1の分割部分に設け、
前記第2の吸入口と前記第1の排出口は、前記仕切り部により分割された第2の分割部分に設けたことを特徴とする電子機器の冷却装置。
In the cooling device of the electronic device according to claim 3,
A partition that divides the pump chamber for circulating the refrigerant inside the pump,
The first suction port and the second discharge port are provided in a first divided portion divided by the partition part,
The electronic apparatus cooling device according to claim 1, wherein the second suction port and the first discharge port are provided in a second divided portion divided by the partition portion.
請求項1ないし4のいずれか1項に記載の電子機器の冷却装置において、
前記押圧部材として、前記発熱体の動作を保証する周囲温度の範囲において柔軟性を保持するゲルシートを用いたことを特徴とする電子機器の冷却装置。
In the cooling device of the electronic device of any one of Claim 1 thru | or 4,
A cooling device for electronic equipment, wherein a gel sheet that retains flexibility in a range of ambient temperature that guarantees the operation of the heating element is used as the pressing member.
JP2008149469A 2008-06-06 2008-06-06 Electronic equipment cooling system Expired - Fee Related JP5117287B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008149469A JP5117287B2 (en) 2008-06-06 2008-06-06 Electronic equipment cooling system
CN200910118359.8A CN101600326B (en) 2008-06-06 2009-02-27 Electronic apparatus cooling device
US12/421,749 US20090301692A1 (en) 2008-06-06 2009-04-10 Electronic Apparatus Cooling Device
US13/408,306 US20120160460A1 (en) 2008-06-06 2012-02-29 Electronic Apparatus Cooling Device With Integrated Pump And Heat Receiving Part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008149469A JP5117287B2 (en) 2008-06-06 2008-06-06 Electronic equipment cooling system

Publications (2)

Publication Number Publication Date
JP2009295869A JP2009295869A (en) 2009-12-17
JP5117287B2 true JP5117287B2 (en) 2013-01-16

Family

ID=41399223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149469A Expired - Fee Related JP5117287B2 (en) 2008-06-06 2008-06-06 Electronic equipment cooling system

Country Status (3)

Country Link
US (2) US20090301692A1 (en)
JP (1) JP5117287B2 (en)
CN (1) CN101600326B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626200B2 (en) * 2011-01-06 2014-11-19 株式会社豊田自動織機 Electrical component fixing structure
JP6504832B2 (en) 2014-01-28 2019-04-24 ゼネラル・エレクトリック・カンパニイ Integrated mounting and cooling devices, electronic devices and vehicles
US10073512B2 (en) 2014-11-19 2018-09-11 General Electric Company System and method for full range control of dual active bridge
US20190041104A1 (en) * 2017-08-07 2019-02-07 Asia Vital Components Co., Ltd. Heat exchange structure of heat dissipation device
CN109451696B (en) * 2018-09-26 2020-10-27 天长市天毅电子科技有限公司 Water-cooled electric vehicle charger

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072188A (en) * 1975-07-02 1978-02-07 Honeywell Information Systems Inc. Fluid cooling systems for electronic systems
EP0144579B1 (en) * 1983-11-02 1987-10-14 BBC Brown Boveri AG Cooling body for the liquid cooling of power semiconductor devices
US4561040A (en) * 1984-07-12 1985-12-24 Ibm Corporation Cooling system for VLSI circuit chips
US4758926A (en) * 1986-03-31 1988-07-19 Microelectronics And Computer Technology Corporation Fluid-cooled integrated circuit package
US5316075A (en) * 1992-12-22 1994-05-31 Hughes Aircraft Company Liquid jet cold plate for impingement cooling
US6019167A (en) * 1997-12-19 2000-02-01 Nortel Networks Corporation Liquid immersion cooling apparatus for electronic systems operating in thermally uncontrolled environments
CA2329408C (en) * 2000-12-21 2007-12-04 Long Manufacturing Ltd. Finned plate heat exchanger
US20030214786A1 (en) * 2002-05-15 2003-11-20 Kyo Niwatsukino Cooling device and an electronic apparatus including the same
JP4134884B2 (en) * 2003-11-04 2008-08-20 松下電器産業株式会社 Cooling system
JP4234635B2 (en) * 2004-04-28 2009-03-04 株式会社東芝 Electronics
CN2702586Y (en) * 2004-04-28 2005-05-25 宣普科技股份有限公司 Cooling device for electronic building brick
CN1809260A (en) * 2004-12-27 2006-07-26 松下电器产业株式会社 Heatsink apparatus
US7543457B2 (en) * 2005-06-29 2009-06-09 Intel Corporation Systems for integrated pump and reservoir
US20070012423A1 (en) * 2005-07-15 2007-01-18 Koichiro Kinoshita Liquid cooling jacket and liquid cooling device
JP2007035901A (en) * 2005-07-27 2007-02-08 Matsushita Electric Ind Co Ltd Heat receiver and cooling device equipped with it
US7486516B2 (en) * 2005-08-11 2009-02-03 International Business Machines Corporation Mounting a heat sink in thermal contact with an electronic component
US7331380B2 (en) * 2005-08-17 2008-02-19 Delphi Technologies, Inc. Radial flow micro-channel heat sink with impingement cooling
US20070227698A1 (en) * 2006-03-30 2007-10-04 Conway Bruce R Integrated fluid pump and radiator reservoir
US7849914B2 (en) * 2006-05-02 2010-12-14 Clockspeed, Inc. Cooling apparatus for microelectronic devices
US7597135B2 (en) * 2006-05-23 2009-10-06 Coolit Systems Inc. Impingement cooled heat sink with low pressure drop
US7511957B2 (en) * 2006-05-25 2009-03-31 International Business Machines Corporation Methods for fabricating a cooled electronic module employing a thermally conductive return manifold structure sealed to the periphery of a surface to be cooled
US7753662B2 (en) * 2006-09-21 2010-07-13 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Miniature liquid cooling device having an integral pump therein
JP4876975B2 (en) * 2007-03-02 2012-02-15 株式会社日立製作所 Cooling device and heat receiving member for electronic equipment
JP5002522B2 (en) * 2008-04-24 2012-08-15 株式会社日立製作所 Cooling device for electronic equipment and electronic equipment provided with the same

Also Published As

Publication number Publication date
CN101600326A (en) 2009-12-09
CN101600326B (en) 2011-11-16
US20120160460A1 (en) 2012-06-28
JP2009295869A (en) 2009-12-17
US20090301692A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
US8023265B2 (en) Heat dissipation device and centrifugal fan thereof
JP4532422B2 (en) Heat sink with centrifugal fan
JP5002522B2 (en) Cooling device for electronic equipment and electronic equipment provided with the same
US9807906B2 (en) Liquid-cooling device and system thereof
JP4551261B2 (en) Cooling jacket
US8238100B2 (en) Centrifugal fan and electronic apparatus
JP4234722B2 (en) Cooling device and electronic equipment
JP6126149B2 (en) Air-cooled laser apparatus provided with a heat conducting member having a radiation fin
US8305758B2 (en) Heat-dissipating module
JP6228730B2 (en) Radiator, electronic device and cooling device
JP2008218589A (en) Cooling device for electronic apparatus
US20100103616A1 (en) Electronic device with centrifugal fan
JP5117287B2 (en) Electronic equipment cooling system
JP7238400B2 (en) Cooling system
JP2006234255A (en) Radiator and liquid cooling system comprising the same
JP2007142068A (en) Heat receiver, and cooler including same
US20230164947A1 (en) Water cooler assembly and system
JP2009099995A (en) Refrigerator and electronic apparatus
JP2013251452A (en) Electronic apparatus
TWM454562U (en) Liquid cooling heat dissipation module
JP2007004765A (en) Liquid-cooled computer device
JP2012069551A (en) Heat radiator of electronic apparatus and electronic apparatus
TWI414225B (en) Electric device
JP2007335624A (en) Liquid-cooled cooler for electronic appliance
JP2009088051A (en) Cooling device for electronic instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5117287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees